
Scalability of OWL Reasoning:
Role condensates

Sebastian Wandelt1, Ralf Möller1

Institute for Software Systems,
TU Hamburg-Harburg,

wandelt@tuhh.de, r.f.moeller@tuhh.de

Abstract. In the last years, there has been an increasing interest in
the performance of reasoning on the Semantic Web in presence of large
ABoxes. Traditional reasoners make heavily use of in-memory structures
and are therefore not suitable to deal with large ABoxes directly.

We propose an approach that, informally speaking, works on a composite
representation of the role-part of a SHIQ knowledge base. With respect to
conjunctive queries, this helps us to provide a kind of proxy that restricts
the set of possible bindings for a variable in advance. Furthermore we
can use this proxy to reject several queries with no answer substitution
immediately. Most notably our approach is query independent.

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes increas-
ingly important. Even for basic inference techniques, e.g. concept satisfiability,
it is only recently understood on how to perform reasoning on huge input in
an efficient way. This is not yet the case for problems that are too large to fit
into main memory. For more complex reasoning problems like conjunctive query
answering, this problem becomes even harder.

It has been shown recently [GHLS07] that answering conjunctive queries over
a SHIQ knowledge base is decidable. The data complexity (complexity w.r.t. the
size of the ABox) was shown to be co-NP complete. Given that result, dealing
with large ABoxes (106 and more assertions) is likely to be unfeasible in practice
for the general/worst case.

In this paper we present a complete, but unsound approach to answer con-
junctive queries in a proxy-like manner. For our approach we have a look at the
role part of a knowledge base. For a given SHIQ knowledge base, we create a
condensed role graph. Usually, this graph is several orders of magnitudes smaller
than the ABox. Furthermore, we convert a conjunctive query into a number of
forest-like structures. Then we show that the conjunctive query is only entailed
by the knowledge base if one query forest is isomorphic to a subgraph of the
condensed graph.

One might claim that the subgraph isomorphism problem is NP-complete and
that we have not much gain for the price of unsoundness. Yet, we advocate, that

our data set is smaller. Thus, the impact of the high worst-case complexity is not
so dramatic, and the structures fit into main memory. Furthermore, subgraph
isomorphism checking is a very fundamental problem of computer science and
well-known heuristics can be applied to speed up the algorithm in practice.

This paper is structured as follows. Section 2 presents some background on
query answering over SHIQ ontologies. In Section 3 we introduce the notions
of a role condensate and in Section 4 we show an appropriate role-encoding of
conjunctive queries. Section 5 provides our main reasoning result. We conclude
the paper in Section 6 and also point at some ideas for further work.

2 Basics

First, we briefly introduce the syntax and semantics of the description logic
SHIQ. We assume a collection of disjoint sets: a set of concept names NC , a set
of role names NRN , with a subset NRN+ ⊆ NRN of transitive role names, and a
set of individual names NI . The set of roles NR is NRN ∪ {R−|R ∈ NRN}. We
also define the following functions for inverse and transitive roles:

Inv(R) = R− ⇐⇒ R ∈ NRN

Inv(R) = S ⇐⇒ R = S−

Trans(R) ⇐⇒ R ∈ NRN+ ∨ Inv(R) ∈ NRN+

SHIQ-concepts are built inductively by using the grammar:

C ::=>|⊥|D|¬C|C1 u C2|C1 t C2|∀R.C|∃R.C| ≤n S.C| ≥n S.C,

where D ∈ NC , R ∈ NR, S ∈ NR

NRN+ and n ∈ N.
We define the semantics by using a standard Tarski-style semantics with an

interpretation I = (∆I , •I), consisting of a non-empty set (domain) ∆I and a
function (valuation) •I which maps every concept name D to a subset DI ⊆ ∆I ,
every role name R ∈ NR to a binary relation RI ⊆ ∆I × ∆I , while satisfying
the following equations:

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ,

(∃R.C)I = {x|∃y.(x, y) ∈ RI ∧ y ∈ CI},
(∀R.C)I = {x|∀y.(x, y) ∈ RI =⇒ y ∈ CI}

(≥n R.C)I = {x||{y|(x, y) ∈ RI ∧ y ∈ CI}| ≥ n},
(≤n R.C)I = {x||{y|(x, y) ∈ RI ∧ y ∈ CI}| ≤ n},

A general concept inclusion is an expression C v D, where C and D are con-
cepts. A finite set of general concept inclusions is called TBox. A role inclusion
is of the form R v S with R and S roles. A role hierarchy is a finite set of role

inclusions. With v∗ we denote the transitive closure of v. An assertion is of the
form C(a),¬C(a), R(a, b),¬R(a, b) or a 6= b, where C is a concept, R is a role
and a, b ∈ NI . A finite set of assertions is called ABox. With Ind(A) we denote
the set of individuals occurring in A. A knowledge base KB is a triple 〈T ,R,A〉
that consists of a TBox T , a role hierarchy R and an ABox A.

An interpretation I is a model of a concept C, if CI 6= ∅. An interpretation I
is a model of a general concept inclusion C v D, if CI ⊆ DI . An interpretation
is a model of a TBox T if it satisfies all axioms in T . Being model of an RBox
and ABox is defined as usual. An interpretation is a model of a knowledge base,
if it is a model of T , R and A.

In the following we use a common definition of conjunctive queries, as e.g.
given in [GHLS07]. Let NV be a countably infinite set of variables. A concept
atom is an expression C(v1) and a role atom is an expression R(v1, v2), where
C is a concept name, R is a role, and v1, v2 ∈ NV . A conjunctive query Q is a
non-empty set of atoms. Let V ar(Q) denote the set of variables in a query Q.

We write for an interpretation I, a conjunctive query Q and a total function
π : V ar(Q) → ∆I :

1. I |=π C(v) if (π(v)) ∈ CI

2. I |=π R(v1, v2) if (π(v1), π(v2)) ∈ RI

Furthermore, we write I |=π Q if we have I |=π A for all atoms A in Q. If
I |=π Q for all models I of a knowledge base KB and some π, we write KB |= Q.

Given a knowledge base KB and a query Q, the query entailment problem
is to decide whether KB |= Q. It is folklore, that query entailment and query
answering problems are equivalent [HT00].

A conjunctive query Q is connected if, for all v, v′ ∈ V ar(Q), there exists a
sequence v0, ..., vn such that v0 = v and vn = v′ and for all i < n, there exists a
role R, s.t. R(vi, vi+1) ∈ Q.

A role hierarchy graph is a directed graph GH = 〈N, E〉, where roles are the
nodes and there is a directed edge from R to S, whenever R v S. We assume
that the graph is reflexive, that is, each node has an edge directed to itself.
Usually, a role hierarchy graph will contain several unconnected subgraphs. We
call two roles S, T hierarchically connected, written S ∼= T , if they belong to the
same subgraph.

With [R]H we denote the equivalence class (the subgraph of GH) R is con-
tained in. That is, R ∼= S ⇐⇒ [R]H = [S]H . We extend our definition of
Trans in such a way, that Trans([R]H) ⇐⇒ (∃S ∈ [R]H .T rans(S)). Let
N[R]H = {[R]H |R ∈ NR}.

3 Determining role condensates

Let KB = 〈T ,R,A〉 be a SHIQ knowledge base. We want to build a graph
G from KB, that has the following property: Whenever KB |= R1(i1, i2) ∧
R2(i2, i3)∧ ...∧Rn−1(in−1, in), for named or fresh (=not occuring in the ABox)

Fig. 1. Possible merging of individuals

individuals i1...in, then we have a path f(i1) →[R1]H ... →[Rn]H f(in) in G,
where f is a homomorphism and →X stands for a directed X-edge.

The intuition is to find a graph, s.t. anything that can be observed about
role-transitions in a knowledge base, can also be observed about role transitions
in our graph, but not vice versa. We create this graph G in two separate steps:

1. We create a small graph, that creates a superset of possible roles between
named individuals.

2. We extend this graph by applying a kind of worst-case algorithm to derive
further information about all possible roles that can be inferred by ∃R- and
≥n R-constraints

Let us define the graph structure for the first step:

Definition : A role condensate (of a knowledge base KB) is a graph GA =
〈V, E, φ, ω〉, where V ⊆ N, E ⊆ V × V × 2N[R]H , φ : V → 2Ind(A) and ω : V →
2clos(KB).

In the rest of this paper we will often use the inverse of φ. This is a function
as well, since we enforce ∀x, y ∈ V.φ(x) ∩ φ(y) = ∅. Whenever we call a role
condensate grounded, we assume, that ω is empty.

To build the graph, notice that in a SHIQ-knowledge base one never removes
existing roles between two named individuals. The known algorithms only infer
additional roles between named individuals based on given constraints. These
constrains are transitivity, role hierarchies and maximum cardinality constraints.
Let us have a look at these three cases:

– Transitivity:
Whenever we have KB |= R(a, b), KB |= R(b, c) and Trans(R), then we
can conclude, that KB |= R(a, c).

– Role hierarchies:
Whenever we have KB |= S(a, b) and S v∗ R, then we can conclude, that
KB |= R(a, b).

– Maximum cardinality constraints:
In the following we will discuss the case of two mergable nodes. This can be
easily extended for the case of n nodes. There are two distinct situations to
consider.

1. We have to merge two named individuals b and c (Figure 1, left). This
can only happen, if a :≤n V.X and R ∼= V ∼= S. The merged individuals
will have all the neighbors of b plus all the neighbors of c. Thus, if we
replace all roles R by [R]H , then we can merge named individuals based
on role equality.

2. We have to merge a named individuals b and an unnamed individual x
(Figure 1, right). The unnamed individual x can only be connected to
another (arbitrary) named individual d, if T ∼= U ∼= R and Trans([U]H).
Furthermore, x and b will only be merged if R ∼= S. Thus, if we replace
all roles R by [R]H , then we can simulate named-unnamed merging by
explicitly closing the graph for transitivity.

The above facts tell us what we have to do to create a superset of possible
roles between named individuals for our role condensate GA. Yet, we also want
to reduce the number of nodes in GA. We want to merge similar individuals if
they are connected to the same individual via a role [R]H . The key is to have
an adequate measure of equality of 2 (or n) named individuals. Let us define
an abstract individual similarity relation Sim(a, b) : Ind(A) × Ind(A). Three
possible instances of this relation (among others) are:

1. Same set of in-/outgoing roles: We could define Sim(a, b) ⇐⇒ (SRole(a) =
SRole(b)), where SRole(a) is the union of incoming and outgoing roles of i.

2. Same concept sets: We could define Sim(a, b) ⇐⇒ (SConc(a) = SConc(b)),
where SConc(a) is the set of concepts associated to an individual/node a.

3. All individuals are similar: We could define Sim(a, b) = Ind(A) ×
Ind(A).

In the following we will use Sim without making a commitment to particular
instances. Next, we propose a way to create a role condensate from a given SHIQ
KB. The algorithm is shown in figure 2.

Input: SHIQ knowledge base KB = 〈T ,R,A〉
Output: Grounded role condensate GA
Algorithm:

1. For each R(a, b) ∈ A do
(a) va = getOrCreate(A,GA, a)
(b) vb = getOrCreate(A,GA, b)
(c) Add [R]H(va, vb) to GA and add Inv([R]H)(vb, va) to GA
(d) While GA is changed below

i. If (∃c, d, e.S(c, d) ∈ GA∧S(c, e) ∈ GA∧d 6= e∧(Sim(d, e)∨ ≤n S.X ∈ clos(KB))
then Merge(GA, d, e)

ii. If (∃c, d, e.S(c, d) ∈ GA ∧S(d, e) ∈ GA ∧S(c, e) /∈ GA ∧Trans([S]H)) then add
[S]H(c, e) to GA

Fig. 2. Grounded role condensates: algorithm

The algorithm should be self-explaining. We will only have a look at the
while-loop of the main algorithm.

Function merge
Parameter: GA, nodes d, e
Algorithm:

1. For each R(x, e) ∈ GA do
(a) Add R(x, d) to GA
(b) Remove R(x, e) from GA

2. For each R(e, y) ∈ GA do
(a) Add R(d, y) to GA
(b) Remove R(e, y) from GA

3. Set φ(d) = φ(d) ∪ φ(e)
4. Set ω(d) = ω(d) ∪ ω(e)
5. Remove e from GA

Function getOrCreate
Parameter: A, GA, individual a
Returns: node n
Algorithm:

1. If a /∈ Sv∈V φ(v) then

(a) Add new node n to GA
(b) Set ω(n) = {C|a : C ∈ A}
(c) Set φ(n) = {a}
(d) Return n

2. else
(a) Return v, s.t. φ(v) = a

Fig. 3. Grounded role condensates: helper functions

The first part of the loop merges individuals if they are similar or might have
to be merged due to a maximum cardinality restriction. The latter is determined
in a rather coarse-grained approach. We only look at the closure of all concepts
in the knowledge base. We could do better by applying a similar strategy as in
[FKM+06]. They carefully analyze the ABox and determine to which individuals
maximum cardinality restrictions can be forwarded.

The second part of the while-loop creates all possible transitive edges between
individuals.

Lemma (homomorphic monotonicity): Let GA be the role condensate of A.
Whenever the algorithm adds to GA an R-edge from φ−(a) to φ−(b), then GA
will also have an R-edge from φ−(a) to φ−(b) after the algorithm terminates.

Proof: Can be done by case analysis of the algorithm. ut

Theorem 1. Let GA be the grounded role condensate of A. Whenever we have
〈T ,R,A〉 |= R(a, b), for two named individuals a and b, then we have that
[R]H(φ−(a), φ−(b)) ∈ GA.

Proof: This can be done by induction. The base case is that the theorem is true
for all existing role relationships in the source ABox. The induction steps are
based on possible reasons for adding an R-edge between two named individuals
and the use of homomorphic monotonicity lemma. ut

We emphasize that the opposite direction of this theorem is not true. We do
have complete, but unsound, reasoning on the role-relationships between named
individuals in the ABox. The above result can be easily lifted to the case of paths
between named individuals.

To make our approach clear, we will demonstrate it with a simple example.
Let us consider the ’messed up’ snapshot of the british royal family shown in Fig-
ure 4(a). We assume the following role information: has father v has parent,
has mother v has parent and Inv(has parent) = has child. The result of the

(a) Source ABox (b) Result

Fig. 4. Example 1: Grounded role condensates

algorithm is shown in 4(b) (inverse roles are not explicitly drawn). Please note
that in the grounded role condensate all individuals are grouped w.r.t. their level
in the family’s genealogical tree.

With the grounded role condensates we have a kind of base skeleton for
the distribution of roles in a SHIQ knowledge base. Additional roles can only
exist between named and unnamed individuals, and also between two unnamed
individuals. These role relationships can only be created by concept expressions
such as ∃R.X and ≥n R.X. We call these two expressions R-generators from
now on.

To extend the role condensates to the non-grounded case, we apply a kind of
worst-case tableaux algorithm to a grounded role condensate GA. Note that after
running the tableau algorithm, we set blocked nodes equal to their respective
blockers, to capture infinite paths in the tree.

First, we initialize ω of GA as follows: ∀v ∈ V.(ω(v) = {C|∃a ∈ φ(v).C(a) ∈
A}). The tableau-like algorithm is shown in figure 5.

u-rule If C1 u C2 ∈ ω(x), x is not indirectly blocked and {C1, C2} * ω(x),
then ω(x) = ω(x) ∪ {C1, C2}

t-rule If C1 t C2 ∈ ω(x), x is not indirectly blocked and {C1, C2} * ω(x),
then ω(x) = ω(x) ∪ {C1, C2}

∃-rule If ∃R.C ∈ ω(x), x is not blocked and x has no [R]H -neighbor y with C ∈ ω(y),
then create a new node y with ω(y) = {C} and E = E ∪ {(x, y, [R]H)}

∀-rule If ∀R.C ∈ ω(x)(x), x is not indirectly blocked and there is an [R]H -neighbor of y of
x with C /∈ ω(x)(y),
then ω(y) = ω(y) ∪ {C}

≥n-rule If ≥n R.C ∈ ω(x)(x), x is not blocked and x has no [R]H -neighbor y with C ∈
ω(x)(y),
then create a new node y with ω(y) = {C} and E = E ∪ {(x, y, [R]H)}

∀+-rule If ∀R.C ∈ ω(x), x is not indirectly blocked, we have Trans(R) and there is an R-
neighbor y of x, with ∀R.C /∈ ω(y),
then ω(y) = ω(y) ∪ {∀R.C}

Fig. 5. Worst-case role tableau algorithm

Theorem 2. Let KB = 〈T ,R,A〉 be a SHIQ knowledge base and let GA be the
role condensate of A. Whenever KB |= R1(i1, i2)∧R2(i2, i3)∧...∧Rn−1(in−1, in),
for named or fresh individuals i1...in, then we have a path φ−(i1) →[R1]H ... →[Rn]H

φ−(in) in GA.

Proof: Is a direct consequence of Theorem 1 and of the exhaustive application
of worst-case tableaux rules. ut

Notice, that the opposite direction is again not true here. That is, the role
condensate might create new subgraphs due to role condensation. Now we have
a graph encoding of the roles between individuals in a knowledge base, the role
condensate GA. In the next section we show how to transform conjunctive queries
into a set of forests that can be checked for being a subgraph of GA.

4 Representing role-parts of conjunctive queries

This section shows how to use role condensates to answer conjunctive queries in
an unsound, but complete manner. Without loss of generality we assume that
the conjunctive query Q is connected. Otherwise we split Q into n connected
queries qi and answer each of them separately.

Definition : A query forest match (of a conjunctive query Q) is a forest GQ =
〈V, E〉, where V ⊆ V ar(Q)∪N and E ⊆ V × V ×NR. A query forest match GQ
is created non-deterministically by the algorithm shown in figure 6.

The idea of a query forest match is to encode one possible forest structure
(role-wise) which a conjunctive query can enforce. In contrast to query graphs
[GHLS07], we do not (in general) only regard role query atoms, but also possi-
ble unfoldings of the concept query atoms. This is done by the helper function
conceptPathway. It creates one tree representing role paths for each possible
(non-deterministic) unfolding. The non-determinism is introduced by the dis-
junction of concepts. The function uses three not further explained helper func-
tions to create trees: mergeRoots (merges two sibblings), leaf (creates a leaf of
a tree) and newRoot (creates a new root node for a subtree).

Function: getQueryForestMatch
Input: Knowledge base KB, Conjunctive query Q, Max depth d
Output: Query forest match GQ
Algorithm:

1. Let GQ be the graph created by the role query atoms in Q
2. For each C(X) ∈ Q do

(a) Add one t, s.t. t ∈ conceptPathway(KB, C, d), to node X in GQ

Fig. 6. Query forest match algorithm

Function: conceptPathway
Input: Knowledge base KB, Concept C, Max depth d
Output: Tree T

1. If d = 0 then
return T = leaf()

2. If C = C1 u C2 then
return T = mergeRoots(conceptPathway(C1, d), conceptPathway(C2, d))

3. If C = C1 t C2 then
return T = conceptPathway(Cn, d− 1), for one n ∈ {1, 2}

4. If C = ∃R.C1 or C =≥n .C1 then
return T = newRoot(R, conceptPathway(C1))

5. If (C v C1) ∈ T then
return T = conceptPathway(C1, d− 1))

6. else return T = leaf()

Fig. 7. Query forest match algorithm - conceptPathway function

Notice that we restrict the unfolding to a particular depth d. First, since we might
have cyclic GCIs, we guarantee termination that way. Second, when we combine
the set of unfoldings for each concept of a named individual, we obtain a possibly
exponential amount of forests. This is not desirable for practical reasoning. Still,
we want to emphasize that our approach is complete for each d ∈ N. For d = 0
we obtain the standard query graph.

5 Answering conjunctive queries

Let QF be the set of all possible query forest matches for a query Q, that is,
QF = {GQ|getQueryForestMatch(KB,Q, d)}.
Theorem 3. Let KB = 〈T ,R,A〉 be a SHIQ knowledge base and Q be a con-
junctive query. If we have that KB |= Q, then we can find a query forest match
GQ, that is isomorphic to a subgraph of GA.

Proof: The proof follows directly from Theorem 2. ut
We applied our approach to the LUBM Ontology [GPH05], an ontology

benchmark in the setting of universities. It is accompanied by a set of 14 test
queries. The second query of that set is interesting for our approach, since it
has no solution for most data generations of the LUBM Generator. This query
is shown in Figure 8, using a SPARQL-like syntax.

(type GraduateStudent ?X), (type University ?Y), (type Department ?Z),
(memberOf ?X ?Z), (subOrganizationOf ?Z ?Y), (undergraduateDegreeFrom ?X ?Y)

Fig. 8. LUBM query 2

First, we have created a role condensate for several LUBM(X,0) (where X
is the number of universities). The result is shown in figure 9. For the indi-
vidual similarity relation Sim, we have used the one with ’same set of incom-
ing/outgoing roles’.

Universities Individuals Sim1:nodes in GA
5 102K 25
10 205K 24
20 407K 26

Fig. 9. LUBM statistics

Let Q be the conjunctive query shown in Figure 8. Setting the maximum
depth for the concept unfolding d = 0, then we obtain a single query forest
match GQ, that corresponds to the query graph of Q. When we check whether
GQ is isomorphic to a subgraph of GA, we get a no immediately, for all tested
number of universities. This small example shows already that our approach can
dramatically speed up the rejection of queries with no answers.

6 Conclusion and Future Work

The decision procedure presented in this work makes it possible to answer con-
junctive queries in a complete, but unsound, way. We obtain a proxy-like de-
cision system which can possibly immediately reject conjunctive queries having
no answer replacements. Moreover, it can be used to provide a set of obvious
non instances for each variable in the grounded setting (e.g. the query language
NRQL [HMW04]). This will be discussed in future work.

Until now, our approach works only for the description logic SHIQ. For OWL
DL, that is SHOIQ, we need to further add handling of nominals. This is part of
future work. We will also investigate an upper bound for the complexity of role
condensate creation. Furthermore, we will apply the approach to additional test
ontologies (especially non-LUBM) in order to provide detailed statistics about
its usefulness in practice.

References

[FKM+06] Achille Fokoue, Aaron Kershenbaum, Li Ma, Chintan Patel, Edith Schon-
berg, and Kavitha Srinivas. Using Abstract Evaluation in ABox Reasoning.
In SSWS 2006, pages 61–74, Athens, GA, USA, November 2006.

[GHLS07] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive
query answering for the description logic shiq. In IJCAI-07, 2007.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl
knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[HMW04] V. Haarslev, R. Möller, and M. Wessel. Querying the semantic web with
racer + nrql. In Proceedings of the KI-2004 International Workshop on
Applications of Description Logics (ADL’04), Ulm, Germany, September
24, 2004.

[HT00] Ian Horrocks and Sergio Tessaris. A conjunctive query language for descrip-
tion logic aboxes. In AAAI/IAAI, pages 399–404, 2000.

