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Abstract. The recent success of distributed and dynamic infrastructures for
knowledge sharing has raised the need for semiautomatic/automatic ontology
evolution strategies. Ontology evolution is generally defined as the timely adap-
tation of an ontology to changing requirements and the consistent propagation
of changes to dependent artifacts. In this article, we present an ontology evolu-
tion approach in the context of multimedia interpretation. Ontology evolution
in this context relies on the results obtained through reasoning for the interpre-
tation of multimedia resources, through population of the ontology with new
individuals, or through enrichment of the ontology with new concepts and new
semantic relations. The article analyses the results of interpretation, popula-
tion and enrichment obtained in evaluation experiments in terms of measures
such as precision and recall. The evaluation reveals encouraging results.

1 Introduction

Ontology evolution is generally defined as the timely adaptation of an ontology to
changing requirements and the consistent propagation of changes to dependent ar-
tifacts. Ontology evolution empowers ontology learning which is a wide domain of
research, involving methods and techniques for the acquisition of ontologies from se-
mantic information/conceptual knowledge extracted from a domain. Being closely re-
lated to the field of knowledge acquisition, a significant amount of work has been
presented in the literature that concentrates on the task of knowledge acquisition
from text, through the re-use of widely adopted natural language processing and ma-
chine learning techniques [1, 2]. The ontology evolution methodology proposed in this
article extends existing approaches by considering modalities beyond text, such as
still images, video and audio. Research presented in this article has been carried out



as part of the project BOEMIE (Bootstrapping Ontology Evolution with MultImEdia
Information).1

In the BOEMIE project, ontologies are used for the representation of domain spe-
cific background knowledge. Additionally, ontologies are also used as repositories for
storing semantic content descriptions of multimedia documents such as images, text,
video and audio. Semantic content descriptions conceptualize the world in terms of
concepts (sets of individuals) and relations (set of tuples of individuals). In this work
description logics provide the foundations for ontologies (see Section 3 for a detailed in-
troduction). Description logics are used to define the syntax and semantics of so-called
concept descriptions. Concept descriptions are related to one another by so-called ax-
ioms. Axioms are used to impose necessary and/or sufficient conditions on concepts.
Due to the semantics of description logics, implicit information can be derived from
what is explicitly given in the set of axioms. This is done by an inference system, also
called reasoner for short. For example, an individual can be shown to be an instance
of a given concept description. Other inference problems, which are implemented as
reasoning services, are defined in Section 3.

Semantic content descriptions of multimedia documents are exploited at runtime
for semantic retrieval of multimedia. The principal role of ontology evolution is to
increase the performance of semantic retrieval. In this work we propose a methodology
for ontology evolution that can be realized as a software architecture consisting of three
major components:

– A multimodal information extraction engine: This information extraction engine
is responsible for extracting instances of concept descriptions that can be directly
identified in corpora of a specific modality. These concept descriptions are referred
to as mid-level concepts, compared to low-level features such as edges, tokens,
phonemes, etc. For example, in the text modality the name or the age of a person
is represented as an individual which is an instance of a mid-level concept because
instances of these concepts can be associated with relevant text portions. On the
other hand, the concept person is not a mid-level concept, as it is a “compound”
(or “aggregate”) concept in such a way that instances of this concept are related
to instances of name, age, gender, or maybe compound concepts. Compound con-
cepts are referred to as high-level concepts, and instances of such concepts are
not directly identifiable in a multimedia document.2 Thus, such instances and also
relationships between these instances have to be hypothesized.

– A semantic interpretation engine, responsible for hypothesizing instances of high-
level concepts representing the interpretation of (parts of) a document: Semantic
interpretation operates on the instances of mid-level concepts and relations be-
tween them extracted by the information extraction engine. The goal of semantic
interpretation is to explain why certain instances of mid-level concepts are observed
in certain relations according to the domain ontology and some set of interpreta-
tion rules by creating instances of high-level concepts and relating these instances.

1 Funded by the European Commission under IST-FP6-027538, see http://www.boemie.org.
2 One might argue that in texts, for instance, abstract notions such as high jump can appear.

In our view, this is just a name for a sports competition, and not a high-level concept
instance.



Semantic interpretation is performed through calls to a non-standard reasoning
service (known as explanation derivation via abduction) and is formalised as a
two-level process. During the first level, semantic interpretation is performed on
the extracted information (mid-level concept instances/relations) from a single
modality in order to form modality-specific high-level concept instances. At a sec-
ond level, the modality-specific high-level instances are fused in order to produce
high-level concept instances that are not modality-specific, and contain informa-
tion extracted from all involved modalities. Fusion is also formalized as explanation
generation via abductive reasoning.

– An ontology evolution toolkit, which uses the results obtained through reasoning
in the interpretation phase in order to evolve (enhance) the ontology, through
population of the ontology with individuals, or through enrichment of the ontology
with new concepts and new relation types. Details of the evolution methodology
are described in Section 2.

In this article, we describe an ontology evolution methodology and investigate the
role of semantic interpretation for ontology evolution. The article analyses the results
of interpretation, population and enrichment obtained in evaluation experiments in
terms of measures such as precision and recall. The evaluation reveals encouraging
results of the approach presented in this article.

The article is organized as follows. In Section 2, we present an overview of the
methodology. In Section 3, we introduce the use of description logics for ontology
formalization and semantic interpretation. In Section 4, we describe how reasoning
techniques are used for multimedia interpretation, whereas in Section 5 we discuss the
role of ontology matching techniques in ontology evolution. In Section 6, we describe
the activities of population and enrichment of the ontology. In Section 7, we provide
some experimental results. Related work and original contribution of the article are
described in Section 8. Finally, in Section 9, we provide our concluding remarks and
areas of future work.

2 A methodology for ontology evolution based on media
interpretation

Ontology evolution in our approach uses as input the results of the semantic inter-
pretation performed upon information extracted from multiple modalities (combined
through fusion). In order to be able to deal with all possible situations requiring evo-
lution, a pattern-driven approach is adopted. Typical input to the evolution toolkit
is in the form of Aboxes, containing the results of the semantic interpretation of the
fused extracted information from multimedia resources. The term Abox stands for
assertional box and denotes a set of concept and role instance assertions (a formal
definition will follow in Section 3). These results typically include instances of mid-
level concepts, relations between mid-level concept instances, high-level instances, re-
lations between instances of high-level concepts, and possibly instances of the specific
mid-level concept “unknown” (indicating that low-level processes could not classify a



certain object). According to the information contained in incoming Aboxes, the evo-
lution pattern selector selects the most prominent evolution pattern, triggering either
ontology population or ontology enrichment, respectively.

The ontology evolution methodology is shown in Figure 1. Ontology population
is the activity of adding new individuals into the ontology, and it is performed every
time at least one explanation can be found for a multimedia resource through the
interpretation process.
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Fig. 1. The BOEMIE evolution methodology

Ontology enrichment is the activity of extending the ontology, through the addition
of new elements (e.g., concepts, relations). Ontology enrichment is performed every
time the background knowledge is not sufficient to explain the extracted information
from the processed multimedia documents. Thus, the ontology enrichment activity is



expected to extend the background knowledge through the addition of new ontology
elements.

Finally, a coordination activity is performed in order to produce a log of the changes
introduced into the evolved version of the ontology with respect to the initial version.
The goal of coordination is to align knowledge for several purposes, ranging from the
detection of new instances referring to the same real entity in the domain, to the
support of the expert in the activity of defining new concept definitions by exploiting
external knowledge sources to suggest new concepts and relation names.

2.1 Evolution patterns

The evolution approach discussed in this article has emerged from two main require-
ments:

– The capability of classifying different situations that trigger ontology evolution in
terms of the results of the semantic interpretation process (i.e., the information
specified in the incoming Abox) w.r.t. the background knowledge;

– The definition of an appropriate activity articulation to correctly evolve the on-
tology in each specific evolution situation.

The desired result of the semantic interpretation is a single explanation for each
information extracted from a multimedia document, that is, the extracted information
is related to a single high-level concept instance. However, other situations can occur
when the background knowledge leads to several explanations for the same extracted
information or to the absence of explanations, meaning that no high-level concept can
be found in the ontology for describing such an information. Finally, we can also have
the case where not only the high-level concept describing the extracted information is
missing, but also for one or more elements identified in the multimedia document a
mid-level concept can not be assigned.

To take these requirements into account, four different evolution patterns have been
identified for ontology evolution. An evolution pattern determines the characteristics
of the input Abox it deals with, defines the kind of evolution process to be performed
over the ontology (i.e., population or enrichment), and is articulated into a set of activ-
ities for implementing all the required changes. Population patterns (P1 and P2) tackle
the situations where the interpretation has found one or more high-level concepts ex-
plaining an information extracted from the document and, thus, the corresponding
Abox(es) are added to the ontology. Enrichment patterns (P3 and P4) describe the
situations where no high-level concepts explaining the extracted information are found
in the ontology, thus triggering ontology enrichment to acquire this missing knowledge.
Pattern P4 has been conceived to deal with situations where not only the high-level
concept is missing (like P3) but also one or more mid-level concepts are missing for the
interpretation of the incoming information. In case of missing explanations for mid-
level concept instances, pattern P4 is always selected as prominent, to first enrich the
ontology with missing mid-level concepts, thus enabling the subsequent interpretation
of all mid-level concept instances. Then, in a further interpretation cycle, the most
suitable pattern will be chosen for handling the new interpretation results appropri-
ately.
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Fig. 2. BOEMIE evolution patterns

Note that Figure 2 depicts the evolution patterns for certain types of multimedia
documents, e.g., images, where a single explanation maybe enough to explain the whole
multimedia resource. For other types of multimedia such as a text document, where
numerous information can be extracted and later explained with several explanations,
one of the four patterns is selected for each extracted piece of information.

In the remainder of the paper, we focus on the reasoning activity and matching
techniques for multimedia interpretation and on the activities of ontology population
and enrichment, by providing some relevant examples of application in the athletics
domain selected in BOEMIE.

3 Description logics as a basis for ontology languages

Ontology languages are based on description logics [3]. For studying dynamic ontology
evolution we focus on the description logics ALCQ, which corresponds to a large
fragment of standard ontology languages such as OWL.

3.1 Syntax and semantics of ALCQ

For a given application problem one chooses a set of elementary descriptions (or atomic
descriptions) for concepts and roles representing unary and binary predicates, respec-
tively. A set of individuals is fixed to denote specific objects of a certain domain
(e.g., athletics). For instance, Athlete might be an atomic concept description and
hasParticipant is an atomic role description in the athletics domain.

In the following, we use letters A and R for atomic concept and role descriptions,
respectively. In addition, let {i, j, . . .} be the set of individuals. In ALCQ (Attributive
Language with full Complement and Qualified number restrictions), descriptions for
complex concepts C or D can be inductively built using the following grammar:
For instance, Eventu∃≤1hasParticipant.Athlete is a complex concept description in
the athletics domain.



C,D −→ A | atomic concept
C uD | conjunction
C tD | disjunction
¬C | negation
∃R.C | existential restriction
∀R.C | value restriction
∃≤nR.C | qualified minimum restriction
∃≥nR.C | qualified maximum restriction

We introduce the concept descriptions > and ⊥ as abbreviations for A t ¬A and
A u ¬A, respectively. Concept descriptions may be written in parentheses in order to
avoid scoping ambiguities.

In order to define the semantics of concept and role descriptions we consider inter-
pretations I that consist of a non-empty set ∆I , the domain, and an interpretation
function ·I , which assigns to every atomic concept description A a set AI ⊆ ∆I and
to every (atomic) role R a set RI ⊆ ∆I ×∆I . For complex concept descriptions, the
interpretation function is extended as follows:

(C uD)I = CI ∩DI
(C tD)I = CI ∪DI

(¬C)I = ∆I\CI
(∃R.C)I = {x | ∃y.(x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x | ∀y. if (x, y) ∈ RI then y ∈ CI}

(∃≤nR.C)I = {x | ]{y | (x, y) ∈ RI and y ∈ CI} ≤ n}
(∃≥nR.C)I = {x | ]{y | (x, y) ∈ RI and y ∈ CI} ≥ n}

The semantics of description logics is based on the notion of satisfiability. An
interpretation I = (∆I , ·I) satisfies a concept description C if CI 6= ∅. In this case, I
is called a model for C.

A Tbox is a set of so-called generalized concept inclusions C v D (e.g.,HighJump v
SportsTrial). For brevity the elements of a Tbox are called GCIs.

An interpretation I satisfies a GCI C v D if CI ⊆ DI . An interpretation is
a model of a Tbox if it satisfies all GCIs in the TBox. A concept description C is
subsumed by a concept description D w.r.t. a Tbox if the GCI C v D is satisfied in
all models of the Tbox. In this case, we also say that D subsumes C.

An Abox is a set of assertions of the form i : C or (i, j) : R where C is a concept
description, R is a role description, and i, j are individuals. A concept assertion i : C
is satisfied w.r.t. a Tbox T if for all models I of T it holds that iI ∈ CI . A role
assertion (i, j) : R is satisfied w.r.t. a Tbox T if (iI , jI) ∈ RI for all models I of T .
An interpretation satisfying all assertions in an Abox A is called a model for A. An
Abox A is called consistent if such a model exists, it is called inconsistent otherwise.

An ontology Σ is a tuple (T ,A) with Tbox T and Abox A. Let α be concept or role
assertion. An ontology Σ entails an assertion α (α follows from Σ), denoted as Σ |= α
if for all models I of Σ it holds that I satisfies α. Let A be an Abox. An ontology



Σ entails an Abox, denoted as Σ |= A, if for all α ∈ A it holds that Σ |= α. In
the following sections we slightly misuse notation and assume that (T ,A)∪A′ means
(T ,A ∪A′).

3.2 Decision problems and their reductions

The definitions given in the previous section can be paraphrased as decision problems.
The concept satisfiability problem is to check whether a model for a concept description
exists. The Tbox satisfiability problem is to check whether a model for the Tbox exists.
The concept subsumption problem is to check whether C v D holds in all models of
the Tbox.

The Abox consistency problem for an Abox A (w.r.t. a Tbox) is the problem of
determining whether there exists a model of A (that is also a model of the Tbox).
Another problem is to test whether an individual i is an instance of a concept descrip-
tion C w.r.t. a Tbox and an Abox (instance test or instance problem: Σ |= i : C).
The instance retrieval problem w.r.t. a query to the query concept C and the ontology
Σis to find all individuals i mentioned in the assertions of an Abox such that i is an
instance of C. For roles and pairs of individuals, similar definitions can be given.

The latter problem is a retrieval problem but, in theory, it can be reduced to
several instance problems. In order to solve the instance problem for an individual i
and a concept description C one can check if the Abox {i : (¬C)} is inconsistent [4].
Furthermore, the satisfiability problem for a concept description C can be reduced to
the consistency problem for the Abox {i : C}. Thus, in theory, all problems introduced
above can be reduced to the Abox consistency problem. In practical systems, specific
optimization techniques are used to decide a certain decision problem.

3.3 Sequences, variable substitutions, transformations

For the introduction of the interpretation algorithm, we need some additional defini-
tions. A variable is a name of the form ?name where name is a string of characters
from {a..z}. In the follow definitions, we denote places where variables can appear
with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from
V . Z denotes a sequence of individuals. We consider sequences of length 1 or 2 only,
if not indicated otherwise, and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉)
is to be read as (X,Y ) etc. Furthermore, we assume that sequences are automatically
flattened. A function as set turns a sequence into a set in the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to
individuals. The application of a variable substitution σ to a sequence of variables
〈X〉 or 〈X,Y 〉 is defined as 〈σ(X)〉 or 〈σ(X), σ(Y )〉, respectively, with σ(X) = i and
σ(Y ) = j. In this case, a sequence of individuals is defined. If a substitution is applied
to a variable X for which there exists no mapping X ← k in σ then the result is
undefined. A variable for which all required mappings are defined is called admissible
(w.r.t. the context).



3.4 Grounded conjunctive queries

Let X,Y1, Yn be sequences of variables, and let Q1, . . . , Qn denote atomic concept or
role descriptions.

A query is defined by the following syntax.

{(X) | Q1(Y1), . . . , Qn(Yn)}

The sequence X may be of arbitrary length but all variables mentioned in X must also
appear in at least one of the Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query
atoms Qi(Yi). The list of variables to the left of the sign | is called the head and the
atoms to the right of are called the query body. The variables in the head are called
distinguished variables. They define the query result. The variables that appear only
in the body are called non-distinguished variables and are existentially quantified.

Answering a query with respect to an ontology Σ means finding admissible variable
substitutions σ such that Σ |= {(σ(Y1)) : Q1, . . . , (σ(Yn)) : Qn}. We say that a variable
substitution σ = [X ← i, Y ← j, . . .] introduces bindings i, j, . . . for variables X,Y, . . ..
Given all possible variable substitutions σ, the result of a query is defined as

{(σ(X))}

Note that the variable substitution σ is applied before checking whetherΣ |= {(σ(Y1)) :
Q1, . . . , (σ(Yn)) : Qn}, i.e., the query is grounded first.

For a query {(?x) | Person(?x), hasParticipant(?y, ?x)} and the Abox Γ1 =
{ind1 : HighJump, ind2 : Person, (ind1, ind2) : hasParticipant}, the substitu-
tion [?x ← ind2, ?y ← ind1] allows for answering the query, and defines bindings for
?x.

A boolean query is a query with X being of length zero. If for a boolean query
there exists a variable substitution σ such that Σ |= {(σ(Y1)) : Q1, . . . , (σ(Yn)) : Qn}
holds, we say that the query is answered with true, otherwise the answer is false.

Later on, we will have to convert query atoms into Abox assertions. This is done
with the function transform. The function transform applied to a set of query atoms
{γ1, . . . γn} is defined as {transform(γ1, σ), . . . , transform(γn, σ)} where
transform(P (X), σ) := (σ(X)) : P .

3.5 Rules

A rule r has the following form

P (X)← Q1(Y1), . . . , Qn(Yn)

where P, Q1, . . . , Qn denote atomic concept or role descriptions with the additional
restriction that as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Rules are used to derive new Abox assertions, and we say that a rule r is applied
to an Abox A. The function application apply(Σ,P (X) ← Q1(Y1), . . . , Qn(Yn),A)



returns a set of Abox assertions {(σ(X)) : P} if there exists an admissible variable
substitution σ such that the answer to the query

{() | Q1(Y1), . . . , Qn(Yn)}

is true with respect to Σ ∪ A. If no such σ can be found, the result of the call to
apply(Σ, r,A) is the empty set. The application of a set of rules R = {r1, . . . rn} to
an Abox is defined as follows.

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is ∅ if apply(Σ,R,A)∪A = A and apply(Σ,R,A)∪
forward chain(Σ,R,A ∪ apply(Σ,R,A)) otherwise.

3.6 Computing explanations via abduction

We assume that a set of rules R as defined above is specified, and define a non-
deterministic function compute explanation as follows.

– compute explanation(Σ,R,A, (Z) : P ) = transform(Φ, σ) if there exists a rule
r = P (X) ← Q1(Y1), . . . , Qn(Yn) ∈ R such that a set of query atoms Φ and an
admissible variable substitution σ with σ(X) = Z can be found, and the query

Q := {() | expand(P (X), r,R) \ Φ}

is answered with true.
– If no such rule r exists in R it holds that compute explanation(Σ,R,A, (Z) :
P ) = ∅.

The goal of the function compute explanation is to determine what must be added
(Φ) such that an entailmentΣ∪A∪Φ |= (Z) : P holds. Hence, for compute explanation,
abductive reasoning is used. The set of query atoms Φ defines what must be hypoth-
esized in order to answer the query Q with true such that

Φ ⊆ expand(P (X), r,R)

holds. The definition of compute explanation is non-deterministic due to several pos-
sible choices for Φ.

The function application

expand(P (X), P (X)← Q1(Y1), . . . , Qn(Yn),R)

is also defined in a non-deterministic way as

expand′(Q1(Y1),R) ∪ · · · ∪ expand′(Qn(Yn),R)

with expand′(P (X),R) being expand(P (X), r,R) if there exist a rule r = P (X) ←
. . . ∈ R and 〈P (X)〉 otherwise. We say the set of rules is backward-chained, and since
there might be multiple rules in R, backward-chaining is non-deterministic.



3.7 Interpreting Aboxes in terms of rules

In the following we devise an abstract computational engine for “interpreting” Abox
assertions in terms of a given set of rules. Interpretation in this sense is not to be
confused with the interpretation of a concept description (which is defined as a set
of objects from the domain). Interpretation of Abox assertions w.r.t. a set of rules
is meant in the sense that using the rules some high-level explanation is constructed
such that the Abox assertions are entailed. The interpretation of an Abox is again an
Abox. For instance, the output Abox might represent results of a content interpretation
process (see below for an example).

Let Γ be an Abox whose assertions are to be interpreted. The goal of the interpreta-
tion process is to use a set of rules R to derive “explanations” for elements in Γ . The
definition of requires fiat depends on the application context. For our multimedia
interpretation scenario (see Section 4), we might use the following definition.

requires fiat((X) : P ) = true iff P ∈ {near, adjacent to, . . .}

The interpretation algorithm implemented by the interpretation engine works on a set
of (possible) interpretations I, i.e., a set of Aboxes. Initially, I ⇐ {Γ}, i.e. , at this
stage, the interpretation is just the input Abox Γ .3 The function interpret is applied
to an Abox Γ and applies a strategy function Ω in order to decide which assertion to
interpret, and uses a termination function Ξ in order to check whether to terminate
due to resource constraints.

function interpret(Ω,Ξ,Σ,R, S, Γ ) :

I′ ⇐ {Γ}
repeat

I⇐ I′

(A, α)⇐ Ω(I) // A ∈ I, α ∈ A s.th. requires fiat(α) holds
I′ ⇐ (I \ {A}) ∪ interpretation step(Σ,R, S,A, α).

until Ξ(I) or no A and α can be selected such that I′ 6= I

return I

The function Ω for the interpretation strategy and Ξ for the termination condition
are used as an oracle and must be defined in an application-specific way.

The function interpretation step(Σ,R, S,A, α) is defined as⋃
∆∈compute all explanations(Σ,R,S,A,α)

{∆ ∪ A ∪ forward chain(Σ,R, ∆ ∪ A)}.

The function compute all explanations(Σ,R, S,A, α) is defined as

maximize({∆ | ∆ = compute explanation(Σ,R,A, α)}, S).

We impose restrictions on the choice of the ∆’s returned by interpret. In particular,
a scoring function S evaluates an explanation ∆. The function maximize select those
3 ⇐ denotes the assignment operator



∆’s for which the score S(∆) is maximal, i.e., there exists no other ∆′ ∈ I s.th.
S(∆′) > S(∆). The scoring function has to be defined in an application-dependent
way.

4 Reasoning for multimedia interpretation

After the discussion of description logics and reasoning techniques, in this section, we
start with describing the application of these techniques for multimedia interpretation.
Later, we present the stepwise interpretation of an example multimedia document in
detail.

4.1 Interpretation of multimedia documents

Abductive reasoning is usually defined as a form of reasoning from effects to causes.
Multimedia interpretation can be achieved through reasoning, in particular through
abduction where we reason from observations (effects) to explanations (causes). In this
view, abduction aims to find explanations for observations. In general, abduction is
formalized as

Σ ∪∆ |= Γ (1)

where background knowledge (Σ), and observations (Γ ) are given and explanations
(∆) are to be computed. If description logics are used as the underlying knowledge
representation formalism, ∆ and Γ are Aboxes and the background knowledge Σ is
an ontology that consists of a Tbox T and an Abox A.

We consider Abox abduction in description logics, the compute explanation func-
tion in Section 3.6, as the key inference service for multimedia interpretation. For this
purpose we modify the previous equation to:

Σ ∪ Γ1 ∪∆ |=R Γ2 (2)

by splitting the assertions in Γ into two parts: bona fide assertions (Γ1) and assertions
requiring fiats (Γ2). Bona fide assertions are assumed to be true by default, whereas
fiat assertions are aimed to be explained. In order to compute explanations, Abox
abduction can be implemented as a non-standard retrieval inference service in de-
scription logics. Different from the standard retrieval inference services, answers to a
given query cannot be found by simply exploiting the ontology. In fact, the abductive
retrieval inference service has the task of acquiring what should be added to the on-
tology in order to positively answer a query. In order to make this practical it has to
be defined what can be abduced. In our approach the space of abducibles is defined
by a set of rules.

The |=R symbol in Formula 2 reflects the fact that a set of rules R is necessary for
deriving explanations.

In practice, one is not interested in retrieving every consistent explanation, but the
most preferred explanation for every query. To achieve this goal, we transform the set
∆’s into a poset according to a preference score. The preference score reflects the two



criteria proposed by Thagard for selecting explanations [5], namely simplicity and con-
silience. I.e., the less hypothesized assertions an explanation contains (simplicity) and
the more ground assertions (observations) an explanation involves (consilience), the
higher its preference score. The following formula to compute the preference score of
each explanation has been implemented: S(Σ,Γ1, ∆) := Sf (Σ,Γ1, ∆)− Sh(Σ,Γ1, ∆).
In this formula Sf represents the number of assertions in the explanation (∆) that
follow from Σ∪Γ1, and Sh represents the number of assertions in the explanation that
do not follow from the same set, and therefore are hypothesized. Thus, Sf and Sh can
be defined as follows:

Sf (Σ,Γ1, ∆) := ]{α ∈ ∆ | Σ ∪ Γ1 |= α}
Sh(Σ,Γ1, ∆) := ]{α ∈ ∆ | Σ ∪ Γ1 6|= α}

In some cases, more than one explanation can have the highest preference score. In
order to prefer one of the explanations with the highest score, these explanations can
be considered as separate Aboxes and compared for entailment. If one of the expla-
nations with the highest preference score entails others explanations with the highest
preference score, it is preferred to others because it is the most-specific explanation.

For example, assume that for a given query the abductive retrieval inference ser-
vice generates three consistent explanations that have the following preference scores:
S(Σ,Γ1, ∆1)=2, S(Σ,Γ1, ∆2)=2, S(Σ,Γ1, ∆3)=-1. In the first step, the set of expla-
nations is transformed into a poset and all explanations with a score lower than the
highest score found in the poset are discarded. In our example multiple explanations,
namely ∆1 and ∆2, have the highest score. Therefore in the second step, these expla-
nations are transformed into separate Aboxes and compared for entailment. Assuming
that following entailment relation exists between these explanations: Σ ∪ ∆1 |= ∆2

the abductive retrieval inference service returns ∆1 as the most preferred explanation,
due to the fact that ∆1 is a more specific and, thus, more valuable explanation than
∆2.

As discussed in Section 3.7 with the introduction of an abstract interpretation
engine, rules can be exploited for interpreting Aboxes (e.g. so-called analysis Aboxes
describing information extracted from a multimedia document). In the following a more
detailed definition of the interpret function (see Section 3.7), is given for multimedia
interpretation (Algorithm 1).

Algorithm 1 interpret multimedia(Σ,R, Γa)
Input: ontology, rules, analysis Abox : Σ,R, Γa

Output: set of interpretation Aboxes : {Γi1, ..., Γin}
Γ2 ⇐ select fiat assertions(Γa)
Γ1 ⇐ Γa \ Γ2

return derive explanations (Σ,R, Γ1, Γ2)

The interpret multimedia algorithm takes an ontology, a set of interpretation rules
and a multimedia analysis Abox as input and returns a set of interpretation Aboxes



as output. The function select fiat assertions uses the requires fiat predicate intro-
duced in Section 3.7 as a filter to select the fiat assertions from the analysis Abox.
In general, all assertions from the analysis Abox can be considered as fiat assertions.
However, the set of interpretation rules alone defines the space of abducibles (and
the explanations that can be derived). Therefore, in the practical implementation the
select fiat assertions function selects only those assertions for which interpretation
rules exist. All assertions of the analysis Abox that do not require fiats become bona
fide assertions. Finally, the derive explanations algorithm (Algorithm 2) is called to
compute all interpretations for the given multimedia document.

The derive explanations algorithm takes an ontology, a set of interpretation rules,
a set of bona fide assertions and a set of fiat assertions as input. For each fiat assertion
it computes all explanations. The fiat assertion is then removed from the set of fiat
assertions and added to the set of bona fide assertions. Afterwards for each explanation,
first, all assertions of the explanation are added to the set of bona fide assertions.
Second, the derive explanations is called for the new set of fiat assertions. The new
set of fiat assertions is the union of the current set of fiat assertions and the assertions
that are inferred by the function forward chain from the ontology, the set of rules and
the current set of bona fide assertions. Finally, all bona fide assertions are collected in
a set and returned as the set of interpretation Aboxes.

Algorithm 2 derive explanations(Σ,R, Γ1, Γ2)
Input: ontology, rules, bona fide assertions, fiat assertions : Σ,R, Γ1, Γ2

Output: set of interpretation Aboxes : I = {Γi1, ..., Γin}
I = ∅
while Γ2 6= ∅ do

for each α ∈ Γ2 do
{∆1, ..., ∆n} ⇐ compute all explanations (Σ,R, S, Γ1, α)
Γ1 ⇐ Γ1 ∪ {α}
Γ2 ⇐ Γ2 \ {α}
for each ∆i ∈ {∆1, ..., ∆n} do
Γ1 ⇐ Γ1 ∪∆i

I⇐ I ∪ derive explanations (Σ,R, Γ1, Γ2 ∪ forward chain(Σ,R, Γ1))
end for

end for
end while
I⇐ I ∪ {Γ1}
return I

Note that the derive explanations algorithm is called recursively for each newly
computed explanation. In general, there is no guarantee for the termination of this
algorithm for arbitrary ontologies and sets of interpretation rules. However, our current
implementation of the interpret multimedia always terminates in a practical setting
due to the definition of the rules we use (see below). Thus, we introduce no specific
strategy function Ω and no specific termination criterion Ξ here.



4.2 An interpretation example

In this subsection we discuss the stepwise interpretation of multimedia documents with
an example document. Generally speaking, multimedia documents contain information
in different modalities such as image, text, audio or video. These information can be
extracted and interpreted by modality-specific analysis and interpretation processes.

We proceed with the interpretation of a sample multimedia document to discuss
the details of the interpretation process. Figure 3 shows an image and its caption taken
from a web page with athletics news. It contains information both in visual and textual
modality. The underlined words in Figure 3 are key words of this text, which have to
be detected by the text analysis process. Similarly, several objects (like a person body,
person face, a horizontal bar, etc.) have to be identified by the image analysis process.
Due to space limitations, in this article, we will focus on the stepwise interpretation
of the textual part of the document.

The analysis results for the textual part of the document in Figure 3 are represented
in an Abox, which is shown in Figure 4. To continue with the interpretation example
we assume that the ontology contains the axioms shown in Figure 5. In Figure 6 a set
of rules for the interpretation of the athletics example is specified.

‘13 August 2002 - Helsinki. Russia’s newly crowned European champion Jaroslav Rybakov
won the high jump with 2.29 m. Oskari Fronensis from Finland cleared 2.26 and won silver.’

Fig. 3. Sample multimedia document.

In the following the set of rules shown in Figure 6 define the space of abducibles.
For the sake of brevity the Tbox and the set of rules show only a small excerpt of



date1 : Date (date1, ‘13 August 2002′) : hasV alue
city1 : City (city1, ‘Helsinki′) : hasV alue

country1 : Country (country1, ‘Russia′) : hasV alue
country2 : Country (country2, ‘Finland′) : hasV alue

perf1 : Performance (perf1, ‘2.29′) : hasV alue
perf2 : Performance (perf2, ‘2.26′) : hasV alue
rank1 : Ranking (rank1, ‘silver′) : hasV alue

hjName1 : HighJumpName (hjName1, ‘high jump′) : hasV alue
pName2 : PersonName (pName1, ‘Jaroslav Rybakov′) : hasV alue
pName1 : PersonName (pName2, ‘Oskari Fronensis′) : hasV alue

(pName1, country1) : personNameToCountry
(pName2, country2) : personNameToCountry

(pName1, perf1) : personNameToPerformance
(pName2, perf2) : personNameToPerformance

(hjName1, perf1) : sportsNameToPerformance
(hjName1, date1) : sportsNameToDate
(hjName1, city1) : sportsNameToCity

Fig. 4. Abox representing the results of text analysis.

the BOEMIE athletics ontology, which is relevant for the text interpretation example
discussed here.

To construct an interpretation for a multimedia document w.r.t the text modality,
explanations are searched to find out why some words are related with some other
words. Such explanations are then used to construct interpretation(s) of the textual
part of a multimedia document. The multimedia interpretation algorithm presented in
Section 4.1 has been implemented to generate explanations and, therefore, constitutes
the foundation of the semantic interpretation engine.

Person v ∃hasName.PersonName u ∃hasNationality.Country
Athlete v Person

HighJumper v Athlete
PoleV aulter v Athlete

HighJumpName v SportsName u ¬PoleV aultName
PoleV aultName v SportsName

SportsTrial v ∃≤1hasParticipant.Athlete u ∃≤1hasPerformance.Performance u
∃≤1hasRanking.Ranking

HighJump v SportsTrial u ∀hasParticipant.HighJumper u ¬PoleV ault
PoleV ault v SportsTrial u ∀hasParticipant.PoleV aulter

SportsRound v ∃hasName.RoundName u ∃hasDate.Date u ∃hasPart.SportsTrial
HighJumpRound v SportsRound u ∀hasPart.HighJump u ¬PoleV aultRound
PoleV aultRound v SportsRound u ∀hasPart.PoleV ault

SportsCompetition v ∃hasPart.SportsRound u ∃hasName.SportsName u ∃takesP lace.City
HighJumpCompetition v SportsCompetition u ∀hasPart.HighJumpRoundu

∀hasName.HighJumpName u ¬PoleV aultCompetition
PoleV aultCompetition v SportsCompetition u ∀hasPart.PoleV aultRoundu

∀hasName.PoleV aultName

Fig. 5. An example Tbox Σ for the athletics domain.



personNameToCountry (X,Y ) ← Person(Z),
hasPersonName(Z,X), PersonName(X),
hasNationality(Z, Y ), Country(Y ).

personToPerformance (X,Y ) ← Person(X),
hasPersonName(X,Z), PersonName(Z),
personNameToPerformance(Z, Y ).

personToPerformance (X,Y ) ← SportsTrial(Z),
hasParticipant(Z,X), Athlete(X),
hasPerformance(Z, Y ), Performance(Y ).

sportsNameToCity (X,Y ) ← HighJumpCompetition(Z),
hasSportsName(Z,X), HighJumpName(X),
takesP lace(Z, Y ), City(Y ).

sportsNameToCity (X,Y ) ← PoleV aultCompetition(Z),
hasSportsName(Z,X), PoleV aultName(X),
takesP lace(Z, Y ), City(Y ).

sportsNameToDate (X,Y ) ← HighJumpCompetition(Z),
hasSportsName(Z,X), HighJumpName(X),
hasDate(Z, Y ), Date(Y ).

sportsNameToDate (X,Y ) ← PoleV aultCompetition(Z),
hasSportsName(Z,X), PoleV aultName(X),
hasDate(Z, Y ), Date(Y ).

sportsCompetitionToPerformance (X,Y ) ← SportsCompetition(X),
hasSportsName(X,Z), SportsName(Z),
sportsNameToPerformance(Z, Y ).

sportsCompetitionToPerformance (X,Y ) ← HighJumpCompetition(X),
hasPart(X,Z), HighJumpRound(Z),
hasPart(Z,W ), HighJump(W )
hasPerformance(W,Y ).

sportsCompetitionToPerformance (X,Y ) ← PoleV aultCompetition(X),
hasPart(X,Z), PoleV aultRound(Z),
hasPart(Z,W ), PoleV ault(W )
hasPerformance(W,Y ).

Fig. 6. Text interpretation rules for the athletics domain.

To start with the interpretation of the text paragraph in Figure 3, text analysis
results for this text paragraph, namely the Abox in Figure 4, is considered as Γ .
According to the Formula 2 we divide Γ into a part Γ2 that the agent would like to
have explained (fiat assertions), and a part Γ1 that the interpretation agent takes as
granted (bona fide assertions). In our example, Γ2 contains the following assertions:

(hjName1, date1) : sportsNameToDate,
(pName1, perf1) : personNameToPerformance,
(hjName1, city1) : sportsNameToCity,
(pName2, perf2) : personNameToPerformance,
(pName1, country1) : personNameToCountry,
(hjName1, perf1) : sportsNameToPerformance,
(pName2, country2) : personNameToCountry.

In the first step, these assertions are transformed into corresponding queries and the
abductive retrieval inference service is asked for explanations. For example, from the
role assertion (hjName1, date1) : sportsNameToDate the following query is derived:

Q1 := {() | sportsNameToDate(hjName1, date1)}



The task of the abductive retrieval inference service is to compute what should
be added to the ontology in order to answer this query with true. In the given set
of rules (see Figure 6), two rules have the atom sportsNameToDate in the rule head
(consequences). Therefore, both rules are applied in a backward chaining way (i.e. from
left to right) and corresponding terms are unified and we get variable bindings for X
and Y. The unbound variable Z is instantiated with fresh individuals (e.g. new ind 1).
Note that for one of these rules, namely for the one that hypothesizes a pole vault
competition, all bindings that are found for Y produce explanations (∆’s) that are
inconsistent w.r.t. Σ. This is caused by the disjointness axioms in the Tbox (e.g. the
concepts HighJumpName and PoleVaultName are disjoint). The abductive retrieval
service discards inconsistent explanations. Therefore, the generated explanation to
answer Q1 with true is:

∆ = {new ind1 : HighJumpCompetition, (new ind1, hjName1) : hasSportsName,
(new ind1, date1) : hasDate}

The assertions shown in ∆ are added to Γ1. Furthermore, the assertion
(hjName1, date1) : sportsNameToDate is removed from Γ2 and added to Γ1. This
procedure is applied to the remaining assertions in Γ2 until Γ2 is empty. At the end
of the first interpretation step, Γ1 contains (beside the assertions shown in Figure 4)
following newly created assertions:

new ind1 : HighJumpCompetition, (new ind1, hjName1) : hasSportsName,
(new ind1, date1) : hasDate, (new ind1, city1) : takeP lace, new ind2 : Person,
(new ind2, pName1) : hasPersonName, (new ind2, country1) : hasNationality,
new ind3 : Person, (new ind3, pName2) : hasPersonName,
(new ind3, country2) : hasNationality

Note that the preference score presented in Section 4.1 guarantees that explanations
that involve less hypothesized assertions and more observations are preferred. This
is why Γ1 contains a single HighJumpCompetition instance at the end of the first
interpretation step.

In the second step, the interpretation process applies the set of rules in a forward
chaining way (from right to left, i.e., from antecedent to consequence) to check whether
new information can be deduced. This yields the following assertions:

(new ind2, perf1) : personToPerformance, (new ind3, perf2) : personToPerformance
(new ind1, perf1) : sportsCompetitionToPerformance

which are also added to Γ1. At this state, the interpretation process defines a new Γ2

by selecting all newly inferred assertions as fiat assertions and starting a new iteration.
I.e., the first interpretation step is applied to the assertions in the new Γ2. At the end
of this step, following newly created assertions are added to Γ1:

new ind4 : HighJumpRound, (new ind1, new ind4) : hasPart,
new ind5 : HighJump, (new ind4, new ind5) : hasPart,
(new ind5, perf1) : hasPerformance, (new ind5, new ind2) : hasParticipant,
new ind6 : SportsTrial, (new ind6, new ind3) : hasParticipant,
(new ind6, perf2) : hasPerformance



In the second step of the second iteration no new information can be deduced
by applying the set of rules in a forward chaining way. Therefore, the interpretation
process terminates by returning the current Γ1 as the interpretation Abox. The in-
terpretation Abox contains (beside the assertions in Figure 4) the following newly
inferred assertions:

new ind1 : HighJumpCompetition, new ind2 : Person, new ind3 : Person,
new ind4 : HighJumpRound, new ind5 : HighJump, new ind6 : SportsTrial,
(new ind1, hjName1) : hasSportsName, (new ind1, date1) : hasDate,
(new ind1, city1) : takeP lace, (new ind1, new ind4) : hasPart,
(new ind4, new ind5) : hasPart, (new ind5, perf1) : hasPerformance,
(new ind5, new ind2) : hasParticipant,
(new ind6, new ind3) : hasParticipant, (new ind6, perf2) : hasPerformance
(new ind2, pName1) : hasPersonName, (new ind2, country1) : hasNationality,
(new ind3, pName2) : hasPersonName, (new ind3, country2) : hasNationality

Note that in the interpretation Abox the person instance new ind2 participates
in a high jump trial (new ind5) and, therefore, is also an instance of the concept
HighJumper (see the Tbox in Figure 5). Thus, information about high-level events,
e.g. high jump trials, also influences information that is available about the related
parts. With queries for HighJumpers the corresponding media objects would not have
been found otherwise. Thus, recognizing high-level events is of utmost importance in
information retrieval systems (and pure content-based retrieval does not help).

In the previous example, an explanation is found for every assertion in Γ2. However
it might be the case that no explanation can be obtained due to a lack of relevant
axioms in the background knowledge (Σ) or due to a lack of relevant observations in
Γ2. An example for the lack of relevant axioms in the background knowledge is given, if
Γ2 contains the assertion (sName1, rank1) : sportsNameToRanking and there is no rule
in Σ containing sportsNameToRanking(X,Y ) in the head. The lack of relevant axioms
in the background knowledge for interpreting text can be considered as a motivation
for the agent to learn. An example for the lack of relevant observations is given, if Γ2

contains isolated individuals, i.e. individuals that are not in any relation with other
instances (see the rank1 : Ranking assertion in Figure 4). In this case relevant evidence,
namely relations between individuals, is missing for interpreting the document.

The example discussed here covers the interpretation of multimedia documents
in text modality. However, the same engine implementing the semantic interpreta-
tion process is used in BOEMIE to interpret also other modalities. In [7] we have
discussed the interpretation of images and presented an evaluation of experimental re-
sults obtained on a corpus of athletics images. Observe that given the nature of visual
modalities, where visibility restrictions have to be considered, ambiguities often lead to
multiple explanations. For example, imagine that the image analysis process extracts
a person body, a person face, a horizontal bar, and spatial relations among these ob-
jects (e.g., the person body is above the horizontal bar) for the image in Figure 3. The
interpretation engine generates two explanations for this image: one interpreting it as
showing a high jump trial and another one interpreting it as showing a pole vault trial.
This is due to the fact that, different from the detection of a pole, the detection of a
horizontal bar is not enough to discriminate between high jump and pole vault trials.



So far, we have presented the modality-specific interpretation of multimedia doc-
uments only. However, the semantic interpretation of multimedia documents involves
also a second level of interpretation, where modality-specific interpretation results are
fused to provide fused interpretation Aboxes. Due to the isolated interpretation of
modality-specific analysis Aboxes, in our approach, a fused Abox is not only the union
of modality-specific interpretation Aboxes, but also contains information about indi-
viduals that depict the same object in different modalities (identification). For exam-
ple, the multimedia document in Figure 3 is a multi-modal document and its interpre-
tation requires not only the integration of single-modality interpretation results, but
also the identification of instances of high-level concepts such as a Person. Note that
high-level concepts such as Person or SportsTrial are the only candidates for identifi-
cation because (different from mid-level concepts) they are modality-independent and
can appear in different modality-specific interpretation Aboxes. In terms of descrip-
tion logics the fact that two individuals are the same is represented with a so-called
same-as assertion, e.g., (new ind4, new ind9) : same-as.

The fusion approach processes captioned images such as the one in Figure 3 as
follows: First, for each image interpretation every high-level concept instance found in
the image interpretation Abox is hypothesized to be the same as every high-level con-
cept instance found in the caption/text interpretation Abox (identification). Second,
a fused candidate interpretation Abox is generated, which contains the same-as as-
sertions and the union of image and caption interpretation Aboxes. Third, each fused
candidate interpretation Abox is checked for consistency w.r.t. the domain ontology.
All inconsistent Aboxes are discarded and only consistent ones are provided as fused
interpretation Aboxes for the multimedia document.

5 Matching for augmenting multimedia interpretation

Ontology matching is exploited for supporting all the activities of the evolution method-
ology, from population to coordination. Interpretations of new incoming multimedia
resources are continuously produced by using reasoning techniques, leading to the as-
similation of new individuals and assertions into the ontology. Moreover, the ontology
used to this end needs to be updated as well, by introducing new concepts and roles
in the ontology, in order to deal with changes of the domain over time. New infor-
mation provided by external knowledge sources is part of the evolution process in the
methodology introduced in Section 2. The idea is that the knowledge provided by other
ontologies, web directories, and, in general, knowledge repositories can be used to find
appropriate descriptions of a missing concept when a resource remains unexplained
after interpretation. Moreover, the alignment of the domain ontology with the external
knowledge sources is maintained over time in order to increase the domain knowledge
available for subsequent ontology evolutions. Ontology matching techniques are used
both for supporting population and enrichment and for the goal of ontology alignment
and coordination. Ontology matching is defined as a process match which takes two
ontologies O1 and O2 as input and returns a set of mappings among the elements of
O1 and O2, as follows:

match(O1, O2)→MO1,O2



The resulting mapping set MO1,O2 is a set of 5-tuples of the form:

MO1,O2 = {〈E1, E2,≈R,V,S | (E1 ≈R E2), E1 ∈ O1, E2 ∈ O2,V ∈ [0, 1],S ∈ [0, 1]〉}

where,

– E1 and E2 denote two ontology elements (i.e., concepts, roles, individuals);
– ≈R is a matching relation which denotes that E1 and E2 are similar and, possibly,

the kind of relation holding between them (e.g., ≡, v);
– V denotes a confidence value associated with ≈R;
– S denotes the level of similarity between E1 and E2 as a measure in the range

[0,1].

The different goals of ontology matching require matching techniques that work at
the schema level (Tbox) as well as at the instance level (Abox). In order to provide a
highly flexible toolkit for ontology matching, the ontology matching service HMatch 2.0
is conceived as a framework of matching techniques and components that can be used
separately or in combination for the different purposes. Each matching component
is used to support one or more specific tasks of the ontology evolution process, as
summarized in Table 1.

Table 1. Usage of HMatch 2.0 components in BOEMIE

Evolution Activity Task HMatch 2.0 component Goal

Population Instance grouping HMatch(I) To group together instances re-
ferring to the same individual in
the domain (i.e., matching in-
stances)

Enrichment Concept enhancement HMatch(L) To suggest names for new con-
cepts and roles

Coordination Alignment HMatch(C) To align a new version of the do-
main ontology with other exter-
nal knowledge sources

Coordination Versioning HMatch(C) To evaluate a measure of the dif-
ference between two versions of
the domain ontology

In the population activity, the instance grouping task (see Figure 1) is responsible
for grouping all the instances that represent the same real object or event. The in-
stance matching component (HMatch(I)) is invoked to match every incoming concept
instance against a set of other instances that already populate the involved concept.
In the enrichment activity, concept enhancement is responsible for improving a con-
cept identified by concept learning, through terminological knowledge acquired from
external sources, such as external domain ontologies or taxonomies. In order to ac-
quire relevant knowledge, the linguistic matching component (HMatch(L)) is used for
concept matching. In the coordination activity, contextual matching (HMatch(C)) is
used for concept matching for two different evolution tasks (see Figure 1): in ontology
alignment, the goal is to establish mappings connecting a new version of the athletics



domain ontology with other external knowledge sources; in ontology versioning, con-
cept matching is used to evaluate the measure of change between two different versions
of the domain ontology.

5.1 Matching at the schema level

The goal of schema-level matching is to provide a set of techniques for determining
the degree of similarity between two ontology concepts by considering their formal
specifications (i.e., Tbox specifications). To this end, schema-level matching is enforced
through linguistic matching techniques and a concept affinity function.

Linguistic Similarity. The linguistic similarity function is exploited for calculating
the linguistic affinity between two atomic ontology elements (i.e., concepts, roles).

Definition 1. Linguistic similarity function. Given two ontology elements e1 and e2,
the linguistic similarity function LS is defined as

LS(e1, e2) =
{

1, if sim(ne1 , ne2) ≥ t;
0, otherwise.

where sim ∈ [0, 1] is the linguistic similarity between ne1 and ne2 , that are the
labels (i.e., names) of e1 and e2, and t is a threshold expressing the minimum level of
linguistic similarity required for considering e1 and e2 as matching elements.

A whole family of techniques is provided by the HMatch(L) component to imple-
ment sim(ne1 , ne2). In particular, HMatch(L) provides the following techniques:

– Syntactic: linguistic matching is performed by using a string matching technique
(i.e., QGram, i Sub).

– Semantic: linguistic matching is performed by using a thesaurus or a lexical
system (i.e., WordNet) of terms and terminological relationships and a notion of
weighted distance between terms.

– Mixed: linguistic matching is performed by using a combination of both syntactic
and semantic techniques.

The choice of the most suitable linguistic matching technique to be used for calcu-
lating sim depends on both the nature and typology of linguistic features of ontology
elements and on the expected response time. For instance, syntactic matching tech-
niques are suggested for linguistic matching when poorly informative labels are used
for ontology elements (e.g., acronyms, person names). Semantic matching techniques
are suitable where structured and informative labels are used, and when terminological
relationships (e.g., synonyms, hypernyms, hyponyms) between ne1 and ne2 need to be
considered for linguistic matching.



Concept Affinity. Concept affinity is defined to determine the level of semantic
affinity between two ontology concepts by considering the number of matching elements
belonging to their contexts.

Definition 2. Concept context. We define the context Ctx(c) of a concept c as a set
of adjacent elements differently composed according to three matching models:

– Shallow: Ctx(c) = {nc, P c}, where P c denotes the role applied to c.
– Deep: Ctx(c) = {nc, P c, Scv, Scw}, where Scv denotes the concepts that subsume c,

while Scw denotes the concepts subsumed by c.
– Intensive: Ctx(c) = {nc, P c, Scv, Scw, Rc}, where Rc denotes elements used as role

range that are applied to c.

According to the considered matching model, concept affinity of two concepts c1
and c2 is evaluated on the basis of the number of matching elements in Ctx(c1) and
Ctx(c2). To this end, ontology elements in Ctx(c1) are compared with the ontology
elements in Ctx(c2) by relying on their linguistic similarity LS .

Definition 3. Concept affinity. Given two ontology concepts c1 and c2, the concept
function CA ∈ [0, 1] is defined as

CA(c1, c2) =
2 ·
∑k=|Ctx(c1)|
k=1

∑h=|Ctx(c2)|
h=1 NS(ec1k , e

c2
h )

|Ctx(c1)|+ |Ctx(c2)|

where ec1k ∈ Ctx(c1) and ec2h ∈ Ctx(c2) are the ontology elements in the context of
c1 and c2, respectively.

Concept affinity is evaluated by the HMatch(C) component which can be configured
to perform matching according to the various matching models. Moreover, a surface
matching model is also available that calculates the concept affinity by considering
only concept names. The choice of the most suitable matching model highly depends
on the level of detail of the concept descriptions as well as on the expected degree
of precision and recall of the results. For example, in ontology enrichment, the more
information is available for the missing concept, the deeper the matching model can
be and the more precise descriptions of external concepts can be retrieved. Otherwise,
with poor concept descriptions, only simple external concepts can be retrieved since
we can rely on linguistic similarity only. Both HMatch(L) and HMatch(C) have been
extensively evaluated on a general benchmark of real ontology matching cases [6, 7].

5.2 Matching at the instance level

The goal of instance matching is to determine instances that represent the same real
object or event in two Aboxes. HMatch(I) evaluates the degree of similarity among
different instances by considering those assertions which provide a description of the
instance features. Since assertions in an Abox are provided according to the termi-
nology defined into a corresponding Tbox, HMatch(I) takes into account a set of
mappings between the two Tboxes associated with the Aboxes to be matched, in or-
der to compare individuals that are instances of matching concepts and to establish a



correspondence among their roles 4. Standard reasoning is used in order to determine
the individuals that are instances of a concept in the Tbox. Then, the similarity of
role filler values as well as the similarity of their direct types is evaluated.5 When two
individuals are compared, their similarity is proportional to the number of similar role
fillers they share. This kind of similarity evaluation between individuals is not enough:
in fact, we need to map together individuals which denote the same real object in the
domain and not just similar individuals (i.e., individuals featured by similar values).
To this end, we classify the key capability of roles by weighting different individual
roles for similarity evaluation. The idea behind this approach is that some roles are
more important than others for univocally identifying the real object denoted by an
individual, because they are relevant for object identification. For example, the name
of a person is more prominent than his age for person identification.

The approach adopted in HMatch(I) is based on the idea of considering roles as
connections between individuals and propagating similarity values through them. In
particular, the HMatch(I) process is composed by two main functions, namely Instance
affinity (IA) and Filler similarity (FS).

Instance Affinity. Given two individuals i1 and i2 that are instances of the same
(or matching) concept, the instance affinity function IA(i1, i2) → [0, 1] provides a
measure of their affinity in the range [0,1]. For each individual i, instance affinity is
calculated by taking into account all the roles pi1, . . . , p

i
n featuring i together with their

corresponding role fillers f i1, . . . , f
i
n. For each Role pj , a weight Wpj

∈ [0, 1] is defined
expressing the capability of pi for the goal of univocally identifying the individual i in
the domain of interest. Role weights are manually defined for the considered domain
by taking into account also the results of the extraction process from a corpus of
(manually) annotated multimedia resources.

Definition 4. Instance affinity. Given two individuals i1 and i2, the instance affinity
function IA(i1, i2) between them is calculated as follows:

IA(i1, i2) =
2 ·
∑k=n
k=1 FS(f i1k , f

i2
k ) ·W

p
i1
k∑k=n

k=1 Wp
i1
k

+
∑k=n
k=1 Wp

i2
k

For each role filler f i1k featuring i1, we execute the function FS(f i1k , f
i2
k ) → {0, 1} be-

tween f i1k and the corresponding role filler f i2k of i2, where two fillers correspond if
they denote the value of the same (or matching) role. The filler similarity function
returns 1 if the two fillers match, and 0 otherwise. The goal of this step is to consider
only the matching role fillers of the two individuals. Then, we sum the weights W

p
i1
k

associated with each role filler. Note that we take into account only the weights of
the roles featuring i1, since the same (or matching) roles are featured with the same

4 In case of two Aboxes defined with respect to the same Tbox, the correspondences among
concepts and roles is trivial.

5 The direct types of an individual are the most specific concepts from the ontology of which
the individual is an instance of.



weight. Finally, we calculate the ratio of the sum of weights associated with matching
filler roles and the sum of the weight of all the roles featuring the two individuals.
During the comparison of two individuals, there can be situations in which a defined
filler for a role is missing, which means that we have no information about that role
at all. In this case, we can use two different strategies: pessimistic or optimistic. The
former considers the lack of information as an evidence of the difference between two
individuals; the latter ignores the missing role value, interpreting it as undefined, so it
does not take part in the computation of similarity. In HMatch(I), the optimistic strat-
egy is adopted because we want to evaluate the knowledge explicitly asserted about an
individual. If all the essential roles – the roles which differentiate each individual from
the others – are valued, then the absence of the other roles has not influence on the
similarity evaluation. Role fillers can be datatypes (e.g., strings, numbers, dates) or
other individuals. In order to adopt the matching technique more suitable for a given
pair of fillers, we define the specific function filler similarity.

Filler Similarity. The filler similarity function FS(f1, f2)→ {0, 1} previously intro-
duced is defined as follows:

Definition 5. Filler similarity. Given two role fillers f1 and f2 and a threshold t, the
filler similarity function FS(f1, f2)→ {0, 1} is defined as:

FS(f1, f2) =
{

1, if sim(f1, f2) ≥ t;
0, otherwise

Sim(f1, f2) is a value in the range [0,1] and is calculated in different ways depending
on the type of the role fillers f1 and f2, according to the following rules:

– Rule 1: if f1 and f2 are both datatypes, a suitable matcher is executed which
evaluates the similarity between datatype values according to the semantic mean-
ing of the roles and to their datatype category. A detailed description of these
datatype matchers is provided in [7].

– Rule 2: if f1 and f2 are both individuals, we check if they are featured by role
assertions. If not, sim(f1, f2) returns 1 if f1 and f2 are instances of the same (or
matching) concepts, and 0 otherwise. If f1 and f2 are featured by role assertions,
sim(f1, f2) = IA(f1, f2), thus leading to a recursive step, which is iterated until
all the datatype role fillers have been compared.

– Rule 3: if f1 is a dataype and f2 is an individual (or vice versa), we check is f2
is featured by a role filler fk matching with f1. In this case, we apply Rule 1 in
order to obtain sim(f1, f2) = sim(f1, fk). Otherwise, sim(f1, f2) = 0.

Example. Consider two individuals PersonName 7368 and PersonName 4352 that
instantiate the concept PersonName and their roles as shown in Figure 7.

The two individuals denote (different) person names referring to different athletes.
The two considered individuals share a high number of common characteristics. In
fact, the two athletes come from the same country (i.e., Poland), have the same gender
(i.e., male), and are associated with the same performance (i.e., 2.36). So, the instance



(PersonName 7368, ‘Michal BIENIEK’) : hasPersonNameValue
(PersonName 7368, Country 3415) : personNameToCountry

(PersonName 7368, Performance 4389) : personNameToPerformance
(PersonName 7368, Male 640) : personNameToGender

(Country 3415, ‘POL’) : hasCountryNameValue
(Performance 4389, 2.36) : hasPerformanceValue
(a) Abox of individual PersonName 7368

(PersonName 4352, ‘Artur PARTYKA’) : hasPersonNameValue
(PersonName 4352, Country 5567) : personNameToCountry

(PersonName 4352, Performance 6732) : personNameToPerformance
(PersonName 4352, Male 640) : personNameToGender

(Country 5567, ‘POL’) : hasCountryNameValue
(Performance 6732, 2.36) : hasPerformanceValue
(b) Abox of individual PersonName 4352

Fig. 7. Two individuals that instantiate the concept PersonName in the athletics ontology

matching should be able to recognize the athlete similarity while capturing the identity
diversity of the two athletes at the same time.

Since the similarity between PersonName 7368 and PersonName 4352 depends on
the similarity among their role fillers, the evaluation of such a similarity is based on
the results obtained by applying the filler similarity function, that are:

FS(Country 3415, Country 5567) = 1

FS(Performance 4389, P erformance 6732) = 1

FS(Male 640,Male 640) = 1

FS(‘MichalBIENIEK ′, ‘ArturPARTY KA′) = 0

In order to deal with the fact that the two individuals are referred to different persons
in spite of the fact that they share a high number of features, we need to capture the
intuition that some roles, such as the name, are more important than others, such as
the performance, for the sake of object identification. In the example, we rely on role
identification weights defined for the athletics domain, i.e., WN = 1.0 for hasPerson-
NameValue, WG = 0.3 for personNameToGender, WC = 0.3 for personNameToCoun-
tryName, and WP = 0.0 for personNameToPerformance, respectively. These weights
state that the name is considered to be the most important attribute for the iden-
tification of a person. Gender is relevant, since it does not change in time, but it is
not a key of a person record because there are many person with the same gender.
The same can be said about the country. Finally, the performance is not relevant for
the identification of a person because it is not an attribute of the person but a result
obtained by the person in some kind of sport event. On the basis of these weights, we
apply the instance affinity function described above, with the following results:

IA(P7368, P4352) =
WG +WC +WP

WP +WG +WC +WP
=

0.3 + 0.3 + 0.0
1.0 + 0.3 + 0.3 + 0.0

= 0.375



The example shows how, using the instance affinity function and the role weights, is
capable of providing both a measure of identification among the two individuals. We
note that, if we apply the same weight to all the roles, the instance affinity function can
also be used to evaluate a general degree of similarity between two individuals rather
than the fact that they denote the same real object in the domain. In the instance
grouping task of the population activity, the aim is to group together individuals which
represent the same real object. Thus, specific weights for the roles in the athletics
domain ontology are used.

6 Ontology population and enrichment

Ontology evolution is driven by the results of the semantic interpretation: multime-
dia resources that are fully explained evolve the ontology through population, while
unexplained resources signal the need for ontology extensions through enrichment.
Ontology population is the process of inserting concept instances and role assertions
into an existing ontology, while ontology enrichment is the activity of extending an
ontology, through the addition of new concepts, roles and rules.

6.1 Ontology population

The proposed approach for ontology population is built upon two axes: entity dis-
ambiguation and consistency maintenance. With entity disambiguation we refer to
the process of identifying instances that refer to the same real object or event. If an
ontology is populated with an instance without checking if the real object or event
represented by the instance already exists in the ontology (as an instance that has
populated the ontology at an earlier population step), then redundant information (in
the best case) will be inserted into the ontology. A worst case scenario is the exis-
tance of redundant instances containing contradicting information, which may lead to
an inconsistent ontology. At the same time maintaining the consistency of an ontol-
ogy is crucial (mainly through the elimination of contradictory information), as an
inconsistent ontology cannot be used for reasoning.

Ontology population can be decomposed into the following tasks:

– Instance matching : The first population task is the identification of similar in-
stances contained in the ontology. Assuming an Abox containing the explanation
of a multimedia document, a similarity matrix is constructed: this similarity ma-
trix contains a similarity measure of each HLC instance (HLCi) with any other
HLCi (of the same HLC) found in the ontology.

– Instance grouping : This task is responsible for grouping all the instances that
represent the same real object or event, by exploiting the results of the instance
matching task, where every incoming HLCi has been measured with respect to
similarity with the set of other instances that populate this HLC. Instance grouping
employs clustering techniques operating on the similarity matrix returned by the
instance matching task to decide which of these instances will be grouped together
to form a group that represents the same real object or event.



– Abox refinement (evolution pattern P2 only): In case of multiple explanations the
most suitable explanation is selected by exploiting the results of the instance
matching/grouping tasks. Assertions related to the rest of the explanations are
removed from the Abox, thus leading to a refined version of it.

– Abox validation: This task performs consistency checking, to detect possible in-
consistencies due to the additions that will be performed to the ontology.

– Abox assimilation: The final task is responsible for performing the needed changes
in the ontology (by creating all instances/roles in all ontological modules), in order
to incorporate the information in the new Abox into the ontology.

Instance grouping Instance grouping is responsible for identifying which instances
found in both the ontology and the Abox produced from the analysis of a multimedia
resource refer to the same real object or event. This identification is performed under
the assumption that instances that are similar represent the same real object or event.
Exploiting the degree of similarity among all instances provided by instance matching,
instance grouping must decide which instances are similar enough to represent the
same real object or event. This decision can be taken by either placing some arbitrary
threshold or by performing clustering on the similarity matrix calculated by instance
matching for all instances in both the ontology and the Abox explaining a multimedia
resource.

Table 2. Example of an instance similarity matrix

Athlete1 Athlete2 Athlete3 . . . AthleteN

Athlete1 -

Athlete2 0.9 -

Athlete3 0.9 0.9 -

. . . -

AthleteN 0.6 0.0 0.9 -

– Thresholding: in this approach, a threshold is defined and instances whose degree
of similarity is above the threshold are grouped together. There are two alternative
procedures in forming groups by satisfying a threshold, depending whether com-
plete linkage or single linkage is used. In complete linkage, all degrees of similarity
among all instances of a group must be equal to or above the threshold. In single
linkage it suffices for an instance to have a degree of similarity that satisfies the
threshold with any single instance of the group, in order to become a member of the
group. For example, assuming the similarity matrix of Table 2 and a threshold of
0.9, the group formed through complete linkage is (Athlete1, Athlete2, Athlete3).
AthleteN cannot be a member of the group, as the similarity degree with Ath-
lete1, Athlete2 is lower than the threshold. On the other hand, the group formed
with single linkage (Athlete1, Athlete2, Athlete3, AthleteN) includes AthleteN, as
AthleteN has a degree of similarity with Athlete3 that satisfies the threshold.



– Clustering: a slightly more complex approach is to employ a clustering algorithm
in order to group instances. Clustering is a form of machine learning and as such
two questions arise when it is used: which clustering algorithm should be used, and
how the data to be clustered can be represented more effectively in order to obtain
the desired results. Regarding data representation, since the degree of similarity
between two instances is already available, a clustering algorithm that exploits the
distance among instances such as k-means [8] can be easily applied. Given a fixed
number k of (desired or hypothesized) clusters, the k-means algorithm assigns
observations (instances) to those clusters so that the means across clusters are as
different from each other as possible. In addition, k-means can be easily combined
with n-fold cross validation in order to estimate the “optimal” number of clusters
from the data. An interesting property of the k-means algorithm is that the centre
of each cluster is calculated during the formation of the cluster. The instance that
is closest to this centre is the instance that conveys the most information about the
real object or event which the group (cluster) represents, and thus can constitute
the basis over which the consistency of all other instances of the group can be
tested.

Example Population is performed when there is enough information in the ontology
to fully explain a multimedia resource. For example, the text document presented in
Figure 3 can be fully analysed (with a single explanation) if the ontology of Figure 5
and the rules of Figure 6 are assumed. In such a case, the evolution pattern P1 will
be triggered and all instances in the Abox that contains the results of the semantic
interpretation will be matched against all individuals contained in the ontology, and
the degree of similarity among all instances will be stored in a similarity matrix. The
similarities stored in the matrix will be examined by the instance grouping task, in
order to find the instances that represent a single real object or event. Since Abox
refinement is not needed (as the Abox contains a single explanation), ontology popu-
lation proceeds with validating what will be added to the ontology. If no contradicting
information is detected, the Abox is assimilated into the ontology. During assimilation,
instances from the ontology that are identical (i.e. have a degree of similarity equal to
1.0) to instances from the multimedia resource Abox can be reused, in order to avoid
the addition of instances that are duplicates into the ontology.

However, in case the semantic interpretation is unable to explain a multimedia
resource with a single explanation and produces two or more competing explanations,
disambiguation must be performed in order to select the most prominent explanation.
Assume for example that the text document of Figure 3 was explained (erroneously)
also with the following assertions (in addition to those of section 4.2), denoting also a
pole vault in addition to high jump sport:

new ind7 : PoleV aultCompetition,
new ind8 : PoleV aultRound, new ind9 : PoleV ault,
(new ind7, hjName1) : hasSportsName, (new ind7, date1) : hasDate,
(new ind7, city1) : takeP lace, (new ind7, new ind8) : hasPart,
(new ind8, new ind9) : hasPart, (new ind8, perf1) : hasPerformance,
(new ind9, new ind3) : hasParticipant, (new ind9, perf2) : hasPerformance



An Abox with more than one explanations (i.e. instances of both HighJumpCom-
petition and PoleVaultCompetition) will trigger evolution pattern P2. Again instance
matching will be performed, which will produce an updated similarity matrix. Then,
instance grouping will be performed on the contents of the similarity matrix in order
to obtain groups. However, a single explanation must be selected from the available
ones. Explanation disambiguation is performed as follows: the explanation with the
greatest degree of similarity with any instance in the ontology is selected by examin-
ing the similarity matrix. In most cases this will result in a single instance, which is
the selected explanation. In case however more than one instances that are parts of
competing explanations share the same (maximum) degree of similarity, disambigua-
tion will be performed through exploitation of the grouping information, selecting the
instance that it is closer to the centre of its group.

Once a single explanation has been selected, all instances not related with the
selected explanation will be discarded from the Abox of the multimedia resource.
Finally, during Abox validation the resulting Abox will be checked for consistency and
if it is found to be consistent, it will be assimilated into the ontology.

6.2 Ontology enrichment

Ontology enrichment is performed every time the background knowledge is not suffi-
cient to explain the extracted information from the processed multimedia documents.
Thus, the ontology enrichment activity is expected to extend this background knowl-
edge through the addition of new concepts/roles/rules, in order to better explain
extracted information in the future.

The ontology enrichment activity is triggered by either the P3 or the P4 evolution
patterns. The evolution pattern P3 is selected when no explanation (i.e., an HLCi) has
be found for a given Abox, and can lead to the insertion of a new HLC, a new role or a
new rule into the ontology, or in the accumulation of the Abox in a “waiting” queue if
available evidence cannot justify the addition of a new concept/role/rule. On the other
hand, evolution pattern P4 is selected when the background knowledge is not sufficient
to even assign MLCs to all of the extracted elements of a multimedia resource, thus
inserting instances of the “unknown” MLC in the Abox. In this case, pattern P4 can
result in the addition of a new MLC in the ontology. In fact, the detection of new MLCs
is considered to have priority over the identification of new HLCs, because knowledge
about a new MLC can lead to different semantic interpretation results about the same
resources. As a result, when instances of the “unknown” MLC are found in Aboxes
that contain no explanations, evolution pattern P4 is selected instead of P3.

Ontology enrichment is decomposed into the following tasks:

– Concept learning: The goal of this task is to propose new concepts (either HLCs
or MLCs) and roles by exploiting similarities found through clustering, either in
unexplained documents (evolution pattern P3) or in unknown objects recognized
by the information extraction engine (evolution pattern P4). It can be decomposed
into two main sub-tasks, clustering and concept formation.
• Clustering: The main objective of the clustering task is to provide evidence

that can support the creation of new concepts or roles.



• Concept formation: This task is applicable only if a new HLC has been pro-
posed by clustering. Exploiting the results of clustering, concept formation ex-
amines the clustered elements in order to extract common information (such
as concepts/roles) and use this common information to form a new concept,
as a result of this task.

– Concept enhancement (evolution pattern P3 only): This task is responsible for
improving a concept identified by concept learning, through knowledge acquired
from external sources, such as external domain ontologies or taxonomies.

– Concept definition: This task receives the new concept (either a new MLC or HLC)
or role as defined through the previous tasks, and shows the concept/role definition
to the ontology expert. The ontology expert must approve the new concept/role in
order to be assimilated into the ontology and additionally can revise the definition
of the new concept/role.

– Concept validation: This task performs consistency checking, by trying to detect
possible inconsistencies due to the addition of the new concept/ role to the ontol-
ogy.

– Concept assimilation: The last task of ontology enrichment is responsible for per-
forming the required changes in the ontology in order to incorporate the newly
formed concept/role into the ontology.

Example Let as assume an Abox where the semantic interpretation activity was
unable to find an explanation. In addition, instances of the “unknown” MLC have
been extracted by the information extraction toolkit. When such an Abox is processed
by the evolution pattern selector, pattern P4 will be selected. In such a case, the Abox
will be placed in a “waiting” stage. Once a significant number of instances of the
“unknown” MLC have been assimilated, then clustering will be performed, during
concept formation. If enough (modality-specific) information is available that can lead
to the formation of clusters, the concept definition task is responsible to present the
results of the clustering to the ontology expert. The ontology expert must decide if
the presented information is enough to justify the addition of a new MLC. In such a
case, the expert must define the new concept(s), and associate all presented instances
represented by the new concept with it.

In case of an Abox that has no explanation and also no instances of the “unknown”
MLC, evolution pattern P3 will be selected. In such a case, the Abox will be also placed
in a “waiting” stage, until enough Aboxes have been gathered. The Aboxes gathered
are clustered in order to obtain clusters of Aboxes that are similar, and all Aboxes
in a cluster can possibly be explained by a single concept, which is not contained
into the current version of the ontology. Once clusters have been identified, a new
concept is formed for each found cluster by using all common information among all
Aboxes of the cluster. Each newly formed concept will be further enhanced during
concept enhancement, by trying to locate the formed concept in external knowledge
sources through coordination and exploiting information from these knowledge sources,
like concept/role names and properties. Once new concepts/roles have been formed
and possibly enhanced, they must be approved and reviewed by the ontology expert
during the concept definition task: the expert must decide which of these proposed



concepts/roles will be kept, what their definition will be and which Aboxes can be
associated with them. Each concept/role definition must be checked for consistency
and assimilated into the ontology, if no inconsistencies have been found.

7 Experimentation and evaluation

In this section, we present the evaluation of the most relevant components that con-
tribute to the ontology evolution methodology. For this purpose we will base the evalu-
ation of each component on the comparison of expected and effective results by means
of precision, recall and F-measure. While the parameters for the evaluation differ from
component to component, a general definition of precision, recall and F-measure will
be given. For a more specific definition refer to the subsection of each component.

Definition 6. Precision and Recall. Given a ground truth of expected results E
and the retrieved results R, precision P is defined as

P =
| E ∩R |
| R |

and recall R as

R =
| E ∩R |
| E |

Definition 7. F-Measure. In order to combine precision and recall into a unique
value, giving more emphasis to the balance of the two measures, F-measure F is intro-
duced as the harmonic mean of precision P and recall R [9]:

F =
2 · P ·R
P +R

7.1 Evaluation of proposed multimedia interpretation techniques

The utility of the abduction-based multimedia interpretation framework is analyzed
through an empirical evaluation of its results over a collection of web pages. The
evaluation will focus on the results of text interpretation. For an evaluation of image
interpretation refer to [10]. The core component of this implementation is the DL-
reasoner RacerPro in version 1-9-2 [11] that supports various inference services. The
abductive retrieval inference service, which is the key inference service for multimedia
interpretation, is integrated into the DL-reasoner.

Experimental setting and criteria To test the approach, an ontology about the
athletics domain was used as well as two corpora of 104 web pages each, contain-
ing daily news about athletics events. The first corpora is a gold standard containing
manually annotated metadata, while the second corpora is system annotated. Analysis
algorithms that implement shallow text processing and machine learning techniques
were trained in order to obtain concept instances as well as relations between the



instances (see Figure 4). The training process was performed with the help of an
annotation tool applied to the first corpus of web pages. The annotation process is
two-fold: in the first step annotators manually associate words in the text with corre-
sponding mid-level concepts in the ontology. For this purpose, the following concepts
have been used, i.e. PersonName, Country, City, Age, Gender, Performance, Ranking,
SportsName, RoundName, Date and EventName. Second, the segments annotated with
mid-level concepts are grouped and each group is associated with a high-level concept
such as Athlete, SportTrial, SportsRound, SportEvents and SportsCompetition. The
resulting annotations are considered as ground truth for our evaluation. After final-
izing the training process, the second corpus has been automatically analyzed and
interpreted to detect concept instances and relations between them. The result of au-
tomatic analysis and interpretation over the second corpus will be evaluated in this
section.

To set up the evaluation, a set of queries has been defined in order to ask for the
number of HLCi (high-level concept instances) in both the gold standard corpus and
in the system-annotated corpus. In this way, names of high-level concepts constitute
the parameters to evaluate the precision and recall of the multimedia interpretation
framework. Accordingly, E and R of definition 6 are replaced by EHLC and RHLC
respectively, to obtain a ratio of correctly retrieve instances of HLCs (EHLC ∩RHLC)
over the total number of retrieved instances of HLCs (RHLC) and the total number of
expected instance of HLCs (EHLC).

Evaluation results The evaluation results (see Table 3) shows that expected high-
level concepts (explanations) were extracted in most of the cases. There are exceptional
cases in which no explanations were extracted due to the lack of necessary rules or
lack of low-level text analysis results. For example, in the case of SportsRound, the
interpretation framework expects input about SportsRoundName and Date instances
in a relation sportsRoundNameToStartDate, but this structures are rarely found
during text analysis. Therefore, the rule necessary to create instances of SporstRound
is never applied.

Table 3. Evaluation of the interpretation framework about the text modality

HLC E R R ∩ E Precision Recall F-Measure

Athlete 783 591 496 0.84 0.63 0.72

SportsTrial 729 641 513 0.80 0.70 0.74

SportsCompetition 443 200 188 0.94 0.43 0.80

SportsEvent 304 304 266 0.87 0.87 0.87

SportsRound 375 0 0 0 0 0

Furthermore in Table 4 it can be observed that from a total of 200 extracted
SportCompetitions, five of them have been specilized to HighJumpCompetitions
and ten to PoleV aultCompetitions. This is due to low-level analysis results where



Table 4. Discovery of more specific high-level concepts

SportsCompetition HighJumpCompetition PoleVaultCompetition

200 5 10

Table 5. Information gain from text-image fusion results

SportsTrials HighJump PoleVault

641 85 46

instances of the concepts HighJumpName and PoleV aultName were found. As ob-
served in Figure 5 the definition of a HighJumpCompetition (PoleV aultCompetiton)
requires a HighJumpName (respectively PoleV aultName) as a domain for the role
hasSportsName.

From Table 5 it can be observed that from a total of 641 SportTrials automatically
extracted from text, some of them are also specialized into HighJump or PoleV ault,
which is a result of fusion. In this case an instance of SportsTrial in the text becomes
same as an instance of PoleV ault or HighJump in an image. Currently the fusion
process asumes that whenever there is a person name in a caption, it should correspond
to the person in the corresponding image. Therefore, after fusing an image with its
caption, it is possible to further fuse the image with the text based on the syntactical
similarity of the person’s name.

7.2 Matching techniques for ontology evolution

Experimental setting and criteria The methodological approach commonly used
for the evaluation of semantic matchmaking tools is based on the idea of building a
benchmark constituted by several heterogeneous ontologies to be matched and a set of
manually defined results, that is a set of expected mappings (EM ). Then, the matching
tool to be evaluated is executed against the ontologies in the benchmark, in order to
obtain a set of automatically retrieved mappings (RM ). On the basis of EM and RM ,
the precision and recall metrics are used for the evaluation of the tool:

P =
| EM ∩RM |
| RM |

.

R =
| EM ∩RM |
| EM |

.

The evaluation of HMatch 2.0 has been performed over the 2006 and 2007 bench-
marks of the Ontology Alignment Evaluation Initiative (OAEI), an international on-
tology matching contest held with the goal of comparing different ontology matching
tools [12] 6.
6 http://oaei.ontologymatching.org/2007/



Concerning the evaluation of instance matching, we have created a specific bench-
mark by taking into account 26 Aboxes extracted by textual modality from textual
resources about high jump events. The benchmark involves 15841 instances, both from
mid-level concepts and from high-level concepts. Among these instances, we have fo-
cused on instances from the mid-level concept PersonName and from the high-level
concept Athlete, and we have manually defined a set of 388 mappings, which represent
the instance correspondences that are expected. By using this set of expected map-
pings, we then evaluate instance matching by calculating precision and recall, as in
the case of concept matching.

Evaluation results In order to evaluate the concept matching components of HMatch
2.0, we performed the evaluation of each component separately as well as the evaluation
of the results obtained by combining linguistic and contextual matching. A detailed
description of these results is given in [7, 12]. As a general remark, we note that the
intersection of the results obtained by using the two components separately is useful
to increase precision (up to a very high level of 0.99), while union is useful to increase
recall. This is because the general behavior of HMatch 2.0 is to find a quite small,
but very correct number of results. Then, if we apply intersection, we reduce the
number of results even further, but we increase the probability to have them correct.
On the opposite, if we take the union, we increase the number of results by affecting
precision. In more detail, the results show that the union provides the best balance
between precision and recall. The general conclusion is that intersection is supposed to
be used when the precision of the results is much more important than the number of
results retrieved. In all the other cases, union is the best solution in order to combine
different components of HMatch 2.0.

Concerning instance matching, we started from the small benchmark discussed in
the previous sub section, where we were interested in finding athletes records. Then, we
have set an identification weight of 1.0 for person names and of 0.3 for nationalities and
ages. Next, we have selected a group of athletes, namely ‘Michal BIENIEK’, ‘Fabricio
ROMERO’, ‘Ebba JUNGMARK’, and ‘Germaine MASON’. For these athletes, the
benchmark contains the number of instances shown in Table 6. It is easy to see that,

Table 6. Number of expected instances per person in the benchmark

Concept BIENIEK ROMERO JUNGMARK MASON

PersonName 7 3 3 22

Athlete 7 3 2 15

for each concept, given the number n of instances expected for each athlete, the number
of m of mappings expected for each athlete is m = n(n−1)

2 , leading to Table 7. Thus,
for the whole benchmark the number of expected mappings is 388. We have executed
HMatch(I) against the benchmark and, then, we have produced the transitive closure



Table 7. Number of expected mappings per person in the benchmark

Concept BIENIEK ROMERO JUNGMARK MASON

PersonName 21 3 3 231

Athlete 21 3 1 105

of the set of mappings retrieved by HMatch(I), in order to capture also the mappings
produced by the transitive interpretation of similarity. The results are shown in Table 8.

Table 8. Results of instance matching evaluation

HMatch(I) HMatch(I) with transitive closure

E 388 388

R 165 226

R ∩ E 159 202

Precision 0.96 0.89

Recall 0.41 0.58

Legenda: E = expected mappings; R = retrieved mappings

Looking at the results, we can conclude that HMatch(I) is featured by a very
high precision and a low recall. This means that the results retrieved by HMatch(I)
are highly reliable, but we do not capture all the expected results. Thus, the current
version of HMatch(I) can be really useful for suggesting similar instances by taking
into account a specific instance of interest, since the results obtained are precise.
For the next version of HMatch(I) we will work on the goal of increasing the recall.
The transitive closure shows that a combination of the results obtained from a single
execution of HMatch(I) can be useful to this goal. Another promising solution is based
on the idea of modifying the parameters and providing an automatic mechanism for
detecting identification weights for roles.

7.3 Population

Experimental setting and criteria In this section the performance of the popula-
tion activity will be evaluated, through evaluation of the entity disambiguation task,
with the help of a manually annotated corpus. Entity disambiguation is the result
of the combination of two tasks (instance matching and instance grouping), whose
cumulative performance will be evaluated in terms of precision and recall. The same
26 Aboxes used for evaluating matching techniques (Section 7.2) will also be used
for evaluating entity disambiguation. This corpus involves 15841 instances, both from
mid-level and high-level concepts. This evaluation will focus only on instances of the



Athlete high-level concept, by measuring which instances are identified as representing
the same athlete.

Evaluation results The experiment involves the application of HMatch(I) on all 26
Aboxes, in order to calculate a degree of similarity between a pair of instances, for all
possible pairs that can be constructed from the 15841 instances in the Aboxes. From
these instances, only instances of the concept Athlete were considered. Assuming that
Athlete instances exhibiting degrees of similarity with other Athlete instances below
0.5 are too dissimilar to represent the same real athlete, they were also discarded. The
remaining 130 Athlete instances (referring to 38 real athletes) with degree of similarity
>= 0.5 were clustered, as part of the instance grouping task. K-means was utilised
along with 10 fold-cross validation, in order to estimate the number of clusters prior
to assigning each instance into a cluster.

The k-means clustering algorithm accepts the (maximum) number of clusters to
be formed (k) and tries to distribute instances into clusters in such a way that the
centres of clusters are as different from each other as possible. In order to estimate the
number k of clusters, the following procedure is used: starting with k = 1, 10 fold-cross
validation is performed on the data to be clustered. During 10 fold-cross validation,
the data to be clustered is split into 10 parts. In each fold, 9 parts of the data are used
for creating a clusterer, while the unused tenth part is used to measure the plausibility
of the clusterer. As plausibility of a clusterer with respect to a set of instances, the
mean distance of all instances from its cluster centres was used. The same procedure
is repeated 10 times, so as each part has been used exactly once for measuring the
clusterer plausibility. The final plausibility for this k is the mean of plausibilities of all
folds. The k estimation continues by increasing k by one, and repeating 10 fold-cross
validation, in order to estimate the plausibility for this new k. If the new plausibility is
better than the old one, the new k is retained and the algorithm proceeds with k+ 1.
If it is not, the algorithm stops, returning k− 1 as the possible number of clusters. As
distance between two instances A and B, 1− degree of similarity(A,B) was used.

Concerning clustering, the expected number of clusters was 38, since the 130 Athlete
instances represented 38 real athletes. The clusters obtained were 34, as shown also in
Table 9. Two evaluation approaches have been followed in order to evaluate (a) the
performance of correctly recognising all instances particular to a real athlete, and (b)
the uniformity of calculated clusters, i.e. whether clusters are formed from instances
representing two or more real athletes. The first approach (upper half of Table 9)
evaluates the number of real athletes that were correctly identified, i.e. all instances
corresponding to a real athlete were grouped into the same cluster, and this cluster did
not contain any instances corresponding to a different real athlete. Performance figures
exhibit 0.71 precision and 0.63 recall, as instances corresponding to four real athletes
were split into more than one clusters (although these clusters remained uniform)
and instances corresponding to ten real athletes were grouped together, sharing the
common property of having only two instances per real athlete. Looking at the results
obtained about the instances of the four athletes that were split into (mostly) two
clusters, one can conclude that these instances belong to athletes represented by many
instances (ten or more) and separate clusters were formed by the clustering algorithm



due to variations in the name of the athlete. For example, in the corpus were ten
instances representing the athlete Stefan Holm, six of which were referring to the
athlete as “Holm Stefan” and four of them were using the name “Stefan Holm”.
Despite the fact that instance matching gave a high degree of similarity among all
these instances, the degree of similarity was a little lower between instances that
used different way of representing the athlete’s name, than the similarity between
instances that used exactly the same way of writing the athlete’s name, which guided
the clustering algorithm to separate them into distinct clusters.

Table 9. Results of entity disambiguation

Athletes recognised

Expected Clusters Returned Clusters Correct Clusters Precision Recall F-Measure

38 34 24 0.71 0.63 0.67

Cluster Uniformity

Expected Clusters Returned Clusters Correct Clusters Precision Recall F-Measure

38 34 33 0.97 0.85 0.90

The lower part of Table 9 presents the performance figures if the coherence or uni-
formity of formed clusters is examined, i.e. if evaluation concentrates only on whether
each cluster contains instances representing a single athlete, even if the cluster does
not contain all instances representing a real athlete. These results include the instances
representing the four athletes that were split into more than one cluster, with these
instances being distributed into nine clusters (instances from three athletes were split
into two clusters, while instances from a single athlete were split into three clusters
due to a single instance written using only capital letters). The only cluster that is
not uniform is the one that contains the instances from the ten athletes that were
grouped together. Looking at the results as a whole, most of the failures observed can
be attributed to different degrees of similarities assigned by instance matching due
to variations occurring in how names are expressed, which suggests that results may
improve if better string matching techniques are added to HMatch(I).

8 Related work and original contribution

8.1 Ontology evolution

The recent success of distributed and dynamic infrastructures for knowledge sharing
has raised the need for semiautomatic/automatic ontology evolution strategies. An
overview of some proposed approaches in this direction is presented in [13], even if
limited concrete results have appeared in the literature. In most recent work, formal
and logic-based approaches to ontology evolution are also being proposed. In [14], the
authors provide a formal model for handling the semantics of the change phase embed-
ded in the evolution process of an OWL ontology. The proposed formalization allows



to define and to preserve arbitrary consistency conditions (i.e., structural, logical, and
user-defined consistency conditions).

A six-phase evolution methodology has been implemented within the KAON [15]
infrastructure for business-oriented ontology management. The ontology evolution pro-
cess starts with the capturing phase, that identifies the ontology modifications to apply
either from the explicit business requirements or from the results of a change discovery
activity. In the representation phase, the identified changes are described in a suitable
format according to the specification language of the ontology to modify (e.g., OWL).
The effects of the changes are evaluated in the semantics of change phase, where the
ontology consistency check is also performed. Due to the fact that an ontology can
reuse or extend other ontologies (e.g., through inclusion or mapping), the propaga-
tion phase ensures that any ontology change is propagated to the possible dependent
artifacts in order to preserve the overall consistency. The subsequent implementation
phase has the role to log all the performed changes in order to support the recovery
facilities which are provided to reverse an ontology change in the final validation phase
in case that an undesired effect had occured.

The ontology evolution approach proposed here puts significant effort in main-
taining the consistency of the ontology while, at the same time, trying to identify
and eliminate redundant information. Initial attempts towards redudancy elimination
have been presented in the Artequakt [1] and SOBA [2] systems. Artequakt follows a
heuristic approach, by applying two manually written heuristics in order to identify
and merge instances that refer to the same real object or event, which are applied
after all instances have populated the ontology. SOBA, on the other hand, performs
simple checks during instances creation (i.e. before the instances populate the ontol-
ogy), in order to re-use instances that refer to the same real object or event instead
of creating new ones. BOEMIE tries to enhance the Artequakt proposal through the
use of matching techniques instead of manually developed heuristics.

With respect to the state of the art in the literature on ontology evolution, orig-
inal contributions of the approach presented here can be seen at two different levels,
the whole methodology and the specific activities. The methodology as a whole pro-
poses a new conceptualization of the problem of evolving multimedia ontologies, by
presenting a pattern-driven evolution approach, where the most prominent evolution
pattern for a specific evolution scenario is automatically identified on the basis of
the results of the semantic interpretation activity against the background knowledge.
Moreover, the methodology aims to minimize the human involvement by providing a
set of learning, matching, and reasoning techniques that offer support in the various
evolution activities, to allow the ontology expert to refine proposed working knowledge
and/or to validate/choose among proposed alternative choices. Concerning novel con-
tributions at the level of specific activities, the methodology for ontology population
uses an innovative approach for the detection of instances which refer to the same
real object or event, based on instance matching and non-standard clustering tech-
niques. For ontology enrichment, clustering is used for detecting enough information
to support the introduction of a new concept/relation and this supporting information
is enhanced though information retrieved from external knowledge sources. Thus, the
involvement of the ontology expert is reduced, as the expert is required to revise an al-



ready formed concept/relation rather than having to define this new concept/relation
from scratch. Matching techniques are used in combination with reasoning and cluster-
ing techniques, thus leading to the development of a more flexible and comprehensive
approach to concept/instance matching for evolution, by enforcing both structural
matching and semantic matching. With respect to the state of the art in the field
of knowledge representation and reasoning, the novel contribution of the evolution
methodology regards is the formalization of high-level multimedia interpretation as a
logical decision problem and its implementation as a non-standard inference service,
namely abduction.

8.2 Reasoning for multimedia interpretation

First techniques for finding abductive explanations have been discussed long ago [16,
17]. In [18] Mayer and Pirri present a semantic tableaux for abduction in the context
of first-order logic using ‘reversed skolomization’. However, the first-order methods
are very loose in discarding explanations that are not minimal. But the minimality
in first-order abduction is the main issue. Therefore, a relaxation of the minimality
requirement has been suggested, but until now only the formalization of this problem
is shown.

In [19], Shanahan presents a formal theory of robot perception as a form of abduc-
tion. In this work, low-level sensor data is transformed into a symbolic representation
of the world in first-order logic and abduction is used to derive explanations. In the
context of scene interpretation, recently, Neumann and Möller proposed the use of DLs
for the representation of aggregates that can be used by reasoning services as building
blocks for the scene interpretation process [20].

In [21] a thorough discussion of abductive reasoning tasks in DLs including Abox
abduction is presented. In this work, the authors consider the development of algo-
rithmic techniques based on semantic tableaux for employing abductive inference in
expressive DLs as the most promising approach. However, for the time being, the
question how abductive inference in DLs can be adopted for finding ‘preferred’ inter-
pretations of multimedia documents remains unanswered. In particular, a methodology
for finding and selecting explanations (interpretations) is missing.

The abduction approach presented here is based on the combination of the works
in [22], [19] and [20]. In contrast to approaches such as [23], which use abduction in
the context of rules in logic programming only, this approach combines existing DL
reasoning mechanisms and rules in a coherent framework, i.e., abduction is considered
as a new type of non-standard retrieval inference service, which is integrated into an
existing DL reasoner.

8.3 Matching for multimedia interpretation

The ontology matching techniques used rely both on concept matching and on instance
matching. Matching techniques at the concept/schema level have been studied in the
field of ontology matching. For a complete survey on concept matching, the reader
can refer to [24]. In case of instance matching the challenging issue is not only in the
field of ontologies, but also in the field of data integration: the same problem is also



referred to as Record Linkage in statistics research community, it is known as Entity
resolution, Entity identification or Object fusion in database research community and
is addressed as Merge/Purge Problem or Data Cleaning in commercial terminology. In-
stance matching issues heavily involve aspects related to data quality. According to the
classification given in [25] data quality problems arise both in single and multiple data
sources. Regarding instance matching in single sources, schema-related data quality
problems occur because of the lack of appropriate model-specific or application-specific
integrity constraints (e.g. due to data model limitations or poor schema design) or be-
cause only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems, on the other hand, refer to errors and inconsisten-
cies in the actual data contents which are not visible and which cannot be prevented
at the schema level (e.g., misspellings). Frequently, data contains errors or may have
multiple representations, such as abbreviations, so an exact comparison is not sufficent
for the detection of duplicates in those cases.

When multi-sources are matched and integrated, schema-level issues are related
to the sphere of linguistic and structural analysis. Concepts and roles are generally
featured by significant names that give a self-explanation of the semantic meaning in
terms of natural language. Naming conflicts arise when the same name is used for
different objects (homonyms) or different names are used for the same object (syn-
onyms). On the other hand structural conflicts occur in many variations and refer to
different representations of the same object in different sources, e.g., attribute ver-
sus table representation, different component structure, different data types, different
integrity constraints. Studies related to instance matching have followed many differ-
ent directions, each focusing on a particular issue of the process and aiming to reach
different goals. Some researches focus on attribute values comparison in order to ad-
dress issues related to different value representations and different interpretation of the
values across heterogeneous sources. A solution discussed in [26] exploits an external
ontology for representing conversion rules between values related to specific domains
(e.g. currency change) while in [27] a statistics-based system is proposed for the the
specific domain of financial data that estimates conversion functions using regression
analysis and creates data value conversion rules. Data entry errors or misspellings are
effectively detected with the use of string matching [28, 29], eventually with the help of
domain specific rules. Duplicate detection is generally carried out by means of cluster-
ing algorithms ([30–32]) which differ mainly for the grouping criteria adopted. Other
solutions take in account connections and dependencies between different instances
or attributes ([33, 34]), by exploiting structural properties or contextual information
derived from the schema.

When applied to ontologies, such techniques require the help of a reasoning service
to obtain all individuals valid instances of a given concept. Roles establish connections
and dependencies between instances in a more structured way than in databases and
there is the lack of a predefined set of key attributes. These considerations introduce
new information and constraints on the instance matching process when dealing with
ontologies, and some initial research is appearing also in this field. A work concerning
instance matching on ontology sources is proposed [35]. It is based on two measures:
concept distance, that is the length of the path between two concepts according to



the computed concept hierarchical tree, and context similarity, which is computed by
reasoning on the inverse properties and checking the cardinalities on them. A more
focused application of instance matching is represented by Instance-Based Schema
Matching ([36], [37]), a particular category of schema matching methods which can
replace or complement other schema matching approaches. These approaches compare
two entities on the basis of the affinity degree evaluated between all their instances:
the more instances are similar, the more similar the two entities are considered. Some
solutions are studied to determine the nature of attributes by testing if all existing
values satisfy some predefined constraints or exhibit same features, according to a
given datatype category.

Instance matching has the goal of comparing individuals described in different
Aboxes defined with respect to the same Tbox, while concept matching has the goal
of aligning different and independent ontologies with heterogeneous Tboxes. In par-
ticular, in instance matching we address misspellings, especially for names of concepts
(e.g., athletes, events), and redundancy, duplicates, and contradictory values with the
goal of identifying instances which describe the same real object or event.

9 Conclusions

In this article, we have presented and analysed a methodology for multimedia ontology
evolution. In particular, we have discussed the role of reasoning and matching tech-
niques for semantic interpretation of multimedia resources and for the coordinated and
consistent evolution of the ontology. We have described how new resource interpreta-
tions can be correctly framed in the ontology and how new concepts can be defined
to increase the background knowledge of the system by means of the population or
enrichment activities, respectively. The evaluation demonstates the feasibility of the
approach.

Further investigation are in progress on the enrichment activity, in order to study
a combination of matching, clustering, and reasoning techniques to address the goal
of providing a full support of the domain expert in the definition of new concepts. In
future work, also the interpretation rules should be learned from multimedia interpre-
tation, such that it can be evaluated whether the methodology also provides for better
media interpretation.

The implementation of an ontology evolution toolkit is in progress as well, with the
aim of providing an interactive environment where all the proposed techniques will be
integrated into a coherent whole according to an open architecture in order to provide
a new content management system for multimedia resources, improved by automatic
classification, acquisition, and maintenance functionalities, together with a ontology
management tool with editing, reasoning, and evolution functionalities.
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11. Haarslev, V., Möller, R., Wessel, M.: RacerPro User’s Guide and Reference Manual
Version 1.9.1 (2007)

12. Castano, S., Ferrara, A., Messa, G.: ISLab HMatch Results for OAEI 2006. In: Proc. of
ISWC Int. Workshop on Ontology Matching, Athens, Georgia, USA (2006)

13. Ding, Y., Foo, S.: Ontology research and development. part 2 - a review of ontology
mapping and evolving. Journal of Information Science 28 (2002) 375–388

14. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In Gómez-Pérez, A.,
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