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Abstract. Text interpretation can be considered as the process of ex-
tracting deep-level semantics from unstructured text documents. Deep-
level semantics represent abstract index structures that enhance the pre-
cision and recall of information retrieval tasks. In this work we discuss the
use of ontologies as valuable assets to support the extraction of deep-level
semantics in the context of a generic architecture for text interpretation.

1 Introduction

The growing amount of unstructured electronic documents is a problem found
in proprietary as well as in public repositories. In this context, the web is a
representative example where the need of logic-based information retrieval (IR)
to enhance precision and recall is evident. Logic-based IR means the retrieval
of unstructured documents with the use of abstract terms that are not directly
readable from the surface of the text, but only between its lines. For example,
Chocolate Cake Recipe is an abstract term for the following text:

Yield: 10 Servings, 5 oz. semisweet chocolate (chopped), 3 oz. unsweet-
ened chocolate (chopped), 1/4 lb. (8 Tbs.) unsalted butter, 1/4 cup all-
purpose flour, 4 eggs at room temperature, .....

Relational index structures are crucial for IR. Therefore, the task of defin-
ing the necessary index structures for abstract terms to allow logic-based IR is
unavoidable. In our work, the necessary structures for logic-based IR are called
deep-level semantics and the process of extracting deep-level semantics from un-
structured text documents is understood as text interpretation. In the course of
the work presented here, we will highlight that a feasible architecture (see Figure
1) to enable the automatic extraction of deep-level semantics from large-scale
corpora can be achieved through:
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‘13 August 2002 - Helsinki. Russia’s newly crowned European champion
Jaroslav Rybakov won the high jump with 2.29 m. Oskari Fronensis from

Finland cleared 2.26 and won silver.’
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Fig. 1. Ontology based text interpretation through the use of shallow text processing
(STP) results as input for deep-level interpretation (DLI).

– A two phase process of information extraction (IE), where the first phase ex-
ploits state-of-the-art shallow text processing mechanisms to extract surface-
level structures as input for the second phase. The second phase called deep-
level interpretation, exploits reasoning techniques over ontologies to extract
deep-level semantics.

– The use of reasoning services, with abduction [1] as the key reasoning service
for text interpretation.

– The use of ontologies, which provide the necessary index structures to repre-
sent surface-level, as well as deep-level semantics and to support logic-based
IR.

– The use of ontologies as valuable and scalable assets, due to the use of
Description Logics (DLs) [2] as their formal basis to support well studied
reasoning tasks.

– The use of results from shallow text processing techniques, to extract surface-
level semantics, are good enough to extract deep-level semantics and saves
overhead to cope with large-scale corpora.

The previous hypotheses are the result of our work on the implementation and
evaluation of a generic architecture for multimedia interpretation, which is de-
scribed and evaluated here in the context of text interpretation. The approach
followed for the design of this generic architecture is based on the combina-
tion of the works in [3], [4] and [5]. Different from [3] that employs processes



for syntactic parsing, we argue that the results of shallow processing are good
enough as input for reasoning techniques to extract deep-level semantics and
to be able to deal with large-scale corpora. The evaluation results presented in
this work confirm this hypothesis. In contrast to our work, in which we use DLs
as knowledge representation formalism, [3] and [4] use first-order logics which
have more expressive capabilities, but lack of automatic mechanism to prove
for coherence. This is an important characteristic of DLs, therefore making this
generic architecture a scalable one.

This work will focus on the most relevant part of the generic architecture,
namely on the second phase of extraction where we show how the extraction of
deep-level structures through abductive reasoning is useful for text interpreta-
tion. Section 2 introduces preliminaries for abduction as a core reasoning service
for deep-level interpretation and presents its formalization in the context of DLs.
Section 3 provides a real-world example to illustrate the interpretation process.
Section 4 provides an empirical evaluation of the interpretation results generated
by the architecture over a collection of web pages. Finally we conclude our work
in Section 5

2 Abduction

Abduction is usually defined as a form of reasoning from effects to causes and
aims at finding explanations (causes) for observations (effects). In this work
text interpretation can be achieved through reasoning, more specifically through
abduction. In general, abduction is formalized as

Σ ∪∆ |= Γ (1)

where background knowledge (Σ), and observations (Γ ) are given and explana-
tions (∆) are to be computed.

DLs are a family of formal knowledge representation languages that support
decidable reasoning problems [2]. If DLs are used as the underlying knowledge
representation formalism, the background knowledgeΣ is a knowledge base (KB)
that consists of a Tbox T and an Abox A: Σ = (T ,A). In DL formalisms a KB
consists of a Tbox that contains intentional knowledge in the form of a terminol-
ogy and an Abox that contains the extensional (or assertional) knowledge that
is specific to the individuals of the domain of discourse. Furthermore, ∆ and Γ
in Formula 1 are Aboxes and, therefore, they contain sets of role and concept
instance assertions.

This work considers Abox abduction in DLs as the key inference service for
text interpretation and the previous equation is modified to:

Σ ∪ Γ1 ∪∆ |= Γ2 (2)

by splitting the assertions in Γ into two parts: bona fide assertions (Γ1) and
assertions requiring fiats (Γ2). Bona fide assertions are assumed to be true by
default, whereas fiat assertions are aimed to be explained.



In order to compute explanations, we use the implementation of Abox ab-
duction as a non-standard retrieval inference service in DLs. Different from the
standard retrieval inference services, answers to a given query cannot be found
by simply exploiting the knowledge base. In fact, the abductive retrieval infer-
ence service has the task of acquiring what should be added to the knowledge
base in order to positively answer a query.

To answer a given query, the abductive retrieval inference service can exploit
non-recursive DL-safe rules with autoepistemic semantics [6] in a backward-
chaining way. In this approach, rules are part of the knowledge base and are
used to extend the expressivity of DLs. In order to extend expressivity and
preserve decidability at the same time, the safety restriction is introduced for
rules. Informally speaking, rules are DL-safe if they are only applied to Abox
individuals, i.e., individuals explicitly named in the Abox [7]. In [8] a detailed
discussion of the abductive retrieval inference service in DLs is presented.

The output of the abductive retrieval inference service should be a set ∆s,
which contains all explanations that are consistent w.r.t. Σ and Γ . However,
in practice, one is not interested in retrieving every consistent explanation,
but the most preferred explanation for every query. To achieve this goal, ∆s
is transformed into a poset according to a preference score. The preference score
should reflect the two criteria proposed by Thagard for selecting explanations
[9], namely simplicity and consilience. The less hypothesized assertions an ex-
planation contains (simplicity) and the more fiat assertions (observations) an
explanation involves (consilience), the higher its preference score should get.
Therefore, the following formula to compute the preference score of each expla-
nation is used: S(∆) := Sf (∆)−Sh(∆). In this formula Sf is a term that reflects
the involvement of fiat assertions in the explanation and Sh is a term that re-
flects the involvement of hypothesized assertions in the explanation. Thus, Sf

and Sh can be defined as follows:

Sf (∆) := |{i|i ∈ assertions(∆) and i ∈ assertions(Γ1)}|
Sh(∆) := |{i|i ∈ newAssertions(∆)}|

The function assertions returns the set of all concept or role assertions found
in a given Abox. The set newAssertions contains all concept or role assertions
that are hypothesized during the generation of an explanation (hypothesized
assertions).

3 An Example For Text Interpretation

In the context of a DL-based text interpretation architecture (like the one pre-
sented here) the results of shallow text processing can be represented as Aboxes.
In order to extract deep-level semantics an Abox (hereafter called analysis Abox)
is required as input. The input contains surface-level descriptions (see Figure 1)
as results of shallow text processing. The interpretation process produces an-
other Abox as output (interpretation Abox), which contains also deep-level be-
sides surface-level semantic descriptions. The analysis Abox corresponds to Γ in



the abduction formula (see Formula 1 in Section 2). The interpretation Abox is
computed in an iterative process, and at the end of this process it contains the
most preferred interpretation(s) of the text. The process starts with splitting
Γ into bona fide (Γ1) and fiat assertions (Γ2). Afterwards, the interpretation
process proceeds with the following tasks in each iteration:

First, each fiat assertion in Γ2 is transformed into a corresponding query and
sent to the abductive retrieval inference service. The abductive retrieval inference
service returns the most preferred interpretation to answer this query. Second,
the explanation is added to Γ1. Furthermore, the fiat assertion which has been
used to constitute the query is removed from Γ2 and added to Γ1. Third, Γ1 is
checked to find out whether new information can be inferred through deduction.
If such information can be found it is added to Γ1 as well.

At the end of each iteration, the interpretation process analyzes Γ1 to identify
new fiat assertions and starts a new iteration. In particular, assertions that
are added during the previous iteration step are identified as fiat assertions for
the new iteration. If no new fiat assertions can be identified, the interpretation
process returns Γ1 as the interpretation Abox and terminates.

In the following we present a step by step interpretation of a text to discuss
the details of the interpretation process. Figure 2 shows a text excerpt from a
web page with athletics news. The underlined words in Figure 2 are keywords
of this text, which have to be detected by shallow text processing. The results
of the first phase in the architecture for the text in Figure 2 are represented in
an Abox (analysis Abox), which is shown in Figure 3.

‘13 August 2002 - Helsinki. Russia’s newly crowned European champion
Jaroslav Rybakov won the high jump with 2.29 m. Oskari Fronensis from Finland

cleared 2.26 and won silver.’

Fig. 2. Sample text paragraph with underlined tokens from shallow text processing.

To continue with the interpretation example, it is assumed that the ontology
contains the axioms shown in Figure 4. In order to capture constraints among
parts of aggregates, it is assumed that the ontology is extended with DL-safe
rules (rules that are applied to Abox individuals only). In Figure 5 a set of rules
for the athletics example is specified. Note that these rules define additional
constraints on the concepts described in the ontology and, therefore, represent
additional knowledge.

We assume that rules such as those shown in Figure 5 and the Tbox in
Figure 4 constitute the background knowledge Σ. For the sake of brevity the
Tbox and the set of rules show only a small excerpt of the athletics ontology,
which is relevant for the text interpretation example discussed here.

To construct an interpretation for a text, explanations are searched to reveal
why some words are related with some other words. Such explanations are then
used to construct interpretation(s). Abox abduction (as presented in Section 2)



date1 : Date
(date1, ‘13 August 2002’) : hasV alue

country1 : Country
(country1, ‘Russia’) : hasV alue

hjName1 : HighJumpName
(hjName1, ‘high jump’) : hasV alue

perf2 : Performance
(perf2, ‘2.26’) : hasV alue

country2 : Country
(country2, ‘Finland’) : hasV alue

(hjName1, date1) : sportsNameToDate
(hjName1, city1) : sportsNameToCity

(pName1, country1) : personNameToCountry
(pName2, country2) : personNameToCountry

city1 : City
(city1, ‘Helsinki’) : hasV alue

pName1 : PersonName
(pName1, ‘Jaroslav Rybakov’) : hasV alue

perf1 : Performance
(perf1, ‘2.29’) : hasV alue

pName2 : PersonName
(pName2, ‘Oskari Fronensis’) : hasV alue

rank1 : Ranking
(rank1, ‘silver′) : hasV alue

(pName1, perf1) : personNameToPerformance
(pName2, perf2) : personNameToPerformance

(hjName1, perf1) : sportsNameToPerformance

Fig. 3. Abox representing the results of shallow text processing.

is exploited to generate explanations and, therefore, constitutes the foundation
of text interpretation in this architecture.

To start with the interpretation of the text paragraph in Figure 2, the shallow
processing results for this text paragraph, namely the Abox in Figure 3, are
considered as Γ . The following Formula 2 Γ is divided into a part Γ2 that the
agent would like to have explained (fiat assertions), and a part Γ1 that the
interpretation agent takes for granted (bona fide assertions). In this example Γ2

is:

(hjName1, date1) : sportsNameToDate,
(pName1, perf1) : personNameToPerformance,
(hjName1, city1) : sportsNameToCity,
(pName2, perf2) : personNameToPerformance,
(pName1, country1) : personNameToCountry,
(hjName1, perf1) : sportsNameToPerformance,
(pName2, country2) : personNameToCountry.



Person v ∃hasName.PersonName
u∃hasNationality.Country

Athlete v Person
HighJumper v Athlete
PoleV aulter v Athlete

HighJumpName v SportsName u ¬PoleV aultName
PoleV aultName v SportsName

SportsTrial v ∃hasParticipant.Athlete
u∃hasPerformance.Performance
u∃hasRanking.Ranking

HighJump v SportsTrial u ∀hasParticipant.HighJumper
u¬PoleV ault

PoleV ault v SportsTrial u ∀hasParticipant.PoleV aulter
SportsRound v ∃hasName.RoundName u ∃hasDate.Date

u∃hasPart.SportsTrial
HighJumpRound v SportsRound u ∀hasPart.HighJump

u¬PoleV aultRound
PoleV aultRound v SportsRound u ∀hasPart.PoleV ault

SportsCompetition v ∃hasPart.SportsRound
u∃hasName.SportsName
u∃takesP lace.City

HighJumpCompetition v SportsCompetition
u∀hasPart.HighJumpRound
u∀hasName.HighJumpName
u¬PoleV aultCompetition

PoleV aultCompetition v SportsCompetition
u∀hasPart.PoleV aultRound
u∀hasName.PoleV aultName

Fig. 4. A tiny example TBox Σ for the athletics domain.

In the first step, these assertions are transformed into corresponding queries
and the abductive retrieval inference service is asked for explanations. For ex-
ample, from the role assertion (hjName1, date1) : sportsNameToDate the
following query is derived:

Q := {() | sportsNameToDate(hjName1, date1)}

The abductive retrieval inference service has the task of computing what
should be added to the KB in order to answer this query with true. In the given
set of rules (see Figure 5), there are two rules that have the atom
sportsNameToDate in the rule head (consequences). Both rules are applied in
a backwardchaining way (i.e., from left to right) and corresponding terms are
unified and variable bindings are obtained for X and Y. The unbound variable Z
is instantiated with a new individual (e.g., new ind1). Note that for one of these
rules, namely for the one that hypothesizes a pole vault competition, all bindings
that are found for Y produce explanations that are inconsistent w.r.t. Σ. This is
caused by the disjointness expressed in some of the concept description axioms in



personNameToCountry (X,Y ) ← Person(Z),
hasPersonName(Z,X),
P ersonName(X),
hasNationality(Z, Y ), Country(Y ).

personToPerformance (X,Y ) ← Person(X),
hasPersonName(X,Z),
P ersonName(Z),
personNameToPerformance(Z, Y ).

personToPerformance (X,Y ) ← SportsTrial(Z),
hasParticipant(Z,X), Athlete(X),
hasPerformance(Z, Y ),
P erformance(Y ).

sportsNameToCity (X,Y ) ← HighJumpCompetition(Z),
hasSportsName(Z,X),
HighJumpName(X),
takesP lace(Z, Y ), City(Y ).

sportsNameToCity (X,Y ) ← PoleV aultCompetition(Z),
hasSportsName(Z,X),
PoleV aultName(X),
takesP lace(Z, Y ), City(Y ).

sportsNameToDate (X,Y ) ← HighJumpCompetition(Z),
hasSportsName(Z,X),
HighJumpName(X),
hasDate(Z, Y ), Date(Y ).

sportsNameToDate (X,Y ) ← PoleV aultCompetition(Z),
hasSportsName(Z,X),
PoleV aultName(X),
hasDate(Z, Y ), Date(Y ).

sportsCompetitionToPerformance (X,Y ) ← SportsCompetition(X),
hasSportsName(X,Z),
SportsName(Z),
sportsNameToPerformance(Z, Y ).

sportsCompetitionToPerformance (X,Y ) ← HighJumpCompetition(X),
hasPart(X,Z),
HighJumpRound(Z),
hasPart(Z,W ), HighJump(W )
hasPerformance(W,Y ).

sportsCompetitionToPerformance (X,Y ) ← PoleV aultCompetition(X),
hasPart(X,Z),
PoleV aultRound(Z),
hasPart(Z,W ), PoleV ault(W )
hasPerformance(W,Y ).

Fig. 5. Additional restrictions for text interpretation in the form of rules.

the TBox (e.g., the concepts HighJumpName and PoleVaultName are disjoint).
The abductive retrieval service discards inconsistent explanations. Therefore, the
explanation generated in order to answer Q with true is:



∆1 = {new ind1 : HighJumpCompetition, (new ind1, date1) : hasDate,
(new ind1, hjName1) : hasSportsName}

The assertions shown in ∆1 are added to Γ1. Furthermore the assertion
(hjName1, date1) : sportsNameToDate is removed from Γ2 and added to Γ1.
This procedure is applied to the remaining assertions in Γ2 until Γ2 is empty. At
the end of the first interpretation step, Γ1 contains (beside the assertions shown
in Figure 3) the following newly created assertions:

new ind1 : HighJumpCompetition, (new ind1, hjName1) : hasSportsName,
(new ind1, date1) : hasDate, (new ind1, city1) : takeP lace, new ind2 : Person,
(new ind2, pName1) : hasPersonName, (new ind2, country1) : hasNationality,
new ind3 : Person, (new ind3, pName2) : hasPersonName,
(new ind3, country2) : hasNationality

Note that the preference score presented in Section 2 guarantees that ex-
planations that involve less hypothesized individuals and more observations are
preferred. This is why Γ1 contains a single HighJumpCompetition instance at
the end of the first interpretation step.

In the second step, the interpretation process applies the set of rules in a
forward chaining way (from right to left) to check whether new information can
be deduced. This yields the following assertions:

(new ind2, perf1) : personToPerformance,
(new ind3, perf2) : personToPerformance,
(new ind1, perf1) : sportsCompetitionToPerformance

which are also added to Γ1. At this state, the interpretation process defines a
new Γ2 by selecting all newly inferred assertions as fiat assertions and starts a
new iteration. The first interpretation step is applied to the assertions in the
new Γ2. At the end of this step, the following newly created assertions are added
to Γ1:

new ind4 : HighJumpRound, (new ind1, new ind4) : hasPart,
new ind5 : HighJump, (new ind4, new ind5) : hasPart,
(new ind5, perf1) : hasPerformance, (new ind5, new ind2) : hasParticipant,
new ind6 : SportsTrial, (new ind6, new ind3) : hasParticipant,
(new ind6, perf2) : hasPerformance

In the second step of the second iteration no new information can be deduced
by applying the set of rules in a forward chaining way. Therefore, the interpreta-
tion process terminates by returning the current Γ1 as the interpretation Abox.
Besides the assertions in Figure 3, the interpretation Abox contains also the
following newly inferred assertions:

new ind1 : HighJumpCompetition, new ind2 : Person, new ind3 : Person,
new ind4 : HighJumpRound, new ind5 : HighJump, new ind6 : SportsTrial,
(new ind1, hjName1) : hasSportsName, (new ind1, date1) : hasDate,
(new ind1, city1) : takeP lace, (new ind1, new ind4) : hasPart,



(new ind4, new ind5) : hasPart, (new ind5, perf1) : hasPerformance,
(new ind5, new ind2) : hasParticipant,
(new ind6, new ind3) : hasParticipant, (new ind6, perf2) : hasPerformance
(new ind2, pName1) : hasPersonName, (new ind2, country1) : hasNationality,
(new ind3, pName2) : hasPersonName, (new ind3, country2) : hasNationality

Note that in the interpretation Abox the person instance new ind2 partici-
pates in a high jump trial (new ind5) and, therefore, is also an instance of the
concept HighJumper (see the Tbox in Figure 4). Thus, information about ab-
stract events, e.g. high jump trials, also influences information that is available
about the related parts. With queries for HighJumpers the corresponding text
would not have been found otherwise. Thus, recognizing abstract events means
extracting deep-level semantics that without reasoning is not possible to obtain
from the surface of the text.

4 Evaluation

In this section, the utility of the architecture is analyzed through an empirical
evaluation of its results over a collection of web pages. For this purpose, the text
interpretation architecture described in Section 1 was implemented. The core
component of this implementation is the DL-reasoner RacerPro in version 1-9-2
[10] that supports various inference services. The abductive retrieval inference
service, which is the key inference service for text interpretation, is integrated
into the DL-reasoner. The architecture gets analysis Aboxes, exploits various
inference services, and returns preferred interpretation Aboxes as deep-level se-
mantic descriptions.

To test the implementation, an ontology about the athletics domain was
used, and two different corpora of web pages containing daily news about athlet-
ics events. Furthermore, extractors that implement shallow text processing and
machine learning techniques were trained in order to obtain concept instances
as well as relations between the instances (see Figure 3). The training process
was performed with the help of an annotation tool over the first corpus of web
pages. The annotation process is two-fold, in the first step annotators manually
associate words in the text, with corresponding concepts in the ontology. For this
purpose, concepts such as the following have been annotated, i.e. PersonName,
Country, City, Age, Gender, Performance, Ranking, SportsName, RoundName,
Date and EventName. Second, the annotated concepts are filled into relational
tables corresponding to Athletes, SportTrials, Rounds and Events, in order to
train the extractors for the extraction of relations between concept instances.
After finalizing the training process, the second corpus has been analyzed au-
tomatically to detect concept instances and relations between them, such that
for each web page in the second corpus an analysis Abox with corresponding
assertions has been generated without manual annotation effort.

As discussed in Section 3, given a set of fiat assertions (relations between
concept instances), the interpretation process aims to extract deep-level seman-
tic descriptions in the form of Abox structures. Therefore the criteria used for



the evaluation is to prove that for every fiat assertion, the expected deep-level
descriptions are generated. To set up the evaluation, a set of boolean queries is
defined, such that for each fiat assertion a corresponding query is found in the set
and is executed. If the query is answered with true, then the expected deep-level
structures for the corresponding fiat assertions were correctly extracted. For ex-
ample, given the fiat assertion (pName1, country1) : personNameToCountry it is
expected that index structures (deep-level) for a person with pName1 as name
and country1 as nationality exists, therefore the following query is defined:

Q1 := {() | Person(?x), hasPersonName(?x, pName1),
hasNationality(?x, country1)}

For this evaluation a total of 85 web pages about athletics news were an-
alyzed through shallow text processing. The results of shallow text processing
was automatically analized to count the number of observations. According to
the type of observation a set o queries was produced and executed in order to
probe for the extraction of deep-level structures against the number of expected
ones. The results of this evaluation can be observed in Figure 6.

Deep-level structures Expected Extracted

Person 48 48
SportsRound 10 10
Competition 99 99
SportEvent 189 189
SportsTrial with participant 326 326

Fig. 6. Results of deep-level interpretation.

In this way the evaluation results, pointed out that all expected abstract
concepts (explanations) and their relations were extracted as long as shallow
text processing could deliver relations between surface-level instances and the
neccesary rules for interpretation (abducibles) exist.

5 Conclusion

As observed in Section 3, ontologies are useful means to provide index structures
in order to represent deep-level semantics. Furthermore, deep-level semantics is
represented as relational structures representing the contents of the text, which
can not be directly extracted from its surface (readable part of the text). The
empirical evaluation of this work indicates that good ontology design is cru-
cial for the architecture to extract the expected deep-level semantic structures.
Thus, ontology designers should invest in producing a coherent ontology and a
set of rules that define the space of abduceable predicates (explanations). While
most of the work should be invested in the correct design of the ontology, in
the long term, it means a good return of investment due to the support for



ontology concistency check provided by existing well studied reasoning mecha-
nisms. We believe that in the near future well designed ontologies will become a
highly valuable asset to enhance the precision and recall of information retrieval.
Furthermore, the use of ontologies provides a generic architecture to interpret
different types of text. Ontologies can be tailored towards any domain of in-
terest, depending on the targeted text documents. The results of shallow text
processing techniques are good enough to extract deep-level semantics for deal-
ing with large-scale corpora, however it is not discarded that results from other
linguistic techniques, i.e. syntactic analysis, can improve the results of deep-level
interpretation. Finally, as it can be observed in Figure 1, only the first phase
of extraction is media (in this case text) dependent, while the second phase is
media independent, therefore applicable for the interpretation of other types of
multimedia, e.g. for images promising results were presented in [11].
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8. Espinosa, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia Interpre-
tation as Abduction. In: Proc. DL-2007: International Workshop on Description
Logics. (2007)

9. Thagard, R.P.: The best explanation: Criteria for theory choice. The Journal of
Philosophy (1978)
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