
A Hybrid Tableau Algorithm for ALCQ
Jocelyne Faddoul1 and Nasim Farsinia1 and Volker Haarslev1 and Ralf Möller2

Abstract. We propose an approach for extending a tableau-based
satisfiability algorithm by an arithmetic component. The result is
a hybrid concept satisfiability algorithm for the Description Logic
(DL)ALCQwhich extendsALC with qualified number restrictions.
The hybrid approach ensures a more informed calculus which, on the
one hand, adequately handles the interaction between numerical and
logical restrictions of descriptions, and on the other hand, when ap-
plied is a very promising framework for average case optimizations.

1 Introduction

Using the DLALCQ one can express numerical restrictions on con-
cepts with (∃R.C), (≥ nR.C), and (≤ mR.C) as well as logical
ones, or both.3 Such expressiveness means that a satisfiability algo-
rithm for ALCQ not only needs to satisfy logical restrictions, but
also numerical ones.

Our calculus, strongly inspired by [3, 4, 5], consists of a standard
tableau forALC [1] modified and extended to work with a constraint
solver such as a linear inequation solver. The tableau rules encode
numerical restrictions into a set of inequations using the atomic de-
composition technique [5]. The set of inequations is processed by an
inequation solver which finds a minimal integer solution (distribution
of role fillers) satisfying the numerical restrictions, if one exists. The
tableau rules then take care of making sure that such distribution of
role fillers also satisfies the logical restrictions. Considering a min-
imal distribution of fillers ensures that a corresponding model is of
minimum size. This hybrid algorithm fills the gaps between tableau
algorithms [1] which do not adequately handle numerical reasoning,
and the arithmetic reasoning for description logic in [5] where no cal-
culus was proposed and all the input is reduced to equation solving.
In contrast with [3] which proposes a recursive algorithm, this hy-
brid algorithm has the potential to be easily extended to handle more
expressive languages.

Since this hybrid algorithm collects all the information about arith-
metic expressions before creating any role filler, it will not satisfy an
at-least restriction by violating an at-most restriction and there is no
need for a mechanism of merging role fillers. Moreover, it reasons
about numerical restrictions by means of an inequation solver, thus
its performance is not affected by the values of numbers in quali-
fied number restrictions. Considering all these features the proposed
hybrid algorithm is well suited to improve average case performance.

1 Concordia University, Montreal, Canada, e-mail: {j faddou, n farsin,
haarslev}@encs.concordia.ca

2 Hamburg University of Technology, Hamburg, Germany, e-mail:
r.f.moeller@tuhh.de

3 A universal restriction could be considered as both numerical and logical
restriction (∀R.C ≡≤ 0R.(¬C)).

2 Arithmetic and Logical Expressions

Given an ALCQ concept expression with C,D concepts and R a
role name, we distinguish between arithmetic and logical expres-
sions. Expressions of the form (∃R.C), (≥ nR.C), and (≤ mR.C)
hold arithmetic restrictions; they specify a lower (upper) bound on
the cardinality of the set of R-fillers. Expressions of the form (CuD),
(C tD), and ¬C hold logical restrictions using logical operators on
concepts. We refer to these expressions as logical expressions.

In the following, we assume all ALCQ concept expressions to be
in their negation normal form (NNF). We use ¬̇C to denote the NNF
of ¬C. We also define clos(C) to be the smallest set of concepts
such that: (a) C ∈ clos(C), (b) if D ∈ clos(C) then ¬̇D ∈ clos(C),
(c) if (E u D) or (E t D) ∈ clos(C) then E,D ∈ clos(C), and (d)
if (≥ nR.E) or (≤ mR.E) ∈ clos(C) then E ∈ clos(C). The size
of clos(C) is bounded by the size of C. In addition FIL(R, s) is
the set of R-fillers of an individual s ∈ ∆I for some role R ∈ NR

and is defined as: FIL(R,s) = {t ∈ ∆I | 〈s, t〉 ∈ RI}. The set of all
R-fillers for R is then defined as FIL(R) =

S
s∈∆I FIL(R, s).

Re-writing ALCQ Arithmetic Expressions: We define a con-
cept operator (∀(R\S).D) and a role implication operator (R v S)
needed to preprocess the input descriptions before applying the cal-
culus. These operators are based on set semantics such that given an
interpretation I, then (∀(R\S).D)I = {s ∈ ∆I | 〈s, t〉 ∈ RI and
〈s, t〉 /∈ SI ⇒ t ∈ DI} is satisfied and (RI ⊆ SI) is satisfied
for each role implication R v S ∈ ϕr, where ϕr is a set of role
implications.

Given an ALCQ concept E and an empty set ϕr, we recursively
re-write the arithmetic expressions in E such that:

- Each ≥nR.C is replaced with ≥nR′ u ∀R′.C, with R′ new in
NR and R′ v R new in ϕr

- Each≤mR.D is replaced with≤mR′ u ∀R′.C u ∀(R\R′).¬D,
with R′ new in NR and R′ v R new in ϕr

Satisfiability of Arithmetic Expressions w.r.t ϕr Using Linear
Inequation Solving: The atomic decomposition technique was used
in [4] to reduce reasoning about cardinalities of role fillers to inequa-
tion solving. We use the same technique to decide the satisfiability
of arithmetic expressions w.r.t ϕr. For each role R ∈ NR that is
involved in an arithmetic expression the introduced sub-role R′ en-
ables some hierarchy of roles. We defineH(R) = {R}∪{R′ | (R′ v
R) ∈ ϕr} as the role hierarchy of R.

For every role R′ ∈ H(R), the set of R′-fillers forms a subset of
the set of R-fillers (FIL(R′) ⊆ FIL(R)). Using the atomic decom-
position of H(R) we can define all possible intersections between
R-fillers as disjoint partitions. Each L ⊆ H(R) is associated with a
unique partition P (L) =

T
R′∈L FIL(R′). Furthermore, P is the set

of partitions defined for the decompositions of all hierarchies in ϕr:



P =
S

R∈NR

0@ {L |L ⊆ H(R)} \
{L |L ⊆ H(R), ∃R′ ∈ L,R /∈ L and

R′ v R ∈ ϕr}

1A
We do not consider L such that R′ ∈ L, R /∈ L for some (R′ v

R) ∈ ϕr since the corresponding partition P (L) does not satisfy
FIL(R′) ⊆ FIL(R) and therefore must be empty.

We assign a variable name v for each partition P (L) such that v
is mapped to a non-negative integer value n which denotes the cardi-
nality of P (L). Let V be the set of all variable names, we maintain a
mapping between variable names and their corresponding partitions
using a function α: V → P such that for some non-negative integer
n assigned to a variable v we have n = #P (α(v)).

Since the partitions are mutually disjoint and the cardinality func-
tion is additive, a lower (upper) bound n (m) on the cardinality of
the set of role fillers FIL(S) for some role S ∈ H(R) can be re-
duced to an inequation of the form

P
v∈VS

v ≥ n (
P

v∈VS
v ≤ m).

VS denotes the set of variable names mapped to partitions for a role
S and is defined as VS = {v ∈ V |S ∈ α(v)}. Thus, we can
easily convert an expression of the form (≥ nS) or (≤ mS) into
an inequation using ξ such that ξ(S,≥, n) =

P
v∈VS

v ≥ n, and
ξ(S,≤,m) =

P
v∈VS

v ≤ m. Each variable v occurring in an in-
equation can be mapped to a non-negative integer p such that assum-
ing α(v) = {R′, R′′}, this means that #(FIL(R′)∩FIL(R′′)) = p
and the corresponding partition P (α(v)) must have p fillers.

3 A Hybrid Tableau Algorithm for ALCQ
In general, logical and arithmetic expressions in ϕ share symbols,
therefore, their satisfiability cannot be decided independently. Fur-
thermore, disjunctions in ϕ need to be treated case by case. For this
purpose we propose a tableau-based hybrid algorithm which decides
the existence of a tableau for an ALCQ concept expression ϕ.

A completion graph is a directed graphG = (V,E,L,LE) where
each node x ∈ V is labeled with L and LE such that L(x) denotes
a set of concept expressions, L(x) ⊆ clos(ϕ), and LE(x) denotes
a set of inequations. Each edge 〈x, y〉 ∈ E is labeled with a set,
L(〈x, y〉) ⊆ P , of role names.

We denote by ξx the set of inequations in LE(x) obtained by con-
verting the at-least and at-most restrictions in L(x). An integer solu-
tion σ for ξx maps each variable v occurring in ξx to a non-negative
integer p such that σ is a distribution of role fillers of x. The distri-
bution is consistent with the lower and upper bounds expressed in
arithmetic restrictions and the hierarchy in ϕr.

A node x in V is said to contain a clash if either (i) {C, ¬̇C} ⊆
L(x), or (ii) the set of inequations ξx ⊆ LE(x) does not admit a
non-negative integer solution. Case (ii) is decided by the inequation
solver. When no rules are applicable or there is a clash, a completion
graph is said to be complete.

To decide the satisfiability of a concept expression ϕ, the algo-
rithm starts with the completion graph G = ({x}, ∅ ,{ϕ}, ∅). G is
then expanded by applying the expansion rules given in Fig. 1 until
no more rules are applicable or a clash occurs. When G is complete
and there is no clash, this means that the arithmetic expressions are
satisfied as well as the logical ones: we have a pre-model and the
algorithm returns that ϕ is satisfiable.

Explaining the Rules: We assign the fil-Rule the lowest priority;
All other rules can be fired in arbitrary order. The≤-Rule and the≥-
Rule are responsible for encoding the arithmetic expressions in the
label L(x) of a node x into a set (ξx) of inequations maintained in
LE(x). An inequation solver is always active and is responsible for
finding a non-negative integer solution σ for ξx or triggering a clash

u-Rule If C uD ∈ L(x), and {C,D} * L(x)
then set L(x) = L(x) ∪ {C,D}

t-Rule If C tD ∈ L(x), and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} or

set L(x) = L(x) ∪ {D}
∀-Rule If ∀R.C∈L(x) andR∈L(〈x, y〉) withC /∈L(y)

then set L(y) = L(y) ∪ {C}
∀(\)-Rule If ∀(R\S).C ∈ L(x), and there exists y such that

R ∈ L(〈x, y〉) and S /∈ L(〈x, y〉)
then set L(y) = L(y) ∪ {C}

≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}

ch-Rule If there exists v occurring in LE(x) with
{v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

then set LE(x) = LE(x) ∪ {v ≥ 1} or
set LE(x) = LE(x) ∪ {v ≤ 0}

≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}

fil-Rule If there exists v occurring in LE(x) such that
(i) σ(v) = m with m > 0, and
(ii) there are no m nodes y1 . . . ym with

L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m
then create m new nodes y1 . . . ym and

set L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m

Figure 1. Expansion rules forALCQ.

if no solution is possible.
The ch-Rule is used to check for empty partitions. Given a set of

inequations in the label (LE) of a node x and a variable v corre-
sponding to a partition α(v) in P , we distinguish between two cases:
(i) The case when a partition must be empty; this can happen when
restrictions of individuals assigned to this partition trigger a clash.
(ii) The case when a partition can have at least one individual; if a
partition can have one individual without causing any logical clash,
this means that we can have m (m ≥ 1)4 individuals also in this
partition without a clash. Since the inequation solver is unaware of
logical restrictions of filler domains we allow an explicit distinction
between cases (i) and (ii). We do this by non-deterministically as-
signing ≤ 0 or ≥ 1 for each variable v occurring in LE(x). The
fil-Rule is used to generate role fillers for a node x depending on the
distribution (solution) returned by the inequation solver. For a proof
of correctness we refer the reader to [2].

REFERENCES
[1] F. Baader and U. Sattler, ‘An overview of tableau algorithms for descrip-

tion logics’, Studia Logica, 69, 5–40, (2001).
[2] J. Faddoul, N. Farsinia, V. Haarslev, and R. Möller, ‘A Hybrid Tableau

Algorithm forALCQ’, in Description Logics, (2008).
[3] V. Haarslev, M. Timmann, and R. Möller, ‘Combining tableaux and alge-

braic methods for reasoning with qualified number restrictions’, in De-
scription Logics, pp. 152–161, (2001).

[4] H.J. Ohlbach and J. Koehler, ‘Role hierarchies and number restrictions’,
in Description Logics, (1997).

[5] H.J. Ohlbach and J. Koehler, ‘Modal logics description logics and arith-
metic reasoning’, Artificial Intelligence, 109(1-2), 1–31, (1999).

4 The value of m is decided by the inequation solver.


