
1

Hybrid Reasoning for Description Logics with
Nominals and Qualified Number Restrictions

Jocelyne Faddoul1 , Volker Haarslev1, Ralf Möller2

1 Concordia University, Montreal, Canada
{j faddou, haarslev}@encs.concordia.ca

2 Hamburg University of Technology, Hamburg, Germany
r.f.moeller@tuhh.de

CONTENTS 2

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Syntax and Semantics of ALCOQ . 5
2.2 ALCOQ Inferences . 6

3 Motivation 6
3.1 Nominals and QCRs . 6
3.2 Nominals and Numerical Restrictions . 7
3.3 Reasoning Challenges with Nominals . 7
3.4 Reasoning Challenges with QCRs . 8

4 Overview of the Hybrid Reasoning Algorithm for ALCOQ 9
4.1 Preprocessing . 9
4.2 Using Inequation Solving to Reason with Nominals and QCRs 12
4.3 Partitions are Signatures . 14

5 A Hybrid Tableau Algorithm for ALCOQ 14
5.1 The Tableau . 15
5.2 The Algorithm . 15
5.3 Examples . 19

6 Proof of Correctness and Termination 22

7 Conclusion 27

1 INTRODUCTION 3

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms used to repre-
sent and reason about an application’s domain elements. They are interestingly applicable in
the semantic web as they provide the basis for the Web Ontology Language (OWL) defined
by the World Wide Web Consortium (W3C).

Practical DL reasoners such as FaCT++1, RacerPro2, and Pellet3 implement tableau-
based decision procedures. Such decision procedures typically decide a knowledge base con-
sistency test by constructing a so-called pre-model for the knowledge base. Despite many
optimization techniques [11] studied and implemented so far, they do not provide a generic
practical DL reasoner. It is easy to find knowledge bases where one reasoner performs very
well while the other is hopelessly inefficient. This is not only due to the high computational
complexity of tableau calculi and inference services, but also to the fact that these algorithms
create pre-models in an often blind way. Major inefficiency sources can be due to:

• (i) the high degree of non-determinism introduced by (a) the use of General Concept
Inclusion axioms (GCIs) or (b) when merging domain elements is necessary,

• (ii) the construction of large models,

• (iii) the interaction between language constructors.

Recent work in [17, 18] shows how tableau algorithms can be combined with resolution
algorithms to address the inefficiency of DL reasoning due to (i-a) and (ii).

In this report, we study an alternative reasoning algorithm which is by design more in-
formed and can be used to address the inefficiency of DL reasoning due to (i-b), (ii) and
(iii) where we address the interaction between nominals and qualified cardinality restric-
tions (QCRs). Our algorithm is hybrid because it combines tableau-based reasoning with
arithmetic reasoning [21]. For ease of presentation we study this hybrid approach for the
DL ALCOQ which is the basic description logic ALC extended with nominals and QCRs.
The algorithm can be easily extended to handle role hierarchies, and transitive roles thus
handling SHOQ.

The algorithm is based on the assumption that domain elements consists of a set of
individuals divided into subsets depending on their role filler membership and/or concept
membership. Nominals can be seen as singleton sets and the at-least and at-most restrictions
expressed in QCRs represent cardinality restrictions on the corresponding sets of role fillers.
These restrictions on sets are encoded as linear inequations (as was first introducted in
[19, 20]) solved by a linear programming (LP) algorithm (such as Simplex) with the objective
of minimizing the sum of all cardinalities. If no solution for the inequations is possible,
this means that the individuals cannot be distributed between sets without violating the
cardinality restrictions. When a solution is returned, individuals are distributed among
sets without violating any at-least or at-most restrictions and this number of individuals is
minimal.

A preprocessing step which rewrites an ALCOQ knowledge base into an ALCON knowl-
edge base with a weak form of role hierarchy allows the distinction between the numerical

1http://owl.man.ac.uk/factplusplus/
2http://www.racer-systems.com/
3http://pellet.owldl.org/

1 INTRODUCTION 4

restrictions and the qualifications expressed by QCRs. The atomic decomposition technique
allows the computation of all possible intersection between sets. It is applied on the sets of
role fillers and nominals in contrast to the approaches presented in [20, 8, 6, 5] where the
atomic decomposition is applied on sets of role fillers of a given individual. The decomposi-
tion of the sets of role fillers and nominals allows for the following.

• (a) The encoding of the nominals semantics into inequations.

• (b) The partitioning of the domain element into equivalence classes.

• (c) The handling of possible interactions between nominals and role fillers (based on
QCRs, existential restrictions and number restrictions).

A standard tableau for ALC [3] is modified and extended to work with a linear inequation
solver in such a way that it can:

• (1) Decide the satisfiability of concept descriptions that use propositional operators
(u,t,¬) and ∀, ∀\ operators. The ∀\ operator is a new operator introduced at pre-
processing, see Algorithm 1.

• (2) Encode numerical restrictions on sets into a set of inequations processed by an
inequation solver.

• (3) Make sure that a numerical solution satisfies logical restrictions by constructing a
pre-model of the solution.

This hybrid algorithm comes with characteristics that render it not only novel but also well
suited to optimize DL reasoning with nominals and QCRs due to the following.

1. Numerical restrictions are satisfied before creating domain elements, which means that
domain elements are never merged and there is no need for a mechanism of merging or
handling the so-called “yoyo” effect (a possibly infinite cycle of creating and merging
domain elements which causes a termination problem). This also ensures a better
handling of cycles while avoiding source (i-b) of inefficient reasoning.

2. Due to the partitioning of the domain element into equivalence classes, elements with
the same restrictions fall into the same partition. We use one proxy element as a
representative for each partition’s elements. This means that there is no need to
implement any blocking strategies to ensure termination since no two elements with the
same restrictions will be created. The use of proxy elements by our tableau algorithm
is inspired by [8] and is also used to address source (ii) of inefficient reasoning.

3. By setting the sum of all cardinalities as an objective function to be minimized by the
linear inequation solver we can address source (ii) of inefficient reasoning by ensuring
a minimum number of role fillers for each domain element.

4. The performance of an inequation solver is not affected by the values of the numbers
used in the inequations. This means that relying on an inequation solver to reason
about numerical restrictions, large values of numbers in QCRs are not problematic.

2 PRELIMINARIES 5

Finally, the hybrid calculus itself is not an optimization technique and a näıve implemen-
tation is by no means better then any other näıve implemenation of DL reasoning algorithms
proposed so far. However, the calculus enjoys additional properties that help us set the
ground for optimization techniques that address the sources of complexity of DL reasoning
related to the interaction between nominals and number restrictions.4 We therefore, limit
the scope of this report to the illustration of the technical details and proofs for the cor-
rectness of the algorithm. Empirical evaluation and implementation optimizations will be
reported in future work.

2 Preliminaries

In this section, we introduce the syntax, semantics and inference problems of ALCOQ,
i.e., the description logic ALC extended with nominals and qualified cardinality restrictions
(QCRs).

2.1 Syntax and Semantics of ALCOQ
Let NC, NR be non-empty and disjoint sets of concept names and role names respectively.
Let No ⊆ NC be the set of nominals. The set of ALCOQ concepts is the smallest set such
that: (i) every concept name A ∈ NC is a concept, and (ii) if C,D are concepts and R is a
role name in NR then ¬C, (C t D), (C u D), (∃R.C), (∀R.C), (≥ nR.C), (≤ nR.C) with
n ∈ N are also concepts.

In the following we use > (⊥) as an abbreviation for At¬A (Au¬A) and ≥ nR (≤ nR)
for ≥ nR.> (≤ nR.>).

Also since ∃R.C can be converted to ≥ 1R.C, we do not consider descriptions of the form
∃R.C.

An interpretation I = (∆I , ·I) consists of ∆I , a non-empty set of individuals, called the
domain of the interpretation, and ·I , an interpretation function. The interpretation function
·I maps each atomic concept A ∈ NC to a subset of ∆I , and each atomic role R ∈ NR to a
subset of ∆I×∆I . For all ALCOQ concepts, using # to denote the cardinality of a set, and
given FIL(R, s) defined as FIL(R, s) = {t ∈ ∆I | 〈s, t〉 ∈ RI} such as the set of all R-fillers
for a given role name R is defined as: FIL(R) =

⋃
s∈∆I FIL(R, s), the following must hold.

(C uD)I = CI ∩DI
(C tD)I = CI ∪DI
(¬C)I = ∆I \ CI
#oI = 1 for all o ∈ No

(∀R.C)I = {s ∈ ∆I | 〈s, t〉 ∈ RI ⇒ t ∈ CI}
(∃R.C)I = {s ∈ ∆I | ∃t : 〈s, t〉 ∈ RI∧ t ∈ CI}
(≥ nR.C)I = {s ∈ ∆I |#(FIL(R, s) ∩ CI) ≥ n}
(≤ nR.C)I = {s ∈ ∆I |#(FIL(R, s) ∩ CI) ≤ n}

Definition 1 (ALCOQ TBoxes) An ALCOQ TBox T is a finite set of general concept
inclusion axioms (GCIs) of the form C v D, where C, D are concepts and C ≡ D abbreviates

4Optimization technique for nominals were published only recently [22] with none addressing the inter-
action between nominals and QCRs.

3 MOTIVATION 6

{C v D, D v C}. A TBox T is said to be consistent if there exists an interpretation I
satisfying CI ⊆ DI for each C v D ∈ T . I is called a model of T . A concept C is said to
be satisfiable w.r.t. a TBox T iff there exists a model I of T with CI 6= ∅, i.e., there exists
an individual s ∈ CI as an instance of C. I is called a model of C w.r.t. T .

Definition 2 (ALCOQ ABox) An ALCOQ ABox A is a finite set of concept membership
assertions of the form a :C or role membership assertions of the form (a, b) :R with a, b two
individual names. An Abox A is said to be consistent w.r.t. T if there exists a model I of T
such that aI ∈ CI is satisfied for each a :C in A and (aI , bI) ∈ RI is also satisfied for each
(a, b) :R in A.

In the following, we assume all ALCOQ concepts to be in their negation normal form
(NNF). We use ¬̇C to denote the NNF of ¬C and nnf (C) to denote the NNF of C. Finally,
we do not impose the unique name assumption (UNA) and therefore two nominals can refer
to the same individual. However, the UNA can be easily applied by extending the initial
TBox T with

⋃
oi,oj∈No

{oi v ¬oj} for 1 ≤ i, j ≤ #No and i 6= j.

2.2 ALCOQ Inferences

Using nominals, concept satisfiability and ABox consistency can be reduced to TBox consis-
tency; a concept C is satisfiable w.r.t. a TBox T iff (T ∪ {o v C}) is consistent and o ∈ No

new in T , an ABox A is consistent w.r.t. T iff (T ∪
⋃

(a:C)∈A{a v C}∪
⋃

((a,b):R)∈A{a v ∃R.b})
is consistent. Hence, in the following without loss of generality we restrict our attention to
TBox consistency.

The concept axioms in T can be reduced to a single axiom > v CT such that CT
abbreviates

d
CvD∈T nnf (¬C t D) [14]. TBox consistency can be checked by testing the

consistency of o v CT with o ∈ No new in T , which means that at least oI ∈ CT
I and

CT
I 6= ∅. Moreover, since >I = ∆I then every domain element must also satisfy CT (CT

holds for each domain element).

3 Motivation

In this section, we illustrate the challenges of DL reasoning with nominals and QCRs and we
show how to address them using a hybrid reasoning approach which combines DL reasoning
with arithmetic reasoning.

3.1 Nominals and QCRs

Nominals [23], known as named individuals, are studied in the areas of hybrid logic [4] as
well as description logics. They play an important role in DL as they allow one to express
the notion of uniqueness and identity; nominals must be interpreted as singleton sets. They
are used to define concepts as an enumeration (Bool ≡ (tt f) with t, f nominals), or as role
fillers (Quebecor ≡ ∃.CitizenOf .quebec with quebec a nominal). It is easy to find ontologies
(for example, WINE5 ontology) where nominals appear as names for specific individuals,
countries, colors, etc...

5http://www.w3.org/TR/owl-guide/wine.rdf

3 MOTIVATION 7

QCRs are required in many applications [10, 1], they allow one to specify lower (≥ nR.C)
and upper (≤ nR.C) bounds on the number of elements related via a certain role (R) with
additionally specifying qualities on the related elements. They appear naturally in many
domains. For example, in modeling the human skeletal system [16] one would need to
say that a full grown adult has at least 14 bones in the face and 27 bones in the head
(Adult v≥ 27hasBones.HeadBoneu ≥ 14hasBones.FaceBone) and at most 306 bones
(Adult v≤ 306hasBones.Bone).

3.2 Nominals and Numerical Restrictions

Nominals carry numerical restrictions; they not only name individuals but also allow us to
count them. For example, defining the concept of an EU member state as EU MemberState
≡ Austria t . . . t UK where Austria,. . .,UK are all nominals means that instances of
EU MemberState can only be one of the 27 member states. This additional information
carried with nominals interacts with concepts and roles in a way that can limit the number
of instances of a certain concept or fillers for a certain role. Given an individual s, instance
of a concept E (s ∈ EI), C ∈ NC, R ∈ NR, o1, . . . , on ∈ No, and n,m non-negative integers,
we distinguish between global and local numerical restrictions.

Local Restrictions

When E is of the form (≥ nR), or (≤ mR) it holds a numerical restriction on the cardinality
of the set of R-fillers of s. For example, s ∈ (≥ 2R)I imposes that at least 2 individuals
s1 and s2 must be R-fillers of s, and therefore #FIL(R, s) ≥ 2. When E is of the form
(∀R.C) it also holds a numerical restriction due to s ∈ (∀R.C)I ⇔ s ∈ (≤ 0R.¬C)I , and
s ∈ (∀R.(o1 t · · · t on))I ⇒ s ∈ (≤ nR)I . These restrictions are local since they only affect
the set of individuals that are R-fillers of s, FIL(R, s).

Global Restrictions

Having E v o1 t · · · t on ∈ T (o1 t · · · t on v E ∈ T) enforces a numerical restriction on
the cardinality of the set of instances of E; there can be at-most (at-least) n instances of
E corresponding to the interpretation of oI1 ∪ . . . ∪ oIn assuming o1, . . . , on are all disjoint.
Such at-most (at-least) restrictions carried with nominals are global since they can affect
the set of all individuals in the domain of interpretation (∆I). Nominals can specify concept
cardinalities [2] as was shown in [24] and can interact with local restrictions. For example
having s ∈ (∀R.E)I then the set of R-fillers of s is bounded by n (the size of E), FIL(R, s) ≤
n (FIL(R, s) ≥ n).

3.3 Reasoning Challenges with Nominals

DL reasoning with nominals is challenging for existing DL reasoning algorithms due to the
following:

1. The tree-model property is lost: The tree model property has been advantageous for
DL tableau algorithms by allowing them to search for tree-like models.

3 MOTIVATION 8

2. Nominals must be treated as concepts: This is a challenging task for reasoning al-
gorithms because in order to preserve the nominal semantics, each nominal must be
interpreted as exactly one individual, whereas a concept is interpreted as a set of
individuals.

3. Nominals interact with other constructors: The worst case is when nominals interact
with inverse roles and QCRs [13]. Each of these constructs alone is challenging to
reason with and needs special optimization techniques.

3.4 Reasoning Challenges with QCRs

DL reasoning with QCRs is challenging with existing DL reasoning algorithms due to the
following:

1. Non-determinism introduced when choosing a distribution for each individual created
to make sure that an at most restriction is not violated (≤ nR.C).

2. The use of large numbers with QCRs result in the creation of large models.

3. Non-determinism introduced when merging individuals to satisfy an at-most restriction

Clearly DLs that enable nominals and QCRs enjoy additional expressive power for in-
stance, there is no other way to close a concept or domain with a finite number of elements
using the DL SHOIQ except using nominals. However, the expressive power usually comes
with challenging reasoning tasks.

Most semantic web reasoners supporting nominals and QCRs implement tableau-based
decision procedures which usually need to be equipped with a set of optimization techniques
[22] as their näıve implementations fail to be practical. Decision procedures were published
in [14] with very weak implementations if any (no DL reasoner was able to classify the
WINE6 ontology until recent efforts [22]). In the presence of nominals, existing DL rea-
soning algorithms look for forest-like models which consist of trees rooted with arbitrarily
interconnected nominals. They also need to make a clear distinction between a nominal and
an individual. This distinction is crucial in maintaining the nominal semantics. In the case
when two individuals need to be merged and one is a nominal; the nominal must survive. In
the case when blocking is applicable; there cannot be a nominal node between an individual
and a blocking individual otherwise by repeating the cycle, the nominal would also be re-
peated and the semantics is violated. The interaction between nominals, number restrictions
and inverse roles is addressed using special tableau rules (NN -rule [13], NI -rule [17]).

Resolution-based reasoning procedures were proposed in [15] and were proven to be weak
in dealing with large numbers in QCRs. Hypertableaux [18] which combines tableau and
resolution-based reasoning were recently studied to minimize non-determinism in DL rea-
soning with no special treatment for QCRs. One might argue that there is no need to
handle large numbers in ontologies. However, this seems to be a chicken and egg prob-
lem; we do not see a lot of ontologies using large numbers because no available reasoner
handle large numbers yet. There exists a lot of cases where we need to use large numbers
such as specifying that a person has 230 movable and semi movable joint (Person v≥ 230

6http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

4 OVERVIEW OF THE HYBRID REASONING ALGORITHM FOR ALCOQ 9

hasJoint.(MovableJoint t SemiMovableJoint)) as part of the human skeletal system [16]
representation.

4 Overview of the Hybrid Reasoning Algorithm for

ALCOQ
We present a novel reasoning algorithm that overcomes the challenge of reasoning with
nominals by efficiently handling their interaction with QCRs. The calculus not only extends
the one in [6, 5] to include nominals and GCIs but also relies on using proxy individuals and
can be easily extended for the DL SHOQ. It is based on three intuitions:

1. Nominals carry numerical restrictions.

2. One can think of a model as sets of individuals. Numerical restrictions on these sets can
be handled using a linear inequation solver which, by considering a minimal solution
ensures that a minimum number of nominals and role fillers satifies number restrictions.

3. To reduce the number of individuals in a pre-model one can use proxy individuals as
representatives of individuals satisfying common restrictions.

Before describing our calculus we define some preprocessing of concept descriptions and we
introduce the principles of the used non-tableau reasoning methods.

4.1 Preprocessing

We define a new concept operator (∀(R\S).D) and a role implication operator (R v S)
needed to rewrite CT before applying the calculus. These operators are based on set seman-
tics such that given an interpretation I, then (∀(R\S).D)I = {s ∈ ∆I | 〈s, t〉 ∈ RI ∧ 〈s, t〉 /∈
SI ⇒ t ∈ DI} is satisfied and (RI ⊆ SI) is satisfied for each role implication R v S ∈ R,
with R7 a set of role implications.

Given CT , a set NR of role names, and an empty setR of role implications, we re-write CT
using Algorithm 1. Please note that each rewriting step for a number restriction introduces
a fresh role name R′ new in T and R (See examples in Section 5.3).

Algorithm 1 rw(E, NR, R) for rewriting concept descriptions. Given A ∈ NC, C , D
ALCOQ concepts, R ∈ NR and R the set of role implications, the following rewriting holds:

rw(A,NR,R) −→ A,NR,R
rw(¬A,NR,R) −→ ¬A,NR,R
rw((C uD), NR,R) −→ rw(C,NR,R) u rw(D,NR,R), NR,R
rw((C tD), NR,R) −→ rw(C,NR,R) t rw(D,NR,R), NR,R
rw((¬C), NR,R) −→ rw(¬̇C,NR,R), NR,R
rw(∀R.C,NR,R) −→ ∀R.rw(C,NR, R), NR,R
rw((≥ nR.C), NR,R) −→ (≥ nR′ u ∀R′.rw(C,NR,R)), NR ∪ {R′},R∪ {R′ v R}
rw((≤ nR.C), NR,R) −→ (≤ nR′ u ∀R′.rw(C,NR,R)u ∀ (R\R′).rw(¬̇C,NR, R)),

NR ∪ {R′},R∪ {R′ v R}

7R is a weak form of role hierarchy H [14].

4 OVERVIEW OF THE HYBRID REASONING ALGORITHM FOR ALCOQ 10

Lemma 1 (Preserving Satisfiability) Rewriting concept expressions according to Algo-
rithm 1 preserves satisfiability. Satisfying CT consists of satisfying rw(CT ,NR,R) w.r.t. R.

Proof. It is easy to see that satisfiability is preserved for atomic concepts, negated
concepts, conjunctions and disjunctions of concepts. Let C,D be ALCOQ concepts, n,m
non-negative integer numbers and R a role name in NR with R a set of role implications, we
need to prove that ≥ nR.C is satisfiable iff rw(≥ nR.C, NR,R), and ≤ mR.D is satisfiable
iff rw(≤ mR.D, NR,R). This means that we need to prove the following:

1. if ≥ nR.C is satisfiable then ≥ nR′ u ∀R′.C is satisfiable w.r.t. R.

Proof. Let us assume that ≥ nR.C is satisfiable, this means that there exists a
non-empty interpretation I with:

(a) an individual s ∈ ∆I such that s ∈ (≥ nR.C)I .

(b) n distinct individuals t1 . . . tn ∈ ∆I such that ti ∈ (FIL(R, s)∩CI) for 1 ≤ i ≤ n.

We show how we can construct the interpretation, I ′, of ≥ nR′ u ∀R′.C from I.

We set I ′ = I and we create a new role name R′ in NR such that FIL(R′,s) = FIL(R,s)
∩ CI . For s ∈ ∆I

′
the following holds:

(a) s ∈ (≥ nR′)I
′

since FIL(R′,s)⊆ FIL(R,s) and there exists t1 . . . tm ∈ FIL(R′,s).

(b) We can add R′ v R ∈ R and I ′ satisfies R because by definition of R′ all the
R’-fillers are also R-fillers.

(c) s ∈ (∀R′.C)I
′

since FIL(R′,s)⊆ CI
′
.

(d) s ∈ (≥ nR.C)I is not violated.

Hence, if ≥ nR.C is satisfiable then ≥ nR′ u ∀R′.C is also satisfiable w.r.t. R.

2. if ≥ nR′ u ∀R′.C is satisfiable w.r.t. R with R′ v R ∈ R then ≥ nR.C is satisfiable.

Proof. Let us assume that ≥ nR′ u ∀R′.C w.r.t. R is satisfiable, this means that
there exists a non-empty interpretation I ′ with:

(a) an individual s ∈ ∆I
′

such that s ∈ (≥ nR′ u ∀R′.C)I
′
.

(b) n distinct individuals t1 . . . tn ∈ ∆I
′

such that ti ∈ FIL(R′, s) and ti ∈ CI
′

for
1 ≤ i ≤ n.

It is easy to construct the interpretation I of ≥ nR.C from I ′; if we set I = I ′ then
we have s ∈ (≥ nR.C)I since there already exists n distinct individuals t1 . . . tn ∈ ∆I

satisfying ti ∈ FIL(R, s) ∩ CI for 1 ≤ i ≤ n. Hence, if ≥ nR′ u ∀R′.C is satisfiable
w.r.t. R then ≥ nR.C is also satisfiable.

3. if ≤ mR.D is satisfiable then ≤ mR′ u ∀R′.D u ∀(R\R′).¬D is satisfiable w.r.t. R.

4 OVERVIEW OF THE HYBRID REASONING ALGORITHM FOR ALCOQ 11

Proof. Let us assume that ≤ mR.D is satisfiable, this means that there exists a
non-empty interpretation I with:

(a) an individual s ∈ ∆I such that s ∈ (≤ mR.D)I .

(b) at most m individuals t1 . . . tm ∈ ∆I such that ti ∈ FIL(R, s) and ti ∈ DI for
1 ≤ i ≤ m.

We show how we can construct the interpretation, I ′, of ≤ mR′u∀R′.Du∀(R\R′).¬D
from I.

We set I ′ = I and we create a new role name R′ in NR such that FIL(R′,s) = FIL(R,s)
∩ CI . For s ∈ ∆I

′
the following holds:

(a) s ∈ (≤ mR′)I
′

since FIL(R′,s)⊆ FIL(R,s) and there exists t1 . . . tm ∈ FIL(R′,s).

(b) We can add R′ v R ∈ R and I ′ satisfies R because by definition of R′ all the
R’-fillers are also R-fillers.

(c) s ∈ (∀R′.C)I
′

since FIL(R′,s)⊆ CI
′
.

(d) s ∈ (∀R\R′.¬D)I . Since we can have at most m individuals in FIL(R,s) ∩ DI ,
this means that all intersections with FIL(R,s) that do not also intersect with
FIL(R′,s) cannot intersect with DI ; FIL(R,s) \ FIL(R′,s) ⊆ ¬DI .

(e) s ∈ (≤ mR.D)I is not violated.

Hence if ≤ mR.D then ≤ mR′ u ∀R′.D u ∀(R\R′).¬D is satisfiable w.r.t. R .

4. if ≤ mR′ u ∀R′.A u ∀(R\R′).¬A is satisfiable w.r.t. R then ≤ mR.A is satisfiable

Proof. Let us assume that ≤ mR′ u ∀R′.Au ∀(R\R′).¬A is satisfiable w.r.t. R, this
means that there exists a non-empty interpretation I ′ with:

(a) an individual s ∈ ∆I
′

such that s ∈ (≤ mR′ u ∀R′.D u ∀(R\R′).¬D)I
′
.

(b) at most m distinct individuals t1 . . . tm ∈ ∆I
′
such that ti ∈ FIL(R, s) and ti ∈ DI

′

for 1 ≤ i ≤ m.

(c) FIL(R,s) \ FIL(R′,s) ⊆ ¬DI′ .

It is easy to construct the interpretation I of ≤ mR.D from I ′; if we set I = I ′ then we
have s ∈ (≤ mR.D)I since there already exists at mostm distinct individuals t1 . . . tm ∈
∆I satisfying ti ∈ FIL(R, s)∩DI for 1 ≤ i ≤ m. Hence, if ≤ mR′u∀R′.Au∀(R\R′).¬A
is satisfiable w.r.t. R then ≤ mR.D is also satisfiable.

We also define clos(C) to be the smallest set of concepts such that: (a) C ∈ clos(C), (b)
if D ∈ clos(C) then ¬̇D ∈ clos(C), (c) if (E uD) or (E tD) ∈ clos(C) then E,D ∈ clos(C),
(d) if (∀R.D) or (∀R\S.D) ∈ clos(C) then D ∈ clos(C) and (e) if (≥ nR.E) or (≤ mR.E)
∈ clos(C) then E ∈ clos(C). The size of clos(C) is bounded by the size of C. The set of
relevant sub-concepts of a TBox T is then defined as clos(T) = clos(rw(CT ,NR,R)).

4 OVERVIEW OF THE HYBRID REASONING ALGORITHM FOR ALCOQ 12

4.2 Using Inequation Solving to Reason with Nominals and QCRs

In [5, 6] the hybrid algorithm uses the atomic decomposition technique to reduce reasoning
about QCRs to linear inequation solving. With nominals the technique needs to be extended
so that additionally the interaction between local and global numerical restrictions is handled
while still preserving the semantics of nominals.

In the next paragraph we give the intuition behind the atomic decomposition and illus-
trate how it can be extended in the presence of nominals to decide the satisfiability of the
at-least and at-most restrictions while preserving the nominals semantics using an inequation
solver.

4.2.1 The Atomic Decomposition

The atomic decomposition technique [21] has been used in [6, 5, 9] to divide the sets of role
fillers into mutually disjoint atomic sets and these set cardinalities are used as a bridging
function to encode local numerical restrictions as inequations. With nominals, the atomic
decomposition technique must consider the decomposition of the whole domain into disjoint
sets such that each domain element belongs to exactly one set. Thus, one has to consider
all possible interactions between local and global restrictions which can also be encoded into
inequations.

We illustrate how this works: for each role R ∈ NR that is used in a number restriction or
a QCR, a fresh sub-role R′ introduced by the preprocessing enables a simple role hierarchy;
R′ can have only one super role R. Let H(R) denote the set of role names for all sub-roles
of R: H(R) = {R′ | (R′ v R) ∈ R}. We do not need to add R to H(R) since it is always
implied and does not occur in number restrictions anymore after preprocessing. For every
role R′ ∈ H(R), the set of R′-fillers forms a subset of the set of R-fillers (FIL(R′)⊆FIL(R)).
We define R′ to be the complement of R′ w.r.t. H(R), the set of R′-fillers is then defined as
R′-fillers =(FIL(R) \ FIL(R′)).

Each subset P of H(R) (P ⊆ H(R)) defines a unique set of role names that admits an
interpretation P I corresponding to the unique intersection of role fillers for the role names
in P : P I =

⋂
R′∈P FIL(R′) ∩

⋂
R′′∈(H(R)\P) FIL(R′′). P I cannot overlap with role fillers for

role names that do not appear in P since it is assumed to overlap with their complement.
This makes all P I disjoint. For example, as shown in Fig. 1 if P1 = {R1, R2}, P2 = {R2, R3}
and H(R) = {R1, R2, R3} this means that P1 is the partition name for FIL(R1)∩FIL(R2)∩
FIL(R3) which is equal to P I1 and P2 is the partition name for FIL(R2)∩FIL(R3)∩FIL(R1),
and therefore, although P1∩P2 = {R2} we have P I1 ∩P I2 = ∅ (see [21]). Since ALCOQ does
not allow concept expressions using role complements, no role complement will be explicity
used. For ease of presentation, we do not list the role complements in a partition name.

For each nominal o ∈ No, oI can interact with R-fillers for some R in NR and become a
subset of the set of R-fillers (oI⊆FIL(R) if having for example ≥ 1R.C u ∀R.o) . In order
to handle such interactions we define the set NR of all possible role names and nominals as:
NR =

⋃
R∈NR

H(R)∪No. Let P be the set of partition names defined for the decomposition

of NR: P = {P |P ⊆ NR}. Then we have PI = ∆I because it includes all possible domain
elements which correspond to a nominal and/or a role filler ;PI =

⋃
P⊆NR P

I .

4 OVERVIEW OF THE HYBRID REASONING ALGORITHM FOR ALCOQ 13

Figure 1: Atomic Decomposition of H(R) = {R1, R2, R3}

4.2.2 Mapping Cardinalities to Variables

We assign a variable name v for each partition name P such that v can be mapped to a
non-negative integer value n using σ : V → N such that σ(v) denotes the cardinality of P I .
Let V be the set of all variable names and α: V → P be a one-to-one mapping between
each partition name P ∈ P and a variable v ∈ V such that α(v) = P , and if a non-negative
integer n is assigned to v using σ then σ(v) = n = #P I . Let VS denote the set of variable
names mapped to partitions for a role (S ∈ NR) or a nominal (S ∈ No) then VS is defined
as VS = {v ∈ V |S ∈ α(v)}.

4.2.3 Reasoning with Nominals and QCRs

Given a partitioning P for all roles in NR and nominals in No and a mapping α of variables,
we can reduce a conjunction of (≥ nR) and (≤ mR) to a set of inequations and reason about
the numerical restrictions using an inequation solver based on the following principles.

P1: Encoding Number Restrictions and Nominals Into Inequations. Since
the partitions in P are mutually disjoint and the cardinality function is additive, a lower
(upper) bound n (m) on the cardinality of the set of role fillers FIL(S) for some role S ∈
H(R) can be reduced to an inequation of the form

∑
v∈VS

v ≥ n (
∑

v∈VS
v ≤ m). Thus, we

can easily convert an expression of the form (≥ nS) or (≤ mS) into an inequation using ξ
such that ξ(S,≥, n) =

∑
v∈VS

v ≥ n, and ξ(S,≤,m) =
∑

v∈VS
v ≤ m. The cardinality of a

partition with a nominal can only be 1 based on the nominals semantics which is encoded
into inequations using ξ(o,≥, 1) and ξ(o,≤, 1) for each nominal o ∈ No. In this way we make
sure that the nominal semantics is preserved; there is one and only one individual for each
o ∈ No: #oI = 1.

P2: Getting a Solution. Given a set ξa of inequations, an integer solution defines
the mapping σ for each variable v occurring in ξa to a non-negative integer n denot-
ing the cardinality of the corresponding partition. For example, assuming σ(v) = 4 and
α(v) = {R′, R′′}, this means that the corresponding partition (α(v))I must have 4 fillers;
#(FIL(R′) ∩ FIL(R′′)) = 4. Additionally, by setting the objective function to minimize the
sum of all variables a minimum number of role fillers is ensured at each level. σ then defines

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 14

a distribution of individuals that is consistent with the numerical restrictions encoded in ξa
and the hierarchy expressed in R.

4.3 Partitions are Signatures

A given model I of a TBox T consists of domain elements grouped into mutually disjoint
partitions. Each partition represents a signature of concept descriptions that is common
to all elements in the partition. A model I of T satisfies a signature F ⊆ clos(T) iff
F I =

⋂
E∈F E

I 6= ∅.

Lemma 2 Let I be a model of T , p a non-empty partition in P (pI ⊆ PI), and i, j two
domain elements such that i, j ∈ pI. If i ∈ F I (F is the signature of pI) then:

1. j ∈ F I and,

2. there exists no other domain element i′ ∈ ∆I such that i′ ∈ pI ∩ F I ∩ p′I for some
partition p′I ⊆ PI different from pI.

Proof. It is easy to prove (2) since all partitions are disjoint by definition. For (1), given
R1, . . . Rn ∈ NR, o1, . . . , on ∈ No and i, j ∈ ∆I consider the following cases.

• Case 1 - Nominals partition: pI is a nominals partition, then it corresponds to some
partition name p ∈ P of the form p = {o1, . . . , on} and individuals in pI satisfy the
signature F such that F I = pI = (oI1 ∩ . . . ∩ oIn). Given the nominals semantics, i ∈ F I
and if there exists j ∈ pI then j ∈ F I since i = j; there is only one element in pI .

• Case 2 - Role filler partition: pI is a role filler partition, then it corresponds to some
partition name p ∈ P of the form p = {R1, . . . , Rn} and individuals in pI satisfy
pI = (FIL(R1) ∩ . . . ∩ FIL(Rn)). If i, j ∈ pI then i, j ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn));
assume i /∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)) then i is a nominal or an Rx-filler for some
x > n. However i cannot be a nominal since p ∩ No = ∅. Without loss of generality,
assuming i ∈ FIL(R1) but i /∈ (FIL(R2) ∩ . . . ∩ FIL(Rn)) this means that i belongs
to a partition p′I corresponding to some partition name p′ ∈ P such that R1 ∈ p′

and {R2, . . . , Rn} 6⊆ p′. Now we have p′ different from p with i ∈ (p ∩ p′), this is a
contradiction since partitions are disjoint. Therefore, i ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)),
and by analogy we prove that j ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)). Therefore both i and j
must satisfy the signature F such that F I = ∩∀R1.C1∈T C

I
1 . . . ∩∀Rn.Cn∈T C

I
n .

• Case 3 - Nominals and role filler partition: pI is a role filler partition of nominals, then
it corresponds to some partition name p ∈ P of the form p = {o1 . . . ok, R1 . . . Rl} for
some k, l, 1 ≤ k, l ≤ n, and individuals in pI satisfy pI = (

⋂
1≤k≤n o

I
k∩
⋂

1≤l≤n FIL(Rl)).

Given the nominals semantics and similarly to case 1 if there exists i, j ∈ pI then i = j.
The signature F for pI is such that it satisfies F I =

⋂
1≤k≤n o

I
k ∩

⋂
∀R1.C∈T C

I .

5 A Hybrid Tableau Algorithm for ALCOQ
Before describing our hybrid algorithm, we define a tableau for ALCOQ TBox consistency.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 15

5.1 The Tableau

Our tableau is different from other tableaux for ALCOQ by the way it ensures the semantics
of the QCRs operator and the new operator (∀(R\S)) introduced after preprocessing an
ALCOQ TBox.

Definition 3 (Tableau) Given an ALCOQ TBox T rewritten by applying Algorithm 1,
we define a tableau T = (S,L, E) as an abstraction of a model for T with S a non-empty
set of individuals, L : S → 2cl(T) a mapping between each individual and a set of concepts,
and E : NR → 2S×S a mapping between each role and a set of pairs of individuals in S.
For all s, t ∈ S, A ∈ NC, C,D ∈ clos(T), o ∈ No, R, S ∈ NR, and given the definition
RT (s) = {t ∈ S | 〈s, t〉 ∈ E(R)}, properties 1 - 10 must always hold:

1. CT ∈ L(s)

2. If A ∈ L(s) then ¬A /∈ L(s).

3. If C uD ∈ L(s) then C ∈ L(s) and D ∈ L(s).

4. If C tD ∈ L(s) then C ∈ L(s) or D ∈ L(s).

5. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t).

6. If ∀(R\S).C ∈ L(s) and 〈s, t〉 ∈ E(R), and 〈s, t〉 /∈ E(S) then C ∈ L(t).

7. If (≥ nR) ∈ L(s) then #RT (s) ≥ n.

8. If (≤ mR) ∈ L(s) then #RT (s) ≤ m.

9. If 〈s, t〉 ∈ E(R) and R v S ∈ R, then 〈s, t〉 ∈ E(S).

10. For each o ∈ No, #{s ∈ S | o ∈ L(s)} = 1

Lemma 3 An ALCOQ TBox T is consistent iff there exists a tableau for T .

Proof. The proof is similar to the one found in [14]. Property 6 of this tableau ensures
that the semantics of the ∀(R\S).C operator is preserved. Property 9 ensures that the form
of role hierarchy introduced at preprocessing is preserved, together with Properties 8 and 7
this property ensures that the semantics of the original (before rewriting) QCRs is preserved.
Property 10 ensures that the semantics of nominals is preserved.

5.2 The Algorithm

In this section, we describe a hybrid algorithm which decides the existence of a tableau
for an ALCOQ TBox T . Our algorithm is hybrid because it relies on tableau expansion
rules working together with an inequation solver, the corresponding model is represented
using a compressed completion graph. The compressed completion graph is different from the
“so-called” completion graphs used in standard tableau algorithms for ALCOQ [12] in four
ways.

• First, it makes no distinction between a nominal node and a blockable node.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 16

• Second, it allows the re-use of existing nodes instead of creating new similar ones.

• Third, it implements no blocking or merging of existing nodes.

• Finally, it uses a new labeling for nodes to collect and encode the number restrictions
into inequations.

However, in the context of this report we will use “completion graph” to refer to a
“compressed completion graph”.

Definition 4 (Compressed Completion Graph) A compressed completion graph is a
directed graph G = (V,E,L,LE). Each node x ∈ V is labeled with two labels: L(x)
and LE(x), and each edge 〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ NR, of role names.
L(x) denotes a set of concept expressions and role names such that L(x) ⊆ clos(T) ∪ P .

By doing this, we not only label nodes based on the concept descriptions that they satisfy
but also based on the partition they belong to. A partition name might include a nominal
or a role name. We do not need to distinguish whether a nominal o ∈ L(x) is part of a
partition name or a concept expression; in both cases x satisfies the nominal o. When a role
name R appears in L(x) this means that x belongs to the partition for R-fillers and can
therefore be used as an R-filler. This tagging is needed for the re-use of individual nodes.
LE(x) denotes a set ξx of inequations that must have a non-negative integer solution. The

set ξx is the encoding of (≥ nR) and (≤ mR) ∈ L(x). In order to make sure that numerical
restrictions local for a node x are satisfied while the global restrictions carried with nominals
are not violated, LE(x) is propagated from each node to all its successors. This makes sure
that nominals are globally preserved while still satisfying the numerical restrictions at each
level.

Let T be a preprocessed TBox rewritten into T = {> v CT } with CT = rw(CT , NR,R)
and P the corresponding atomic decomposition. To decide the consistency of T we need
to test the consistency of CT using i ∈ No new in T such that iI ∈ CT

I and every new
individual satisfies CT .

The algorithm starts with the completion graph G = ({r0}, ∅ , L, LE). With LE(ro)
=
⋃

o∈No
{ξ(o,≤, 1), ξ(o,≥, 1)} which is an encoding of the nominal semantics. The node

r0 is artificial and is not considered as part of the model, it is only used to process the
numerical restrictions on nominals using the inequation solver which returns a distribution
for them. The distribution of nominals (solution) is processed by the fil -Rule (see Fig. 2)
which non-deterministically initializes the individual nodes for nominals. After at least one
nominal is created, G is expanded by applying the expansion rules given in Fig. 2 until no
more rules are applicable or when a clash occurs. No clash triggers or rules other then the
fil -Rule apply to ro.

Definition 5 (Clash) A node x in (V \ {r0}) is said to contain a clash if:

• (i) {C,¬C} ⊆ L(x), or

• (ii) a subset of inequations ξx ⊆ LE(x) does not admit a non-negative integer solution,
this case is decided by the inequation solver, or

• (iii) for some o ∈ No, #{x ∈ (V \ {r0})| o ∈ L(x)} > 1.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 17

u-Rule If C uD ∈ L(x), and {C,D} * L(x)
then set L(x) = L(x) ∪ {C,D}.

t-Rule If C tD ∈ L(x), and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {E} with E ∈ {C,D}.

∀-Rule If ∀R.C ∈ L(x) and there exists y and R′ ∈ (L(〈x, y〉) ∩ (H(R) ∪ {R})),
with C /∈ L(y)

then set L(y) = L(y) ∪ {C}.
∀\-Rule If ∀(R\S).C ∈ L(x), and there exists y and

R′ ∈ (L(〈x, y〉) ∩ ((H(R) ∪ {R})\((H(S) ∪ {S}))) with C /∈ L(y)
then set L(y) = L(y) ∪ {C}.

≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}.

≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}.

ch-Rule If there exists v occurring in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅
then set LE(x) = LE(x) ∪ {V }, V ∈ {v ≥ 1, v ≤ 0}.

fil -Rule If there exists v occurring in LE(x) with σ(v) = m and m > 0, and
there exists no y with α(v) ⊆ L(y)

then 1. create a new node y,
2. set L(y) = α(v)∪ {CT },
3. set LE(y) = LE(x).

e-Rule If (≥ nR) ∈ L(x) and there exists y with R ∈ L(y) and R /∈ L(〈x, y〉)
then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and

if LE(x)*LE(y) then set LE(y) = LE(y) ∪ LE(x).

Figure 2: Expansion rules for ALCOQ

When no rules are applicable or there is a clash, a completion graph is said to be complete.

Definition 6 (Proxy node) We use a proxy individual node as a representative for the
elements of each partition to test the satisfiability of the given signature. The partition
must be empty if the signature is not satisfiable. This can be done due to the following
lemma.

Lemma 4 (Using a Proxy Individual) Given a graph G as a representation of a model
I for a TBox T . Let P be a non-empty partition in PI and n a non-negative integer assigned
by the inequation solver such that n = #P . It is sufficient to create one proxy node in G as
a representative of the n individuals in P .

Proof. Lemma 4 is an easy consequence of Lemma 2. Creating one node in G for P does
not violate any at-least or at-most restriction since these restrictions are numerically satisfied
by the inequation solver. Additionally, if one node causes a clash because the signature of
P cannot be satisfied, then P must be empty and we do not represent it in G.

When G is complete and there is no clash, this means that the numerical as well as the
logical restrictions are satisfied (CT

I 6= ∅) and there exists a model for T : the algorithm
returns that T is consistent. Otherwise the algorithm returns that T is inconsistent.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 18

5.2.1 Strategy of Rule Application

Given a node x in the completion graph, the expansion rules in Figure 2 are triggered when
applicable based on the following priorities:

• Priority 1: u-Rule, t-Rule, ∀-Rule, ch-Rule, ≤-Rule, ≥-Rule,e-Rule.

• Priority 2: fil-Rule.

• Priority 3: ∀\-Rule.

The rules with Priority 1 can be fired in arbitrary order.
The fil-Rule has Priority 2 to ensure that all at-least and at-most restrictions for a

node x are encoded and satisfied by the inequation solver before creating any new nodes.
This justifies why role fillers or nominals are never merged nor removed from the graph; a
distribution of role fillers and nominals either survives into a complete model or fails due to
a clash. Also, assigning the fil-Rule Priority 2 helps in early clash detection in the case when
a numerical clash is detected by the inequation solver even before new nodes are created.

The ∀\-Rule has Priority 3. By giving this priority we ensure that the semantics of the
∀(R\S) operator are not violated. We allow the creation of all possible edges between a
node and its successors before applying the ∀(R\S) operator semantics. This rule priority
is needed to ensure the completeness of the algorithm.

5.2.2 Explaining the Rules

The u-Rule, t-Rule and the ∀-Rule rules are similar to the ones in the standard tableau
rules for ALC [3].
∀\-Rule. This rule is used to ensure the semantics of the new operator ∀(R\S).D (defined

in preprocessing) by making sure that all R-fillers are labelled, and together with the ch-
Rule (see explanation below) it has the same effect as the choose-rule in [3] needed to detect
the unsatisfiability of concepts like ((≥ 3R.C)u (≤ 1R.D)u (≤ 1R.¬D)) (See Example 2 for
details).
≤-Rule and ≥-Rule. These rules encode the numerical restrictions in the label L of

a node x into a set (ξx) of inequations maintained in LE(x) (P1). An inequation solver is
always active and is responsible for finding a non-negative integer solution σ for ξx (P2)
or triggering a clash if no solution is possible (see Def. 5). If the inequations added by
these rules do not trigger a clash, encoded number restrictions can be satisfied by a possible
distribution of role fillers.

ch-Rule. This rule is used to check for empty partitions. Given a set of inequations in
the label (LE) of a node x and a variable v such that α(v) = P and P ∈ P we distinguish
between two cases:

• (i) The case when P I must be empty (v ≤ 0); this can happen when restrictions of
elements assigned to this partition trigger a clash. For instance, if {∀R1.A, ∀R2.¬A}
⊆ L(x), v ≥ 1 ∈ LE(x) and P = {R1, R2} then a node y assigned to P with {R1, R2} ⊆
L(〈x, y〉) triggers a clash {A,¬A} ⊆ L(y) and v ≤ 0 is enforced.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 19

• (ii) The case when P I must have at least one element (1 ≤ m ≤ σ(v)); if P I can have
at least one element without causing any logical clash, this means that we can have
m elements also in P I without a clash. Therefore, when creating nodes (using the
fil -Rule) of corresponding partitions, it is enough to have one representative (proxy)
node for each partition (see Lemma 4 for a proof).

Since the inequation solver is unaware of logical restrictions of filler domains we allow an
explicit distinction between cases (i) and (ii). We do this by non-deterministically assigning
≤ 0 or ≥ 1 for each variable v occurring in LE(x).

fil-Rule. This rule is used to generate individual nodes depending on the distribution
(σ) returned by the inequation solver. The rule is fired for every non-empty partition P
using σ(v). It generates one proxy node as the representative for the m elements assigned to
P I by the inequation solver. The proxy individual is tagged with its partition name using
α(v) in its label, CT is also added to its label to make sure that every node created by the
fil -Rule also satisfies CT .

e-Rule. This rule connects a node x to a proxy individual y representing R-fillers of x
by adding the edge for R between x and y. For instance, if (≥ 2R) ∈ L(x) and there exists
a node y assigned to P I such that R ∈ P and P ⊆ L(y), this means that y can be used as
an R-filler of x. Therefore, the e-Rule creates/updates the edge 〈x, y〉 with R ∈ L(〈x, y〉).
The node y can also be re-used to satisfy another (≥ nR) restriction which gives this rule
the ability to handle cycles without the need for blocking. For instance, if we have another
node x1 with (≥ 2R) ∈ L(x1), y is re-used and R is added to the edge 〈x1, y〉.

5.3 Examples

Example 1 To better illustrate the calculus, we demonstrate it by checking consistency of
the following example TBox T 8

T = { A v ≥ 1R.(Au ≥ 1R.A)
A v o
o v A
}

In this example, NR = {R}, No = {o} and T can be reduced to T = {> v CT } with
CT = (¬At ≥ 1R.(Au ≥ 1R.A)) u (¬A t o) u (¬o t A).

To test the consistency of T , we need to check that at least one individual i is a member
of CT (i v CT with i ∈ No new in T).

After rewriting CT by applying Algorithm 1 we have:
CT = (¬A t ((≥ 1R1) u ∀R1.(Au ≥ 1R2 u ∀R2.A))) u (¬A t o) u (¬o t A)
NR = {R,R1, R2}
No = {o, i}
R = {R1 v R, R2 v R}
H(R) = {R1, R2}
NR = {R1, R2, o, i}

The atomic decomposition of NR defines the set of disjoint partitions P = {{R1}, {R2},
{o}, {i}, {R1, R2}, {R1, o}, {R2, o}, {R1, R2, o}, {R1, i}, {R2, i}, {o, i}, {R1, R2, i}, {R1, o, i},

8Adapted from [14].

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 20

{R2, o, i}, {R1, R2, o, i}} and the set V of variables associated with each partition in P :
V = {vR1 , vR2 , vo, vi, vR1R2 , vR1o, vR2o, vR1R2o, vR1i, vR2i, voi, vR1R2i, vR1oi, vR2oi, vR1R2oi}.

The calculus starts with the completion graph G = ({r0}, ∅,L,LE) with

LE(r0) =


vo + vR1o + vR2o + vR1R2o + voi + vR1oi + vR2oi + vR1R2oi ≥ 1
vo + vR1o + vR2o + vR1R2o + voi + vR1oi + vR2oi + vR1R2oi ≤ 1
vi + vR1i + vR2i + vR1R2i + voi + vR1oi + vR2oi + vR1R2oi ≥ 1
vi + vR1i + vR2i + vR1R2i + voi + vR1oi + vR2oi + vR1R2oi ≤ 1


After applying the ch-Rule until it is not applicable anymore we might come up with

the case where vR1R2i ≥ 1 and all other variables are ≤ 0. A clash is detected since no
arithmetic solution is possible because one variable indexed with o must be ≥ 1 to satisfy
the inequations in LE(r0).

Considering a completion graph with choices for the ch-Rule rule such as vR1R2oi ≥ 1 and
all other variables are ≤0, the inequation solver returns a solution σ with σ(vR1R2oi) = 1 and
all other variables are zero.

The fil -Rule is applicable to r0 and one new node y1 is created such that L(y1) = α(vR1R2oi)
∪ {CT } = {R1, R2, o, i} ∪{(¬A t((≥ 1R1)u∀R1.(Au ≥ 1R2u∀R2.A)))u(¬Ato)u(¬otA)},
and LE(y1) = LE(r0) .

After applying the u-Rule, and t-Rule to y1 without having a clash, we get the label set
to L(y1) = {R1, R2, o, i, A, (≥ 1R1),∀R1.(A u (≥ 1R2) u ∀R2.A)}.

The ≥-Rule is applicable to y1 and (≥ 1R1) is encoded into an inequation added to
LE(y1) such that

LE(y1)9 =


vR1R2oi ≥ 1
vR1R2oi ≤ 1
vR1 + vR1o + vR1R2 + vR1R2o + vR1i + vR1oi + vR1R2i + vR1R2oi ≥ 1


The ch-Rule can be applied several times (selecting the case ≤ 0) without having a clash

and σ is still valid (σ(vR1R2oi) = 1).
The e-Rule is applicable to y1 for (≥1R1) and L(〈y1, y1〉) is set to {R1}.
After applying the ∀-Rule and u-Rule once to y1, we have L(y1) = {R1, R2, o, i, A, (≥

1R1), (≥ 1R2),∀R2.A, ∀R1.(A u (≥ 1R2) u ∀R2.A)}.
The ≥-Rule is applicable to y1, it encodes (≥ 1R2) into the inequation vR2 + vR2o +

vR1R2 + vR1R2o + vR2i + vR2oi + vR1R2i + vR1R2oi ≥ 1 added to LE(y1).
The ch-Rule can be applied several times (selecting the case ≤0) without having a clash

and σ is still valid (σ(vR1R2oi) = 1).
The e-Rule is applicable for (≥ 1R2) and now L(〈y1, y1〉) = {R1, R2}.
No rules are applicable anymore and no clash has been detected: we have a comple-

tion graph consisting of a single node y1
10 such that L(y1) = {R1, R2, o, i, A, (≥ 1R1), (≥

1R2),∀R2.A,∀R1.(A u (≥ 1R2) u ∀R2.A)}, and L(〈y1, y1〉) = {R1, R2}.

Example 2 We illustrate how the calculus works when checking the consistency of the TBox

T = {> v≥ 3R.C u ≤ 1R.Du ≤ 1R.¬D}
9For sake of brevity, we do not list the variables that were mapped to zero by σ.

10The node r0 is and will be ignored since it is not part of the model.

5 A HYBRID TABLEAU ALGORITHM FOR ALCOQ 21

which is reduced to T = {> v CT } with CT = ((≥ 3R1 u ∀R1.C) u (≤ 1R2 u ∀R2.D u
∀(R\R2).¬D) u (≤ 1R3 u ∀R3.¬D u ∀(R\R3).D)). We need to check that at least one
individual i is a member of CT = rw(CT , NR,R) (i v CT with i ∈ No new in T).

After rewriting CT by applying Algorithm 1 we have:
NR = {R,R1, R2, R3}
No = {i}
R = {R1 v R, R2 v R, R3 v R}
H(R) = {R1, R2, R3}
NR = {R1, R2, R3, i}

The atomic decomposition of NR defines the set P of disjoint partitions; P = {{R1},
{R2}, {R3}, {i}, {R1, R2}, {R1, R3}, {R2, R3}, {R1, R2, R3}, {R1, i}, {R2, i}, {R3, i}, {R1, R2, i},
{R1, R3, i}, {R2, R3, i}, {R1, R2, R3, i}} and the set V of variables associated with each par-
tition in P : V = {vR1 , vR2 , vR3 , vi, vR1R2 , vR1R3 , vR2R3 , vR1R2R3 , vR1i, vR2i, vR3i, vR1R2i, vR1R3i,
vR2R3i, vR1R2R3i}.

The calculus starts with the completion graph G = ({r0}, ∅,L,LE) with

LE(r0) =

{
vi + vR1i + vR2i + vR1R2i + vR3i + vR1R3i + vR2R3i + vR1R2R3i ≥ 1
vi + vR1i + vR2i + vR1R2i + vR3i + vR1R3i + vR2R3i + vR1R2R3i ≤ 1

}
Considering a completion graph with choices for the ch-Rule rule such as vi ≥ 1 and all

other variables are ≤0, the inequation solver returns a solution σ with σ(vi) = 1 and all
other variables are zero. The fil -Rule is applicable to r0 and one new node y1 is created such
that L(y1) = α(v) ∪ CT = {i} ∪ {(≥ 3R1u ∀R1.C)u (≤ 1R2u ∀R2.Du ∀(R\R2).¬D)u (≤
1R3u∀R3.¬Du∀(R\R3).D)}, and LE(y1) = LE(r0). After several applications of the u-Rule,
L(y1) = {i, (≥ 3R1),∀R1.C, (≤ 1R2),∀R2.D, ∀(R\R2).¬D, (≤ 1R3),∀R3.¬D, ∀(R\R3).D)}.
The ≤-Rule and ≥-Rule encode ≥ 3R1 and ≤ 1R2 and ≤ 1R3 into inequations added to
LE(y1) such that if we do not consider the variables that are mapped to zero we have:

LE(r0) =


vi ≥ 1
vi ≤ 1
vR1 + vR1R2 + vR1R3 + vR1R2R3 ≥ 3
vR2 + vR1R2 + vR2R3 + vR1R2R3 ≤ 1
vR3 + vR1R3 + vR2R3 + vR1R2R3 ≤ 1


After applying the ch-Rule until it is not applicable anymore we might come up with the

case where vR1 ≥ 1 and all other variables are ≤ 0. A solution (σ) returned by the inequation
solver maps vR1 to 3 (σ(vR1) = 3) and all other unassigned variables are zero. The fil -Rule
is applicable to y1 and one new node y2 is created such that L(y2) = {R1} ∪ {CT }. Once
the e-Rule is applied to y0, L(〈y0, y1〉) is set to {R1}. The ∀-Rule becomes applicable to y0

and L(y1) is set to L(y1) ∪ {C}. The ∀\-Rule is applicable twice to y0 and L(y1) is set to
L(y1) ∪ {D} ∪ {¬D}. A clash is detected since {D,¬D} ∈ L(y1) and the solution where
vR1 ≥ 1 is discarded. This means that the partition for α(vR1) must be empty and vR1 must
be ≤ 0. However with vR1 ≤ 0 no possible solution for the set of inequations in LE(y0) is
possible and a clash is detected. All possible distributions result in a clash and the TBox is
not consistent.

6 PROOF OF CORRECTNESS AND TERMINATION 22

5.3.1 Some Illustration

The TBoxes in Examples 1, 2 are simple TBoxes used to illustrate the features of the hybrid
approach proposed in this paper. The TBox T in Example 1 contains cyclic descriptions,
nominals and QCRs and is typical to highlight the strong features of the hybrid approach
proposed in this paper. The TBox T in Example 2 shows the applicability and effect of the
new constructor ∀\.

• In contrast to other tableau algorithms, a tree model property with cycle detection
techniques is not crucial for termination.

• Nodes are never merged or pruned which means that we do not need to handle the
so-called “yoyo” effect or manage all incoming and outgoing edges of nodes.

• When applying the algorithm with T = {A v (≥ nR.(A u (≥ nR.A))) for large values
of n the behavior of the algorithm is not affected. This makes the extension of the
algorithm to more expressive logics more promising.11

• By non-deterministically initializing the nominal nodes and by using a proxy individual
as a representative of n individuals we can avoid a large number of completion rules to
be unnecessarily triggered. A minimum number of role fillers is considered since the
inequation solver returns a minimal solution.

• The inequation solver facilitates early clash (Definition 5 (ii)) detection.

It is easy to see that these features of the hybrid algorithm make it novel and we conjecture
it is well suited for optimizing DL reasoning with nominals and QCRs.

6 Proof of Correctness and Termination

The soundness, completeness and termination of the algorithm presented in this report are
consequences of Lemmas 3, 5, 6, 7, and Lemma 8.

Lemma 5 Given a TBox T and its complete and clash-free completion graph G. Let x be a
node in G, C,D ∈ NC, R ∈ NR, we define Num(x) = {E∈ L(x) |E is of the form ≥ nR, ≤
mR} as the set of at-least and at-most restrictions to be satisfied for x. A solution σ for the
encoding ξx of Num(x) is valid w.r.t. T :

• (i) it does not violate Num(y) for a node y in G,

• (ii) it does not violate a restriction implied by any operator used in T ,

• (iii) it does not violate the hierarchy R introduced during preprocessing.

Proof. Our hybrid algorithm depends on a sound, complete, and terminating inequation
solver to get a minimal solution σ for ξx. The expansion rules construct a model for role
fillers and nominals based on the distribution reflected by σ. The algorithm needs to make
sure that σ is consistent with R and T .

11Large values of n are known to be problematic for most DL reasoners supporting at least SHQ.

6 PROOF OF CORRECTNESS AND TERMINATION 23

• (i) Since LE(x) is propagated through all nodes, all numerical restrictions including
the ones encoded in LE(y) are always satisfied.

• (ii) If the distribution is not consistent with logical restrictions in T such as the ones
implied by the ∀ operator, then for some ∀R.D ∈ L(x), we have a node y such that
R ∈ L(y) and ¬D ∈ L(y). The ∀-Rule becomes applicable to x and D is added to L(y).
Having {D,¬D} ⊆ L(y) is not possible since G is clash-free. By analogy we prove
that σ does not violate other restrictions implied by the ∀\, and (u, t, ¬) operators.

• (iii) If the distribution is not consistent with R, then for some (R′ v R) ∈ R, there
exists an R′-filler y assigned to a partition P with R′ ∈ P and P I ⊆ (FIL(R′)\FIL(R)).
This case is not possible due to the definition of H(R) which assumes that R is implied
in P whenever R′ ∈ P and R′ ∈ H(R).

Lemma 6 (Termination) When started with an ALCOQ TBox T , the proposed hybrid
algorithm terminates.

Proof. Let l = #clos(T), termination of the hybrid algorithm is guaranteed due to the
following.

• The rewriting in Algorithm 1 can be done in linear time and does not affect termination.

• The atomic decomposition computes the partitions in P w.r.t. T , in the worst case
#{NR∪No} = l and the size of P is 2l−1 since we do not consider the empty partition.
Although this computation is exponential, it is done only once.

• Getting a distribution of individuals (solution for the inequations) will not affect ter-
mination of the expansion rules since we assume a decidable arithmetic reasoner [21].

• The algorithm constructs a graph consisting of a set of arbitrarily interconnected nodes
by applying expansion rules which do not remove nodes from the graph, nor remove
concepts from node labels or edge labels. For each node x:

– the number of times that the fil -Rule, or the ch-Rule can be applied is bounded
by the size of P . In the worst case we need to create one individual for each
partition.

– the number of times the e-Rule is applied for each at-least restriction is bounded by
n (the largest number used in an at-least restriction). In the worst case individuals
satisfying ≥ nR are distributed into n partitions. Therefore, the total number
that this rule can be applied is bounded by l ∗ n.

– all other rules are applied at most l times.

• New nodes are created by the fil -Rule depending on a distribution of individuals into
partitions in P . For each partition we create at most one proxy node, and since
partitions are disjoint, the total number of nodes in the completion graph is bounded
by the size of P . It is not possible to have more nodes in the graph since each node is
either a nominal or a role filler and in both cases it must be in some partition in P .

6 PROOF OF CORRECTNESS AND TERMINATION 24

• Traditional termination problems such as cyclic TBoxes and “yo-yo” problems are not
encountered:

– cyclic definitions do not cause a termination problem since nodes having the
same label (case when blocking is needed with other algorithms) will eventually
be mapped to the same partition and only one proxy node is created. This also
justifies why in these cases we have less individuals and why we do not need any
blocking strategies.

– the “yo-yo” problem of infinitely creating and merging nodes cannot occur since
in a given model, nodes are never removed or merged.

Lemma 7 (Soundness) If the expansion rules can be applied to T such that they yield a
complete and clash-free completion graph, then T has a tableau.

Proof. A tableau T = (S,L′, E) can be obtained from a clash-free completion graph G =
(V,E,L,LE) by mapping nodes in G to individuals in T which can be defined from G as T
such that: S = V \ {r0}, L′(x) = (L(x) \ NR), and E(R) = {〈x, y〉 ∈ E | (H(R) ∪ {R}) ∩
L(〈x, y〉) 6= ∅}. We show that T is either a tableau or can be easily extended to a tableau
for T since properties 1 - 10 of a tableau (see Def. 3) are either satisfied or can be easily
satisfied.

• Properties 1, 2, 3, and 4 of a tableau are satisfied because G is clash-free and complete.

• Property 5: Assume ∀S.C ∈ L′(x) and 〈x, y〉 ∈ E(S) then C ∈ L′(y), otherwise the
∀-Rule would be applicable. Property 6 is similarly satisfied.

• Properties 7: Assume (≥ nS) ∈ L′(x) then completeness of G implies that there
exist j proxy individuals y1 . . . yj each representing a partition of mj individual such
that

∑j
i=1mi = n and S ∈ L(〈x, yi〉) (1 ≤ i ≤ j). Due to Lemmas 4 and 5, we

can replicate each yi, mi − 1 times and set S = S ∪{yik} and L(〈x, yik〉) = S with
1 ≤ k ≤ mi−1, then we have #ST (x) ≥ n and property 7 is satisfied. One might think
that replicating individuals might result in violating the nominals semantics (Property
10) for example by replicating a nominal individual. However, this case can never
happen since nominals are represented by proxy individuals yi belonging to a partition
with only one individual, mi = 1 always holds for nominals partitions and is encoded
by the inequations (see Property 10 below). Similarly, Property 8 cannot be violated
due to replication of individuals; partition sizes (mi) are assigned such that all at-least
and at-most restrictions are satisfied (See Property 8 below).

• Property 8: Assume (≤ mS) ∈ L′(x) and #ST (x) ≤ m is violated. This means that
we have j proxy individuals y1 . . . yj each representing a partition of mj individual such
that

∑j
i=1 mi > m. This case cannot happen for two reasons:

– (1) By having Priority 2 for the fil-Rule, nodes are created only after making sure
that all at-least and at-most restrictions for a node x are satisfied by having a
distribution of these fillers (a non-negative integer solution for the inequations
in LE(x)). This means that no nodes will be created that violate an at-most
restriction.

6 PROOF OF CORRECTNESS AND TERMINATION 25

– (2) G is clash free which means that for each (≤ mS) ∈ L(x) we have ξ(S,≤,m)
in LE(x) and there is no ξ(S,≥, n) in LE(x) and n > m.

• Property 9: This property is always satisfied due to the definition of H(R) which takes
into account the role hierarchies introduced at re-writing.

• Property 10: This property is satisfied since G is initialized by setting ξ(o,≥ 1) and
ξ(o,≤ 1) for each nominal o ∈ No and every nominal o is assigned to a partition with
only one individual. A node with o in its label is created by the fil -Rule. Since G is
clash free then condition (iii) of a clash (see Definition 5) can never hold. In addition,
no nodes that are created can be removed or merged. Therefore, the set of nodes with
a nominal o in their label satisfies property 10. Also, since no nominal individual can
be replicated to satisfy Property 7, Property 10 always holds.

Lemma 8 (Completeness) If T has a tableau, then the expansion rules can be applied to
T such that they yield a complete and clash-free completion graph.

Proof. Let T = (S,L′, E) be a tableau for T , T can be used to guide the application of the
expansion rules. We define the mapping function π from nodes in the graphG = (V,E,L,LE)
to individuals in S, inductively with the creation of new nodes, such that for each x, y ∈ V ,
a role R, S ∈ NR and a partition name p ∈ P we have:

1. L(x) ⊆ L′(π(x)) ∪ P

2. if 〈x, y〉 ∈ E and S∈L(〈x, y〉), then 〈π(x), π(y)〉 ∈ E(S)

3. ξ(R,≥, n) ∈ LE(x) implies #RT (π(x)) ≥ n

4. ξ(R,≤, n) ∈ LE(x) implies #RT (π(x)) ≤ n

The claim is that having a completion graph G that satisfies the properties of π we can
apply the expansion rules defined in Fig. 2, when applicable, to G without violating the
properties of π. Initially G consists of the artificial node r0 such that

⋃
o∈No
{ξ(o,≥, 1), ξ(o,≤

, 1)} ⊆ LE(r0) and at least one node x0 with some o ∈ L(x0) is created. Given a tableau T
for G, we can set s0 = π(x0) for some s0 ∈ S.

We show that whenever we can apply an expansion rule to G, the properties of π are
not violated: applying the u-Rule, t-Rule, ∀-Rule or ∀(\)-Rule strictly extends the label of
a node x and this does not violate properties of π due to properties 1-6 of a tableau. Let us
consider applying the other rules to a given node x:

• The ch-Rule: This rule strictly extends the system of inequations that is in the label
LE of a node x. It non-deterministically assigns a cardinality (0 or ≥ 1) for role filler
partitions that are not assigned any value, and therefore no properties of π can be
violated.

• The ≥-Rule and ≤-Rule: If (≥ nR), (≤ mR) ∈ L(x), then (≥ nR), (≤ mR) ∈
L′(π(x)), this implies that #RT (π(x)) ≥ n, #RT (π(x)) ≤ m, (properties 6 and 7 of
a tableau). Applying the ≥-Rule, ≤-Rule extends LE(x) with ξ(R,≥, n), ξ(R,≤,m)
which is still conform with the properties of π and those of a tableau.

6 PROOF OF CORRECTNESS AND TERMINATION 26

• The fil-Rule: If every (≥ nR), (≤ mR) ∈ L(x) is converted to ξ(R,≥, n), ξ(R,≤,m)
∈ LE(x) and due to the clash freeness of T this means that there exists a distribution
of role fillers satisfying every (≥ nR), (≤ mR) ∈ L(x). The distribution of fillers is
encoded in a solution σ for LE(x) and applying the fil -Rule which creates a proxy
individual y as a representative for each corresponding partition based on the solution,
and propagates the set of inequations in LE(x) to y does not violate π.

• The e-Rule : For each (≥ nR) ∈ L(x) we have (≥ nR) ∈ L′(π(x)) which means that
#RT (π(x)) ≥ n must be satisfied. The e-Rule is applied to connect x to its R-fillers
such that with each jth (1 ≤ j ≤ n) application of this rule an edge is created between x
and some proxy individual yj with yj representing mj (the number of elements assigned
to a partition by the inequation solver) individuals of a partition p.

Then, after all edges are created we have j proxy R-fillers each representing mj indi-
viduals such as

∑j
i=1 mi ≥ n. Due to Lemmas 5 and 4 we can replicate each yj, mi−1

times and by setting L(〈x, yik〉) = {R} with 1 ≤ i ≤ j and 1 ≤ k ≤ mi − 1 and by
setting π = π[y11 → t11 . . . yik → tik] with t11 . . . tik tableau elements in T satisfying
#RT (π(x)) ≥ n. We can see that #RT (π(x)) ≥ n is satisfied without violating π.

The resulting graph G is clash free due to the following:

1. G cannot contain a node x such that {A,¬A} ⊆ L(x) since L(x) ⊆ L′(π(x)) and
Property 2 of the definition of a tableau would be violated.

2. G cannot contain two nodes x and y such that {A,¬A} ⊆ L(y) due to the following
scenario

• Initially {∀R.A, ∀R\S.¬A} ⊆ L(x) and y a proxy node for a partion of R-fillers
and S-fillers of x, and

• after applying the e-Rule for some ≥ nR ∈ L(x) and the ∀-Rule for (∀R.A) ∈
L(x), y is an R-filler of x with {A} ⊆ L(y), and

• after applying the ∀\-Rule for (∀R\S.A) ∈ L(x) we have {A,¬A} ⊆ L(y) with y
an R-filler of x.

This case cannot happen. Due to the strategy of rule applications in section the 5.2.1,
the ∀\-Rule cannot be applied if the ≥ mS is already applicable. The rule priorities
make sure that the ∀(R\S) semantics is enforced only when no more nodes can become
S-fillers of x and Properties 5 and 6 of the definition of a tableau are preserved.

3. G cannot contain a node x such that LE(x) is unsolvable. If LE(x) is unsolvable, this
means that for some role R ∈ NR we have:

• {ξ(R,≥, n)} ⊆ LE(x), and there is no possible distribution of R-fillers satisfying≥
nR ⊆ L(x), hence property 7 of a tableau would be violated due to the equivalence
properties between ξ(R,≥, n) ∈ LE(x) and #RT (π(x)) ≥ n respectively, or

• {ξ(R,≤, n)} ⊆ LE(x), and there is no possible distribution of R-fillers satisfying
≤ mR hence property 8 of a tableau would be violated due to the equivalence
properties between ξ(R,≤,m) ∈ LE(x) and #RT (π(x)) ≤ m.

7 CONCLUSION 27

4. G cannot contain two nodes x and y such that for some nominal o ∈ No we have
o ∈ L(x) ∩ L(y), otherwise property 10 of a tableau would be violated.

Thus, the completeness of our hybrid algorithm is proved.

7 Conclusion

In this report we presented an alternative approach for designing DL reasoning algorithms.
By studying the interaction between nominals and QCRs we designed a hybrid calculus that
is more informed about the numerical features of nominals and that supports the DLALCOQ
with general TBoxes. The calculus can be easily extended to work with role hierarchies and
transitive roles reaching the expressiveness of SHOQ.

Finally, it is easy to see that a näıve implementation of this algorithm is probably as
bad as a näıve implementation of standard tableau algorithms. One has to address the
exponential blow up of variables used to represent cardinalities of sets and the high degree of
non-determinism that they introduce if implemented näıvely. On the other hand, promising
evidence to improve average case performance for the DL SHQ is reported in [7] where the
use of variables has been optimized. It is part of ongoing work to implement and evaluate
the performance of the hybrid algorithm as presented in this report.

REFERENCES 28

References

[1] Alan Rector, G. S. Qualified cardinality restrictions QCRs: Constraining the num-
ber of values of a particular type for a property.

[2] Baader, F., Buchheit, M., and Hollunder, B. Cardinality restrictions on con-
cepts. Artificial Intelligence 88, 1-2 (1996), 195–213.

[3] Baader, F., and Sattler, U. An overview of tableau algorithms for description
logics. Studia Logica 69 (2001), 5–40.

[4] Blackburn, P., and Marx, M. Third int. workshop on hybrid logic HyLo’01. Logic
Journal of the IGPL 9, 5 (2001).

[5] Faddoul, J., Farsinia, N., Haarslev, V., and Möller, R. A hybrid tableau
algorithm for ALCQ. In 18th European Conference on Artificial Intelligence (ECAI
2008) (2008), pp. 725–726.

[6] Faddoul, J., Farsinia, N., Haarslev, V., and Möller, R. A hybrid tableau
algorithm for ALCQ, (long version). In Proc. of the 2008 Int. Workshop on Description
Logics (2008).

[7] Farsinia, N. thesis title. Master’s thesis, Concorida University, 2008. Forthcoming.

[8] Haarslev, V., and Möller, R. Optimizing reasoning in description logics with
qualified number restrictions. In Description Logics (2001).

[9] Haarslev, V., Timmann, M., and Möller, R. Combining tableaux and algebraic
methods for reasoning with qualified number restrictions. In Description Logics (2001),
pp. 152–161.

[10] Hollunder, B., and Baader, F. Qualifying number restrictions in concept lan-
guages. In Proc. of the 2nd Int. Conference on Principles of Knowledge Representation
and Reasoning,KR-91 (Boston (USA), 1991), pp. 335–346.

[11] Horrocks, I. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003, ch. Implementation and optimisation
techniques, pp. 306–346.

[12] Horrocks, I., and Sattler, U. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001)
(2001), Morgan Kaufmann, Los Altos, pp. 199–204.

[13] Horrocks, I., and Sattler, U. A tableaux decision procedure for SHOIQ. In Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005) (2005), pp. 448–453.

[14] Horrocks, I., and Sattler, U. A tableaux decision procedure for SHOIQ. Journal
of Automated Reasoning (2007), 249–276.

[15] Kazakov, Y., and Motik, B. A Resolution-Based Decision Procedure for SHOIQ,
vol. 4130/2006. Springer Berlin / Heidelberg, 2006, pp. 662–677.

REFERENCES 29

[16] Marieb, E. N., Hoehn, K., Wilhelm, P. B., and Zanetti, N. Human Anatomy
& Physiology: International Edition with Human Anatomy and Physiology Atlas, 7/E,
7 ed. Pearson Higher Education, 2006.

[17] Motik, B., and Horrocks, I. Individual reuse in description logic reasoning. In
IJCAR (2008), pp. 242–258.

[18] Motik, B., Shearer, R., and Horrocks, I. Optimized reasoning in description
logics using hypertableaux. In (CADE-21) (2007), vol. 4603 of Lecture Notes in Artificial
Intelligence, Springer, pp. 67–83.

[19] Ohlbach, H. J., and Koehler, J. Reasoning about sets via atomic decomposition.
Tech. Rep. TR-96-031, Berkeley, CA, 1996.

[20] Ohlbach, H. J., and Koehler, J. Role hierarchies and number restrictions. In
Proceedings of the 1997 International Workshop on Description Logics (DL’97) (1997).

[21] Ohlbach, H. J., and Koehler, J. Modal logics description logics and arithmetic
reasoning. Artificial Intelligence 109, 1-2 (1999), 1–31.

[22] Parsia, B., Cuenca Grau, B., and Sirin, E. From wine to water: Optimizing de-
scription logic reasoning for nominals. In Proc. of the 10th Int. Conference on Principles
of Knowledge Representation and Reasoning (KR2006) (2006), pp. 90–99.

[23] Schaerf, A. Reasoning with individuals in concept languages. Data and Knowledge
Engineering 13, 2 (1994), 141–176.

[24] Tobies, S. The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. Journal of Artificial Intelligence Research 12 (2000),
199–217.

