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Abstract: The management of metamodels is supported by runtime environments that
enforce the well-formedness of (meta-)model instances. Beyond this basic function-
ality, additional capabilities are needed in order to successfully establish a toolchain
for Model-Driven Software Engineering. We focus on two such capabilities: transac-
tions and efficient evaluation of invariants, not in the usual context of databases but
for main-memory runtime engines, an area where no previous work has addressed the
combination of Essential MOF + OCL. The realization of this infrastructural support
proves feasible but requires a careful design to accomodate the expressiveness of OCL.

1 Introduction

The combined expressive power of Essential MOF (EMOF) [Obj06a] and the Object Con-
straint Language (OCL) [WK03] has proved satisfactory in Model-Driven Software Engi-
neering (MDSE) to define the abstract syntax and static semantics of custom Domain Spe-
cific Languages (DSLs). Benefits include: (a) evaluation of constraints at runtime [GS07];
(b) improved reflection (“models-at-runtime”); and (c) extended type system [Kya05].

Nowadays these benefits are realized by a combination of compilation and framework
reuse. The components resulting from model-based generation are ready for integration
into authoring tools, for example tools based on a Model-View-Controller architecture.
However, these components fall just short of supporting two increasingly important run-
time requirements: efficient evaluation of invariants and transparent concurrency. To sup-
port them out-of-the-box, we extend our compilation algorithm [GS07] to support incre-
mental evaluation [SB07] and shared-memory transactions [HG06]. To address the first
concern, an interception mechanism is used to detect those data locations that have been
updated. Invariants dependent on them are candidates for re-evaluation as their cached
values may have become stale. Other invariants are not affected, and their evaluation can
be skipped. The second technique allows for a programming style where ACID properties
are enforced for a block of statements, yet no coding of locking operations is required.
In effect, the runtime system keeps rollback logs and detects interactions which lead to
failure of memory transactions.

As a motivating example, consider a multi-user editor of statecharts, which allows manip-
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ulating a single shared instance of the statechart metamodel. The runtime infrastructure
should enforce transaction bracketing to avoid interleavings of read-write accesses by dis-
tinct threads that corrupt the shared data structure. Additionally, the runtime engine should
report those invariants not evaluating to true on instances at transaction commit. The need
for concurrency management is not limited to the multi-user case: a single-user tool may
run background tasks, or a single user may perform multi-step updates on different views
of the same model (e.g., during round-tripping between textual and visual views).

Our incrementalization technique makes the DITTO algorithm [SB07], originally formu-
lated to incrementalize a Java subset, available for EMOF. By exploiting the semantics of
EMOF + OCL, we realize additional improvements: (a) incrementalizing collection op-
erations required tracking each item as an implicit argument in [SB07], our formulation
instead tracks the involved collection objects, not their items, thus reducing the memory
footprint. (b) Intermediate results of invariants evaluation are not cached in full, updates
to their base data are intercepted instead. (c) Certain cases of infinite recursion can be
detected, a capability not present in DITTO. (d) Finally, only those mutator methods on
collections that influence the outcome of an evaluation trigger a (costly) re-evaluation. The
proposed algorithm is applicable to any EMOF realization, for example Eclipse EMF.

The structure of this paper is as follows. Sec. 2 provides background, including overviews
of DITTO (Sec. 2.1), its EMOF adaptation (Sec. 2.3), and the termination analysis of the
evaluation of OCL expressions (Sec. 2.2). Sec. 3 details the compile-time aspects of our
solution, while Sec. 4 covers the runtime aspects and reviews the design choices made.
Sec. 5 addresses support for shared-memory transactions, with Sec. 6 discussing related
work and Sec. 7 conluding. Knowledge is assumed about object-oriented query languages.
Familiarity with shared-memory concurrency (locks and condition variables) is necessary
to follow the discussion in Sec. 5.

2 Incrementalization

An incremental algorithm computes anew only those intermediate results that have been
affected by changes in the previous input, reusing cached results for non-affected subcom-
putations. Manual incrementalization is error-prone, thus motivating automation. Given
a finite object population, every no-args (i.e., parameterless, except for self) side-effect-
free method is amenable to incrementalization. In terms of OCL this comprises: (a) class
invariants, (b) derived object attributes, and (c) derived no-args object operations. Such
parameterless methods need not be constant, given that they usually navigate the object
structure (starting from self) to compute their result, thus reading implicit arguments.

Checking OCL invariants is beneficial both at debug time (as they combine the advantages
of continuous testing and “declarative data-breakpoints”) as well as during operational
use. Their main disadvantage is the runtime slowdown (100x are not uncommon), as
their naı̈ve evaluation may involve traversing entire data structures. An incremental algo-
rithm, instead, reuses cached results of subcomputations whose inputs can be proven not
to have changed. This fits the typical runtime behavior of OCL invariants: they aggre-



gate further invariant checks on fragments of a data structure, with those subcomputations
usually returning “the same previous value” (i.e., the value leading to a satisfied invari-
ant) even for modified inputs, as most updates preserve consistency. As a result, upstream
computations do not become stale, and their evaluation can be skipped. Pointer aliasing
complicates keeping track of all program locations that may mutate a given data location,
with interception techniques coming to the rescue, as all updates to data locations are only
possible through well-known methods in EMOF (setters and their counterparts to mutate
collections).

Two candidate techniques to incrementalize OCL invariants are: (a) memoization [SB07]
and (b) view materialization [AFP03]. A spreadsheet analogy can be used to explain the
operation of materialization: the availability of changed inputs triggers the recomputation
of dependent values, avoiding redundant recomputations by using a dynamic dependency
graph (DDG). Because of object instantiation, updates, and garbage collection, the topol-
ogy of the underlying object population changes at runtime and the DDG has to be kept
in-synch with it. In contrast, memoization happens on-demand: whenever a function is
invoked, the cached values for its inputs are compared to those in the current system snap-
shot. If they match, the cached (“memoized”) return value can be reused.

A big pitfall of unoptimized memoization involves subcomputations (a special case of
input): in order to compare their cached and updated values, a subcomputation needs in
principle be invoked, which in turn may need to invoke its own subcomputations (if any) to
decide whether to reuse memoized return values or not. For example, assuming the usual
recursive formulation of the height() function on trees:

context Node def : height() : Integer =
if children->isEmpty() then 1
else 1 + children->collect(c | c.height() )->max() endif

Given a node n and a cached evaluation of height() for each of its children, knowing
that the set of children has not changed does not entitle to reuse the cached n.height(),
as the topology downstream may have been updated. In terms of memoization, knowing
that the implicit arguments have not changed (the children of n) does not preclude sub-
computations (another kind of input) from having changed. Implicit arguments comprise
those data locations acccessed directly by a function evaluation, not by its callees.

Optimistic memoization [SB07] assumes instead such subcomputations will behave as in
the typical case, thus skipping their invocation. This may lead to mispredictions, which
are detected in all cases, as discussed in Secs. 3 and 4 (incrementalization is sound and
complete, i.e. neither false-positives are reported nor broken invariants are overlooked).

Our mechanism of choice to achieve incrementalization is thus collection-aware optimistic
memoization, to be activated on-demand at transaction-commit time achieving the same
effect as naı̈ve evaluation of all invariants on all instances. Read accesses take place within
a transaction and thus do not observe partial results (dirty reads). The interaction with the
mechanism for shared-memory transactions (Sec. 5) is safe, as such mechanism can cope
with both read and write accesses. In effect, the incrementalization concern is orthogonal
to memory atomicity, with the former being layered upon the latter.
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Figure 1: Visualization of the invocations for isSorted()

2.1 A first example of incrementalization

In essence, DITTO caches a function evaluation by collecting additional information at
runtime besides computing its result. In particular, the actual arguments are recorded
in a global data structure, with such bookkeeping information being kept across invoca-
tions. Reading an object-field during a function evaluation also results in the pair (instance,
field ID) being tracked as an implicit argument of that particular invocation. During the
update phase of a transaction (in the transaction body), all setters are intercepted and thus
a mapping enables the lookup (using (instance, field ID) as key) of those function evalua-
tions that require re-evaluation (also called “refreshing the cached return value”). Another
event that forces recomputation is garbage collection of an implicit argument, a situation
detected by tracking instances with weak references1. At the time a weak reference is
created or a WeakHashMap entry is made, a listener is registered to be notified upon the
referenced object becoming unreachable.

In order to introduce terminology, a Java method for checking whether a binary tree is
locally sorted (Listing 1) is reproduced with modifications from a DITTO presentation2.
For the fragment of the binary tree displayed in Figure 1(a), isSorted() is invoked for
each node marked with an arrow, to compare the values (letters in this case) displayed
inside each node. In terms of our tooling approach, invariants are formulated in OCL and
translated automatically into Java [GS07].

A visualization of the Dynamic Dependency Graph (DDG) for isSorted() appears in
Figure 1(b). Without memoization, no record is kept of invocations once they have termi-
nated, i.e. no “call-stack unrolling” is available in-memory. A formal definition of DDG
is given in Sec. 2.3, each DDG node contains for example a cached return value.

1 An introduction to weak references is http://weblogs.java.net/blog/enicholas/
archive/2006/05/understanding_w.html. A longer but slightly out-of-date discussion appears in
http://java.sun.com/developer/technicalArticles/ALT/RefObj/

2AJ Shankar, presentation at PLDI’07, http://ditto-java.sourceforge.net/ditto.ppt
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Listing 1: A non-instrumented Java method to check whether a binary tree is locally sorted

boolean isSorted(Tree t) {
if (t == null) return true;
if (t.left != null && t.left.value >= t.value) return false;
if (t.right != null && t.right.value <= t.value) return false;
return isSorted(t.left) && isSorted(t.right);

}
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Figure 2: Incremental evaluation of the invariant isSorted() on a binary tree

As depicted in Figure 2 (a) and (b), a particular update on a tree consists in adding nodes
L, N (the second out-of-order) and removing node C, as part of a single transaction, which
should fail. During such transaction, at least one field in each of M, L, and B has been
updated (i.e., fields that are read by isSorted(), for some invocations). Refreshing
a DDG node (i.e., evaluating a function again so as to replace a stale cached result) is
necessary after one or more of its implicit inputs have been updated.

At this point, the DDG contains stale information: although L is lexicographically smaller
than M, N does not come in the alphabet before B, yet the current DDG node for isSorted(B)
has a cached result of true. DITTO introduces an optimization to minimize the cost of
refreshing, once the invocations with modified inputs have been identified. First, the in-
vocation for M is executed again (“replayed”), which in turn activates for the first time an
invocation for node L (resulting in a node being added to the DDG). The problem with
evaluating isSorted(L) is that it depends recursively on isSorted(B), whose cached
result is not only stale but also wrong. However, DITTO assumes (for now) that down-
stream invocations need not be replayed (thus optimistic). This decision is suspect until
replaying isSorted(B) reveals a wrong assumption was made. In that case, a propaga-
tion from callees to callers as depicted in Figure 2(c) will be performed.

Setters and collection mutators are intercepted using Code Instrumentation, a technique to
automatically transform programs. For example, profiling is commonly implemented that
way, to gather information about the performance of the instrumented program.



2.2 Termination behavior of the evaluation OCL expressions

The evaluation of OCL expressions containing recursive function invocations is not guar-
anteed to terminate in a finite number of steps (in the general case). This can be seen for:
def stackOverflow( arg : Boolean) : Boolean = stackOverflow(arg)

Similar examples can be built for indirect recursion. However, the special case of non-
recursive expressions over a finite object population is relevant for our incrementalization
technique. For them, termination can be shown by case analysis on the structure of OCL
language constructs, as discussed next.

Applying a function outside its domain (e.g. requesting the first element in an empty list or
dividing by zero) results in OclInvalid: unlike in Java, no exception is thrown. A finite
population is obtained when applying allInstances() to a class (in contrast, the expres-
sion Integer.allInstances() is not well-formed). OCL is a function-based rather
than a functional programming language: functions are not first-class-citizens, lambda ab-
stractions cannot be built with the available language constructs and thus cannot be passed
as arguments or returned as values. Regarding collection operations, the non-recursive
subcases of LoopExp amount to linear iteration (select, reject, exists, forAll,
collect, one). The remaining subcases can be desugared to their iterate form as de-
fined in the OCL standard ([Obj06b], Sec. 11.9 and A.3.1.3). iterate() in turn can
be expressed as left-fold, a primitive recursive function with a finite-depth tree expansion
(under the stated assumptions of finite population and non-recursive invocation).

2.3 Adaptation to Essential MOF + OCL

The object models of Java and EMOF mostly overlap but neither of them is a proper subset
of the other. An EMOF implementation (such as Eclipse EMF) enforces the semantics of
EMOF by mediating the manipulation of Java objects through generated methods. For
example, besides assigning a new value, setters also take care of performing “reference
handshaking” for the participants in a bidirectional association. Reflecting the distinction
between value and object types, a “field” in an EMOF class can be either an attribute or a
reference (with the term structural feature covering both). Besides setters, a multiplicity-
many structural feature has additional methods used at runtime to update a collection c.
Intuitively, not all of these mutators will impact an OCL function taking c as argument.
For example, adding an element impacts c.size() while changing the position of an
item does not. In terms of EMF, method c.add(newElem) (for the collection in question)
should be instrumented, while c.move(fromPos, toPos) may be left as is. We exploit
this fact by analyzing at compile-time the ASTs of OCL expressions and by extending the
EMF code generation process, applying techniques reported in [Gar07] and [GS07] resp.

EMOF collections may act as both explicit and implicit arguments in an OCL expression,
with the former being possibly an intermediate result (computed as an OCL expression
at the invoker’s call site). In order to qualify as an implicit argument, a read-access must
happen on a field of an application-level instance, as opposed to being performed upon an
intermediate result, which stays on the heap only during a call stack activation. Intermedi-



ate results do influence the outcome of a function, however they can change only if their
base data (implicit arguments, subcomputations) has changed. Therefore, tracking updates
to base data is enough to signal the need for refreshing a cached computation.

Given that collection operations are common in OCL specifications, it pays off to devise
dedicated optimizations beyond those in DITTO, considering their distinguishing features:
(a) mutating a collection does not affect its object identity; (b) collection mutators are
invoked on the collection object itself, not on some object holding the collection in one
of its fields; (c) after passing a collection c as argument to a setter in a different instance,
the same collection c can be obtained through getters in different instances; (d) internally,
collections are realized as binary trees, linked lists, or some other data structure with fields
having at-most-one multiplicity. Instead of instrumenting at this low level, we adopt a
dedicated mechanism other than (instance, field ID) to track collection arguments.

As in DITTO we collect additional information during a function invocation, associating
it to a node in the DDG (a “DDG node” from now on). Such nodes can be regarded as 5-
tuples consisting of: (a) the unique identifier for the evaluated function, this ID is obtained
by reflection; (b) the self reference to the target instance; (c) the explicit arguments passed
by the invoker; (d) the data locations of implicit arguments, resulting from read accesses
to structural features performed during an execution of the instrumented function (but not
by its callees); and (e) subcomputations, represented as references to DDG nodes. Which
particular inputs of kinds (d) and (e) are accessed during a given activation can be traced
back ultimately to (b) and (c) values, as dictated by the logic of the invoked function.
The same implicit argument may show up in different DDG nodes, therefore mappings
are used to point from them into DDG nodes, thus accelerating lookup. These mappings,
Cmap and Fmap, for collection and non-collection arguments resp., are needed during the
update phase of a transaction (Sec. 4.1).

DITTO builds DDG nodes for OCL collection operations by instrumenting the accesses to
single-valued fields to add the (instance, field ID) pairs to the list of implicit arguments in
the current DDG node. Whenever a subcomputation is invoked, the DDG is searched using
as key the triple (self, function ID, explicit arguments). Collections acting as explicit argu-
ments introduce a large overhead, as DDG lookups now involve testing for value-equality
the actual and recorded arguments. We avoid this penalty by instantiating a new DDG node
only for OCL functions with no collection arguments. The instrumented versions of these
functions still track accesses to structural features and subcomputations, only that they add
them to the DDG node at the top of a thread-local stack (Dstack, used during transaction
updates, Sec. 3.1). Such node stands for the caller of the current function (there is always
one caller, as all incrementalizable OCL constraints have no arguments at all).

The described design decision (not having dedicated DDG nodes for some functions) is
a departure from traditional memoization, grounded on the observation that DDG nodes
serve two different purposes: (a) making readily available a return value, thus saving time;
and (b) tracking dependencies, as needed to detect when refreshing should be performed
(thus assuring correctness). Our scheme still achieves (b), as implicit arguments and sub-
computations are collected (in the DDG node for the invoker). On the downside, some
function invocations that could have been found in the DDG (those for OCL-defined op-
erations with coll-args) will result in recomputation instead of memoization.



Similarly, collection-valued functions also involve a time-space tradeoff. Of the OCL in-
crementalizable functions, only derived attributes and operations may return collections.
Given that the lookup of DDG nodes for this kind of functions will be fast (as they lack
collection arguments) we adopt the decision to have their instrumented version create a
new DDG node, caching their result using strong references. Without memoization, the
lifetime of some of these results would have been limited to single call-stack activations
(i.e., strictly temporary results). Our design makes them outlive such invocations, albeit
increasing the memory footprint. In the particular case of derived attributes and no-args
operations, the chosen scheme was the only sensible, as these OCL constraints are in-
terpreted as defining materialized views. Additionally, caching a collection return value
still results in an equality test between collections, after the DDG node had been marked
dirty and recomputed (the test determines whether the new value should percolate up the
invocation hierarchy). However, this expensive comparison occurs less frequently as com-
pared to DDG lookup. For these reasons, we believe the pros of memoizing coll-valued
functions outweigh on average the cons, although contrived cases can be devised where
the opposite is the case.

3 Incrementalization algorithm: Compile-time activities

The OCL-defined functions subject to instrumentation are determined by transitive closure
over the caller-callee relationship, taking as starting point the union of (a) class invariants,
(b) derived attributes, (c) and derived no-args operations. Whenever an operation is added
to this set, all its override-compatible operations in subclasses are also added. We call
the resulting set Instr. The declaration of each function in Instr can be uniquely identi-
fied at runtime, as EMOF reflection assigns compile-time IDs that can be woven into the
generated instrumentation code (e.g., into the code to look up DDG nodes).

3.1 DDG lookup

The first Java statements generated for an OCL function f in Instr assign to the local vari-
able cDN the current DDG node, if any. This lookup is performed differently depending
on whether f has one or more collection arguments or not:

1. f has one or more coll-args. As no dedicated DDG nodes are kept for f, the return
result must be computed afresh (however, calls performed by f may be resolved in
the DDG). The current DDG node is peeked from Dstack (i.e. read but not popped).

2. otherwise, a lookup using (self, f ’s ID, explicit arguments) is performed against the
globally-shared DDG, with one of two outcomes:

(a) if found, and the node is not dirty, the cached return value is returned to the
caller. Otherwise the function will be re-evaluated, which implies clearing the
dirty bit, the implicit arguments, and the subcomputations in the found node.



(b) if not found, this is the first invocation for the triple in question. A new DDG
node newDN is instantiated, assigned to cDN, with its sets of implicit ar-
guments and subcomputations initially empty. Before adding newDN to the
set of subcomputations of the caller node (i.e., the node, if any, at the top of
Dstack), an optional check can be made whether doing so would establish a
cycle in the DDG, thus preventing some cases of stack overflow (but not run-
away recursion where explicit arguments are different for all invocations), a
safety measure not present in from-scratch recomputation nor in DITTO.

Finally, for functions in Instr lacking collection arguments (cases 2.a and 2.b), the gener-
ated code pushes cDN into the thread-local stack Dstack, and pops it just before returning.

3.2 Implicit arguments and their setters

Executions of the generated code having reached thus far can rely on a current DDG node,
reachable via the non-null cDN. The instrumentation code must abide by the evaluation se-
mantics of OCL constructs. For example, the condition part of an if-then-else-endif
is evaluated first, depending on which one of the two other branches will not be eval-
uated. Correspondingly, only the inputs (implicit arguments and subcomputations) for
the evaluated branch are to be added to cDN. This is achieved by choosing the order to
visit subnodes of an AST subtree according to the OCL construct in question. In the
if-then-else-endif example, a visitor for code generation will visit first the condi-
tion part, generating code that at runtime will leave the result in a temporary local vari-
able condPartResult. A Java “if (condPartResult) {s1} else {s2}” is gener-
ated next, with the statement blocks s1, s2 resulting from visiting the then and else

subnodes of the OCL if subtree.

The above code generation scheme accomodates the injection of statements to store ref-
erences to implicit arguments and to subcomputations just before they are accessed. For
example, when visiting an OCL PropertyCallExp AST node (which stands for a field
read-access) code to capture the target instance and the field declaration is generated. Such
code will add at runtime an entry with that key to Fmap (one of the two implicit args→
DDG nodes maps, the other being Cmap for collection mutators). The receiver of the
getter indicated by the PropertyCallExp will never be a temporary object: no OCL
construct results in objects being instantied by generated Java code, and thus must be
application-level, possibly referenced through a local variable or an explicit argument (in
contrast, temporary collections can be instantiated). Moreover, the receiver object is not
a collection, as only method calls can be performed on OCL collections (represented by
OperationCallExp AST nodes). The accessed field may have multiplicity > 1. What
code (if any) is generated to instrument collection mutators other than setters is the topic
of the next subsection. The general rule that no derived results are tracked, but instead
updates to their base data, can thus be seen at play for field accesses. After all functions
in Instr have been visited, the set of structural features that may influence their results is
known, and their setters look up DDG nodes at runtime as described in Sec. 4.1.



3.3 Operations on collections and their mutator methods

DITTO considers no mutators other than field setters. If left uninstrumented, changes per-
formed through collection mutators (add(newElem), setItem(pos, elem), etc.) will
go unnoticed to the incrementalization infrastructure (intercepting these mutators is the
counterpart to the reduction in implicit arguments achieved by tracking collection objects
instead of their items). Instead of flatly instrumenting all collection mutators, the gener-
ated code will be qualified to monitor certain mutators, depending on the function taking
the collection as argument. This function must be one in the OCL Standard Library, as all
user-defined functions fall under the “subcomputations” category (Sec. 3.4), in particular
those with one or more coll-args.

For incrementalization purposes, the OCL built-in functions taking (one or more) col-
lection arguments can be classified into: (a) those accessing each item in the collection;
and (b) those aggregating a result. All iterator constructs (source->forAll(boolCond),
source->select(boolCond), in general all subtypes of LoopExp in the OCL metamodel)
fall into the first category, while source->isEmpty(), and source->first() are exam-
ples of the second category. The source fragment stands for a collection-typed subexpres-
sion providing an argument for the function following the ->.

The analysis to determine the subset of collection mutators that triggers re-evaluation
also takes into account the most specific type of the source collection. For example,
source->collect( e | exprOnE) maps exprOnE to each e item in source. Given
that OCL is strongly typed, it can in general be known at compile time whether source is
(a) set or bag, or (b) sequence or ordered set. In the first case, the result of the collect()
is invariant under reorderings of source. Therefore, move(from, to) is not among the
mutators to watch for when visiting the subtree for source in the AST. Once a field ac-
cess is reached in the course of that visit (i.e., a PropertyCallExp subtree is reached),
the generated instrumentation code will not trigger a false-positive upon invocation of
move(from, to) on the source of the PropertyCallExp, which may itself be an or-
dered collection, as for example the field holding chronologically ordered publications
in class Researcher in the expression self.publications->asSet()->collect(p

| p.authors->size() )->max() that finds the largest number of co-authors.

3.4 Subcomputations

As for subcomputations, after generating instrumentation code for operations on collec-
tions (as per the previous subsection) the only OperationCallExp subtrees not yet trans-
lated are those standing for invocations to operations defined by the user using OCL. No
special code is needed at the caller site other than the usual invocation, as the current DDG
node has already been pushed onto Dstack, and the lookup of a DDG node for the callee
(if any) is performed by the callee itself.

An error scenario to avoid is for a function f1 in Instr to invoke a non-instrumented func-
tion f2, as f2’s execution would not leave a trail of its dependencies, with the incremental-



ization infrastructure later not being able to properly react to changes in f2’s inputs. This
failure scenario is ruled out by the construction procedure of Instr (transitive closure over
the static caller-callee relationship, including override-compatible methods in subclasses).
Moreover, there are no “volatile” functions in OCL (i.e. functions that return a fresh value
on each invocation, such as System.currentTimeMillis() or RAND()), thus reducing
the amount of dirty DDG nodes that would otherwise require recomputation.

4 Incrementalization algorithm: Runtime activities, Consequences

4.1 Update Phase of a Transaction

During the compile-time phase described in Sec. 3.2, all setters potentially affecting a
function in Instr have been instrumented. At runtime, each such setter looks up in the
globally-shared Fmap zero or more DDG nodes, using (instance, field ID) as key, and
marks each found node as dirty. This step is no different from DITTO’s, save the im-
plementation technique (code generation in EMOF vs. Java bytecode instrumentation in
DITTO). The callers of the found DDG nodes are not yet marked as stale, because the
assumption that their return values will prevail is going to be validated at the time mispre-
dictions are detected and resolved. The previous value of a field was not stored in the Fmap

entry, therefore any setter invocation (even those leaving the same value as-is) results in
one or more DDG nodes being marked dirty. Again, a time-space tradeoff.

The code generated for collection mutators uses as key (collection, mutator ID) to look
up zero or more DDG nodes in the globally-shared Cmap. This map is populated by
the code generated as per Sec. 3.3. Both Fmap and Cmap are implemented with Java’s
WeakHashMaps, so as not to interfere with the normal garbage collection of application-
level objects when becoming unreachable from other application-level objects.

4.2 Commit Phase Activities

Transaction commit involves four phases: (c.1) pruning DDG nodes with any garbage
collected input; (c.2) invoking computation of incrementalizable functions for new objects;
(c.3) refreshing dirty DDG nodes; and (c.4) handling mispredictions.

Phase (c.1) Pruning. As updates are performed by application-level code, application-
level objects being tracked as (explicit or implicit) arguments may be garbage collected.
Removing their entries from Fmap and Cmap is taken care of by the WeakHashMap in-
frastructure, but the DDG nodes these entries target must be explicitly pruned (they might
be referenced from caller DDG nodes, thus GC alone will not do the trick). Pruning a
node also results in flagging as dirty all nodes directly depending on it. Transitively de-
pendent nodes however are not yet considered as stale because the assumption that their
return values will prevail is going to be validated at the time mispredictions are detected
and resolved. Pruning a node may leave some of its callees unreachable over the subcom-



putations relation (this may also happen as a consequence of refreshing in phase c.3). Such
nodes may be kept in a dedicated, DDG-owned set to preven their GC (with the expecta-
tion of later use) or traded for memory right away. In the latter case, recomputation of dirty
nodes will repopulate the DDG with those subcomputations not found by memoization.

Phase (c.2) Incrementalizing functions for new objects. OCL’s allInstances() are
tracked using the AspectJ-based mechanism of [WPN06], which reports the instantiations
made after the last run of commit-phase. On those instances, their instrumented invariants,
derived attributes, and derived no-args operations are invoked for the first time.

Phase (c.3) Refreshing dirty nodes The optimal ordering to refresh dirty nodes is breadth-
first over the subcomputations relation as shown in [SB07]: assume f(x) and g(y) need
refreshing, with g(y) a transitive callee of f(x). Upon replaying f(x) it may well be the case
that g(y) is not invoked anymore (neither directly nor transitively through f(x)’s callees).
Breadth-first search will thus not reach g(y). As with previous callees not used anymore as
subcomputations (as determined in the pruning phase), if g(x) is not a top-level invariant,
its unreachable DDG node may be left unpruned to survive a number of incrementalization
rounds, or traded for memory right away.

Phase (c.4) Handling mispredictions. After the refresh phase, some nodes are marked as
having a return value different from that previously cached. The callers of such nodes are
then suspect, as their own return values need to be corroborated. Bottom-up refreshing
(from callees to callers) proceeds until (a) a node is reached where the cached and newly
computed return values match; or (b) a root node is reached (a node for a top-level invari-
ant, derived attribute, or derived no-args operation). Bottom-up walking always terminates
(there may be several callers for the same DDG node, but the DDG is acyclic).

By now, all of the incrementalizable functions have up-to-date values for all application-
level, not garbage collected objects.

4.3 Consequences of the design choices made

The original description of optimistic memoization [SB07] restricts the usage of return
values from subcomputations by forbidding passing them as explicit arguments in further
subcomputations or using them in loop conditionals. This conservative measure is moti-
vated by the real danger that a mispredicted return value could lead to infinite recursion
or an exception being thrown in the memoized version, while from-scratch recomputation
would have terminated normally. The termination behavior of OCL expressions (Sec. 2.2)
allows relaxing this restriction, by forbidding only recursive invocations from taking as
explicit arguments the results of previous subcomputations (all other callees terminate, in
particular all functions in the OCL Standard Library). If this less restrictive ban is also
lifted, only those OCL-defined functions that would have looped forever in from-scratch
recomputation will not terminate when evaluated by optimistic memoization (even with
cycle detection in the DDG). In this sense, the chosen incrementalization technique is as
robust as the base case.

Incrementalization is oblivious to the particular way a function is computed, thus provid-



ing leeway at compile time in choosing a particular implementation. For example, OCL
provides no dedicated syntax for expressing equijoins, with a custom function being usu-
ally defined to encapsulate the rather awkward building of cartesian product and selection.
In the long run, OCL should be extended with query constructs as found in LINQ (Lan-
guage INtegrated Query, [MBT07]). In the meantime, the product-selection pattern can
be detected at compile-time, to generate instead an instrumented version using indexes as
described in [WPN06]. Another optimization involves “small functions”, e.g. functions
having only explicit arguments and lacking both implicit arguments and callees: their
DDG nodes are terminal and computing them anew is faster than memoizing them. A
visitor can be used to determine the average complexity of an OCL expression [Gar07]
to choose these functions. Incidentally, the Java implementation of some functions in the
OCL Standard Library (e.g., size()) already incrementalize their computation.

5 Future Work: Shared-memory Transactions

Simon Peyton Jones reviews in [Jon07] the perils associated to the explicit-locking pro-
gramming model: (a) taking too few locks opens the door to data structure corruption;
(b) taking too many locks may inhibit concurrency or cause deadlock; (c) the language
does not preclude taking the wrong locks, as the connection “which data is guarded by
which locks for which operations” exists only in the mind of the programmer; (d) taking
locks in a wrong order eventually causes deadlock; (e) performing error recovery once data
structure corruption has taken place is extremely tricky; among others. Another shortcom-
ing is the requirement to know the internals of individually atomic operations, if they are to
be bracketed into a composite transaction: the set of required locks may be data-dependent
and thus known only at runtime.

We aim to adapt and integrate into our compilation algorithm the techniques for shared-
memory transactions presented in [HG06]. The adaptations involve subsetting (as the
EMOF object model lacks arrays, native code, built-in classes, and static fields, methods,
and initializers) as well as new developments. We aim at doing away with the source-to-
source translation step (from AtomJava into Java) and extend instead the Eclipse EMF API
with calls for transaction bracketing.

We believe incrementalization can coexist as-is with memory transactions. For example,
a rollback never turns objects made unreachable back into reachable (instead, the log pre-
vents them being GCed until successful commit). Therefore, prunning of DDG nodes need
not be undone. A rollback may however restore implicit arguments back to their values at
transaction start. In between, transaction progress marked DDG nodes dirty, which is not
undone as the ensuing redundant recomputation will not deliver a wrong result.

Grossman [Gro06] establishes an analogy between mechanisms for shared-memory trans-
actions and those for garbage collection: both began being manually applied, later com-
piled as source-to-source translations, to finally become part of the runtime system (JVM
for garbage collection, with memory transactions still waiting to reach that stage).



6 Related Work

The efficient evaluation of OCL invariants is also the goal of Altenhofen [AHK06] and
Cabot [CT06], where a methodology is presented to determine at compile-time the nav-
igation paths from an updated (instance, field ID) back to objects with one ore more in-
variants depending on it. This analysis is only possible for non-recursive OCL expres-
sions, as illustrated in Figure 3: a forward-only list of Wagons is constrained by invariant
lastWagonHasLightsOn, which is fulfilled for a train as long its last wagon has the
lights on. Our incrementalization mechanism can handle the addition, deletion, or update
of Wagons anywhere in the list, by updating the topology of the DDG. Computing a re-
verse navigation path from the last to the first element in the list would instead require
unwinding the call hierarchy for a particular execution trace, which is known only at run-
time. Besides providing a detailed account of our algorithm and a termination analysis, our
work also differs from [AHK06] in that we reduce the number of DDG nodes marked dirty
by instrumented collection mutators. Once an invariant is recomputed as per [AHK06], it
is done from-scratch: there’s no memoization cache to hit, and therefore no materialized
views can be maintained.

context Wagon
inv lastWagonHasLightsOn : f()

context Wagon::f()
def : if next.oclIsUndefined()

then hasLightsOn
else next.f()
endif

Figure 3: An example where data accesses traverse links known only at runtime

Discrimination networks [HBC02] have been proposed for active databases as a general-
ization of the original Rete algorithm [For90]. Broadly speaking, there is a correspondence
between the distinguishing feature of Rete networks (storing materializations of partial
rule bodies, which are shared among all the activation conditions where they appear) and
the sharing of subcomputations in optimistic memoization (which also skips recomputa-
tion for successful DDG lookups). Our implementation does not yet detect duplicate OCL
fragments as in Rete: two invariants with the same body but different names result in du-
plicate DDG nodes. This is an area for improvement, made difficult by the fact that OCL
expressions are many-form (different syntactical expressions for the same function). Other
than that, we believe that a derivative of the Rete algorithm handling full EMOF + OCL
would strongly resemble our proposal, modulo terminology.

Rete-based rule-engines employ a proprietary query language to express the activation
conditions of production rules, and force the programmer to specify a subset of the ob-
ject population to monitor for updates (the working set). The semantics of OCL class
invariants call instead for tracking all instances. A compile-time analysis of the ASTs
of such expressions limits runtime instrumentation overhead to only those object-fields
participating in some OCL incrementalized expression. The alternative (monitoring all



updates) has the potential advantage of allowing incrementalizing ad-hoc expressions at
runtime. As for invariants (an important use case), this is not reasonable: invariants do not
come and go. The best of both worlds (low monitoring overhead and incrementalization
of ad-hoc expressions) could be achieved with instrumentation techniques that allow for
(un-)deploying interceptors at runtime, such as the debug API (the Java Virtual Machine
Tool Interface, JVMTI). We follow instead a more mainstream approach by extending a
compilation algorithm for EMOF + OCL, using Eclipse technologies.

Algorithms for efficient recalculation of spreadsheets are reviewed by Sestoft [Ses06].
Automatically checking invariants at transaction boundaries is addressed for Concurrent
Haskell by Harris et.al. in [HJ06].

7 Conclusions

The acceptance of EMOF as the mainstream approach to metamodeling has spurred a num-
ber of innovations in the tooling for authoring DSLs, most of them leveraging the Eclipse
EMF implementation. The well-defined semantics of EMOF allows adding orthogonal
capabilities to EMOF-enabled runtime environments (e.g, transparent persistence, change
notification, versioning, refactoring support), thus increasing the appeal of the EMOF ob-
ject model. We expect support for incrementalization, tracking of invariants, and shared-
memory transactions to be generally useful across a variety of domains.
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