
Island Reasoning for ALCHI Ontologies

Sebastian WANDELT and Ralf MOELLER
Hamburg University of Technology,

21079 Hamburg,
Germany

Abstract. In the last years, the vision of the Semantic Web fostered the interest in
reasoning over ever larger sets of assertional statements in ontologies. It is easily
conjectured that, soon, real-world ontologies will not fit into main memory any-
more. If this was the case, state-of-the-art description logic reasoning systems can-
not deal with these ontologies any longer, since they rely on in-memory structures.

We propose a way to overcome this problem by reducing instance checking for
an individual in an ontology to a (usually small) relevant subset of assertional ax-
ioms. This subset can then be processed by state-of-the-art description logic rea-
soning systems to perform sound and complete instance checks for the given indi-
vidual. We think that this technique will support description logic systems to deal
with the upcoming large amounts of assertional data.

Keywords. Ontologies, Instance checking, Scalability

Introduction

As the Semantic Web evolves, scalability of inference techniques becomes increasingly
important. Even for basic description logic-based inference techniques, e.g. concept sat-
isfiability, it is only recently understood on how to perform reasoning on large ABoxes
in an efficient way. This is not yet the case for problems that are too large to fit into main
memory.

In this paper we present an approach to execute efficient instance retrieval tests on
ontologies, which do not fit into main memory. Existing tableau-based description logic
reasoning systems, e.g. Racer [HM01], do not perform well in such scenarios since the
implementation of tableau-algorithms is usually built based on efficient in-memory struc-
tures. Our contribution is concerned with the following main objective: given an individ-
ual a and a concept description C, we want to identify a relevant subset of assertional
statements, which are sufficient to decide, whether a is an instance of C or not. The
situation is depicted in Figure 1. In the left part there is a graph representing the asser-
tional facts. On the right side a relevant set of assertions is identified for reasoning about
individual a. Once we obtained such a (small) subset, called island, it can be loaded
into a description logic reasoning system for instance checking. Thus, description logic
reasoners of any kind can benefit from our proposal.

The intuition is to identify a small island of assertions, s.t. no “new and complex”
information can be propagated between the island and the remaining assertional part of
the ontology. Although the idea seems straightforward, to the best of our knowledge we

Figure 1. Example: connected subgraph relevant for reasoning about individual a

are the first to propose such an algorithm and evaluate it with respect to large ontologies.
There exists previous work on partitioning/modularizing ontologies (e.g. [GH06]) and
also on summarization techniques (e.g. [FKM+06]). We will explain below why we think
that these techniques are not sufficient in our setting. In a nutshell, the major reasons are:

1. We extract a small subset of assertions, which are worst-case relevant for individ-
ual a and concept C.

2. Our approach does not require a precomputation process depending on the ABox.
Thus, it is directly applicable to ontologies where the assertional information
changes over time. This can be seen as an important step towards dealing with
streams of assertional information.

The remaining part of the paper is structured as follows. Section 1 provides the
formal background for description logics and also presents some related work. In Section
2 we introduce an example ontology, which will be used throughout the paper. Section 3
analyzes the TBox of given ontologies and Section 4 shows how to use the result of the
analysis to rewrite assertional parts of ontologies. Furthermore we we show how instance
tests can be restricted to relevant subsets of the assertional information. In Section 5 we
present preliminary evaluation of the proposed algorithm and provide further ideas for
improvements. We conclude with Section 6.

1. Foundations

1.1. Description Logics

In the following part we will define mathematical notions, which are relevant for the
remaining paper. We briefly recall syntax and semantics of the description logicALCHI.
For the details, please refer to [BCM+07]. We assume a collection of disjoint sets: a set
of concept names NCN , a set of role names NRN and a set of individual names NI . The
set of roles NR is NRN ∪ {R−|R ∈ NRN}. The set of ALCHI-concept descriptions is
given by the following grammar:

C, D ::=>|⊥|A|¬C|C uD|C tD|∀R.C|∃R.C

where A ∈ NCN and R ∈ NR. We say that a concept description is atomic, if it is a
concept name. With NC we denote all atomic concepts. For defining the semantics of

concept descriptions and roles we consider interpretations I that consist of a non-empty
set ∆I , the domain, and an interpretation function ·I , which assigns to every atomic
concept description A a set AI ⊆ ∆I and to every role R a set RI ⊆ ∆I × ∆I .
For complex concept descriptions the interpretation function is extended as shown in
[BCM+07]. The semantics of description logics is based on the notion of satisfiability.
An interpretation I = (∆I , ·I) satisfies a concept description C if CI 6= ∅. In this case,
I is called a model for C.

A TBox is a set of so-called generalized concept inclusions(GCIs) C v D. An
interpretation I satisfies a generalized concept inclusion C v D if CI ⊆ DI . An
interpretation is a model of a TBox T if it satisfies all generalized concept inclusions in
T . A RBox is a set of so-called role inclusions R v S and role equalities assertion R

.=
S. An interpretation I satisfies a role inclusion R v S if RI ⊆ SI . An interpretation
I satisfies a role equality assertion R

.= S if RI = SI . An ABox is a set of so-called
concept and role assertions a : C and R(a, b). An interpretation I satisfies a concept
assertion a : C (role assertion R(a, b)) if a ∈ CI ((a, b) ∈ RI).

A ontology O consists of a 3-tuple 〈T ,R,A〉, where T is a TBox, R is a RBox
and A is a ABox. We restrict the concept assertions in A in such a way that each con-
cept description is an atomic concept or a negated atomic concept. This is a common
assumption, e.g. in [GH06], when dealing with large assertional datasets in ontologies.
With Ind(A) we denote the set of individuals occurring in A. We say that O is in-
consistent, denoted with INC(O), if there exists no model for O. We say that O is
consistent, denoted with CON(O), if there exists at least one model for O. Given an
individual a and an atomic concept C, we have 〈T ,R,A〉 ² a : C if and only if
INC(〈T ,R,A ∪ {a : ¬C}〉).

In the following we define some additional notions, which will be used throughout
the remaining part of the paper. A ∃-constraint is a concept description of the shape
∃R.C, s.t. C is an arbitrary concept description. A ∀-constraint is a concept description
of the shape ∀R.C, s.t. C is an arbitrary concept description. A concept description is in
negation normal form if negation occurs only in front of concept names. We assume the
standard transformation nnf(...) into negation normal form[BCM+07].

The subsumption hierarchy of parents and children for each concept name can be
obtained by classification. For ALCHI ontology it is possible to compute the subsump-
tion hierarchy in advance given only the TBox T and RBoxR, i.e. without the ABoxA.
This is possible since ALCHI does not allow the use of nominals. With vT : NC ×NC

we denote the precomputed subsumption hierarchy obtained by classification, e.g. we
have vT (C, D) iff O ² C v D for atomic concepts C and D. The role hierarchy
of an ALCHI-ontology can be computed in advance given the RBox R only. With
vR: NR ×NR we denote the precomputed role hierarchy, e.g. we have (R, S) ∈vR iff
O ² R v S for roles R and S.

Because of space limitations we do not introduce the notion of tableau proofs w.r.t.
description logics, but refer to [BCM+07].

1.2. Related Work

In the following, we discuss selected previously published work related to approximate
reasoning and query answering optimization for description logics. Recently, an ap-
proach for partitioning large OWL ontologies has been presented in [GH06]. The idea is

to partition a large ABox into smaller ABoxes, s.t. reasoning on the smaller assertional
subsets is complete, but possibly unsound. Although the authors report impressive results
for the increase in performance, we see some problems:

1. To perform instance checking for a particular individual, one has to evaluate all
existing partitions. Thus, one ends up loading the whole ontology into memory
step-by-step.

2. In fact, the reported average partition size can be orders of magnitudes larger in
real-world conditions. Some of these conditions are shown in [Wan08].

3. The approach is not subject to updateable ontologies, i.e. the recomputation of the
partitions takes up to several hours/days.

In [FKM+06], the authors propose a method to reduce the number of individuals in an
ABox for complete but possibly unsound reasoning. Afterwards, a filtering algorithm
is applied to obtain soundness. The idea is to join/summarize similar individuals into
one individual and then perform reasoning. This approach is excellent for working with
a compact representation of the whole ontology. However, in our setting we are only
concerned with these parts of an ontology, which are relevant for a particular (given)
individual. In a similar way as the approach given in [GH06], a Summary ABox has to be
build in a precomputation step, which depends on the actual ABox. Thus, the approach
is not per-se applicable to updateable ontologies.

There is different related work on scalability of query answering by approxima-
tion. However, since our work does not involve approximation, we do not discuss these
approaches here. After all, our work can be seen as complementary to other work.
For more information refer to Section 5. Finally, we should mention the work on
QuOnto[ACG+05], which has been the first description logic reasoner that does not use
main memory at all to perform ABox reasoning. Their approach rests on the reduced
expressiveness of the description logic DL − Lite and can transform queries over on-
tologies into equivalent and more efficient queries over databases.

2. Guiding example

In the following we define an example ontology, which is used throughout the remaining
part of the paper. The ontology is inspired by LUBM [GPH05], a benchmark-ontology in
the setting of universities. Although this is a synthetic benchmark, several (if not most)
papers on scalability of ontological reasoning consider it as a base reference. We take a
particular a snapshot from the LUBM-ontology (TBox, RBox and ABox) and adapt it for
presentation purposes. Please note that we do not claim that our snapshot is representative
for LUBM. We evaluate our approach w.r.t. to “full” LUBM in Section 5.

Example 1. Let OEX = 〈TEX ,REX ,AEX〉, s.t.

TEX ={
Chair ≡ ∃headOf.Department u Person, Professor v Faculty, Book v Publication,

GraduateStudent v Student, Student ≡ Person u ∃takesCourse.Course,

> v ∀teacherOf.Course,∃teacherOf.> v Faculty, Faculty v Person,

> v ∀publicationAuthor−.(Book t ConferencePaper)

}

REX ={headOf v worksFor, worksFor v memberOf, memberOf
.
= member−}

AEX =see Figure 2

Figure 2. Guiding Example: ABoxAEX for ontologyOEX

3. Identification of ∀-constraint patterns

In the following part we identify a superset of concepts, which might be propagated
over roles during the application of a tableau algorithm to an ontology O = 〈T ,R,A〉.
Please note that we do not claim to find a minimal set of such constraints, but rather a
set which allows for worst-case considerations. Although a minimal set would allow a
more fine-grained analysis of the ontology O, we think that computing such a minimal
set is equivalent to precise reasoning onO, something we assumed as not feasible before.
Furthermore, the computation of a minimal set would require us to use information from
the ABox in a preprocessing step - something we want to avoid for being able to deal
with dynamic assertional information.

First of all, we know that ∀-constraints cannot come directly from the ABox, since
we only allow for concept assertions of the kind a : C, where C is an atomic concept
or its negation. Thus, ∀-constraints can only be derived from the TBox. Unfortunately,
the shape of TBox axioms, i.e. C v D, does not allow to easily read off “possible” ∀-
constraints. This is due to the implicit presence of negation in the concept C. We propose
some kind of normal form, which allows for extraction of a superset of ∀-constraints,
which can possibly be used in a tableau algorithm.

Definition 1. A concept description C is in Shallow Normal Form (SNF), if it has the
shape C = C1 t C2 t ... t Cn, s.t. each Ci is either

• an atomic concept,
• a negated atomic concept,
• an ∃-constraint ∃R.D, s.t. D is an arbitrary concept description in negation nor-

mal form
• a ∀-constraint ∀R.D, s.t. D is an arbitrary concept description in negation normal

form

Please note that we do not enforce anything on concepts “hidden” behind ∀/∃-
constraints, but that they are in negation normal form. Thus the name shallow normal
form.

Lemma 1. Each GCI C v D can be converted into a set S of equivalent concept de-
scriptions in SNF. Here, equivalent means that C v D is unsatisfiable iff the conjunction
of the formulas in S is unsatisfiable.

Proof. Sketch: We know that (C v D) is unsatisfiable if and only if nnf(¬C t D) is
unsatisfiable. Starting with nnf(¬CtD), we can obtain a set of concept descriptions by
applying equivalence preserving rules to bring conjunctions to the “outside” and break
formulas up into SNF.

With Shallow(T) we denote the set of concept descriptions, which are equivalent to the
TBox inclusions in T . Although the transformation into any conjunctive normal form
can yield an exponential blow-up in the worst case, we claim that it is feasible to convert
a TBox for our purposes. For details please refer to Section 5. Using Lemma 1, in the
following we will assume w.l.o.g that a TBox is given as a set of concept descriptions in
SNF. Next, we give a set of concept descriptions in SNF for TEX from Example 1.

Example 2. The TBox TEX in SNF is as follows:

Shallow(TEX) ={
¬Chair t ∃headOf.Department,¬Chair t Person,

∀headOf.¬Department t ¬Person t Chair,¬Professor t Faculty,

¬Book t Publication,¬GraduateStudent t Student,¬Student t Person,

¬Student t ∃takesCourse.Course,¬Person t ∀takesCourse.¬Course t Student,

∀teacherOf.Course,∀teacherOf.⊥ t Faculty,¬Faculty t Person,

∀publicationAuthor−.(Book t ConferencePaper)

}

In the following we define a structure for managing ∀-constrains in anALCHI-ontology.

Definition 2. A ∀-info structure for TBox T is a function f∀T : NR → P(NC ∪{¬A|A ∈
NC} ∪ {⊥}) ∪ {∗}, s.t. NC (NR) is a set of atomic concepts (roles) used in T . The
function f∀T is used to manage the ∀-constraints, i.e. the function assigns to each role
name in NR one of the following entries:

Function build∀(C, f∀T)

Parameter: Concept description C in SNF, ∀-info structure f∀T
1. If C = C1 u ... u Cn or C = C1 t ... t Cn then

(a) For 1 < i < n do build∀(Ci, f
∀
T)

2. Else If C = ∃R.C1 then
(a) build∀(C1, f∀T)

3. Else If C = ∀R.C1 then
(a) If C1 is an atomic concept or a negated atomic concept or⊥ then

i. If f∀T (R) 6= ∗ then f∀T (R) = f∀T (R) ∪ {C1}
(b) else

i. f∀T (R) = ∗
ii. build(C1, f∀T)

4. Return

Function build∀(T)
Parameter: TBox T

For each R ∈ NR do initialize
f∀T (R) = ∅

For each C ∈ T (in SNF) do
build∀(C, f∀T)

Return f∀T (R)

Figure 3. Building f∀T

• ∅, if we know that there is no ∀-constraint for R in T
• a subset S of NC ∪ {¬A|A ∈ NC} ∪ {⊥}, s.t. there is no other concept but those

in S, which occur ∀-bound (i.e. they are a subconcept of a ∀-constraint) on R in
T

• ∗, if there are arbitrary complex ∀-constraints on role R in T , but we don’t give
additional information on the structure of these constraints.

The intuition for f∀T is defined below. In Figure 3 we propose an algorithm to compute
f∀T . We do not explain the algorithm, since it is a straightforward computation of the
closure of T in SNF. Next, we lift the notion of a ∀-info structure from a TBox to an
ontology.

Definition 3. A ∀-info structure for ontology O = 〈T ,R,A〉 is a function f∀O : NR →
P(NC ∪ {¬A|A ∈ NC} ∪ {⊥}) ∪ {∗}, s.t.

f∀O(R) =

{
∗ if∃S ∈ NR. vR (R, S) ∧ (f∀T (S) = ∗)⋃

RvRS f∀T (S) else

Let us look at our ontology OEX again to give an example for a ∀-info structure.

Example 3. The ∀-info structure for ontology OEX is as follows:

f∀OEX
(R) =

8
>>>>><
>>>>>:

{¬Department} if R = headOf

{¬Course} if R = takesCourse

{⊥, Course} if R = teacherOf

∗ if R = publicationAuthor−

{} else

The main result of this section is presented in the following lemma:

Lemma 2. Given an ontology O = 〈T ,R,A〉, the following holds: if f∀O(R) 6= ∗, then
for each valid tableau proof P of O and for each application of a ∀-rule (on R and
subconcept C) in P , we have that C ∈ f∀O(R).

Proof. Sketch: By contradiction. W.l.o.g. assume that there exists a tableau proof P , s.t.
during the proof the ∀-rule is applied to individual a, which is labeled with ∀R.C and
C /∈ f∀O(R). Since we only allow ABox assertions for atomic concepts, the ∀-constraint
must come from the TBox. Thus ∀R.C must be a subconcept of T in SNF. Since f∀O
is build by computing the closure of the T , we have either f∀O(R) = ∗ or C ∈ f∀O(R).
Contradiction.

4. ABox Rewriting and Island Computation

Given the notions in the previous section, in the following we will derive means to
rewrite an ontology O, s.t. inconsistency is preserved, i.e, INC(O) if and only if
INC(Orewritten). Inconsistency tests are important for instance checking, since it holds
that INC(〈T ,R,A ∪ {a : ¬C}〉) if and only if 〈T ,R,A〉 ² a : C. Please note that
we are not going to rewrite the ABoxes in practice, but rather use rewriting for proving
soundness and completeness of our algorithm for island computation. The following def-
inition ofO-separability is used to determine the importance of role assertions in a given
ABox. Informally speaking, the idea is that O-separable assertions will never be used to
propagate “complex and new information” (see below) via role assertions.

Definition 4. Given an ontology O = 〈T ,R,A〉, a role assertion R(a, b) is called O-
separable, if we have INC(O) ⇐⇒ INC(〈T ,R,A2}〉), where

A2 = A \ {R(a, b)} ∪ {R(a, i1), R(i2, b)} ∪ {i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A},

s.t. i1 and i2 are fresh individual names.

Given the above definitions, we propose a formal criterion on role assertions w.r.t. an
ontology O to distinguish, whether they are O-separable.

Lemma 3. Given an ontologyO = 〈T ,R,A〉 and a role assertion R(a, b) ∈ A, it holds
that R(a, b) is O-separable, if we have

1. For each C ∈ f∀O(R)

(a) C = ⊥ or
(b) we can find a concept description D ∈ {E|b : E ∈ A}, s.t. we have D vT C

2. For each C ∈ f∀O(R−)

(a) C = ⊥ or
(b) we can find a concept description D ∈ {E|a : E ∈ A}, s.t. we have D vT C

Proof. We have to show that INC(O) ⇐⇒ INC(〈T ,R,A2}〉), where

A2 = A \ {R(a, b)} ∪ {R(a, i1), R(i2, b)} ∪ {i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A},

s.t. i1 and i2 are fresh individual names. The proof can be done in two steps (directions):

“⇐” To show: INC(〈T ,R,A2}〉) ⇒ INC(〈T ,R,A}〉).
From INC(〈T ,R,A2〉) we know that there exists a tableau proof P , which re-
turns a closed tableau. We can apply the same tableau proof to 〈T ,R,A〉, by ap-
plying each tableau-rule involving individual i1 to b and applying each tableau-
rule involving individual i2 to a. Again, we obtain a closed tableau and it holds
that INC(〈T ,R,A}〉).

“⇒” To show: INC(〈T ,R,A〉) ⇒ INC(〈T ,R,A2〉).
Sketch: The idea is that each closed tableau proof P on 〈T ,R,A〉 can be rewritten
to a closed tableau proof P2 on 〈T ,R,A2〉. This is due to the fact that only im-
plicitly known information and immediate clashs are propagated via the split role
assertion. This can be shown by induction on ALCHI -tableau rules.

Let us consider an example for O-separability w.r.t. OEX from Example 1:

Example 4. For instance the ABox assertion teacherOf(p2, c3) in Example 1 isOEX -
separable, since we have

• f∀OEX
(teacherOf) = {⊥, Course} and c3 : Course ∈ AEX

• f∀OEX
(teacherOf−) = {}

Definition 5. Given an ontology O = 〈T ,R,A〉, let RED(A) be the ABox computed
from A by replacing each O-separable role assertion R(a, b) by {R(a, i1), R(i2, b)} ∪
{i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A} , s.t. i1 and i2 are fresh individual names.

Lemma 4. It holds that INC(〈T ,R,A〉) iff INC(〈T ,R, RED(A)〉).
Proof. Easy: By definition of O-separability.

Definition 6. An interconnection-based partitioning for a ABox A, denoted P (A) =
{A1, ...An}, is built by role-connectedness, i.e. two individuals are in the same partition
iff there exists an explicit role assertion between these two individuals.

Example 5. Some parts of the interconnection-based partitioning P (RED(AEX)) for
RED(AEX) are shown below (4 partitions). Rectangular nodes denote individuals from
AEX and elliptic nodes denote fresh (unnamed) individuals.

Lemma 5. We have INC(〈T ,R,A〉) iff ∃Ai ∈ P (RED(A)).INC(〈T ,R,Ai〉).

Proof. Easy: If all partitions are disconnected, then there is no interaction between the
partitions.

Definition 7. Given an ABox A, let Pa(A) be the partition in P (RED(A)), which
contains individual a.

Lemma 6. Given CON(〈T ,R,A〉), we have that INC(〈T ,R,A ∪ {a : C}〉) iff
INC(〈T ,R, Pa(A) ∪ {a : C}〉)

Proof. ⇐:
Easy, since Pa(A) ∪ {a : C} ⊆ A ∪ {a : C} (modulo renaming).

⇒:
Let P1 = P (RED(A)) and P2 = P (RED(A∪{a : C})). By definition of RED

and P it is clear, that P2 \ P1 = {Pa(RED(A ∪ {a : C}))}. Since all partitions
in P1 are consistent (by CON(〈T ,R,A〉)), Pa(RED(A ∪ {a : C})) has to be
inconsistent (by Lemma 5).

Next, we propose an algorithm, which solves the following problem: Given an on-
tology O = 〈T ,R,A〉, check, whether O ² a : C holds for a given individual a and a
given concept C, without having to take the whole ontology into consideration. The idea
is that we identify a subset S ofA, s.t. we haveO ² a : C iff 〈T ,R, S〉 ² a : C. The set
S is usually orders of magnitudes smaller than the initial ABox A (for detailed statistics
see Section 5). Given Lemma 6, we already have a notion at hand, which identifies a rel-
evant subset of ABox assertions necessary for reasoning about a given individual a. It is
easy to define a function, which computes Pa(A), given an individual a (see 4). Sound-
ness and completeness of the algorithm is clear from the definition of O-separability.
Termination is ensured by use of a “seen individuals”-list, which avoids following cycles
during application of the algorithm.

Function build(a, seen)
Parameter: Individual a, list of visited individuals seen
Returns: Set S of relevant ABox assertions
Algorithm:

1. If a ∈ seen then Return ∅
2. seen = seen ∪ {s}
3. S = {a : X ∈ A}
4. For R(a, b) ∈ A do

(a) If f∀O(R) = ∗ or f∀O(R−) = ∗ then
S = S ∪ {R(a, b)} ∪ build(b, seen)

(b) else if f∀O(R) 6= ∅ or f∀O(R−) 6= ∅ then
i. found = true

ii. For C ∈ f∀O(R) do
If not(C = ⊥ or (∃D.b : D ∈ A ∧ D vT C) or (b : nnf(¬C) ∈ A)) then

found=false
iii. For C ∈ f∀O(R−) do

If not(C = ⊥ or (∃D.a : D ∈ A ∧ D vT C) or (a : nnf(¬C) ∈ A)) then
found=false

(c) If found = true then
S = S ∪ {R(a, ix)}, s.t. ix does neither occur in Ind(A) nor in S

(d) else
S = S ∪ {R(a, b)} ∪ build(b, seen)

5. For R(b, a) ∈ A do
(a) If f∀O(R) = ∗ or f∀O(R−) = ∗ then

S = S ∪ {R(b, a)} ∪ build(b, seen)
(b) else if f∀O(R) 6= ∅ or f∀O(R−) 6= ∅ then

i. found = true
ii. For C ∈ f∀O(R) do

If not(C = ⊥ or (∃D.a : D ∈ A ∧ D vT C) or (a : nnf(¬C) ∈ A)) then
found=false

iii. For C ∈ f∀O(R−) do
If not(C = ⊥ or (∃D.b : D ∈ A ∧ D vT C) or (b : nnf(¬C) ∈ A)) then

found=false
(c) If found = true then

S = S ∪ {R(ix, a)}, s.t. ix does neither occur in Ind(A) nor in S
(d) else

S = S ∪ {R(b, a)} ∪ build(b, seen)
6. Return S

Figure 4. Build island for individual a

5. Evaluation and Suggestions for Further Improvements

In the following section we evaluate our proposal for island reasoning. We have imple-
mented the proposed algorithms in Java. For ontology access we used a Java interface
and implementation for the Ontology Web Language, called OWLAPI [BVL03]. Given
the OWLAPI interface, implementing the above algorithms was straightforward.

Ontology |Inclusions| |Equivalences| |NRN | Time for analysis (ms)
LUBM [GPH05] 75 6 25 4

Cyc [CYC05] 43541 2 4853 93
GODaily [HCI04] 28997 0 1 103
Galen [ALRP96] 3388 699 413 55

Pizza [oM08] 57 2 7 3

Figure 5. Extraction of ∀-info structures for several ontologies

First, we investigate, whether it is feasible to convert the TBox of a given ontology into
Shallow Normal Form and extract the ∀-info structure f∀O. For this purpose we have se-
lected five arbitrary ontologies. For lack of space please refer to the given references for
a detailed description of the ontologies. The results of our investigation are shown in
Figure 5. We think the numbers indicate that extracting a ∀-info structure for most on-
tologies should be feasible. Even ontologies whose TBox is considered large for current
description logic systems do perform quite well.

Second, we look at the average size of extracted islands. Our tests w.r.t. LUBM
are quite encouraging. The average size of an island is 29 nodes. The actual island size
depends on the chosen individual. Some preliminary statistics on example islands are
given in Figure 6. Please note that the island size does not depend on the number of
universities, i.e. for LUBM our approach promises quite good scalability.

The big island for Dep0 .Uni0/FullProfessor7 can be explained as follows. LUBM
imposes several ∀-constraints on the role headOf . Due to the definitions of Chair , Dean
and Director , the atomic concept descriptions ¬Department , ¬College and ¬Program
can be propagated via role headOf . Since all individuals with an incoming headOf -edge
are of type Department , we have to take them completely into account for building the
islands. If there were further constraints in the TBox, e.g. disjointness of Department ,
College and Program , we could further reduce the size of islands for individuals of type
FullProfessor .

Individual Island size Time for island computation
Dep0 .Uni0/GraduateStudent128 9 0 ms

Dep0 .Uni0/Publication2 4 1 ms
Dep0 .Uni0/FullProfessor7 93 2 ms

Dep0 .Uni0/Course4 37 0 ms

Figure 6. Statistics for islands in LUBM

In the following we discuss several ideas for further improvement of island reason-
ing. With respect to other inference tasks, e.g. instance retrieval, a naive application of
island loading can be doomed to failure. For instance, if there are several million named
individuals in the ABox of O, then one needs to load one island for each named individ-
ual and check, whether this individual is an instance of the concept in question. Thus,
while the atomic operation (instance checking) can be performed quite efficiently, the
overall run time can be still slow. We propose the following improvements to overcome
such problems:

“Preselection” by incomplete/unsound reasoning approaches The idea here is to re-
strict the set of possible answers to a query by a fast algorithm, which neglects ei-
ther soundness or completeness. Let φsound : NC → P(NA) be a sound instance
retrieval function, i.e. we have a ∈ φsound(A) =⇒ O ² a : A. Furthermore, let
φcomplete : NC → P(NA) be a complete instance retrieval function, i.e. we have
O ² a : A =⇒ a ∈ φcomplete(A).
If we want to perform instance retrieval for an atomic concept A, we only need
to check for all individuals a ∈ φcomplete(A) \ φsound(A), whether we have O ²
a : A. For all remaining individuals we do not have to perform explicit instance
checking. Please note that the quality of such an improvement depends on the
quality of φsound and φcomplete. Possible suggestions for such functions are:

φcomplete: Initial summary ABox [FKM+06], role condensates [WM07]
φsound: Any precompletion technique [BCM+07]

To sum up, we think that the combination of different scalability-notions will be
of importance to cope with the increasing amount of assertional data.

Precomputation of islands in case of static ABoxes Throughout the paper we empha-
size the advantages of our proposal for dynamic assertional information. How-
ever, if one knows in advance that the ABox will not change at all, our approach
can be improved further. For instance, one could precompute the islands for each
named individual in advance (offline). Then, whenever the island for individual a is
needed, one only needs to load the precomputed island. The approach is even more
promising, when you distribute these precomputed island among several comput-
ers.

Grouping individuals for “similarity”-islands Let S be a set of individuals for which
we want to perform instance checking. In a naive way, we would have to iterate
over all individuals in S. However, one could load the group of islands for S, by
considering

⋃
s∈S build(s, ∅). It is easy to see that this group of islands allows for

sound and complete reasoning for all individuals in S. Please note that the actual
improvement depends on the choice of individuals in S. Usually one would like to
group closely-related individuals together. A detailed investigation of this is part
of future work.

6. Conclusions and Future Work

We have introduced means to reason over ontologies, which have large amounts of as-
sertional information. Given an individual of interest, island reasoning allows state-of-
the-art description logic reasoners to load only relevant subsets of the ABox to perform
sound and complete reasoning. In particular, we have proposed a preprocessing step
which can be easily performed offline (computation of ∀-info structures) and an actual
island computation algorithm, which can be run on demand.

To analyze the scalability of our approach, we have investigated several commonly
used ontologies. We think that our evaluation shows a clear advantage, since the identi-
fied island for a given individual is usually quite small. Furthermore we have proposed
additional improvements which are subject to future work. Additionally, we will inves-
tigate the applicability of our proposal to more expressive description logics, e.g. SHIQ.
The extension for transitive roles is straightforward. The incorporation of min/max-
cardinality constraints in a naive way can be done as well. However, it has to be investi-
gated, whether the average island size is still small enough to be feasible in practice.

References

[ACG+05] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, Mattia Palmieri, and Riccardo Rosati. Quonto: Querying ontologies. In Manuela M. Veloso
and Subbarao Kambhampati, editors, AAAI, pages 1670–1671. AAAI Press / The MIT Press,
2005.

[ALRP96] J. E. Rogers A. L. Rector and P. A. Pole. The GALEN High Level Ontology. In Proceedings
MIE 96, pages 174–178. IOS Press, jan 1996.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, New York, NY, USA,
2007.

[BVL03] S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL API, 2003.
[CYC05] CYC. Cyc ontology (researchcyc). visited on, February 2005. retrieved from

http://www.cyc.com/.
[FKM+06] Achille Fokoue, Aaron Kershenbaum, Li Ma, Chintan Patel, Edith Schonberg, and Kavitha Srini-

vas. Using Abstract Evaluation in ABox Reasoning. In SSWS 2006, pages 61–74, Athens, GA,
USA, November 2006.

[GH06] Yuanbo Guo and Jeff Heflin. A Scalable Approach for Partitioning OWL Knowledge Bases. In
SSWS 2006, Athens, GA, USA, November 2006.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowledge base
systems. J. Web Sem., 3(2-3):158–182, 2005.

[HCI04] M. A. Harris, J. Clark, and A. et. al. Ireland. The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Res, 32(Database issue), January 2004.

[HM01] V. Haarslev and R. Möller. Description of the RACER System and its Applications. In Pro-
ceedings International Workshop on Description Logics (DL-2001), Stanford, USA, 1.-3. August,
pages 131–141, 2001.

[oM08] The University of Manchester. Pizza ontology. visited on, April 2008. retrieved from
http://www.co-ode.org/ontologies/pizza/2007/02/12/.

[Wan08] S. Wandelt. Partitioning OWL Knowledge Bases - Revisited and Revised. In Proc. International
Workshop on Description Logics, 2008.

[WM07] S. Wandelt and R. Möller. Scalability of OWL Reasoning: Role condensates. In Proc. Interna-
tional Workshop on Scalable Semantic Web Systems, 2007.

