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Executive Summary

This report describes major approaches for first-order probabilistic knowledge representation and
reasoning. It focuses on approaches with an underlying formal semantics. We analyse the pros and
cons of each approach and derive requirements for a representational formalism to be developed in
order to meet the knowledge representation and reasoning issues in CASAM.
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1 Introduction

Uncertainty plays a central role in many applications. For instance, classification tasks in general
require the systematic management of evidence leading to certain conclusions. Classic fields where
this is important are medical and technical diagnosis, forensic science, as well as criminology. We
argue that the same systematic uncertainty management is also relevant for media classification
or interpretation tasks. The goal of this report is first to provide an overview about the state of
the art in the development of expressive modeling formalisms that can appropriately deal with
uncertainty, and second, to derive reasoning capabilities that are suited to the requirements for
image interpretation as met in the project CASAM (Computer-Aided Semantic Annotation of
Multimedia).

To deal with uncertainty, the main epistemological commitment [Russell and Norvig, 2003,
p. 242] is that one should be able to express some kind of degree of belief in a certain statement
(i.e., the degree of belief that a formula holds or does not hold). Note that approaches using
degrees of belief are indeed compatible with classical logic. In both approaches each statement is
considered to be either true or false. For instance, if an agent believes the formula Bird(tweety)
is true with degree 0.9, the individual tweety is an element of the set of birds in 90 percent of all
worlds the agent can imagine. Nevertheless, for a particular world tweety is either a member of
Bird or not.1

As in classical logic, also in probabilistic logics, it is the goal to compute conclusions (entail-
ments, satisfiability results, etc.). In the case of probabilistic logics, the degree of belief in the
explicit statements should systematically influence the degree of belief the formalism associates
with the conclusions (implicit statements). If, for instance, media retrieval is formalized by com-
puting conclusions (a deduction problem), the degree of belief associated with the conclusion should
somehow model the relevance of a media document for a given information retrieval query. This
also holds for induction or abduction problems.

Degrees of belief can be represented using probability theory, which is a well-established research
field. One has to keep in mind that there are many probabilistic formalisms, each of which has its
pros and cons. In particular, it is important to understand that most approaches do not support
relational structures but just provide so-called random variables that can take either boolean values
or values from a discrete or continuous domain.2 Simple probabilistic formalisms involving boolean
or discrete domains have a strong correspondence with propositional logic. So-called events are
described using propositional formulae (called propositions for short). Propositions can be either
true or false. Relational structures, as supported by first-order logic (predicate logic), however, are
based on richer ontological commitments [Russell and Norvig, 2003, p. 242]. The world is assumed
to consist of objects which can be set into relation to each other. Objects can be denoted using
names (or terms). Relations are denoted by predicate symbols. Nonetheless, also in first-order
logic, statements about objects (formulae) can be either true or false.

A combination of first-order logic and a probabilistic formalism for representing uncertain infor-
mation about relational structures and for reasoning about uncertain information in this context is
advantageous in many applications. In non-trivial applications propositional logic usually suffers
from the variable explosion problem. In addition, degrees of beliefs concerning the relation of
objects cannot appropriately be represented in propositional probabilistic formalisms. For this rea-
son, so-called first-order probabilistic approaches have been devised. In the last ten years, research
on probabilistic first-order formalisms has gained substantial interest in the research community
as well as in industry.

In this report we focus on three major approaches: the Bayesian and the Markovian style
of modeling (see, e.g., [Pearl, 1988, Chapter 3] or [Koller et al., 2007]) as well as the so-called
P-SHOQ(D) formalism [Giugno and Lukasiewicz, 2002a]. The so-called Bayesian style of model-
ing is specified with acyclic graphs representing conditional independence assumptions that make

1In so-called fuzzy logics, the view is that tweety is to some extent a member of Bird. In these formalisms
there is a degree of truth for a statement and not a degree of belief that the statement is true (or false). While
in probabilistic logics, the membership function (characteristic function) just returns 0 and 1, in fuzzy logics,
membership is characterized using values from the interval [0, 1]. Fuzzy logics are better suited for modeling
vagueness rather than uncertainty.

2Obviously, the booleans are a special discrete domain. For the CASAM context, only boolean or discrete
domains are considered as relevant.
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probabilistic reasoning practical. Due to the graphical structure, the formalism is usually referred
to as Bayesian networks. Bayesian netword are, for instance, explained in [Russell and Norvig,
2003, Chapter 14] and will also be shortly described in Chapter 3 of this report for the sake of
completeness. Probabilistic Relational Models (PRMs) [Getoor et al., 2001] augment this formal-
ism with the possibility to handle assertions about objects, their attributes, and relations to other
objects. Although PRMs are influential, the logical formalization of PRMs is weak (they are based
on object-oriented programming). Since we focus on first-order probabilistic structures in order to
support more structured logic-based domain modeling in Chapter 3 we also introduce well-founded
first-order Bayesian network approaches based on description logics, although these formalisms are
less prominently discussed in the literature.

Concerning the Markovian style of modeling, which is specified with so-called Markov networks,
currently, there are two main approaches: Relational Markov networks (RMNs) [Taskar et al., 2007]
and Markov logic networks (MLNs) [Domingos and Richardson, 2007]. The former formalism is
also specified with relational structures but with less well-developed formal logical foundation.
The latter, however, is based on first-order logic and Markovian probabilistic structures, and
seems highly relevant for modeling probabilistic first-order structures. This approach is discussed
in detail in Chapter 4.

In Chapter 5 the P-SHOQ(D) formalism is described. As we will see, P-SHOQ represents
yet another approach to formalize probabilistic reasoning about first-order structures. In order to
investigate the expressivity of P-SHOQ(D) we analyse application problems with P-SHOQ.

We argue that the formalism of Markov logic networks seems suitable for CASAM, but point out
some deficiencies (in particular problems concerning ontology engineering w.r.t. predicate logic).
To overcome these problems, we propose a combination of description logics and Horn logics with
Markov networks to enhance ontology engineering and to guarantee the decidability of decision
problems in a yet expressive probabilistic formalism.

2 Preliminaries

The modeling style presented in this report have several notions and definitions in common. We
introduce the section in order to harmonize the presentation of different probabilistic representation
formalisms.

• Graph:
A graph G = (V ,E ) is composed of a finite set of vertices V and a finite set of edges
E ⊆ V ×V . Thus, E = {(vi , vj ) | vi , vj ∈ V } representing the fact that there are edges
from vi to vj , respectively. G is said to be directed (Figure 1(a)), if for each vi, vj it
holds that (vi , vj ) ∈ E implies (vj , vi) 6∈ E and, analogously, G is said to be undirected
(Figure 1(b)), if for each vi, vj it holds that (vi , vj ) ∈ E implies (vj , vi) ∈ E . Directed
edges are depicted with arrows and undirected edges with simple lines. Figure 1(a) shows
an example of a directed graph and its undirected counterpart. V = {v0, . . . , v5}, E =
{(v0, v2), (v1, v0), (v1, v3), (v2, v4), (v2, v5), (v4, v1)} for the directed graph, and the set of edges
for the corresponding undirected graph results by adding all tuples to E needed in order to
ensure symmetry).

• Path:
A path P in a directed graph G is a sequence of incident vertices where the vi are all distinct.
An example for a path P in Figure 1(a) is v0 ; v2 ; v4 ; v1 ; v3.

• Cyclic Graph:
A cycle C is a path P = vi ; vj ; . . . ; vi which begins and ends with the same vertex.
In Figure 1 in both graphs there is the cycle C1 = v0 ; v2 ; v4 ; v1 ; v0. In the
undirected graph there is the additional cycle C2 = v0 ; v1 ; v4 ; v2 ; v0. A graph G is
called cyclic if it contains at least one cycle, otherwise it is called acyclic.

• Parents:
A function Parents : V → U maps a vertex vi to a set U where U ⊂ V . In Figure 1(a),
Parents(v2) = {v0}.
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v0

v1

v3

v2

v4 v5

(a) Directed graph

v0

v1

v3

v2

v4 v5

(b) Undirected graph

Figure 1: Example of a directed and an undirected graph

In the following, we define the basic probability notations based on the notation used in [Russell
and Norvig, 2003]. Examples are given from the environment domain used in the CASAM project.

• Random variable:
A random variable X is a variable whose value depends on the result of a random experiment.

There are two types of random variables: discrete and continuous ones. Unlike a continuous
random variable, a disctere random variable takes only finite distinct values. In this report,
we consider only discrete random variables. Note that a probability distribution is assigned
to a discrete random variable. Assume random variable X denotes the number of rainy days
in three successive days, where R indicates a rainy day and S a sunny day. Table 1 depicts
all possible events E and the associated number of rainy days:

E RRR RRS RSR SRR RSS SRS SSR SSS
X 3 2 2 2 1 1 1 0

Table 1: Example of a random variable

• Domain of a random variable:
The domain of a random variable dom(X) is a set of possible values that a random variable
can take. A random variable X is called binary if dom(X) = {true, false}. Otherwise, it
is called a multi-valued random variable. For instance, the domain of a discrete random
variable WaterPollution has the following values which indicate the water pollution rate:

dom(WaterPollution) = {low,medium, high} (1)

In Table 1, dom(X) = {0, 1, 2, 3}.

• Event:
An atomic event X = xi where xi ∈ dom(X) is a result of a random experiment. For
example, an atomic event from the above example is WaterPollution = low.
An Event consists of multiple atomic events.

• Prior probability:
A prior probability or unconditional probability P (A = true) is the probability or likelihood
that proposition A is true. We use the prior probability if no other information about
proposition A is given. Otherwise we use the conditional probability which is described later.
A shorthand for P (A = true) is P (a) and for P (A = false) it is P (¬a). For example,
P (OilPollution = true) = 0.1 indicates that the probability of OilPollution = true is 0.1.

• Probability distribution:
A probability distribution is a vector of probabilities assigned to the possible values in the
domain such that their sum is set to one. Assume the probability distribution:
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P(WaterPollution) = 〈0.5, 0.3, 0.2〉 (2)

This means, the associated probabilities to the events are, respectively:

P (WaterPollution = low) = 0.5
P (WaterPollution = medium) = 0.3 (3)

P (WaterPollution = high) = 0.2

• Full joint probability distribution:
Assume two random variables X and Y . The joint probability distribution of X and Y ,
indicated by P (X = xi, Y = yj) or P (X = xi ∧ Y = yj), describes their probability of
occurring together. For example, the probability of AirPollution = true and Rain = true
is indicated by:

P (AirPollution = true ∧Rain = true)

In the full joint probability distribution, we consider all random variables involved in the ex-
periment. Assume n random variables X1, . . . , Xn. Consequently P (X1 = x1, . . . , Xn = xn)
is a full joint probability distribution.

• Conditional probability:
A conditional probability or posterior probability P (A = true|B = true) is the probability of
event A = true under the condition that event B = true is given. This is defined as follows:

P (A = true|B = true) =
P (A = true ∧B = true)

P (B = true)
(4)

The above equation holds if P (B = true) > 0.
For instance, the probability of Flood = true given Rain = true is indicated by:

P (Flood = true|Rain = true)

where Flood and Rain are binary random variables. This probability is determined by

P (Flood = true|Rain = true) =
P (Flood = true ∧Rain = true)

P (Rain = true)
. (5)

3 Bayesian style of modeling

Bayesian networks [Pearl, 1988] are one of the most inferential frameworks for representing and
reasoning with probabilistic models. They are used in many real-world applications including diag-
nosis, forecasting, automated vision, sensor fusion and manufacturing control. In the next sections,
syntax and semantics of Bayesian networks are discussed.

Syntax:

A Bayesian network BN = (G, γ) consists of a directed acyclic graph G = (V,E) and a function
γ : V → T which maps a vertex v to a conditional probability distribution T . Note that a vertex v
indicates a random variable and an edge eij = (vi, vj) shows the direct influence of parent vertex
vi to a child vertex vj . A conditional probability distribution Ti has the form P(Xi|Parents(Xi)).
If Parents(Xi) = ∅, then Ti specifies a prior probability.
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Semantics:

The semantics of a Bayesian network BN can be seen in two different ways [Russell and Norvig,
2003]:

1. The structure of a Bayesian network is determined by the insertion order of the vertices.
During the network construction, vertices are added to the network individually. After
adding a vertex, conditional dependencies of the new vertex to the vertices of the current
network are checked. If there are dependencies, incoming edges to the new vertex are added.
Each incoming edge comes from a previously added vertex which has conditional dependency
to the new vertex. Consequently, the first semantics of a Bayesian network indicates that
the structure of a Bayesian network shows the conditional independence relationships which
hold among the variables in the domain.

2. Bayesian networks are representions of full joint probability distributions of the domain
variables P (X1 = x1, . . . , Xn = xn). Equation 6 indicates the solution to the full joint
probability distribution of a set of graph vertices:

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi|Parents(Xi)) (6)

It means, the joint probability distribution of a set of variables is a product of their conditional
probability distributions. If Parents(Xi) = ∅, then a prior probability is inserted.

3.1 Example of a Bayesian network

In this example we consider two events which influence the human health namely air pollution
and noise pollution. One of the factors which affects air- and noise pollution is traffic jam. These
relationships are modelled by the Bayesian network graph in Figure 2:

TrafficJam

AirPollution

HumanHealth

NoisePollution

Figure 2: Example of a Bayesian network graph

TrafficJam and HumanHealth are conditionally independent given AirPollution and NoisePol-
lution therefore there is no link between them. Similarly AirPollution and NoisePollution are
conditionally independent given TrafficJam. Figure 3 depicts the above Bayesian network with
conditional probability distributions. The variables TJ, AP, NP and HH stand for TrafficJam,
AirPollution, NoisePollution and HumanHealth, respectively. All random variables are binary.
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TJ

AP

HH

NP

0.3

P (TJ = true )

T

NP

F

0.1

P (HH = true |  AP,NP )

0.3

T

F

0.2

0.6

T

AP

T

F

F

T

TJ

F

0.7

P (NP  = true |  TJ )

0.1

T

TJ

F

0.6

P (AP = true | TJ )

0.1

Figure 3: Example of a Bayesian network

In the Bayesian networks, conditional probability distributions T are given in the form of tables
which are assigned to vertices. Since TJ has no parents, only prior probabilities are assigned to
them. The probability of TJ=true is 0.3. Consequently, the probability of TJ=false is 0.7. Since
AP has only one parent, its conditional probability distribution has two rows. For example, the
first row means that the probability of AP=true is 0.6, if TJ is true. HH has two parents, conse-
quently its conditonal probability table has four rows. The first row means that the probability of
HH=true is 0.1 if AP and NP are both true.

An example for a full joint distribution is P (¬hh, ap, np, tj) which is computed based on Equa-
tion 6 as follows:

P (¬hh, ap, np, tj) = P (tj)P (ap|tj)P (np|tj)P (¬hh|ap, np) (7)
= 0.3× 0.6× 0.7× 0.9
= 0.1134 (8)

3.2 Inference in Bayesian networks

In this section, we discuss the decision problem in Bayesian networks which is called inference.
The objective of inference is the computation of a posterior probability P(X|E = e) for a query
variable X given a set of evidence variables E = {E1, E2, ...} where e is a tuple of particular
observed evidence. In addition to X and E, there is a set of nonevidence variables Y = {Y1, Y2, ...}
which are considered in the solution of the inference problem. There are two main solutions for
the inference problem, namely exact inference and approximate inference.

3.2.1 Exact inference

The exact inference solves the inference problem by the full joint distribution:

P(X|E = e) = αP(X,E = e) = α
∑
y

P(X,E = e,y) (9)

where the summation is over all nonevidence (hidden) variables Y. In the above equation, α
denotes a normalization constant. With this notation, the above equation can be written as a
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full joint distribution. The complexity of exact inference for a Bayesian network with n boolean
variables is O(n2n). It shows that the complexity of exact inference for large networks is very high.
In the following, an example for exact inference is given.

The next figure depicts a Bayesian network where the relationships between rain, flood and
air purrification are given. Since Flood and AirPurrification are conditionally independent, there
is no edge between them. In the conditional probability distributions R, F and AP respectively
stand for Rain, Flood and AirPurification which are all binary variables:

Rain

F lood

0.6

P (R = true )

T

R

F

0.6

P (F  = true |  R )

0.1

AirPurification

T

R

F

0.8

P (AP  = true |  R )

0.4

Figure 4: Example of a Bayesian network

The next table depicts the full joint distribution for the three boolean random variables:

flood ¬flood
airPurification ¬airPurification airPurification ¬airPurification

rain 0.24 0.06 0.16 0.04
¬rain 0.01 0.03 0.09 0.27

Table 2: A full joint distribution for Rain, Flood and Airpurrification world

— In Equation 10 we compute the probability of Rain = true given Flood = true, where Rain
is a query variable and Flood is an evidence variable:

P (rain|flood) =
P (rain ∧ flood)

P (flood)
=

0.24 + 0.06
0.24 + 0.06 + 0.01 + 0.03

= 0.88 (10)

Similarly, we compute the probability of Rain = false given Flood = true:

P (¬rain|flood) =
P (¬rain ∧ flood)

P (flood)
=

0.01 + 0.03
0.24 + 0.06 + 0.01 + 0.03

= 0.12 (11)

The term 1/P (Flood = true) in Equations 10 and 11 is a normalization constant, which causes
the sum of the above probabilities to be set to one. The nonevidence variable in the above inference
is AirPurrification. If we use probability distributions, the above equations can be written in a
single equation:

P(Rain|flood) = αP(Rain, flood) (12)
= α [P(Rain, flood, airPurification) + P(Rain, flood,¬airPurification)]
= α [〈0.24, 0.01〉+ 〈0.06, 0.03〉]
= α [〈0.30, 0.04〉] = 〈0.88, 0.12〉
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3.2.2 Approximate inference

As it was discussed in the previous section, the complexity of exact inference for large networks
is very high. Therefore approximate inference methods have been developed. The functionality of
these methods is the generation of samples for the considered random variables. The accuracy of
sampling methods depends on the number of samples. It means, generating more samples leads to
higher accuracy and consequently the result converges to the result of exact inference. In the next
section, we introduce one of the sampling methods and its functionality.

Direct sampling method In this section, we describe direct sampling which is based on the
generation of samples. To generate these samples, the creation of random numbers in the interval
[0, 1] is needed. In a Bayesian network, the sampling process is performed for all random variables
(the nodes) of the network, no matter whether they are query-, evidence- or nonevidence variables
of the inference problem. The order, in which the sampling takes place, is geared to the topological
appearance of the nodes. The required probability distributions of the nodes are known and are
given by the conditional probability tables. Sampling a Bayesian network leads to the generation
of events, which are sets of boolean assignments for all the variables of the network.

Consider the example depicted in Figure 4. Rain is given as a parent node of Flood as well
as of AirPurification, hence the sampling order is [Rain, F lood,AirPurification]. The proba-
bility distribution from which the values are sampled depends on the values that were assigned to
the variable’s parents. An examplary creation of an event includes the following three steps:

1. Sample from P(Rain) = 〈0.5, 0.5〉; suppose this returns true.

2. Sample from P(Flood|Rain = true) = 〈0.6, 0.4〉; suppose this returns true.

3. Sample from P(AirPurification|Rain = true) = 〈0.8, 0.2〉; suppose this returns true.

The resulting event would be [true, true, true].

Because each step in the sampling process depends only on the parent values, the probability
that a specific event S(x1, . . . , xn) is generated can be expressed by

S(x1, . . . , xn) =
n∏

i=1

P (xi|Parents(Xi)). (13)

This probability is equivalent to the full joint distribution of the Bayesian network for the given
event as shown in Equation 6. Any sampling algorithm is based on counting the generated samples.
If a total number of N samples is generated and the frequency of the specific event x1, . . . , xn is
N(x1, . . . , xn), the limit of the fraction

lim
N→∞

N(x1, ..., xn)
N

(14)

is expected to converge to its sampling probability SPS(x1, . . . , xn) and accordingly also to the
expected probability P (x1, . . . , xn). For the given example, the sampling propability is

SPS(true, true, true) = 0.5× 0.6× 0.8 = 0.24, (15)

so for large N , 24% of the samples are expected to be of this event.

Rejection sampling in Bayesian networks Rejection sampling is an approximate inference
method which is used for the computation of inference problems. It is based on an estimated
probability function P̂(X|E = e). The idea of this method is the generation of samples for the
considered evidence variables E. Afterwards, the samples which do not match E = e are rejected.
The remaining samples show the appearance frequency of X. By using sampling, the estimated
probability distribution can be written as:
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P̂(X|E = e) =
N(X,E = e)
N(E = e)

(16)

where N indicates the number of samples and N is a vector of counts over values of X. For
example, consider the conditional probability P(Rain|flood). Assume we have 100 samples. Of
the produced 100 samples, suppose that 54 have flood = false and are rejected, whereas 46 have
flood = true. From the 46 samples, 37 have Rain = true and 9 have Rain = false. Consequently,

P̂(Rain|flood) ≈ α 〈37, 9〉 = 〈0.80, 0.20〉 (17)

The correct answer is 〈0.88, 0.12〉. By generating more samples, the result converges to the correct
answer. The disadvantage of the rejection algorithm is that it takes a long time to collect correct
samples since this algorithm drops many samples which do not have the prerequirements.

In the next section, the advantages and disadvantages of Bayesian networks are discussed.

3.3 Advantages and disadvantages of Bayesian networks

The advantages of Bayesian networks are as follows:

• Bayesian networks are one of the best-understood models for representing the joint probability
distribution of a domain.

• It has a good graphical representation which shows the local influences among the random
variables.

• Since Bayesian networks are used for modeling causality, we can understand the conditional
probability distributions.

Despite these interesting properties, Bayesian networks have the following disadvantages:

• In Bayesian networks, it is not possible to refer to objects and their relations. For example,
we can not refer to the TrafficJam in a particular city like Hamburg or a Flood in Berlin.

• modeling of the Bayesian network with cycles is not allowed. The Bayesian network graph
in Figure 5 represents an environmental relation. We insert the nodes in the following order
from top to bottom: Condensation, Precipitation and Evaporation. Afterwards, to determine
the edges in each step, we check the dependency of each node to the previously inserted nodes.
This means that the node Precipitation has no outgoing edge to Condensation. Similarly,
the node Evaporation has no outgoing edge to other nodes:

Condensation

Evaporation

Precipitation

Figure 5: Bayesian network graph representing an environmental relation

As it can be seen in the above Bayesian network, a water cycle is not represented in a cyclic
form.

• The complexity of decision problems in Bayesian networks is NP-hard.
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3.4 First-order logic

Unlike propositional logic, where it is only possible to represent information on simple state-
ments/propositions A,B,C, ... with boolean operators ¬, ∧, ∨, →, ↔, etc. resulting in formulas
such as e.g. ((A→ B)↔ ((A ∧ ¬B) ∨ C)), in first-order logic (FOL) [Fitting, 1996] there is the
additional possibility to handle assertions about objects and their relations. Atomic formulas
(i.e. formulas without any operator) in FOL have a complex structure. They are represented with
R(t1, ..., tn) for a predicate R denoting a relation of the chosen domain and terms t1, ..., tn, each
term ti being either a constant denoting an object of the domain, a variable or (inductively) a
function of terms. The second enlargement of expressivity are quantified formulas ∀x [F ] (for all
x, F holds) and ∃x [F ] (there is an x such that F holds). It is possible to substitute variables
appearing in terms of first-order formulas with constants. Since resulting terms consist of explicit
constants denoting real world objects (and explicit function terms assigning to real world objects),
these formulas (resp. terms) are referred to as being grounded and corresponding substitutions
are also called groundings in the following.

3.5 Probabilities and first-order logic

Modelling uncertainty in the context of description logics has been a topic of research for many
years. An overview of such extensions to classical description logics is presented in [Baader et al.,
2003c]. The research is oriented to the work of modelling uncertain knowledge on the basis of
first-order structures [Nilsson, 1986, Bacchus, 1990, Halpern, 1990]. The fundamental view of the
approaches based on description logics is such that it should also be possible to represent the de-
gree of overlap between concepts (and not only subsumption or disjunction) through probabilities.
Furthermore it should also be possible to formulate uncertainty about the structure of objects. Ini-
tial approaches considered primarily probabilistic knowledge at the conceptual level, this means,
at the level of the TBox [Heinsohn, 1994]. Also knowledge representation for single objects and
their relations from a probabilistic view were studied [Jaeger, 1994], such that structural uncer-
tainty could potentially be modeled. Along with early research results about decidability of very
expressive logics (e.g. OWL DL), proposals for the modelling of uncertain knowledge were given.

It is important to observe that the semantics used in the different approaches do not differ much
(for example w.r.t. [Jaeger, 1994] and [Giugno and Lukasiewicz, 2002b]). An approach for the
modelling of uncertain structures for a less expressive language is presented in [Dürig and Studer,
2005]. However, no specific inference algorithms are known for this approach. An important step for
the practical use of description logics with probabilities occurred with the integration of Bayesian
networks in P-CLASSIC [Koller et al., 1997], nevertheless very strong disadvantages were obtained:
for number restrictions the supremum limits must be known and separate Bayesian networks are
necessary to consider role fillers. Along with this problem, the probabilistic dependencies between
instances must also be modeled. This problem was overcome in [Koller and Pfeffer, 1998] - however
not in the context of description logics but with a frame-based approach, in which the treatment
of default values is given without formal semantics. The main idea in [Koller and Pfeffer, 1998] is
the view of considering role fillers as nodes in Bayesian networks which have CPTs (conditional
probability tables) associated to them as generalized number restrictions in the sense of description
logics. Related studies followed in [Pfeffer et al., 1999].

Complementary to the P-CLASSIC approach, another approach called PTDL [Yelland, 2000]
was developed for probabilistic modelling with the use of first-order structures. In this approach the
Bayesian network theory is considered as basis reference for further extensions, instead of (classical)
description logics. The Bayesian network nodes represent function values and an individual is
associated to other nodes through these function values. The approach in [Yelland, 2000] avoids
some disadvantages of P-CLASSIC, but it offers minimal expressivity on the side of description
logics. In context with very expressive description logics another approach [Ding and Peng, 2004,
Ding et al., 2005] was presented for the integration of Bayes networks. Algorithms for deduction
over probabilistic first-order structures were developed by Poole [Poole, 2003]. Poole observes, that
the existing approaches (e.g. [Koller and Pfeffer, 1998,Pfeffer et al., 1999]) only consider individuals
that are explicitly named. Qualitative probabilistic matching with hierarchical descriptions was
studied [Smyth and Poole, 2004]. It allows for a variation of the level of abstraction.
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Previous studies have investigated the combination of Datalog and description logics (so-called
description logic programs) [Nottelmann and Fuhr, 2004, Lukasiewicz, 2005a, Lukasiewicz, 2005b,
Nottelmann and Fuhr, 2006]. Approaches for information retrieval with probabilistic Datalog are
presented in [Fuhr, 2000,Fuhr, 1995]. In this area, work on learning from Datalog-predicates with
uncertainty is also relevant [Nottelmann and Fuhr, 2001].

While [Hobbs et al., 1993,Shanahan, 2005] use first-order logic for text and image/video inter-
pretation, with description logics, we argue to use a decidable knowledge representation formalism
with well-tested implementations that are known to be efficient for many typical-case inputs (see,
e.g., [Espinosa et al., 2007, Espinosa et al., 2008, Castano et al., 2008]). The use of logical rules
and backward chaining for implementing an abduction algorithm is also investigated in the area of
logic programming [Kakas et al., 1992,Poole, 1993a,Poole, 1992,Kakas and Denecker, 2002,Flach
and Kakas, 2000]. In our approach, however, predicate names in rules are defined w.r.t. ontologies
represented as description logic Tboxes, and thus we use another expressive fragment of first-order
logic. In the context of information retrieval, user queries can be answered regarding user-specified
Tboxes. In the previous sections, we have argued that probabilistic reasoning would really add to
the application scenario of information retrieval we have used in this chapter. In [Sebastiani, 1994]
an proposal is made for using probabilistic description logics for information retrieval. No system
implementation has been developed, though.

In the previous section we have discussed related work for integrating probabilistic and de-
scription logic reasoning. Only recently, however, abduction has been investigated in the context
of description logics [Colucci et al., 2004]. However, in this work, abduction is considered for
concepts, not Aboxes and queries. Due to the best of our knowledge, abduction has not yet been
considered in the context of probabilistic description logics. Interesting input to this research is
provided by abduction in probabilistic logic programming [Charniak and Goldman, 1991, Poole,
1993b].

4 Markovian style of modeling

In this chapter, the formalism of Markov logic networks [Domingos and Richardson, 2007] is in-
troduced, which emerged from Markov networks and first-order logic. First, in Section 4.1 it is
shown that Markov networks allow for modeling dependencies of a set of random variables with
undirected and cyclic graphs in order to determine degrees of beliefs of the values of these random
variables. After that, in Section 4.2 it is explained that knowledge representation with first-order
logic provides a means to handle assertions about objects and their relations. Finally, in Section
4.3 the formalism of Markov logic networks is presented, which results from the combination of
Markov networks and the expressivity of first-order logic. The chapter finishes with advantages
and disadvantages of this approach.

4.1 Markov networks

Like Bayesian networks, Markov networks allow for modeling joint distributions of a set of ran-
dom variables X = {X1 , ...,Xn} [Pearl, 1988, Chapter 3] [Koller et al., 2007]. A Markov network
MN = (G ,Φ) is composed of a graph G = (V,E) and a set of potential functions Φ. G consists of
a set of nodes V = {v1, ..., vn} (each node vi represents the random variable Xi) and a set of edges
E between nodes. The graph is assumed to be irreflexive, i.e. E ⊆ {(vi, vj) | vi, vj ∈ V ∧ i 6= j}.
In contrast to graphs of Bayesian networks, G is undirected and possibly cyclic. These proper-
ties are necessary to immediately model interrelations between random variables. For example,
referring to the environmental domain of the CASAM project, consider the natural water cycle:
Ascending air condensates (i.e. changes its physical state of aggregation from gaseous to liquid),
resulting water precipitates (i.e. is transferred from the atmosphere to earth) and then evaporates
(i.e. becomes gaseous again). An undirected graph of this cycle and some of its consequences could
be visualized as in Figure 6.

Each edge in this graph represents a dependency between corresponding random variables.
The dependencies between Condensation, Precipitation and Evaporation are cyclic and therefore
cannot be modeled with Bayesian networks directly. The edges between these nodes, though,
are intended to be directed. This is not the case for the edge between HumanProliferation and
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Condensation Precipitation

Evaporation

PlantProliferation

HumanProliferation

Figure 6: Markov network graph modeling the water cycle and some of its consequences

PlantProliferation: PlantProliferation has influence on HumanProliferation and vice versa (since
humans settled down thousands of years ago).

If a node Xi is not directly connected to another node Xj , it is conditionally independent
of Xj given the set Z of nodes directly connected to Xi. For example, since Condensation is not
directly connected to both HumanProliferation and PlantProliferation, it is possible to compute
the conditional probability of Condensation given only Precipitation and Evaporation.

A clique is a maximal subgraph of G whose nodes are connected to each other. Concerning
the example, there are two cliques, each composed of three nodes: The cliques Condensation −
Precipitation − Evaporation as well as Precipitation − PlantProliferation −HumanProliferation.
In other scenarios, there are also cliques consisting of more or less than three nodes (and therefore
not necessarily of cycles). The set of all cliques of a graph G is C(G) = {c1, ..., cm}.

Possible worlds ~x = <x1, ..., xn> are instantiations of all random variables ~X = <X1, ..., Xn> of
a Markov network MN . If they are observed as tuples (x1, ..., xn), the set of all these instantiations
is Γ = { ~x1, ..., ~xr}. In order to quantify the edges, potential functions φc ∈ Φ have to be defined
for each clique c ∈ C(G) in the graph, depending on a world ~xc for which only random variables
appearing in c have to be considered, i.e. the clique defines the arity of φc (note the advantage of
this locality). The full joint probability distribution of Markov networks is given by

P ( ~X = ~x) =
1
Z

∏
c∈C(G)

φc(~xc) (18)

i.e. the probability of an event ~X = ~x (a world ~x) is computed with the product of all clique-
potentials divided by the normalization scalar Z, the sum of potential function products for all
possible worlds ~x ∈ Γ:

Z =
∑
~x∈Γ

∏
c∈C(G)

φc(~xc)

Dividing by Z guarantees that the sum of the probabilites of all possible worlds ~x is 1.

Consider a Markov network graph only representing the water cycle (Figure 7).

Condensation Precipitation

Evaporation

Figure 7: Markov network graph representing the water cycle

If occuring variables Condensation, Precipitation and Evaporation are intended to be binary
(i.e., their values are either true or false), then the assignment Condensation = true can be ab-
breviated with c and Condensation = false with ¬c (analogously for the other variables) and there
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are eight possible combinations of the assignments of the three random variables constituting eight
possible worlds:

~x1 = <c, p, e>
~x2 = <c, p,¬e>
~x3 = <c,¬p, e>
~x4 = <¬c, p, e>

~x5 = <c,¬p,¬e>
~x6 = <¬c, p,¬e>
~x7 = <¬c,¬p, e>
~x8 = <¬c,¬p,¬e>

If the potential function φwater for the water cycle clique is defined, the probabilities of these eight
worlds can be computed: Given the arbitrary potential function values

φwater(~xiwater) =
{

1500 , if i = 1 or i = 8
120 , else

(equal values of the three variables are considered more likely) the probability of e.g. ~x1 is

1500
Z

=
1500

1500 + 120 + 120 + 120 + 120 + 120 + 120 + 1500
≈ 0, 4.

By observing random variables as propositions, there is a strong connection to propositional logic:
Concerning the modeling of the water cycle, a corresponding formula in this logic is
F = Condensation ∧ Precipitation ∧ Evaporation consisting of a conjunction of three proposi-
tions. Since the semantics of propositional logic is defined with interpretation functions I assigning
truth values (true resp. false) to each proposition, each of the eight worlds ~xi presented above
can be expressed, if corresponding interpretations for F are considered. For example, the world
~x2 = <c, p,¬e> can also be expressed as c ∧ p ∧ ¬e, since ~x2 corresponds to the interpretation
I(Condensation) = true, I(Precipitation) = true and I(Evaporation) = false.

The representation of the full joint probability distribution with potential functions often is re-
placed by so-called log-linear modeling. In this representation, the exponent of an e-function is
the sum of all real number weighted (usually binary) features fc of the world ~x:

P ( ~X = ~x) =
1
Z
exp (

∑
c∈C(G)

wcfc(~x)) (19)

Its advantage is that potential functions φc are broken down into components which are easier to
handle and easier to understand. If these components are chosen properly, then probabilites of ar-
bitrary worlds do not differ from probabilites computed with the potential function representation.
The scalar Z is defined analogously with the sum of these e-functions over all possible worlds.

4.2 First-order logic in Markovian apporaches

It is possible to substitute variables appearing in terms of first-order formulas with constants. Since
resulting terms consist of explicit constants denoting real world objects (and explicit function terms
assigning to real world objects), these formulas (resp. terms) are referred to as being grounded
and corresponding substitutions are also called groundings in the following.

To model dependencies between random variables, FOL formulas can be represented in a FOL
knowledge base. Concerning the water cycle example presented at the beginning of this chapter
(cf. Figure 6 and surrounding explanations), dependencies in this scenario could be specified with
the following FOL knowledge base KB1:

1. ∀x [RegionWithHighCondensation(x )→ RegionWithHighPrecipitation(x )]

2. ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighEvaporation(x )]

3. ∀x [RegionWithHighEvaporation(x )→ RegionWithHighCondensation(x )]

4. ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighHumanProliferation(x )]

5. ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighPlantProliferation(x )]

6. ∀x [RegionWithHighHumanProliferation(x )↔ RegionWithHighPlantProliferation(x )]
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The variable x could be substituted by a constant denoting a specific local region (e.g. Northern
Germany). However, KB1 does not represent relations of the domain. To use this kind of expres-
sivity, consider another knowledge base KB2 representing the water cycle w.r.t. possibly adjacent
regions:

1. ∀x [RegionWithHighCondensation(x )→ RegionWithHighPrecipitation(x )]

2. ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighEvaporation(x )]

3. ∀x [RegionWithHighEvaporation(x )→ RegionWithHighCondensation(x )]

4. ∀x [RegionWithHighPrecipitation(x )→ ∃y [adjacent(x , y) ∧ RegionWithHighPrecipitation(y)]]

The fourth formula of this knowledge base represents the constraint that for each region with high
precipitation there has to be at least one adjacent region also with high precipitation.

Clearly, the formulas of KB1 and KB2 do not represent the real world correctly. They are not
always true (e.g. it is possible that there is a high condensation in region r1 with its according high
precipitation in another region r2). Therefore, [Domingos and Richardson, 2007] apply Markov
networks to FOL in order to be able to specify degrees of beliefs of formulas. The resulting
formalism will be explained in the following section.

4.3 Markov logic networks

The formalism of Markov logic networks [Domingos and Richardson, 2007] provides a means to
combine the expressivity of first-order logic with the formalism of Markov networks. A Markov
logic network MLN = (F ,W) consists of a set of first-order formulas F = {F1, ..., Fm} and a set
of real number weights W = {w1, ..., wm} associated to these formulas.

In contrast to conventional formulas assumed to be valid, weighted formulas Fi need not always
be true. For example, as indicated above, the all-quantified formula

∀x [RegionWithHighCondensation(x )→ RegionWithHighPrecipitation(x )]

might be true for a lot of regions, but also might be false for other regions. By assigning a reasonable
weight to this formula, it becomes a soft constraint representing the environmental domain more
appropriate. When a world ~x violates this weighted formula (worlds including regions with high
condensation, but without high precipitation) it is less probable rather than impossible [Domingos
and Richardson, 2007].

Consider the Markov logic network MLN1 which consists of the all-quantified formulas of KB1

prefixed with (initially arbitrary) real number weights:

2.5 ∀x [RegionWithHighCondensation(x )→ RegionWithHighPrecipitation(x )]

2.5 ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighEvaporation(x )]

2.5 ∀x [RegionWithHighEvaporation(x )→ RegionWithHighCondensation(x )]

1.1 ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighHumanProliferation(x )]

2.5 ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighPlantProliferation(x )]

1.1 ∀x [RegionWithHighHumanProliferation(x )↔ RegionWithHighPlantProliferation(x )]

The weights of the fourth and sixth formula of MLN1 have been chosen lower than the other weights,
because there are many regions with high precipitation but without high human proliferation
respectively many regions with high plant proliferation but without high human proliferation.
Usually the weights are not given. They have to be computed given evidence. This computation is
called learning (see e.g. [Kok and Domingos, 2005]). In MLN [Domingos and Richardson, 2007],
evidence is a relational database consisting only of atomic facts (grounded atomic formulas). Facts
not specified are assumed to be false (this is the Closed-World-Assumption).

For each Markov logic network MLN there is an appropriate Markov network MN = (G,Φ). To
create such a network, the graph G of this network contains
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1. one node for each possible grounding of each predicate appearing in MLN

2. one edge between two nodes if and only if the corresponding ground predicates appear to-
gether in a grounding of a formula Fi in MLN

As can be concluded from this conditions, the approach of [Domingos and Richardson, 2007] treats
cliques c as influences in grounded first-order logic formulas Fi. For example, according to the
representation of the water cycle and some of its consequences with KB1 in Section 4.2, a similar
Markov network as presented in Figure 6 can be created: Suppose that it is assumed that there is
only one constant ng in the domain denoting the local region Northern Germany. To state this,
the domain closure axiom ∀x [x .= ng] has to be considered which is required to hold in all
possible worlds (see [Brachman and Levesque, 2004] for an explanation of this kind of axioms).
The nodes of the graph of the corresponding Markov network then are given as shown in Figure 8
(with Condensation(ng) as an abbreviation of RegionWithHighCondensation(ng), analogously for
the other nodes).

Evaporation (ng) HumanProliferation (ng)Condensation (ng) Precipitation (ng) PlantProliferation (ng)

Figure 8: Nodes originating from grounding example first-order formulas

To instantiate the edges of this graph, it is needed to apply all possible groundings to the formulas
of KB1. Since there is only one region, the resulting Markov network graph G1 is the one presented
in Figure 9.

Evaporation (ng) HumanProliferation (ng)

Condensation (ng) Precipitation (ng) PlantProliferation (ng)

Figure 9: Markov logic network graph of the water cycle example

According to Equation 19, the log-linear representation of the full joint probability distribution of
a Markov logic network MLN is given, if for each possible world ~x the value of fc(~x) is determined
by the number of true groundings ni(~x) of formulas Fi in ~x, i = 1, ...,m:

P ( ~X = ~x) =
1
Z
exp (

m∑
i=1

wini(~x)) (20)

Since the exp-term is another representation of the product of potential functions φc ∈ Φ, the cor-
responding Markov network MN = (G ,Φ) of a given Markov logic network MLN = (F ,W) now
is defined completely.

By means of an example, in the following it is shown that a world is less probable than an-
other, if it violates more (higher weighted) formulas: With respect to MLN1 , the probability
of ~x1 = <¬C(ng), P r(ng), E(ng),H (ng),¬Pl(ng)> (where e.g. Pr(ng) is an abbreviation for
RegionWithHighPrecipitation(ng) = true),

P ( ~X = ~x1) =
1
Z
exp(2, 5 · 1 + 2, 5 · 1 + 2, 5 · 0 + 1, 1 · 1 + 2, 5 · 0 + 1, 1 · 0) ≈ 446

Z
,

is much lower than that of ~x2 = <C(ng), P r(ng), E(ng),¬H (ng), P l(ng)>:

P ( ~X = ~x2) =
1
Z
exp(2, 5 · 1 + 2, 5 · 1 + 2, 5 · 1 + 1, 1 · 0 + 2, 5 · 1 + 1, 1 · 0) ≈ 22026

Z
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Due to its complexity (25 possible worlds), the computation of Z is not presented here.
By assigning the first, second and third formula of MLN1 to the water cycle clique and the fourth,

fifth and sixth to the clique of the consequences of precipitation, the probabilities of the worlds ~x1

and ~x2 can further be computed with corresponding potential functions φwater and φcons, if

φwater( ~x1water) = φwater(<¬C(ng), P r(ng), E(ng)>) ≈ 148, 41 ≈ e2,5 · e2,5 · e0,
φcons( ~x1cons) = φcons(<Pr(ng), H(ng),¬Pl(ng)>) ≈ 3, 004 ≈ e1,1 · e0 · e0,

φwater( ~x2water) = φwater(<C(ng), P r(ng), E(ng)>) ≈ 1808, 04 ≈ e2,5 · e2,5 · e2,5,
φcons( ~x2cons) = φcons(<Pr(ng),¬H(ng),¬Pl(ng)>) ≈ 12, 1825 ≈ e0 · e2,5 · e0,

since 148, 41 · 3, 004 ≈ 446 and 1808, 04 · 12, 1825 ≈ 22026.

In order to show the expressivity and complexity of Markov logic networks, another example
is discussed in the following. By (initially arbitrary) assigning prefixed real number weights to the
formulas of KB2 , the Markov logic network MLN2 is defined by

2.5 ∀x [RegionWithHighCondensation(x )→ RegionWithHighPrecipitation(x )]

2.5 ∀x [RegionWithHighPrecipitation(x )→ RegionWithHighEvaporation(x )]

2.5 ∀x [RegionWithHighEvaporation(x )→ RegionWithHighCondensation(x )]

1.6 ∀x [RegionWithHighPrecipitation(x )→∃y [adjacent(x , y)∧RegionWithHighPrecipitation(y)]].

Since in this Markov logic network there is a predicate relating to adjacent regions, it is reasonable
that there are at least two constants denoting two regions of the domain. We assume that there
are only the constants ng (denoting Northern Germany) and d (denoting Denmark) by considering
the domain closure axiom ∀x [x .= ng ∨ x .= d]. Possible groundings of the fourth formula then are

RegionWithHighPrecipitation(ng) → adjacent(ng ,ng) ∧ RegionWithHighPrecipitation(ng)
RegionWithHighPrecipitation(ng) → adjacent(ng , d) ∧ RegionWithHighPrecipitation(d)
RegionWithHighPrecipitation(d) → adjacent(d ,ng) ∧ RegionWithHighPrecipitation(ng)
RegionWithHighPrecipitation(d) → adjacent(d , d) ∧ RegionWithHighPrecipitation(d).

Together with all possible groundings of the (simpler) first three formulas, they induce the Markov
network graph G2 of MLN2 visualized in Figure 10.

Condensation (ng)

Precipitation (ng)

Evaporation (ng)

adjacent (ng,ng)

adjacent (ng,d )

adjacent (d,ng)

Precipitation (d )

Evaporation (d )

Condensation (d )

adjacent (d,d )

Figure 10: Markov logic network graph also representing relations

Thus, compared to G1, in presence of additonal constants and relations, the size of a Markov
network graph increases heavily, even if there are less underlying formulas.

Analogous to the previous example, probabilities of possible worlds can be computed by apply-
ing 20. With respect to MLN2 , the probability of ~x1 = <C(ng), P r(ng),¬E(ng), C(d),¬Pr(d),
¬E(d), adj(ng, d), adj(d, ng),¬adj(ng, ng),¬adj(d, d)> (with e.g. adj(ng, d) as an abbreviation for
adjacent(ng, d) = true),
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P ( ~X = ~x1) =
1
Z
exp(2, 5 · 1 + 2, 5 · 1 + 2, 5 · 2 + 1, 6 · 1) ≈ 109098

Z
,

is much lower than that of ~x2 = <C(ng), P r(ng), E(ng),¬C(d),¬Pr(d),¬E(d),¬adj(ng, d),
¬adj(d, ng),¬adj(ng, ng),¬adj(d, d)>:3

P ( ~X = ~x2) =
1
Z
exp(2, 5 · 2 + 2, 5 · 2 + 2, 5 · 2 + 1, 6 · 1) ≈ 16191549

Z

As can be seen from this example, there is an additional advantage of the log-linear representation
of Markov networks. Since there are six cliques in G2, a representation with potential functions is
more expensive.

4.3.1 Decision problems - Querying Markov logic networks

To compute the conditional probability for a query X based on given evidence e,

P(X | e) =
P(X, e)
P(e)

= α P(X, e),

performing exact inference with the necessity of summing out all hidden variables (cf. Chapter 2)
is significantly intractable: it is ]P-complete [Roth, 1996]. Therefore, like in Bayesian Networks,
sampling inference methods have to be applied. The most used ones are Markov Chain Monte
Carlo algorithms (MCMC) [Gilks et al., 1996], which have been implemented in the Alchemy open
source software [Kok et al., 2005]. The number of possible worlds, however, is exponential in the
size of introduced constants independent of the inference method. To reduce this number, in these
implementations it is possible to specify domains for predicates.

4.3.2 Advantages and disadvantages of Markov logic networks

A great advantage of Markov logic networks is the possibility to specify interrelations of random
variables. It means that the edges of corresponding Markov network graphs are undirected. In
addition, Markov logic networks allow the graphical representation of cyclic dependencies. Since
Markov logic applies first-order logic as modeling language, it is possible to handle expressive
assertions about objects and their relations.

Disadvantages evolve by considering ontology engineering and the complexity of computing
inference: In the formalism of Markov logic networks consistency checks are not possible and
MCMC algorithms applied to more expressive MLNs probably are exponential in time or even will
not terminate. Another disadvantage is that formula weights are counterintuitive. Their influence
is not obvious. To get a slightly understanding of them, they have to be related to all other formula
weights.

5 The P-SHOQ(D) style of modeling

Description Logics (DLs) [Baader et al., 2003b] in most cases are decidable fragments of first-order
logic. Some of these languages are very expressive, though, and – in contrast to first-order logic
– DLs provide well understood means to establish ontologies. Therefore they are also used as
representation languages for the Semantic Web [Baader et al., 2005].

Many formalisms extending DLs with probabilistic knowledge representation already have been
investigated (see [Predoiu, 2008] for an overwiev). In this chapter, the P-SHOQ(D) [Giugno and
Lukasiewicz, 2002a] formalism is introduced, which allows for a combination of the very expressive
description logic SHOQ(D) and probabilities. Later this formalism was adapted to SHIF(D)
and SHOIN (D) in [Lukasiewicz, 2008] and implemented for SHIQ(D) in [Näth, 2007] [Näth and
Möller, 2008] [Klinov, 2008] [Klinov and Parsia, 2008a]. Summarized in a nutshell the formalism
extends the description logic syntax by a construct called conditional constraint, its semantics by a
probabilistic interpretation on possible worlds and decision problems are solved by finding solutions

3The worlds ~x1 and ~x2 have been chosen according to the intended irreflexivity and symmetry of the relation
denoted by adjacent.
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to linear programs and standard satisfiability tests with respect to the underlying description logic.
They allow for representation of terminological and assertional probabilistic knowledge as well as
default knowledge on concepts as a special case.

5.1 Syntax

Since the P-SHOQ(D) formalism relies on the description logic SHOQ(D), the syntax of this
logic and DLs in general is introduced first.

The vocabulary of description logic languages consists of concepts, roles and constants.
Concepts denote sets of objects, roles binary relationship between objects and constants a spe-
cific individual. Atomic concepts (atomic roles) are distinguished from complex concepts or
concept descriptions (resp. complex roles), which are composed of atomic concepts and concept
constructors (resp. atomic roles and role constructors). Every string of a concept description itself
being a concept is called a subconcept.

In order to understand the syntax of SHOQ(D), the well known propositionally closed descrip-
tion logic ALC [Schmidt-Schauß and Smolka, 1991] is considered first. Let A be an atomic concept
and R an atomic role. Then, the set of ALC concepts denoted by C or D is inductively defined
with

C, D −→ > | ⊥ | A | ¬A | C uD | C tD | ¬C | ∀R.C | ∃R.C,

i.e. besides atomic concepts, ALC concepts are composed of the logical constants > and ⊥, con-
cept conjunction (C uD), concept disjunction (C tD), concept negation (¬C), value restrictions
(∀R.C) and existential restrictions (∃R.C). For better reading, (sub-)concepts can be written in
parantheses. A DL knowledge base KB = (T ,A) consists of a (generalized) terminology T
called TBox and and an assertional component A called ABox. T is a set of axioms of the form
C v D referred to as generalized concept inclusions (GCIs) and if a and b are constants denoting
objects of the domain, A is a set of assertions C(a) or R(a, b) (called concept assertions resp. role
assertions).

The very expressive DL SHOQ(D) enlarges ALC-TBoxes with transitive roles Trans(R) (re-
sulting in the DL denoted with S) and with role hierarchies R1 v R2 (denoted with H). Further,
in this language it is possible to specify concepts with nominals {a} (denoted with O)4, qualified
number restrictions (≥ nR.C), (≤ nR.C) (denoted with Q) and concrete domains like strings and
integers (denoted with D).

Besides the syntactic constructs used in DLs, the P-SHOQ(D) sytle of formalisms introduce con-
ditional constraints which have the form (D|C)[l, u]. D,C are defined as DL concept expressions
and l, u are reals from the closed interval [0, 1] with l ≤ u. To gain the ability to store such state-
ments in a knowledge base it has to be extended to a probabilistic knowledge base PKB. With
the extension the individuals o in ∆ are separated into two disjoint sets IC and IP where IC is the
set of classical individuals and IP the set of probabilistic individuals. IP has to be finite. Now the
parts of a PKB are defined. A PTBox PT is DL knowledge base T and a finite set of conditional
constraints P. Note that the conditional constraints in P represent the terminological probabilis-
tic knowledge. A PABox Po is a set of conditional constraints associated with an individual o
from the set IP . Conditional constraints in a PABox have the restricted form (D|>)[l, u]. There
is one PABox Po for each individual o ∈ IP . Note that these sets of conditional constraints Po

represent the assertional probabilistic knowledge. In DLs with nominals the use of probabilists,
indiP-SHOQ(D) sytle of oncepts is disallowed.

5.2 Semantics

In order to understand the semantics of SHOQ(D) see [Giugno and Lukasiewicz, 2002a]. Infor-
mally, the sematics of conditonal constraints (D|C)[l, u] in a PTBox can be described as ”generally,
if o : C holds, then o : D holds with a probability between between l and u for every randomly cho-
sen individual o” [Lukasiewicz, 2008]. Whereas the conditional constraints (D|>)[l, u] in a PABox
are interpreted as a concrete ”individual o ∈ IP is an instance of the concept D with a probability

4Note that with this kind of expressivity constants a can also be specified in T
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in [l,u]” [Giugno and Lukasiewicz, 2002a]. The semantics of the formalisms are defined in terms of
a possible worlds with respect to the DL concept vocabulary Φ used in the conditional constraints.
A world W is a set of concepts taken from Φ such that {a : C|C ∈ W} ∪ {a : ¬C|C ∈ Φ \W}
is satisfiable for a new individual a. The set of all possible worlds relative to Φ is called WΦ. A
world W models a DL axiom T from T iff T ∪ {a : C|C ∈W} ∪ {a : ¬C|C ∈ Φ \W} is satisfiable
for a new individual a. Furthermore a world W is model of a DL knowledge base T if all of its
DL axioms T are satisfiable in the previous manner. In [Lukasiewicz, 2008] compatibility with
standard DL semantics is proven.

Now a probabilistic interpretation Pr is defined on the possible worlds WΦ as a probability
function: Pr : WΦ → [0, 1] and

∑
W∈WΦ

Pr(W ) = 1. With the probabilistic interpretation Pr
at hand the probability of a concept C, represented by Pr(C), is defined as sum of all Pr(W )
where W |= C. The probabilistic interpretation of a conditional probability Pr(D|C) is given as
Pr(CuD)
Pr(C) where Pr(C) > 0.

A conditional constraint (D|C)[l, u] is satisfied by Pr or Pr models (D|C)[l, u] if and only if
Pr(D|C) ∈ [l, u] or Pr(C) = 0. We will write this as Pr |= (D|C)[l, u]. A set F consisting of DL
axioms and conditional constraints, where F denotes the elements of F , is satisfied or modeled by
Pr if and only if Pr |= F for all F ∈ F .

The verification of a conditional constraint (D|C)[l, u] is defined as Pr(C) = 1 and Pr has to
be a model of (D|C)[l, u]. We also may say Pr verifies the conditional constraint (D|C)[l, u]. On
the contrary the falsification of a conditional constraint (D|C)[l, u] is given if and only if Pr(C) = 1
and Pr does not satisfy (D|C)[l, u]. It is also said that Pr falsifies (D|C)[l, u].

Further a conditional constraint F is said to be tolerated under a DL knowledge base T and a
set of conditional constraints D if and only if a probabilistic interpretation Pr can be found that
verifies F and Pr |= T ∪ D.

With all these definitions at hand we are now prepared to define the z-partition of a set of
conditional constraints P. The z-partition is build as ordered partition (P0, . . . ,Pk) of P, where
each part Pi with i ∈ {0, . . . , k} is the set of all conditional constraints F ∈ P \ (P0 ∪ · · · ∪ Pi−1),
that are tolerated under the DL knowledge base T and P \ (P0 ∪ · · · ∪ Pi−1).

If the z-partition can be build from a PTBox PT = (T ,P), it is said to be consistent. A
probabilistic knowledge base PKB = (PT , (Po)o∈Ip

) is consistent if and only if PT is consistent
and Pr |= T ∪Po for all o ∈ Ip. We use the z-partition for the definition of the lexicographic order
on the probabilistic interpretations Pr as follows:

A probabilistic interpretation Pr is called lexicographical preferred to a probabilistic interpre-
tation Pr ′ if and only if some i ∈ {0, . . . , k} can be found, that |{F ∈ Pi | Pr |= F}| > |{F ∈ Pi |
Pr ′ |= F}| and |{F ∈ Pj | Pr |= F}| = |{F ∈ Pj | Pr ′ |= F}| for all i < j ≤ k.

We say a probabilistic interpretation Pr of a set F of DL axioms and conditional constraints
is a lexicographically minimal model of F if and only if no probabilistic interpretation Pr ′ is
lexicographical preferred to Pr .

By now the meaning of lexicographic entailment for conditional constraints from a set F of DL
axioms and conditional constraints under a PTBox PT is given as:

A conditional constraint (D|C)[l, u] is a lexicographic consequence of a set F of DL axioms
and conditional constraints under a PTBox PT , written as F ‖∼ (D|C)[l, u] under PT , if and
only if Pr(D) ∈ [l, u] for every lexicographically minimal model Pr of F ∪ {(C|>)[1, 1]}. Tight
lexicographic consequence of F under PT is defined as F ‖∼tight (D|C)[l, u] if and only if l is the
infimum and u is the supremum of Pr(D). We define l = 1 and u = 0 if no such probabilistic
interpretation Pr exists.

Finally we define lexicographic entailment using a probabilistic knowledge base PKB for ter-
minological and assertional conditional constraints F .

If F is a terminological conditional constraint, then it is said to be a lexicographic consequence
of PKB, written PKB ‖∼ F if and only if ∅ ‖∼ F under PT and a tight lexicographic consequence
of PKB, written PKB ‖∼tight F if and only if ∅ ‖∼tight F under PT .

If F is an assertional conditional constraint for o ∈ IP , then it is said to be a lexicographic
consequence of PKB, written PKB ‖∼ F , if and only if Po ‖∼ F under PT and a tight lexicographic
consequence of PKB, written PKB ‖∼tight F if and only if Po ‖∼tight F under PT .
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∑
(W∈WΦ),W |=¬DuC

−lyW +
∑

(W∈WΦ),r|=DuC

(1− l)yW ≥ 0 (for all (D|C)[l, u] ∈ F) (21a)

∑
(W∈WΦ),W |=¬DuC

uyW +
∑

(W∈WΦ),W |=DuC

(u− 1)yW ≥ 0 (for all (D|C)[l, u] ∈ F) (21b)

∑
(W∈WΦ)

yW = 1 (21c)

yW ≥ 0 (for all W ∈WΦ) (21d)

Figure 11: Constraints of the linear program

5.3 Decision problems

For these formalisms the following interesting decision problems have been introduced:

• Probabilistic TBox consistency: Given a PTBox PT = (T ,P) decide if it is consistent.
This involves checking the consistency of T and if a z-partition can be build form P with
respect to T .

• Probabilistic KB consistency: Given a PKB = (PT , (Po)o∈Ip) decide if it is consistent.
This involves checking the consistency of PT and for each PABox Po its satisfiablility with
respect to T .

• Probabilistic lexicographic entailment: Given PT and a finite set of conditional con-
straints F and a conditional constraint (D|C)[?, ?] with unknown bounds determine the
tightest lexicographic bounds. This set F is the empty set ∅ in case of terminological queries
or it contains the relevant PAbox Po for a specific o ∈ IP in case of assertional queries.

The stated decision problems can be broken down into two subproblems probabilisitic satisfiability
and tight logical entailment. These are then solved by satisfiability test against the underlying DL
and linear programming.

5.4 Inference

In order to decide probabilistic satisfiability the first objective is to build a set of all possible worlds
WΦ. It contains the worlds W , which we obtain by a mapping r of the conditional constraints
Fi = (Di|Ci)[li, ui], elements of a set of conditional constraints F , onto one of the following terms
Di u Ci, ¬Di u Ci or ¬Ci under the condition, that the intersection of our terms is not equal to
the bottom concept given a consistent DL KB T , written T 6|= r(F1) u · · · u r(Fn) v ⊥. In the
following we will write W instead of r(F1) u · · · u r(Fn) as an abbreviation.

With WΦ at hand we are able to set up linear programs to decide the satisfiability of the DL
KB T and a finite set of conditional constraints F . The constraints of the linear program are
displayed in Figure 11. We say that T ∪ F is satisfiable if and only if the linear program with the
constraints 21a-d is solvable for variables yW , where W ∈ WΦ. This means that in the objective
function all coefficients preceding the variables yW are set to 1. We further need to introduce the
meaning of W |= C which is used as index of the summation in 21a and 21b. It is an abbreviation
for ∅ |= W v C. So the coefficient preceding the variables yW is set in linear constraints 21a and
21b if either W |= ¬D u C or W |= D u C may be proven.

Why is the creation of linear programs reasonable? Consider the following: By definition a
conditional constraint is satisfied if u ≥ Pr(D|C) ≥ l ⇔ uPr(C) ≥ Pr(D u C) ≥ lPr(C). This
may lead us to linear constraints 21a and 21b. Lets focus on the upper bound, whose derivation
is displayed in Figure 12. The derivation for the lower bound 21a follows analogously. The linear
constraints 21c and 21d reflect that all Pr(W ) have to sum up to 1 and all Pr(W ) ∈ [0, 1]

With the tool at hand to decide satisfiability, we may also decide if a conditional constraint
may be tolerated by a set of conditional constraints F . To verify a constraint we add a conditional
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u
∑

W∈WΦ,W |=C

yW ≥
∑

W∈WΦ,W |=DuC

yW ⇔ (22a)

u
∑

W∈WΦ,W |=(¬DuC)t(DuC)

yW ≥
∑

W∈WΦ,W |=DuC

yW ⇔ (22b)

u
∑

W∈WΦ,W |=¬DuC

yW + u
∑

W∈WΦ,W |=DuC

yW ≥
∑

W∈WΦ,W |=DuC

yW ⇔ (22c)

∑
W∈WΦ,W |=¬DuC

uyW +
∑

W∈WΦ,W |=DuC

(u− 1)yW ≥ 0 (22d)

Figure 12: Upper bound derivation

constraint (C|>)[1, 1]. With the extended set the linear program is generated and solved. If an
unfeasible solution is computed the conditional constraint is conflicting. If an optimal solution is
found, the conditional constraint is tolerated. Now the z-partition of a set of conditional constraints
is computable.

How to compute tight probability bounds for given evidence C and conclusion D in respect to
a set of conditional constraints F under a DL KB T ? The task is named tight logical entailment
and denoted T ∪F |=tight (D|C)[l, u]. Given that T ∪F is satisfiable, a linear program is set up for
F ∪ (C|>)[1, 1]∪ (D|>)[0, 1]. The objective function is set to

∑
W∈WΦ,W |=D

yW . So the coefficient in

front of the variables yW are set 1 if W |= D. The tight logical entailed lower bound l is computed
by minimising, respectively the upper bound u by maximising the linear program.

In order to compute tight probabilistic lexicographic entailment for given evidence C and con-
clusion D under a PKB the following steps have to be taken:

1. Compute the z-partition of P in order to be able to generate a lexicographic ordering

2. Compute lexicographic minimal sets P ′ of conditional constraints of P as elements of P.

3. Compute the tight logical entailment T ∪ F ∪ P ′ |=tight (D|C)[l, u] for all P ′ ∈ P.

4. Select the minimum of all computed lower bounds and the maximum of all upper bounds.

The 2. step needs some explanation since a new task ”compute lexicographic minimal sets” is
introduced. In order to define a lexicographic minimal set D′, a preparatory definition is required.
A set P ′ ⊂ P lexicographic preferable to P ′′ ⊂ P if and only if some i ∈ {0, . . . , k} exists such
that |P ′ ∩Pi| > |P ′′ ∩Pi| and |P ′ ∩Pi| > |P ′′ ∩Pi| for all i < j ≤ k. With the lexicographic order
introduced onto the sets P ′ the definition of lexicographic minimal is given as: P ′ is lexicographic
minimal in P ⊆ {P ′|P ′ ⊆ P} if and only if P ′ ∈ P and no P ′′ ∈ P is lexicographic preferable to
P ′.

5.5 Example

Lets have a look at an example to get an intuition how the formalisms work. The small sce-
nario describes the knowledge which we have on penguins and birds as a small part of the en-
vironmental domain. We know for sure that Penguins are subset of Birds. Additionally we
know with atleast probability 0.95 that birds have Wings, Birds can Fly with high probabil-
ity [0.9, 0.95] and Penguins can Fly with low probability [0, 0.01]. Furthermore we know of
the individual p1 which we believe to be a penguin within the interval [0.7, 0.8]. This knowl-
edge is captured in the PKB in Figure 13. The first decision problem to look at is checking
probabilistic TBox consistency. With the T part consistent. The next task is building a z-
partion of the 3 conditional constraints. In order to do this the possible worlds WΦ have to
be generated. They are shown in Figure 14. Each of these worlds is associated with the vari-
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PKB =({Penguin < Bird},
{(∀has.Wings|Bird)[0.95, 1]
(∀can.F ly|Bird)[0.9, 0.95],
(∀can.F ly|Penguin)[0, 0.01]}
{(Penguin|>)[0.7, 0.8]}p1)

Figure 13: Small scenario

WΦ ={∀has.Wings u ∀can.F ly uBird u Penguin,
¬∀has.Wings u ∀can.F ly uBird u Penguin,
∀has.Wings u ¬∀can.F ly uBird u Penguin,
¬∀has.Wings u ¬∀can.F ly uBird u Penguin,
∀has.Wings u ∀can.F ly uBird u ¬Penguin,
¬∀has.Wings u ∀can.F ly uBird u ¬Penguin,
∀has.Wings u ¬∀can.F ly uBird u ¬Penguin,
¬∀has.Wings u ¬∀can.F ly uBird u ¬Penguin,
¬Bird u ¬Penguin}

Figure 14: Worlds

ables within the linear programs which have to be solved to compute the z-partion. The result-
ing z-partion has two Parts (P0 = {(∀has.Wings|Bird)[0.95, 1], (∀can.F ly|Bird)[0.9, 0.95]},P1 =
{(∀can.F ly|Penguin)[0, 0.01]}). Thus the PTBox is consistent. In order to handle the second de-
cision problem additonally the probabilistic satisfiability of {(Penguin|>)[0.7, 0.8]}p1 with respect
to T has to be determined. This is the case therefore the PKB is consistent.

Lets have a look at some queries for probabilistic lexicographic entailment. With the PKB
above the following interesting queries can be answered as follows:

‖∼ (∀has.Wings u ∀can.F ly|Bird)[0.85, 0.95]
‖∼ (∀has.Wings u ∀can.F ly|Penguin)[0.0, 0.1]

‖∼ (Penguin|Bird)[0.0, 0.1]
‖∼ (Bird|Penguin)[1, 1]

{(Penguin|>)[0.7, 0.8]} ‖∼ (∀can.F ly|>)[0.0, 0.307]
{(Penguin|>)[0.7, 0.8]} ‖∼ (∀has.Wings|>)[0.665, 1]

5.6 Advantages and disadvantages of P-SHOQ(D) style of modeling

These formalisms are build on top of well known description logics. This has the advantage that
reasoning tools can be developed on top of a DL Reasoner treating it as a Black Box. Further-
more this might also allow for an easy extension of already developed KB as it might seem. Some
guidelines on how to develop a PKB are described in [Klinov and Parsia, 2008b]. Despite all the
advantages these formalisms come with some limitations which are highlighted here. The intro-
duction of ”cyclic” conditional constraints, e.g. two constraints of the form (D|C)[l, u], (C|D)[l, u]
with 0 < l ≤ u < 1, render a probabilistic knowledge base inconsistent. One can not decide which
of the two constraints is lexicographic preferred therefore a z-partition can not be build. Further-
more in these formalisms it is possible to specify believes about the individuals in IP however there
are no relations possible between individuals from IP . This means that probabilistic individuals
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can only specify islands of believe as opposed to believes on a relational structure of individuals.

6 Conclusion and Outlook

In this deliverable we have introduced three important probabilistic approaches with formal se-
mantics, namely Bayesian networks, Markov logic networks and the P-SHOQ(D) formalism.

We outlined that graphs of Bayesian networks do not consist of cycles or undirected arcs and,
thus, modeling of mutual dependencies in Bayesian networks might result in conditional probability
tables which are hard to understand by humans. Thus, machine learning techniques would have
to be used right from the beginning.

With Markovian formalisms, uncertainty information is specified as weights for formulas. Weights
are considered to be rather intuitive for humans. The weights are automatically transformed into
internal values (potentials), which are used for probabilistic reasoning. The representation of
relational structures is given in terms of predicate logics.

With P-SHOQ(D) another approach for representing first-order structures is given. However,
it is not possible to sufficient specify uncertainty with respect to relational structures among
individuals. Since Markov logic networks are not affected by these limitations, we conclude that
this formalism is more suitable for CASAM, although the Markovian approaches found in the
literature either use Horn logic (inexpressive) or do not care about decidability issues at all. To
overcome some of these disadvantages, the approach in CASAM should be to combine Description
Logics and the Markov network formalism.
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