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1 Introduction

As part of the infrastructure for working with ontologies, reasoning systems
are required. Reasoning is used at ontology development or maintenance time
as well as at the time ontologies are used for solving application problems.
In this section we will review so-called tableau-based decision procedures for
inference problems arising in both contexts. We start with the satisfiability
problem for a set of logical formulae. Speaking about ontologies, we focus on
description logics , which provide the basis for standardized practical ontology
languages. In this context, the set of formulae mentioned above is usually di-
vided into a Tbox and an Abox for the intensional and extensional part of the
ontology, respectively (see below for details). We are aware of the fact that on-
tology processing systems based on description logics also support some form
of rules as well as means for specifying constraints among attributes of differ-
ent individuals [5]. For introductory purposes, here we focus on satisfiability
checking in basic description logics, however.

The main idea of tableau-based methods for satisfiability checking is to
systematically construct a representation for a model of the input formulae.
If all representations that are considered by the procedure turn out to con-
tain an obvious contradiction (clash), it is concluded that the set of formulae
is unsatisfiable. In early publications on tableau-based proof procedures, in
particular for first-order logics, the notation for the model representations
was done using tables (tableaux in French). In recent approaches these tables
are better described as graph structures. The name tableau is retained for
historical reasons, however.

Initially, tableau-based methods for description logics have been developed
for decidability proofs, and due to this fact, they are highly nondeterministic
for expressive description logics. It turned out, however, that they can in-
deed be efficiently implemented using appropriate search strategies and index
structures such that for typical-case inputs, acceptable runtimes can be ex-
pected even though the worst-case complexity is high. In practical systems,
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tableau structures are efficiently maintained during branch and bound (or
backtracking) with the result that tableau-based methods have been success-
fully employed in ontology reasoning systems such as FaCT++, Pellet, or
RacerPro (cf. [26] for an overview about description logic systems).

Although, in practical contexts, tableau-based methods are often applied
in a refutation-based way (i.e., they are used to show unsatisfiability of a set of
formulae), the graph structures computed for solving the ontology satisfiabil-
ity problem can be reused for efficiently implementing higher-level reasoning
services such as instance retrieval requests. In other words, in practical sys-
tems, tableau-based methods are not just used for satisfiability checking but
are also used to compute index structures for subsequent calls to other rea-
soning services.

In this chapter, tableau-based reasoning methods are formally introduced.
We start with a nondeterministic basic version which subsequently will be
extended with optimization techniques in order to demonstrate how practi-
cal systems can be built. We also demonstrate how computed tableau struc-
tures can be exploited in an ontology reasoning system. In order to make this
chapter self-contained, we shortly introduce the syntax and semantics of the
description logic ALC and introduce Tboxes and Aboxes.

An overview on tableau algorithms for description logics can also be found
in [7] as well as in [6]. In this chapter, we also consider optimization issues,
and the presentation is oriented towards implementation aspects in order to
complement the presentations in [7, 6].

1.1 Syntax and Semantics of ALC

For a given application problem one chooses a set of elementary descriptions
(or atomic descriptions) for concepts and roles representing unary and binary
predicates, respectively. A set of individuals is fixed to denote specific objects
of a certain domain. We use letters A and R for atomic concepts and roles,
respectively. In addition, let {i, j, . . .} be the set of individuals. In ALC (At-
tributive Language with full Complement), descriptions for complex concepts

C or D can be inductively built using the following grammar:

C, D −→ A | atomic concept
C ⊓ D | conjunction
C ⊔ D | disjunction
¬C | negated concept
∃R.C | existential quantification
∀R.C | value restriction

We introduce the concept descriptions ⊤ and ⊥ as abbreviations for A ⊔ ¬A

and A⊓¬A, respectively. Concept descriptions may be written in parentheses
in order to avoid scoping ambiguities.
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For defining the semantics of concept and role descriptions we consider
interpretations I that consist of a non-empty set ∆I , the domain, and an
interpretation function ·I , which assigns to every atomic concept A a set
AI ⊆ ∆I and to every atomic role R a set RI ⊆ ∆I × ∆I . For complex
concept descriptions the interpretation function is extended as follows:

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I\CI

(∃R.C)I = {x | ∃y.(x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x | ∀y. if (x, y) ∈ RI then y ∈ CI}

The semantics of description logics is based on the notion of satisfiability. An
interpretation I = (∆I , ·I) satisfies a concept description C if CI 6= ∅. In
this case, I is called a model for C.

A Tbox is a set of so-called generalized concept inclusions C ⊑ D. For
brevity the elements of a Tbox are called GCIs. An interpretation I satisfies a
GCI C ⊑ D if CI ⊆ DI . An interpretation is a model of a Tbox if it satisfies
all GCIs in the TBox. A concept description C is subsumed by a concept
description D w.r.t. a Tbox if the GCI C ⊑ D is satisfied in all models of the
Tbox. In this case, we also say that D subsumes C.

An Abox is a set of assertions of the form C(i) or R(i, j) where C is a
concept description, R is a role description, and i, j are individuals. A concept
assertion C(i) is satisfied w.r.t. a Tbox T if for all models I of T it holds that
iI ∈ CI . A role assertion R(i, j) is satisfied w.r.t. a Tbox T if (iI , jI) ∈ RI

for all models I of T . An interpretation satisfying all assertions in an Abox A
is called a model for A. An Abox A is called consistent if such a model exists,
it is called inconsistent otherwise.

1.2 Decision Problems and their Reductions

The definitions given in the previous section can be paraphrased as decision
problems.

The concept satisfiability problem is to check whether a model for a concept
exists. The Tbox satisfiability problem is to check whether a model for the Tbox
exists. The concept subsumption problem (w.r.t. a Tbox) is to check whether
CI ⊆ DI holds (in all models of the Tbox).

The Abox consistency problem for an Abox A (w.r.t. a Tbox) is the problem
to determine whether there exists a model of A (that is also a model of the
Tbox). Another problem is to test whether an individual i is an instance of a
concept description C w.r.t. a Tbox and an Abox (instance test or instance

problem). The instance retrieval problem w.r.t. a query concept description
C is to find all individuals i mentioned in the assertions of an Abox such that
i is an instance of C.
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The latter problem is a retrieval problem but, in theory, it can be reduced
to several instance problems. Furthermore, the satisfiability problem for a
concept C can be reduced to the consistency problem of the Abox {C(i)}.
In order to solve the instance problem for an individual i and a concept
description C one can check if the Abox {¬C(i)} is inconsistent. The concept
subsumption problem can be reduced to an Abox consistency problem as well.
If the Abox {C(i),¬D(i)} is not consistent, C is subsumed by D [6].

Thus, in theory, all problems introduced above can be reduced to the Abox
consistency problem. Note that in practical systems, specific algorithms might
be used to decide a certain problem.

2 Deciding the Consistency Problem for ALC Aboxes

A decision procedure for the ALC Abox consistency problem is described in
this section using a so-called tableau-based algorithm. In order to simplify
the presentation, in this section, we do not consider Abox consistency with
respect to Tboxes. For Tboxes, among other extensions, additional machinery
is required to ensure termination (see Section 3 for details).

As indicated in the introduction, the main idea of the Abox consistency
algorithm is to systematically generate a representation for a model. In this
process which searches for a model, some representations are generated which
contain an obvious contradiction (clash), i.e., for an individual i we have C(i)
and ¬C(i) in an Abox. The assertions C(i) and ¬C(i) are called the culprits

for the clash. In case of a clash, the generated representations turn out to not
to describe a model.

From a theoretical point of view, the algorithm described below is sound
and complete but nondeterministic. In a practical implementation, indeter-
minism must be handled with systematic search techniques, and various
heuristics have been described in the literature to guide the search process.
If we see a tableau-based algorithm not as a theoretical vehicle for proving
decidability of a logic, but as a practical way to solve the Abox consistency
problem, then it becomes clear that it is important to be able to detect clashes
as early as possible while the model representations are built. A representa-
tion with a clash no longer needs to be considered. Thus, we should be able to
identify clashes not only for assertions with atomic concepts but also for as-
sertions with complex concepts. Therefore, in contrast to other presentations
of tableau algorithms we will not transform a concept into a form that makes
the presentation (and analysis) of the tableau algorithm easier (negation nor-
mal form), but directly use a form that is efficient for detecting clashes in
typical-case inputs (encoded normal form). The ALC Abox consistency al-
gorithm described below checks whether there exists a model for the input
Abox.

The algorithm operates on a set of Aboxes A. Each Abox represents an
alternative to be investigated in the exhaustive model generation process. We
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also call such an internal Abox, i.e., an element of A, a tableau (but also use the
term Abox in the following). Initially, the algorithm starts with a set A = {A}
containing the input Abox A. A set of rules is applied to an Abox from this
set until no more rule applications are possible or no more rule applications
are needed to determine the result. The rules are introduced below. If a rule
is applied to an Abox, the Abox is replaced by one or more Aboxes. If it is
replaced by more than one Abox (the so-called successor Aboxes), we say that
the rule introduces a so-called choice point. A rule introducing a choice point
is called a nondeterministic rule. All other rules are called deterministic. In
any case, the Abox to which a rule is applied is replaced with new Aboxes
that are “copies” of the original one plus some additional assertions.

If a tableau (Abox) is found to contain a clash, the tableau is called closed,
otherwise it is called open. A tableau to which no rule can be applied is called
complete. For a complete tableau the synonym completion is also used. If
there exists a completion, i.e., an open tableau to which no more rules can be
applied, the algorithm returns “yes” (indicating consistency). If all tableaux
that could be generated by applying rules are closed, the algorithm returns
“no” (inconsistency).

2.1 Concept Normalization and Encoding

In order to speed up the clash test, concepts are normalized using several
transformation steps. First, double negations are eliminated, i.e., ¬¬C is re-
placed with C. Then, maximal sequences of conjunctions (possibly with nested
parentheses) are flattened and represented with an n-ary conjunction term∧
{C1, C2, . . . , Cn} (written as a prefix operator to the set of arguments).

Corresponding representations
∨
{C1, C2, . . . , Cn} are built for disjunctions.

The interpretation function is extended in the obvious way

(
∧

{C1, C2, . . . , Cn})
I = (C1)

I ∩ (C1)
I ∩ . . . ∩ (Cn)I

(
∨

{C1, C2, . . . , Cn})
I = (C1)

I ∪ (C1)
I ∪ . . . ∪ (Cn)I

If there are two concepts C and ¬C mentioned in a conjunction (disjunction)
or ⊥ (⊤), the whole term

∧
{C1, C2, . . . , Cn} (

∨
{C1, C2, . . . , Cn}) is replaced

with ⊥ (⊤).
Afterwards, in an encoding process every concept description C and its

negation ¬C is inductively associated with a unique identifier. For instance,
one could use numbers as unique identifiers and store concepts as records in an
array, or it is possible use pointers to records (or objects) as unique identifiers.
The fact that conjunctions (or disjunctions) are represented as sets enables
the assignment of the same unique identifier to syntactically different but
semantically equivalent conjunctive and disjunctive concept descriptions. The
assignment of unique identifier to a concept is known as encoding a concept.
If we use a concept description in the following text, we assume that we refer
to its unique identifier.
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The function neg(C) is used to find the negation of a concept. The imple-
mentation of this function should require constant time (i.e., be as efficient as
possible).3

Next, an internal representation of the input Abox with encoded concepts
is built in a preprocessing step. We assume normalized concepts are used from
now on. For readability issues, however, in the presentation below, we still use
concept descriptions as introduced above.

2.2 Tableau rules

The tableau rules are applied to an Abox A as part of the set of Aboxes A

on which the algorithm operates. A rule can be applied whenever the precon-
dition is satisfied and A is not in the set of closed Aboxes (this is an implicit
condition). Initially, the set of closed Aboxes is empty. Saying that A is re-

placed by an Abox or a sequence of Aboxes we mean that A is removed from
A and the Aboxes generated by the rule are added to A. If a rule is applied
to an assertion, we say the assertion is expanded.

• Conjunction rule: If (
∧
{C1, . . . , Cn})(x) ∈ A and {C1(x), . . . , Cn(x)} 6⊆

A, then replace A with A ∪ {C1(x), . . . , Cn(x)}.
• Disjunction rule: If (

∨
{C1, . . . , Cn})(x) ∈ A and for all i ∈ {1 . . . n} it

holds that Ci(x) 6∈ A, then replace A with a sequence of Aboxes A1, . . . An

where A1 = A ∪ {C1(x)}, . . . ,An = A∪ {Cn(x)}.
• Existential quantification rule: If (∃R.C)(x) ∈ A but there is no in-

dividual name y such that {C(y), R(x, y)} ⊆ A, then replace A with
A ∪ {C(z), R(x, z)} such that z is a fresh individual (i.e., an individual
not occurring in A).

• Value restriction rule: If {(∀R.C)(x), R(x, y)} ⊆ A but C(y) 6∈ A, then
replace A with A ∪ {C(y)}.

• Negation rule: If ¬C(x) ∈ A but neg(C)(x) 6∈ A, then replace A with
(A ∪ { neg(C)(x)}.

• Clash rule: If {C(x), neg(C)(x)} ⊆ A, then add A to the set of closed
Aboxes.

The algorithm runs in a loop and applies a rule if its precondition is satis-
fied. A precondition of a rule is satisfied if there exists a substitution for the
variables x or y with individuals such that the condition is satisfied. As indi-
cated before, if the precondition is satisfied, a rule is applied to an Abox in

3 For instance, if numbers are chosen for the unique identifier, the unique identifier
of the negation of a (non-negated) concept with number n could be n + 1. The
encoding process must assign numbers accordingly. If (pointers to) objects are
used for representing concepts, a field with a pointer to the negated concept
provides for a fast implementation of neg at the cost of memory requirements
probably being a little bit higher.
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A. Applying a rule means to execute the then-part applying the variable sub-
stitution computed from the if-part of the rule. The loop ends if a completion
is found or if no rule is applicable.

The algorithm returns “yes” if there exists a completion and “no” other-
wise. In principle, the rules defined above can be applied in any order. Later
we will see that a rule application strategy might impose restrictions on the
order of rule applications. Restrictions are introduced to find completions
“early”, i.e., the strategy is used for optimization purposes. If the expressivity
of the language is extended, a particular rule application strategy might also
be necessary to ensure termination or soundness and completeness.

A few additional definitions are appropriate for the analysis of the algo-
rithm in the next subsection. If an Abox is replaced with one new Abox,
the new Abox contains strictly more assertions. We call this process and-

branching. Applying a nondeterministic rule (for the time being, the dis-
junction rule) might introduce several new Aboxes. We call this process or-

branching.
The individuals mentioned in the original Abox are called old individ-

uals, all other individuals are called fresh. A sequence of role assertions
R1(x1, x2), R2(x2, x3), . . . Rn−1(xn−1, xn), Rn(xn, xn+1) is called a path (of
length n) from x1 to xn+1. In a path of length 1, x2 is called the (direct)
successor and x1 is called predecessor of x2 (for a role R). The individuals xi

with i ∈ {2, n + 1} are called indirect successors of x1.

Formal Properties

The formal properties of the algorithm are analyzed in three steps. We first
show termination, and afterwards we prove soundness and completeness.

The procedure terminates : First, no rule can be applied twice to the same
Abox with the same bindings for the variables x, y due to the preconditions
(no infinite and-branching). Second, although new individuals are introduced
by applying the existential quantification rule, the quantification concept is
of a smaller size than the original concept. Hence, there can be no infinite
applications of the existential quantification rule. The length of the longest
Abox is bounded by the size of the input Abox. Third, no rule deletes an
assertion, and therefore, Aboxes can only grow (i.e., no so-called yo-yo effects
can occur [24, p. 547]).

The algorithm is sound: If the algorithm returns “yes” there exists a model
satisfying all assertions of the input Abox. This is shown as follows. If the
algorithm returns “yes” there exists a completion. From the completion A a
so-called canonical model IA = (∆I

A
, ·I

A
) can be constructed (cf. [6]).

1. Let ∆I
A be the set of all individuals mentioned in A.

2. For all atomic concept descriptions A let AI
A

= {x | A(x) ∈ A}.
3. For all role descriptions R let RI

A
= {(x, y) | R(x, y) ∈ A}.
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By definition all role assertions are satisfied by IA. Now, using induction
on the structure of concepts, it is easy to show that IA also satisfies all concept
assertions in A (see [6] for details).

The algorithm is complete: If there exists a model for the input Abox,
then the algorithms returns “yes”. Or, by contraposition, it holds that if the
algorithm returns “no”, then there does not exist a model. If the algorithm
returns “no” all tableaux are closed, i.e., there is a clash in each tableau.
Under the assumption that there exists a model for an Abox to which a rule
is applied, it is shown that a model for at least one of the generated Aboxes
can be constructed by examining every rule (and hence, no alternative to be
investigated is forgotten, for details see [6] again). Now since there is a clash in
every tableau in case the algorithm returns “no”, there cannot exist a model
for the input Abox.

The ALC Abox consistency problem is PSPACE-complete, cf. [29]. The
algorithm needs an exponential number of steps in the worst case. As we
will see in the next subsection, there exists a rule application strategy such
that intermediate tableaux can be discarded such that the algorithm runs in
polynomial space in order to be worst-case-optimal.

2.3 Towards an Optimized Implementation

The tableau rules refer to assertions for specific individuals or check for a
clash w.r.t. a specific individual. Thus, rather than using an arbitrary set
data structure for representing a tableau, in a concrete implementation of the
tableau algorithm, the set of assertions in an Abox is partitioned w.r.t. the
individuals the assertions refer to (for C(i) and R(i, j) the assertion refers
to i). We call such a partition an individual partition Pi. The access to the
partition of an individual i should require almost constant time. If there is an
assertion R(i, j) ∈ Pi, then there will also be a partition Pj for j (possibly
empty). We say Pj depends on Pi.

Furthermore, looking at the preconditions of the rules, it is revealed that
for each individual, the preconditions refer to specific concept constructors
(conjunctions, disjunctions, existential quantifications, or value restrictions).
Thus, for each individual partition, the set of conjunctions, disjunctions, ex-
istential quantifications, and value restrictions must be efficiently identifiable.
For the latter two subsets, a further index over different roles might be con-
sidered.

The selection of a particular rule to apply is nondeterministic in the al-
gorithm above. Various kinds of heuristics have been investigated to reduce
the number of rule applications for typical-case inputs. First, in a practical
implementation, best results have been achieved if the clash rule is applied
with highest priority. Since no rules are applied to closed tableaux by defini-
tion, the number of applicability tests for rules is reduced if clashes are found
early. The overhead for the clash rule must be kept at a minimum, however.
Usually, in concrete implementations, the clash rule is (implicitly) applied
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whenever a concept assertion C(x) is to be added to an Abox. Note that for
ALC, role assertions do not directly involved in a clash test – a condition that
is no longer true for more expressive logics. Checking whether the assertion
neg(C)(x) is already an element of the tableau to which C(x) is to be added is
a frequently executed operation in a practical implementation, and has to be
implemented very efficiently. As part of this so-called clash test, in a practical
implementation it might become apparent that C(x) is also already contained
in the Abox. So, there is no maintenance effort for the Abox to which C(x)
is added.

The conjunction rule is applied with second-highest priority. Although the
number of assertions to be handled in a partition is increased, the chance that
a clash is detected early is also increased. Since in many contexts the Abox
will indeed be consistent, conjunctions have to be “expanded” anyway. So, it
is a good heuristic to prefer the conjunction rule over other rules.

In order to reduce the number of Aboxes to be handled as parts of A,
in practical systems, deterministic rules are preferred over nondeterministic
ones. In order to reduce memory requirements (and to meet the complex-
ity class of the Abox consistency problem) the so-called trace technique has
been developed. Employing the trace technique, the disjunction rule is ap-
plied before the deterministic value restriction rule. Then, for each existential
quantification assertion (∃R.C)(x), it is ensured that all potentially applica-
ble value restrictions are indeed available in the Abox. Thus, the existential
quantification rule can be combined with the value restriction rule. Rather
than only adding a concept assertion based on the quantification concept as
indicated in the existential quantification rule for a role R, additionally for
every value restriction (∀R.Di)(x) the assertion Di(y) is added, with y being
the fresh individual introduced by the exists quantification rule. Then all as-
sertions {C(y), D1(y), . . .Dn(y)} can be treated in isolation. If they turn out
not to lead to a clash, the assertions, and all those derived from them, can be
removed (and (∃R.C)(x) must somehow be marked to avoid repetitive rule
applications).

In a practical implementation, the trace technique might not be adopted
for various reasons. For instance, the removal of assertions might interfere with
the idea to reuse of previous computation results, in particular if Tboxes are
involved (see below). Or the strategy is to avoid the expansion of disjunctions
but check the satisfiability of existential quantifications first.

2.4 Dealing with Indeterminism in a Tableau Algorithm

In the description above, a nondeterministic rule (in ALC only the disjunction
rule) generates a sequence of new Aboxes. If Aboxes are created in a naive
way, this can hardly be efficient. Thus, a practical implementation must find
a way to implement a structure-sharing strategy for copies of Aboxes in order
to avoid structures to be copied repeatedly. Copying complete structures is
memory-extensive as well as time-consuming. Even with a structure-sharing
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approach, the naive generation of successor Aboxes should be avoided due to
the memory-management overhead involved.

Obviously, the disjunction rule does not need to generate successors that
immediately lead to a clash. If the disjunction rule would be applicable to
some disjunct Ci in an assertion (

∨
{C1, . . . , Cn})(x) and neg(Ci)(x) ∈ A

the corresponding successor Abox does not need to be generated (it will be
closed according to the clash rule immediately). The detection of those sit-
uations requires some additional machinery in the implementation (boolean
constraint propagation, BCP) [9]. Boolean constraint propagation is imple-
mented in all major contemporary tableau-based reasoners. The challenge is
to most efficiently determine which disjunctions can be virtually “shrunk” or
“eliminated” in this way. Note that a disjunction becomes deterministic if
only one disjunct “remains” after BCP, and it can be treated as a conjunction
in this case (also w.r.t. priorities in rule applications). It is easy to see that
termination and correctness is still fulfilled if boolean constraint propagation
is employed.

Further optimizations that also have no impact on the correctness of the
algorithm but provide for improved performance for typical-case inputs are
possible. For instance, the disjunction rule requires as a precondition that
the disjunct Ci(x) is not already in A. Thus, looking for a completion, in a
concrete implementation it is advantageous to first apply the disjunction rule
to those concept assertions (

∨
{C1, . . . , Cn})(x) with disjuncts Ci such that

Ci is also mentioned in many other disjunctive assertions for the individual
x. The application of the disjunction rule for the other disjunctions for x

involving Ci is then “avoided“ (due to the precondition of the disjunction rule).
Efficiently finding those concepts Ci such that the number of occurrences in all
disjunctions applying to an individual x is maximized (or large) is non-trivial,
however. There is a tradeoff between the time spent in search for occurrences
of a concept assertion Ci(x), management of index structures for speeding up
this search process, and the gain of this in terms of or-branching reduction.

Reusing previous results can help finding clashes early. If A is an Abox,
then all Aboxes derived from A by applying a tableau rule are called sib-

ling Aboxes. Information acquired for one successor Abox A′ of A can be
propagated to sibling Aboxes of A′. Let us consider the successor Aboxes of
an application of the disjunction rule to an Abox A again. If it turns out
that one of the successor Aboxes A′ with Ci(x) being added contains a clash,
then, neg(Ci)(x) can be added to all (open) sibling Aboxes of A′. Again, if
neg(Ci)(x) is explicitly present in a sibling Abox, an application of the dis-
junction rule to the sibling Abox might be prevented and a clash might be
revealed earlier. On the negative side it has to be mentioned that applying
rules to neg(Ci)(x) in a tableau also causes some overhead. In a practical im-
plementation one might avoid the applications of the rules to assertions added
this way (without impact on soundness and completeness).

Up to now, we have considered ways to find a completion earlier (i.e., we
attempt to reduce or-branching). This heuristic is useful because the algorithm
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terminates if a completion is found. However, it is also possible to find ways to
close tableaux early. Consider the following example Abox, which is obviously
inconsistent (adapted from [17]).

A = {(
∨

{C1, D1})(i), . . . (
∨

{Cn, Dn})(i), (∃R.(
∧

{A, B}))(i), (∀R.¬A)(i)}

We assume that the tableau algorithm applies the disjunction rule to the
first disjunction in A. We get two new Aboxes A1 and A2. Both Aboxes are
supersets of A. In Figure 1, Aboxes are indicated as circles. A set inclusion
relation is indicated with a solid arrow (pointing from the superset to the
subset). The assertions being added to an Abox w.r.t. its predecessor Abox are
written next to the circle used for indicating the Abox. Aboxes that initially
are not closed are presented with a bold outline. As indicated in Figure 1, we
assume that tableaux are represented using a kind of trie data structure.

In Figure 1 we assume further rule applications to the Aboxes A1,A3, . . . ,

A2n−1, and then A2n+1,A2n+2 and finally A2n+3. Initially, A2n+3 is assumed
to be open. Now, a clash is found and A2n+3 is marked as closed by the clash
rule (due to ¬A(j) and A(j) being an element of A2n+3).

The dashed lines (curved) indicate the dependencies of the assertions that
are added to the respective Aboxes (not all dependencies are shown for read-
ability reasons). Looking at Figure 1 it should be apparent that the Aboxes
A2,A4, . . . ,A2n, which are still open, will inevitably lead to the same clash.

! 

! ! ! 

! ! 

..... 

..... 

Closed 

Closed 
Closed Closed 

Fig. 1. A clash occurs in tableau, and exploring other open tableaux will not resolve
it. The corresponding tableau can be closed even without a clash (see text).

The idea to avoid repeatedly detecting the same clash over and over again is
to find a way to close the Aboxes A2,A4, . . . ,A2n in advance.

This can be achieved as follows. The clash occurs in A2n+3. The culprit
in A2n+3 is A(j). The other culprit ¬A(j) is in A2n+2. Culprit assertions are
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indicated with an exclamation mark. Starting with the culprits and following
the dashed lines the Aboxes are marked with exclamation markers. See Fig-
ure 1 for the final marking in our example. Then, starting from the Abox with
the “rightmost” culprit (in our case A2n+3) and following the solid lines in
the direction of the arrows, the reachable Aboxes are visited. If an Abox A′

marked with “!” pointing to an Abox B (with more than one incoming link)
is reached, and the leaves of the other Aboxes pointing to the predecessor of
A′ are not closed, then the process stops. Then, all leaf Aboxes reachable in
the inverse direction of the solid lines from the Abox B are marked as closed.

! 

! 

! 

! 

! ..... 

..... 
Closed 

Closed 

Fig. 2. Examining the dependencies reveals that A4 must not be automatically
closed to retain completeness (see text).

In the example shown in Figure 1 the process stops at B = A. The closed
Aboxes found by following the solid lines in the inverse direction are indicated
with a corresponding label “Closed” in Figure 1. Hence, futile rule applications
to A2,A4, . . . ,A2n are avoided.

A slightly modified example illustrates that the process does not necessar-
ily close all Aboxes but only those which, due to the given culprits, do not
lead to completions. The example is given as follows:

A = {(
∨

{C1, D1})(i), . . . (
∨

{Cn, Dn})(i), (∃R.(
∧

{¬C2, D}))(i)}

In Figure 2, the situation is shown after a few rule applications. Culprit mark-
ers indicate the assertions on which the clash depends. Walking from the right-
most culprit along the solid lines stops at B = A3. All leaves reachable from
A3 in the inverse direction of the solid lines are closed. In this example, A2

and A4 remain open, which is necessary not to miss a possible completion to
be constructed. If all successor Aboxes of an Abox are marked with a clash,
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their assertions are also seen as clash culprits and exclamation markers are
propagated via the curved dependency links as introduced before [9].

In the literature, the technique described here is known as backjumping,
which is a restricted form of dependency-directed backtracking [17]. We have
presented it here using mathematical structures as part of the branch-and-
bound strategy of a tableau algorithm. Note that Aboxes in the trie might
indeed be reused, and thus, full dependency-directed backtracking might be
achieved (with previous computations being maximally reused).

Usually, a partition for an individual is seen as a graph node with role
assertions “pointing” to other graph nodes, and concept assertions defining
the so-called “label” of a “node” (see below for a more formal introduction
of a label). Hence, from an implementation point of view a tableau is seen
as a graph with nodes and edges, both associated with a label. For nodes,
the label is a set of concepts, and for edges it is a set of roles. To every
path in the Abox trie from the root to a leaf (see Figure 1 or Figure 2)
there corresponds a particular graph. For understanding tableau algorithms
one can switch between the graph view and the tableau (or Abox) view. The
graph corresponds to a model (see the construction of the canonical model
mentioned above).

3 Dealing with Tboxes

The tableau algorithm introduced above must be extended to work with non-
empty Tboxes. In theory, it is possible to transform all GCIs of the Tbox into
a single GCI of the form ⊤ ⊑ M . The transformation is very simple. Instead
of writing a GCI as Ci ⊑ Di one could write ⊤ ⊑ ¬Ci ⊔ Di, and thus, M is
the conjunction

∧
i{Mi} of all Mi = ¬Ci ⊔Di stemming from the GCIs in the

Tbox (M and Mi are called global constraints). With the Tbox transformed
into ⊤ ⊑

∧
{M1, . . . Mn} we can see that the restriction M on the righthand

side applies to all domain objects. The transformation is called internalization

in the literature [8]. The tableau algorithm is extended with a new rule which
adds M(x) if there is an individual x mentioned in a tableau in which M(x)
is not already present.

• GCI rule: If C(x) ∈ A or R(x, y) ∈ A or R(y, x) ∈ A and M(x) 6∈ A,
then replace A with A ∪ {M(x)}.

A problem with this rule is that the algorithm then does not terminate. M

might contain existential quantifications which cause new individuals y to be
created, for which M(y) is added and so on (infinite and-branching occurs).
Some form of blocking must be enforced (see e.g., [8]).

The tableau algorithm can be slightly changed to exploit these insights.
We give a definition for the label of a partition. The label of a partition for an
individual x is defined as {C | C(x) ∈ Px}. Now, if there exists an individual
partition Pk and there is no rule applicable to Pk nor to all partitions that
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depend on Pk, then no rule need to be applied to an assertion in a partition Pl

if label(Pl) ⊆ label(Pk) and k, l are fresh variables (otherwise, partitions for
old individuals might block each other). We say Pl is blocked by the witness

Pk. The witness must be a fresh individual. Note that if there is a clash
detected for k the whole tableau is closed and no rule is applied to l anyway.
The condition label(Pl) ⊆ label(Pk) might become false if, due to other rule
applications, new assertions are added for the individuals k or l in Pk and Pl,
respectively. So, blocking conditions must be dynamically checked.

In order to show soundness in case of blocked partitions, one constructs
a canonical interpretation for an individual i for which there exists a blocked
partition Pi by defining tuples (i, x) ∈ RI for every assertion R(w, x) related
to the witness w of i (for details see, e.g, [8]).4

The precondition that no rule is applicable to Pk and all partitions that
depend on Pk could be dropped. But then one must make sure that Pl is
a strict subset of Pk. Otherwise, to both partitions no rule would be applied
and the algorithm would become incomplete. For more expressive logics, more
expressive blocking conditions have to be defined (e.g., [21]). In the literature
it has been shown that the extended algorithm is sound and complete for
arbitrary ALC Tboxes.

One drawback from a practical point of view is that now a possibly large
set of disjunctions are introduced for every individual mentioned in a tableau,
since Mi = ¬Ci ⊔ Di. Keeping in mind that, e.g., boolean constraint propa-
gation is employed to deal with disjunctions in a practical system, it becomes
clear that disjunctions always involve “heavy-weight” methods in a practical
implementation of the tableau algorithm. For specific forms of GCIs, the dis-
junctions do not have to be explicitly generated, however. This is explained
in the next subsection.

3.1 Lazy unfolding

Let us assume, there is a global constraint of the form Li = ¬A ⊔ C in
M such that A is an atomic concept description. Rather than adding this
global constraint to every individual x, the idea is to only add C(x) if adding
¬A(x) would lead to a clash. For those global constraints, one can implicitly
assume that individuals are instances of ¬A “if not stated otherwise” (see the
construction of the canonical interpretation). The global constraint Li can be
handled “in a lazy way” by a new rule which “unfolds” an assertion A(x) in
a tableau (cf. [3]).

We need some definitions for specifying the exact conditions under which
soundness and completeness can be guaranteed. An atomic concept descrip-
tion A directly refers to an atomic description B if there exists a GCI A ⊑ C

4 We use a way to construct the canonical interpretation that already considers
additional concept constructors such as, say, number restrictions. In case of ALC
it would be possible to map i to its witness w in the canonical interpretation.
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such that B is mentioned in C but not in the scope of an exist quantification
or value restriction. A refers to B if it directly refers to B or there exists an
atomic concept description B′ such that A refers to B′ and B′ refers to B.

A global constraint of the form Li = ¬A ⊔ C need not be handled as a
disjunction if A is an atomic concept description and C does not refer to A.
Let us assume that global constraints that satisfy the conditions introduced
above for Li are collected not in M but into a set L. There must be no other
global constraint in L with a disjunct ¬A or disjunct A. Then, the following
rule is used to deal with global constraints in L [3, 21].

• Lazy unfolding rule 1: If A(x) ∈ A and (¬A ⊔ C) ∈ L and C(x) 6∈ A,
then replace A with A ∪ {C(x)}.

In other words, only if there is an assertion A(x) in a tableau, then C(x) must
be added because assuming ¬A(x) would lead to a clash.

In case we also collect assertions of the form A⊔C into the set of concepts
L (and not into M) another rule must be added. Corresponding restrictions
as for ¬A ⊔ C apply.

• Lazy unfolding rule 2: If ¬A(x) ∈ A, (A ⊔ C) ∈ L and C(x) 6∈ A, then
replace A with A ∪ {C(x)}.

Lazy unfolding exploits the fact that one can safely assume that a domain
object which is not explicitly enforced to be in AI (or (¬A)I in the second
case) is an element of (¬A)I (or AI in the second case). See [22] for details.

3.2 GCI Absorption

Global constraints in L are handled more effectively. If, initially, the global
constraints are not of the form that they can be put into L but must be
stored in M , the goal is to transform them in a way that a maximum number
of global constraints can be put into L, and possibly none must be kept in M ,
without changing the semantics of the Tbox. This transformation process is
known as GCI absorption (see [15, 16, 22] for details).

In some cases, still some global constraints remain in M even if GCIs are
transformed as describe above, unfortunately. For instance, this happens if
there are two GCIs of the form A ⊑ (∃R.A) ⊓ C and ∃R.A ⊑ A in a Tbox.
The latter kind of GCI is only relevant for an individual x if there exists an
assertion R(x, y) in tableau.

For ∃R⊤. ⊑ C an effective treatment is possible. The same holds for range
restrictions ⊤ ⊑ ∀R.C. Let domain(R) and range(R) denote sets of concepts
(initially empty). We assume that all (∀R.⊥)⊔C are removed from M , and for
each (∀R.⊥)⊔C removed, C is added to domain(R). In addition, all ⊥⊔∀R.C

are removed from M , and for each ⊥ ∪ ∀R.C removed, there is C added to
range(R).
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• Domain restriction rule: If R(x, y) ∈ A and C ∈ domain(R), then
replace A with A ∪ {C(x)}.

• Range restriction rule: If R(x, y) ∈ A and C ∈ range(R), then replace
A with A∪ {C(y)}.

See [10] for a description of the initial idea and [31] for an analysis of this
technique. However, for ∃R.A ⊑ A a disjunction has to be added (to any
individual for which there exists a role successor), which still could cause a
combinatorial explosion if the wrong choice is made in a practical system. For
instance, this could happen for the following Abox.

A = {¬A(x0), R(x0, x1), R(x1, x2), . . . R(xn−1, xn), A(xn)}

For all xi, i ∈ {0, . . . n−1}, a disjunction (∀R.¬A)⊔A would be asserted, and
choice points are set up. We assume that rules are first applied to the tableaux
created for ∀R.¬A. After several rule applications, a clash w.r.t. ¬A(xn) and
A(xn) would be detected. The situation could be even worse, if there was a
GCI B ⊓ ∃R.A ⊑ A with B being an atomic concept for which there exists a
GCI B ⊑ D. Thus, there is no way to absorb B ⊓ ∃R.A ⊑ A into L using the
above-mentioned techniques.

In [23], a new transformation called binary absorption has been introduced
to tackle this problem. Applying this transformation requires a new rule to
be added to the tableau algorithm. This is discussed in the next subsection.

3.3 Binary Absorption

A GCI B ⊓ ∃R.A ⊑ A should not be transformed into a disjunction to be
placed in M . It can be transformed into

∃R−1.⊤ ⊑ A1

A1 ⊓ A ⊑ ∀R−1.A2

A2 ⊓ B ⊑ A

where R−1 denote the inverse of role R. The idea is to introduce a marker
A1(y) for every y for which there is an assertion R(x, y). The first GCI of
the list above can be handled effectively by absorbing it into domain(R) as
described before. A2 is a marker indicating an instance of ∃R.A (see the second
GCI). The third GCI now enforces y to be an instance of A in the tableau. In
order to deal with a conjunction of two atomic concepts on the lefthand side
of a GCI the lazy unfolding rules can be extended as follows [23].

• Lazy unfolding rule 3: If {A1(x), A2(x)} ⊆ A, (6 (A1⊓A2)⊔C) ∈ L and
C(x) 6∈ A, then replace A with A ∪ {C(x)}.

No disjunctions of this particular type have to be handled after the trans-
formation is applied. Soundness and completeness of this approach have been
shown in [23]. A disadvantage is that the tableau algorithm now must also
handle inverse roles (denoted as R−1 in the GCIs above). Extensions to A are
briefly discussed in the next section.
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4 Tableau Structures for Subsumption Problems

Tableau-based reasoning can be exploited for solving other reasoning problems
as well. First, we consider the subsumption problem, then we turn to the
instance problem and the retrieval problem.

Subsumption problems occur very frequently if the so-called taxonomy of
a Tbox is computed. This is usually done at ontology development time in
order to check for modeling errors (unsatisfiable atomic concept descriptions,
unwanted subsumption relationships etc.). The taxonomy of a Tbox is a graph
where the nodes are the atomic concept descriptions mentioned in the Tbox
(including ⊤ and ⊥), and the edges indicate whether a node is a most-specific
subsumer of another node.

For expressive languages such as ALC the subsumption problem A ⊑? B

can be reduced to the Abox consistency problem {(A⊓¬B)(i)} for some indi-
vidual i. If the Abox is inconsistent the subsumption relation holds, otherwise
it does not hold. For practical Tboxes, GCIs usually involve conjunctions on
the righthand side. Thus, if B is negated, disjunctions have to be handled
by the tableau algoithm, which might lead to “unfocused” applications of
the rules. For computing the taxonomy, many similar subsumption problems
of the form Ai ⊑? B have to be solved, and hence, many Abox consistency
problems {(Ai⊓¬B)(i)} are the consequence. In almost all cases the subsump-
tion relation between A and B does not hold, and hence, the Abox is likely
to be shown to be consistent. Quite some number of applications of tableau
rules might be required, however (with large or-branching, and for realisistic
ontology considerable and-branching as well).

Therefore, in [15] the following technique was developed. Since ¬B is used
many times, its satisfiability is tested in isolation. Usually, ¬B is satisfiable
in practical contexts (otherwise, B would a synonym to ⊤). The test whether
{¬B(i)} is consistent leads to a consistent Abox such that a label L1 is defined
for i. We call this label a pseudo model (for an atomic concept description).
The same is done now for Ai (let the label be called Li).

In [15] a process called model merging is defined. The idea of this process
is to show non-subsumption by comparing the labels. Four conditions must
be satisfied in order to conclude non-subsumption.

• For every A ∈ L1 there does not exist an ¬A ∈ Li

• For every ¬A ∈ L1 there does not exist an A ∈ Li

• For every ∃R.C ∈ L1 there does not exist an ∀R.D ∈ Li

• For every ∀R.C ∈ L1 there does not exist an ∃R.D ∈ Li

If non-subsumption cannot be concluded, the “full” test whether {(C ⊔
¬D)(i)} is consistent is performed. However, practical experiments have
shown that this is not often required [15, 16], so there is hardly any over-
head introduced by the model merging process. There is almost no search
involved in comparing the labels in the way defined above if the assertions in
the labels are indexed appropriately.
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5 Conclusion

The tableau algorithm introduced in this section can be extended to deal
with additional concept and role constructors. With the addition of new con-
structors, the rule application strategy becomes important for termination
and correctness, not only for optimization. Furthermore, the blocking condi-
tion might become more complex. For instance, the following constructs have
been investigated in the literature and tableau algorithms have bee specified:

• concrete domains (with feature composition) [4],
• qualifying number restrictions [14],
• number restrictions plus role conjunctions and GCIs [8],
• transitive roles [27],
• transitive roles, role hierarchies, GCIs, and features [16],
• transitive roles, role hierarchies, GCIs, plus number restrictions and Aboxes

[12],
• transitive roles, role hierarchies, GCIs, number restrictions and Aboxes

plus concrete domains without feature composition [11],
• transitive roles, role hierarchies, GCIs, Aboxes, plus qualifying number

restrictions and inverse roles [21],
• nominals [28, 1, 30, 20],
• role axioms [18],
• concrete domains with role composition for description logics with GCIs

[25].

For almost all of the language features in this list, efficient implementations
based on tableau algorithms are available.

Tableau-based reasoning methods are very effective for concept satisfiabil-
ity checking [19] as well as for Tbox-based reasoning tasks [16, 13, 32]. Even
for some specific Tboxes for which it was assumed that resolution-based rea-
soning methods show better behavior, new techniques such as binary absorp-
tion have shown that tableau-based methods can exploit similar structures.
Tableau-based Tbox reasoners such as FaCT++, Pellet or RacerPro are the
fastest systems for expressive description logics for a wide range of expressive
Tboxes that regularly occur in practice.
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