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1 Introduction

Modern Social Web applications like Facebook and Twittéavalpeople to socialize
over a distance by sharing notes, photos and other persdoahiation with their bud-
dies or the public. By automating the data gathering via tidita phone, IYOUIT?
a community service in the field of context-awareness, ibziag a sophisticated life
logging platform [1]. The mobile part of IYOUIT makes use bétfast data connection
and the multitude of sensors (e.g., WLAN, GPS, accelerome}available on modern
handsets to transmit recorded context elements to compoimethe network for fur-
ther processing. These components combine, abstraaprietestore and redistribute
context streams by making use of external data sourcesifeagping GPS coordinates
to locations or weather informations) and internal compaits (e.g., detecting impor-
tant places of a person by applying clustering algorithnigdation traces). Eventually,
context data is transformed into status updates,ligtening to musior just arrived
home which are distributed via the mobile application or anyteff tonnected Web 2.0
services like Facebook. In addition, context is used toraataally tag media data, e.g.
photos on Flickr, to ease the search for specific itemsghatos taken in Italy

To increase the level of abstraction and to derive additiori@armation that is not
given explicitly, 'YOUIT uses knowledge formalized as OWL Bntologies to classify
qualitative context w.r.t. situation concepts [2]. For exde, abusiness meetingay
be derived based on the people in proximity, their sociati@hs and the actual place.
While the derived (static) situations allow for the genierabf more meaningful status
updates, the navigation in context histories requires armomplex event model based
on situation changes.

In a previous work, we exploited simple ontology-based execognition with DLs
[3]. The work reported here improves this initial approagiploviding additional prag-
matic solutions for DL-based event recognition, solvingisaf the scalability issues.
Besides formalizing the event recognition problem, we c¢fh@ a set of modeling alter-
natives and give some practical guidances. Although thboddtas been implemented
using RACERPRO, the identified problems generalize to all DL and OWL systems

We are assuming familiarity with basic DL notions, syntamantics, standard DL
reasoning services, as well as with DL and Semantic Web daaguages [4]. Those
notions will be used without formally introducing them.
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2 Situational Reasoning

Previous work introduced the noti@ituation[2] as a vector of context attribute-value
pairs describing the circumstances of a perséi; : CV,..., CA, : CV,,), where
CA stands for context attribute, andl” for context value concept. A situation was
represented as an ABox individugk and an assertion such as

sit: (3CA;.CV)N---N(3CA,.CV,)
There is one OWL ontology for eaati4, structuring the possibl€'V's in a taxonomy,
e.g., forCA = at_place, we might haveCV € {home, office, restaurant, ...} (see
[5] for information on how location concepts are detected esalized).CAs are not
necessarily functional (e.g., thear_by CA).

In order torecognize a situationgefined concepts are exploited, e.ghusiness
meetingcould be detected with defined concepts sucthasness_meeting= >3
near_by.colleague M dat_place.office. In the following, such concepts will be called
recognizer conceptdVhereas for simple situation descriptions as the ones jushg
also theconcept classification serviaeould be sufficient, in general a “more explicit”
representation of the situation as an ABox of the form
{sit : situation, (sit,valy) : CAy,valy : CVy,..., (sit,val,) : CAn,val, : CV,}
is preferred, since this allows us to exploit an additioaatj, concerning theslational
expressivitymuch more powerful recognition mechanism, nantglgries For exam-
ple, a standardrounded conjunctive quefg—9] can detect those business meetings in
which at least three people are involved which mutuallyikiskach other:

ans(x) «— business_meeting(x), near_by(x,y), near_by(y, z), near_by(z, x),
hates(x,y), hates(y, z), hates(z, x).
In the following, such a query (rule) is calledecognizer query (rule)t is well-known
that it is not possible to recognize such situations by me&osncepts in standard DLs
or OWL, due to a lack of relational expressivity. Such redegnqueries (rules) can be
written in SPARQL, SWRL, SWRQL, ...We are usingRQL [9].

In a NRQL rule, the ans head predicate is replaced by a so-called generalized
ABox which is an ABox whose assertions may reference vaggmfilom the body of
the rule. Using first-order notation for such generalizedo&&s, the rule conclusion
hateful _business_meeting(x) would add the concept assertion
sit : hateful_business_meeting given the bindinge = sit satisfies the query / rule
body. Similar things can be done in SWRL or SPARQL (usiogst r uct ). But un-
like SWRL or SPARQL,NRQL also allows to introduceew ABox individualsThis
feature will be exploited in the following. Note theRQL goes beyond the expressiv-
ity of SPARQL and SWRQL by implementingpistemic first-order queries, not only
grounded conjunctive querieBue to its unique combination afegation as failure
(NAF) and theprojection operatora universal closed domain quantifier is available.

Within the IYOUIT framework, we call the component which ates per day an
ABox representing the accumulated context datdiwg Description Generator (DDG)
and the generated ABox tliy Description ABox (DDA he DDG is an external pro-
gram outside of the DL system.

Whereas in many cases, the value concept is directly adsgateal; : C'V, some-
times ABox realization is used to also recognize thE’s. To faciliate this, the DDA
not only contains situation descriptions, but also usefilprdata, e.qg., the social net-



work of a user, as well as other mostly static informatiog, @ome country, typical
office hours, etc. With the help of queries, this additioretbdcan be exploited. These
modeling ideas are described in more detail in [2], and [1$§suthe corresponding
OWL ontologies for benchmarking purposes.

3 Event Recognition with Description Logics

In [3], the focus was shifted from recognizing static sitoa$ which are conceptually
instantaneous “snapshots in space-time” to so-calexhtswhich also take the dy-
namic and temporal aspects of situational changes intauatcBvents have a temporal
duration. Recognized structures can be exploited for thatmm of static diary-like
day summaries (Blogs), but also for querying and data mipimgoses). As such, the
famousAllen temporal relation§l1] play an important role, not only for query formu-
lation and natural language generation for Blogs, but atsth@vocabulary defining
event recognizerg&vents are alsoontext-providingBy enabling IYOUIT to recognize
situational changesather than just statisituations a deeper level of context aware-
ness can be achieved. For examplepatinary office dayevent could be defined as a
sequence of consecutive evemthlich stand in the Allen relation “meets{at home,
moving, in office, moving, in restaurant, moving, in office, moving, at home>, together
with some additional restrictions regarding certain fixagt ime intervals, such as “in
restauranduring noon”, etc. Thus, the DDA also contains these day time iadsrv
An ordinary office day is therefore a complex event aggregadi series of subevents
and should thus be recognizable from the types of its suliees from the temporal
relations holding between them.

The challenging questions, then, aa¢:how to represent such events and b), how
to define “event recognizers” for them (either as defined emts or as recognition
queries / rules)A first case study was perfomed in [3]. Both answers to thesstipns
have to take into account the side conditions that existiagdard DL or OWL rea-
soners (such asARERPRO) shall be used in order to get a working system with good
performanceoday.

Regarding a), the least “ontological commitment” we can ensksaying that we
want to represent actual events in the ABox which satisfyfdllewing axiom:

event=dstart_state.state M dend_state.state
We simply state that an event is an “aggregate” which hasrasséde and an end state,
and thatstates are basically theituations just described, but augmented with some
temporal informationwhich allows to determine the temporal order between states
We assume a linear discrete time model, €M, <). There are various options for
the representation of the temporal relations between titesstthese options will be
discussed in the next section. It is also assumted:_state < end_state holds, for
all events. In additioncomplex eventare composed of (one or several) subevents:

complex_event=event N has_part.event.

Non-complex events are callaiimple eventsTwo important subclasses atBange_
events and const_events: change_event;event, const_eventgevent. The former
witnesses a change of sorggl from its start_state to its end_state. The latterwit-
nesses the constancy (non-change) of séiee.qg., if CA = at_place changes from
CV = home to CV = office, then this change will be reflected by a



leaving_home_entering_office event. Theend _state should be the immediate succes-
sor w.r.t. the temporal ordet. Hence, a basichange evenshould have aninimal
temporal durationln contrast, econstancy everghould havenaximal durationand
must also benhomogeneoufl?], i.e., there is no state in between the start and end
state for which theCA x CV attribute value pair doesot hold. An example is the
staying_in_the_office event, which is a constant (and thus maximal and homogeheous
event. These properties are very important, since otherhisdefinition of more com-
plex events based on the basis of subevents becomes itéeifisibe never knows in
how many “segments” a subevent is splitted.

By exploiting the epistemic first-order propertiesnd®RQL, maximal and homoge-
neous eventor somesome_condition are recognized by the following query (rule);
we assume thatture holds betweer; ands iff s; preceeds, on the time line, i.e.
s1 < s9, andnext betweens; andss iff s, is the direct successor ef w.r.t. <:

ans(s1, s2) < state(s1), state(s2), future(s1, s2),
some_condition(s1), some_condition(sz2),
\7(s1) (state(so), next(so, s1), some_condition(so)),
\7(s2) (state(ss), next(sz2, s3), some_condition(ss)),
\7(s1,s2) (state(ss), future(si, s3), future(ss, s2),
\some_condition(ss))
The “\” is the NAF operator, and#” is the projection operator. Note thgt . . . imple-
ments a first-order epistemic closed-domain quantifierfiree\ = . . . ensure maximal-
ity of the interval to the left, the second occurence maxityaf the interval to the right,
and the third occurence verifies homogeneity, i.e., theme iates; in betweens; and
so for which we cannotprove some_condition; hence,\some_condition(ss) shall
not hold. Note that:some_condition(ss) is a too strong requirement, since absence of
some_condition on s does not imply thatsome_condition(ss) holds; rather, only
\some_condition(ss) holds. We refer to [9, 13] for more details.

The semantics can be paraphrased as a first-order queryawdlaver the re-
lational structure (“database§a=(AZ,CZ, ..., R%,...), with AT =, inds(A),
CT =4y {i]i €inds(A), A= C(i)}, RT =45 { (i,7) |inds(A), A = R(i, j) }, for
all relevant roles? and all relevant (not only atomic!) concejgts The first-order query
evaluated oves& 4 gives the semantics of theRQL query above (by construction of
S, NAF negation 4" can be replaced by classical negation’):

{(s1,s2)|3s1,s2 : state(s1) A state(s1) A future(sy, s2) A

some_condition(s1) A some_condition(s2) A

—dso : state(so) A next(so, s1) A
some_condition(so) A

—ds3 : state(ss) A next(sz, s3) A
some_condition(ss) A

—Jss : state(ss) A future(si, s3), future(ss, s2) A
—some_condition(ss) }

However, the most important question i¥Vhere do events come fror&?ents can
be recognized by recognizer concepts or queries / ruleodRéer concepts rely on
the ABox individual realization service and thusexplicit ABox assertions. However,
the situation is different for queries and rules. First df aINRQL rule can create
new ABox assertions, or even new individuals. These newta@ss can trigger further
rule applications. MoreoveNRQL is not depending oaxplicit relationsin forms of



concept or role assertions, but also workgraplicit relations sinceNRQL offers the
equivalent of intensional database relations similaD&dalog rules These implicit
relations are defined by means of so-caltkdlined queries-or example, the binary
recognizer rule for the Allen relatiobefore:

before(z,y) «— event(x),event(y), end_state(x, s1), start_state(y, s2), future(s1, s2)
can either be understood as a rule which adds (“materid)izefre role assertions to
the ABox, or as alefinition of the queryefore (a “query macro”) which is expanded
and replaced by its definitiomhenever it is referenced in some other query bedy, in
an event recognizer rule or quéridence, a query or rule body referenciligore does
not necessarily require expliditfore role assertions in the ABox, but can work with
theseimplicit or intensionalbefore relations.As a result, the bodies of the referencing
rules can get very complex and become demanding for the qygimizer and proces-
sor (an exponential blowup is possible). Moreover, definggrigs must be acyclic in
NRQL. If recursion is requiredyRQL rules have to be used instead of defined queries.

In principle it is possible to define complex event recogrizes defined queries
rather than rules. But, as there would be no ABox individegresenting the com-
plex event itself, these queries would hary predicates, or binary predicates such as
ordinary_office_day(s;, s2) on the states; ands,. Then-ary solution is obviously
bad, and the binary solution has the drawback that it wouldripmssible to refer to
its subevents, only the states are available. This is Istrietuired since otherwise no
Allen relations to other events could be computed. Consgfyjalso the simple events
should be modelled as binary predicates. Thus, the appregciires an entirly differ-
ent modeling and is thus not considere further in this papesr{ Allen relations could
no longer be understood as roles holding between eventsyduld become quadrary
defined queries for pairs of endpoints of events).

Conclusion: In principle, the Allen relation recognizers well as the event recog-
nizers can be rules or defined queries. The latter optionjected for event recognizers
since we want explicit visibility of the events in the ABdsoAthe modeling would be
quite different. Allen relations as defined queries wereadty investigated in [3] where
we have observed a rather bad performance, which was paatiged by repeated re-
computation of Allen relations, and partly due to the quenylé body blowup caused
by unfolding of the Allen definitions. Hence, this time we raggerializing Allen re-
lations via rules at the price that the ABoxes get bigger. Waduate this decission in
Section 3. But first we want to shed some light on the questidinere do events come
from?” in order to provide guidance for developers of simita related DL-based event
recognition systems.

First Idea - Pre-Construction of all Events by the DDThe set of states of a given
day is finite. Is it possible for the DDG to pre-construct atispible events in the
DDA in advance, and then rely as much as possible orstaedard ABox individ-
ual realization servicgo recognize events, similar to the situational reasor2iig For

n states, there are most, = n(n — 1)/2 simple events. Hence, there are at most
M1 = Y ocpem, (%)) = 2™ — mg — 1 complex events which can be constructed
from thesen, simple events. These events can in turn become subeventyefoom-

plex events, and so on. For 3 states, we already get 120 eegnigy + m + mo,

5 This does not work in concepts, e.hefore. . . . would not be aware of the defined query.



and 1329227995784915872903807060280344455 events oethievel. The set of
pre-constructable events is in fact infinite, but it may begilnle to compute an upper
bound based on the definitions of the recognizers. Althousgdams reasonable to stop
at, say, level 3, still the constructed ABoxes are not mablkegén the IYOUIT scenario,
a more realistic assumption is that of approx. 30 statesgeadd user. Already level 1
becomes infeasible then. Even worse, an additierfahumber of Allen relations have
to be asserted.

Since all relevant event aggregates are already explimidgent in the ABox, rec-
ognizer concepts become possible:

leaving_home_entering_office= Astart_state.Jat_place.home M
dend_state.dat_place.office

Unfortunately, certain important event properties, sushmaximality and homo-
geneity, cannot be expressed with concepts. But at leasiiédpasic context attribute
values which are explicitly asserted (which require no oeawy), these properties can
be taken care of by the DDG (which does not perform reasomdgsa hasn general
no knowledge about the temporal extent of so6 x CV property holding), and
assure or directly assert that kind of information.

In most cases, recognizer concepts are insufficient foilgeesentation of complex
events. The main limitation is the inability of concepts &sdribe anything else than
tree structures (regarding the role successors). For draihs impossible to specify
that during the in_office_event, first themeeting_ with_boss, and immediately after
(= meets relation), but still during thén_office_event, themeeting_ with_customer_
event occurred. An attempt:

stressful _office_day=
Jhas_part.(in_office_event M
Jduring.( meeting_with_boss_event M
Imeets.meeting-with_customer _event 1. ..))
However, with that definition it cannot be taken for grantetatt the
meeting_with_customer_event still takes place during thé_office_cvent. Other at-
tempts to define such a concept will have similar defecth@dgh it is impossible to
fix the start state and end state by means of existentialgethporal duration of the
complex event as well as the Allen relations to other (pdgsibmplex) events are in
fact known, since the aggregate was constructed by the DDi@waisserted the correct
correspondingtart_state andend_state successors. This is also the motivation for the
has_part role. Without the additional individual representing therplex event as an
aggregate, start and end state of the aggregate could notdak &ind consequently,
Allen relations could not be computed. Moreover, one of itsevents would have to
act as a proxy for the whole aggregate [14], what seems ingdedn this scenario.

Although many temporal constellations between subeveartaat be reliably rec-
ognized with defined concepts since a lofalée positivesvill be detected, some com-
plex events can indeed be realized in that way, ¢hpse complex events for whose
description a tree-like temporal Allen network is sufficiénother required provision
in order to minimize the amount of false positives is that bas torestrict the visibil-
ity of Allen relation successors to those events which areqgfahe same aggregate
otherwise the traversal of an Allen role assertidmia 3R. . .. could lead into an event
being subevent of son@hercomplex event, yielding another false positive. However,



this forces the DDG to creatmpiesof subnetworks and increases the ABox size by an
additional factor. Hence, the approach does not seem rahlgon
Again, a query or rule can help overcome the expressivitpleros:
stressful _office_day(x) «— has_part(z,p1), has_part(z, p2), has_part(x, ps),
in_office_event(p1), meeting -with_boss(p2),
meeting_with_customer_event (ps),
meets(p2, p3), during(p1, p2), during(p1, p3)

Conclusion: For complex events, the pre-construction bByOBG causes two prob-
lems. First, the number of precomputed events and Alletioals gets enormous, and
second, it is not always possible to define resonable exXpesgerognizer concepts for
complex events. The latter point is not resolvable unlessiafized temporal logics
are used, or certain OWL extensions are accepted [15]. Ouabrigs or rules can help
then. For simple events, some recognizer concepts can beedefihich is a big ad-
vantage, since rule / query management in DL systems hasehotgched the same
level of matuarity and state of the art as concept managenariteven for simple
events, certain event properties can only be adressed tisfjrst-order facilities of
NRQL. In principle, DL-safe rule languages are sufficent, sinleesgents have been
pre-constructed.

Second Idea - Start from States, Construct Events with Nda{SulesWhereas the
one extreme was just described (all events are pre-cotstkby the DDG), the other
extreme is to have no pre-constructed events at all in the [hDRonly states with their
temporal relations.

As a consequence, the number of recognizer rules gets vgs, land rule man-
agement becomes an important issue. A big plus ofiR®L rules are the first-order
capabilities in this settings. We already demonstratedtbawcognize maximal and ho-
mogeneous events. Since only states together with thepdeahrelations are present
in the DDA, non-safe rules which can introduce new evenbidials have to be used
(we have rejected the option to implement these recognizedefined queries above).
NRQL offers thenew_ind operator (which can be understood as a function symbol). A
typical basic event recognizer / constructor rule consitngcevent _concept instances

looks as follows:
event_concept(new_ind(event, s1, s2)),

start_state(new_ind(event, s1, s2), 51),
end_state(new_ind(event, s1, s2), s2) « state(s1), state(sz2),

future(s1, s2), (Or next)

plus some more conditions af, s2
For example, given statas = i, s, = j, it constructs the ABox assertiofisvent; ; :
event_concept, (event; ;,1) : start_state, (event; ;,j) : end_state}. Non-safe rules
are in principle subject to termination problems, since ivewiduals are introduced
(on which rules may fire which introduce individuals, on whizles may fire which
introduce individuals, on which .. .). mRQL, this termination problem is delegated to
the client program which has to drive the rule application¢ceNRQL does not offer
an automatic rule application strategy. The client progthus has to run a loop of
the form ‘whi | e (applicabl e-rules()) {execute-applicable-rules();}"
calling theNRQL rule API functions to drive the rule application. Oner#ion of



this loop is called aule application cycleThus, all possible termination problems
are caused by the client which runs the loop. Due to the nonetemic features, it is
possible to writesRQL rules for which the loop actually terminates (this wontit be
the case in monotonic rule languages!). For example, theeahde can disable itself
after all constructible events were constructed by addritstprecondition

\7(s1,s2) (event_concept(x), start_state(z, s1), end_state(x, s2))

The need for an external client program driving the rule igagibn can be seen as a
drawback. However, recently theiNt Lisp functional expression language for server-
side programming has been added and reached a mature $fateilthus possible to
implement a rule application strategy directly on thedRRPRO server. Since MNIL-
ISP is termination safe it does not allow to implement unbounidegs. However, it
allows bounded loops and structure traversion. In mostscaskxed upper limit on the
number of required rule application cycles can be compu&ted by analyzing the rules
and the number of present states.

The recognizer rules for complex eventdook very similar to the
stressful _office_day example rule already discussed; the conclusion, howeasrid
construct a new event individual and also cannot relyhesLpart(z, p) for its parts
p in the precondition, of course. Please note that also thenAlélations have to be
computed for each constructed event. The universal cldsethin quantifier oNRQL
(the “\..."-construction) is also important for complex event reciagnrules, since
maximality and more ofteabsence of certain other events, i.e., between two sulsevent
has to be enforced.

From a theoretical perspective, this approach is the cktame most powerful one.
Only the events which are really detected are constructedafntrast, in the previous
approach the DDG has no knowledge about what is really neadédonstructs all
kinds of unnecessary events). Therefore, this approackhassen in [3]. As explained
above, the bad performance observed was partly caused by Adlations as defined
queries. However, also the big amount of rules requireceieéttle place for recognizer
concepts. Having to construct and check homogenity andmadity even for simple
events introduces a big number of universal closed-doma@mtifications which are
expensive too evaluate. We thus argue that the DDG showddjrconstruct the basic
events and take care of these properties whenever it is abjgato do so, thus leaving
only the hard recognition problems for the reasoner.

Conclusion: Constructing events with non-safe rules iseptually very clean. The
whole process is driven solely by the ontology (considenitgs part of the ontology).
But, it has performance problems with the current statéhefart technology. This does
not invalidate the approach as it might run fast on futuretsgss, however, we are
looking for a system working with today’s technology. Thenhar of rules becomes
very large and thus issues which are curently not well-sujggioby DL systems, e.g.,
rule managment, become predominant. Allen relations catonger be computed in
advance by the DDG, but rather have to be recomputed aftelh eale application
cycle.

Third Idea - The Best of Both Worldslaving analyzed both extremes, we proceed
as follows: The DDG already pre-constructs all relevantpdinevents, and only the
complex events and simple events whose recognition regjoimlogy reasoning are



constructed via rules. Some Allen relations can in prirecgdteady be asserted by the
DDG for those pre-constructed events. Nevertheless we beusble to compute Allen
relations after each rule application cycle.

Hence, for every, s2, CA and C'V, the DDG pre-constructs a simple event if
and only iftime(s1) < time(sz2), the eventis homogeneous, and has a maximal extent
w.r.t. theCA x CV attribute-value pair. In case the recognition@ x CV requires
reasoning, the event cannot be pre-constructed, and ri¢icoguiles (or concepts) have
to be written. In the current IYOUIT scenario, recognizelesuare only required for
complex events. The number of simple events is boundeldy|CV [n(n — 1)/2,
wheren is the number of states. Since all simple events in the DDAave maximal
and homogeneous, it also becomes reasonable to attacktlatributes to the event
individuals instead of the states. For every possiile x CV pair, a simple event
recognizer concept can be defined:

eventca,cy=event M3CA.CV.
Consequently, th&'V taxonomy is automatically inherited to the taxonomy of sim-
ple events (something we would not get automatically wittogmizer rules, although
NRQL is able to compute query and rule subsumption [13]). €lasilary concepts
faciliate the modeling of complex event recognizer rules.

The DDG did not pre-construct change events. Their absaneetireally a draw-
back; they can still be recognized, e.g. the chang€4ffrom CV, to CV, can be
detected with a rule such as

. —eventca, cv, (€1),eventca, cv,(e2), meets(er, e2)
However, in most cases changes only need to be detecteden tordefine complex
rules, and thus, these change detections can simply becantaf the definitions of the
complex event recognizer rules. Still, some code is neauldde the rule application.
The remarks from the previous paragraph apply (we are usimgIMsPp this time).

Conclusion: The idea seems promissing and combines theobbesth worlds. It
keeps the number of rules maintainable, allows to employe@itoncepts as recog-
nizer for simple events and does not lose expressivity.rAkdgrevious approach, the
efficent computation of Allen relations is very important.

4 Computation of Allen Relations

Since the set of states is fixed, the DDG can precompute theotetiorder between any
two states by means of role assertions using the roles equal (with nest=prev—1),
and a transitive superrofeture, nextfuture, future ™ =future, past=future . Note
that the explicit relation representation in termsweft and equal requiresn + n(n —
1)/2 role assertions (and even more if als@v, future andpast are made explicit in
case one wanted to get rid of the TBox axioms for the rolederAbtively, the DDG
can attach a filler of theoncrete domain (CD) attributéime to each state. ARQL
rule can make theezt relation explicit, or a defined query could be used:

next(sy, s2) — < (time(sy), time(sz2)),

\7(s1,82) (< (time(s1), time(ss3)), < (time(ss3), time(sz)))

The <-atom is a so-calle€D constraint checking atonwWhereas the evaluation
of this atom requires a concrete domain unsatisfiabilty klkddch may be expensive,
there is also a cheapter optionNRQL, a so-calledata substrate querwhich can
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check such constraints on a setdafta literalsmuch faster, since model checking of
some data substrate structure is sufficent [17].

In casenext is materialized, we also automatically get the relatipns, future,
andpast, due to the role declarations. However, if the rule is used dsfined query,
then some more definitions are required for the other rolgsfe future we can simply
remove the {7 ...” line from the next definition. The implicit and intrinsic relations
between states keep the ABox small in number of role asssrtibey are thus worth
considering, and should be subject to a benchmark. On tlez b#ind, the explicit re-
lation representations require bigger ABoxes, but havéémefit to also provide index
structures for query answering, and moreover can be usegid eepeated computa-
tions of relations. It is not clear how to proceed without aaleation of the alterna-
tives. Allen relations are computed from the relations leetwthe states of the events,
as already explained with thiefore relation. The ability toefficiently compute Allen
relationsis crucial for the performance and scalability of the whab@mach. Thus,
for the benchmark, we are first evaluating the performan¢ieeoAllen computation. A
DDA with 50 random intervals is created, which is reduceddadervals by removing
10 intervals, and so on, until only 10 intervals remain. Weamsidering four different
settings for the benchmark:

Allen 1: explicit state relations asezt role assertions, 7 Allen rules
(one rule per Allen relation and its converse),
Allen 2: implicit state relations via defined quenyzt and CD atom<
Allen 3: implicit state relations via defined quenyzt and data substrate atom
Allen 4: implicit state relations and computation of the Allen riglas with onerule
instead of 7, by means of aIMILISP )\ expression which analyzes tléne at-
tribute fillers of the states of the events, e; and computeghe corresponding
Allen relation programmatically with a conditional expsem expr:
A(e1, e2) @ expr — event(ey), event(es)

Figure 1 speaks a clear language (note the logarithmic)st¢héeprocedural solution
(Allen 4) is by far the fastest with approx. 600 Allen relattoper second (ARPS),
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then comes the data substrate solution with 170 ARPS, theesdlution with explicit
state relations in the ABox with approx. 66 ARPS, and findilg €D solution with
1.8 () ARPS. Note that the biggest ABox contains 4225 Allele mssertions. Also, it
is important to know how much time is spend for Allen compigtaif a new event is
introduced into the existing network. We thus added 5 ranihd@nvals into an existing
network of 25 intervals and measured the time required famAelation computation:
Allen 1 = 12.4 s, Allen 2 = 612 s, Allen 3 =5.7 s, Allen 4 = 1.5 s. Q@lfurse, the
bigger the network gets into which the new individuals arented, the more time is
required. The benchmark results make clear that the definati the Allen relations as
defined queries with the help of the concrete domain in owipus work [3] was a bad
decision.

5 Conclusion

While lots of temporal logics have been designed [18—23FWitiould have been ap-
plied in this scenario, few of them have been implementexs, feve implementations
with good performance, and thus, none of these can be usgudoctical applications
today. In contrast, Description Logic (DL) systems have enadmendous progress.
Still, realizing a DL-based event recognition which extsta good performance is a
highly demanding task. There are no simple answers to magteomodeling ques-
tions. With nowadays quite complex DL and Semantic Web teldgy, there are often
various realization and representation options. Even Xpeds, the consequences of
certain design decisions can be very hard to oversee. Wihetorming benchmarks
and evaluations, no solid ground can be reached in applyiisgt¢échnology to real
world application problems. We argue that cases studiegapdrs like this one are
important since they conserve and convey a lot of “how to"Wiedlge which may pre-
vent users from reinventing the wheel and from modelingrerrd/e thus wrote this
paper in a “reflective” style. Although we have usedd®RPRO in this study, we argue
that the problems and solutions discussed and presentedisspecific to RCERPRO.

In future work, alternative (but implemented) approachesutd be checked out,
e.g., instead of using unsafe rules, recent progress regantlultimedia and image
interpretation with horn rules in an abduction framewaskall be exploited [24, 25]
where new individuals and corresponding assertions anecatoitather than constructed.
This technology was brought to a mature state in the BOEMIEpEdject® Moreover,
in the spirit of the classical event recognition system NA@S, a new temporal rep-
resentation and querying engine has been integrated intERPRO: The so-called
time netoffers an alternative way to define complex event recogsiZine feasabilty
of these options for IYOUIT should be evaluated.

Regarding IYOUIT, there are open challenges. In order tda#ixpvents for the
offering of context dependent services on a mobile phoreetlents have to be rec-
ognized incrementally and online, not offline [27]. As suttfe work on incremental
plan recognition is relevant [28]. Ideally, this must happamediatly, e.g. as in [29].
Also there is work in progress regarding the handling of é&vepanning multiple days,
e.g., an oversea business trip. The handling is challingjimge events get “split” at day
boundaries and have to be re-merged, etc.

& www. boemi e. org
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