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1 Introduction

Modern Social Web applications like Facebook and Twitter allow people to socialize
over a distance by sharing notes, photos and other personal information with their bud-
dies or the public. By automating the data gathering via the mobile phone, IYOUIT,4

a community service in the field of context-awareness, is realizing a sophisticated life
logging platform [1]. The mobile part of IYOUIT makes use of the fast data connection
and the multitude of sensors (e.g., WLAN, GPS, accelerometer,...) available on modern
handsets to transmit recorded context elements to components in the network for fur-
ther processing. These components combine, abstract, interpret, store and redistribute
context streams by making use of external data sources (e.g., mapping GPS coordinates
to locations or weather informations) and internal computations (e.g., detecting impor-
tant places of a person by applying clustering algorithms tolocation traces). Eventually,
context data is transformed into status updates, likelistening to musicor just arrived
home, which are distributed via the mobile application or any of the connected Web 2.0
services like Facebook. In addition, context is used to automatically tag media data, e.g.
photos on Flickr, to ease the search for specific items likephotos taken in Italy.

To increase the level of abstraction and to derive additional information that is not
given explicitly, IYOUIT uses knowledge formalized as OWL DL ontologies to classify
qualitative context w.r.t. situation concepts [2]. For example, abusiness meetingmay
be derived based on the people in proximity, their social relations and the actual place.
While the derived (static) situations allow for the generation of more meaningful status
updates, the navigation in context histories requires a more complex event model based
on situation changes.

In a previous work, we exploited simple ontology-based event recognition with DLs
[3]. The work reported here improves this initial approach by providing additional prag-
matic solutions for DL-based event recognition, solving some of the scalability issues.
Besides formalizing the event recognition problem, we reflect on a set of modeling alter-
natives and give some practical guidances. Although the method has been implemented
using RACERPRO, the identified problems generalize to all DL and OWL systems.

We are assuming familiarity with basic DL notions, syntax, semantics, standard DL
reasoning services, as well as with DL and Semantic Web querylanguages [4]. Those
notions will be used without formally introducing them.
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2 Situational Reasoning

Previous work introduced the notionsituation[2] as a vector of context attribute-value
pairs describing the circumstances of a person:(CA1 : CV 1, . . . ,CAn : CV n), where
CA stands for context attribute, andCV for context value concept. A situation was
represented as an ABox individualsit and an assertion such as

sit : (∃CA1.CV 1) ⊓ · · · ⊓ (∃CAn.CV n)
There is one OWL ontology for eachCA, structuring the possibleCV s in a taxonomy,
e.g., forCA = at place, we might haveCV ∈ {home, office, restaurant, . . .} (see
[5] for information on how location concepts are detected and realized).CAs are not
necessarily functional (e.g., thenear by CA).

In order torecognize a situation,defined concepts are exploited, e.g., abusiness
meetingcould be detected with defined concepts such asbusiness meeting≡̇ ≥3

near by .colleague ⊓ ∃at place.office. In the following, such concepts will be called
recognizer concepts.Whereas for simple situation descriptions as the ones just given
also theconcept classification servicewould be sufficient, in general a “more explicit”
representation of the situation as an ABox of the form
{sit : situation, (sit, val1) : CA1, val1 : CV 1, . . . , (sit, valn) : CAn, valn : CV n}
is preferred, since this allows us to exploit an additional,and, concerning therelational
expressivity, much more powerful recognition mechanism, namelyqueries. For exam-
ple, a standardgrounded conjunctive query[6–9] can detect those business meetings in
which at least three people are involved which mutually dislike each other:

ans(x)← business meeting(x),near by(x, y),near by(y, z),near by(z, x),
hates(x, y), hates(y, z), hates(z, x).

In the following, such a query (rule) is called arecognizer query (rule).It is well-known
that it is not possible to recognize such situations by meansof concepts in standard DLs
or OWL, due to a lack of relational expressivity. Such recognizer queries (rules) can be
written in SPARQL, SWRL, SWRQL, . . . We are usingNRQL [9].

In a NRQL rule, the ans head predicate is replaced by a so-called generalized
ABox which is an ABox whose assertions may reference variables from the body of
the rule. Using first-order notation for such generalized ABoxes, the rule conclusion
hateful business meeting(x) would add the concept assertion
sit : hateful business meeting given the bindingx = sit satisfies the query / rule
body. Similar things can be done in SWRL or SPARQL (usingconstruct). But un-
like SWRL or SPARQL,NRQL also allows to introducenew ABox individuals. This
feature will be exploited in the following. Note thatNRQL goes beyond the expressiv-
ity of SPARQL and SWRQL by implementingepistemic first-order queries, not only
grounded conjunctive queries. Due to its unique combination ofnegation as failure
(NAF)and theprojection operator, a universal closed domain quantifier is available.

Within the IYOUIT framework, we call the component which creates per day an
ABox representing the accumulated context data theDay Description Generator (DDG),
and the generated ABox theDay Description ABox (DDA).The DDG is an external pro-
gram outside of the DL system.

Whereas in many cases, the value concept is directly asserted viavali : CV , some-
times ABox realization is used to also recognize theCV ’s. To faciliate this, the DDA
not only contains situation descriptions, but also user profile data, e.g., the social net-
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work of a user, as well as other mostly static information, e.g. home country, typical
office hours, etc. With the help of queries, this additional data can be exploited. These
modeling ideas are described in more detail in [2], and [10] uses the corresponding
OWL ontologies for benchmarking purposes.

3 Event Recognition with Description Logics

In [3], the focus was shifted from recognizing static situations which are conceptually
instantaneous “snapshots in space-time” to so-calledeventswhich also take the dy-
namic and temporal aspects of situational changes into account. Events have a temporal
duration. Recognized structures can be exploited for the creation of static diary-like
day summaries (Blogs), but also for querying and data miningpurposes). As such, the
famousAllen temporal relations[11] play an important role, not only for query formu-
lation and natural language generation for Blogs, but also as the vocabulary defining
event recognizers. Events are alsocontext-providing. By enabling IYOUIT to recognize
situational changesrather than just staticsituations, a deeper level of context aware-
ness can be achieved. For example, anordinary office dayevent could be defined as a
sequence of consecutive events, which stand in the Allen relation “meets”:〈at home,
moving, in office, moving, in restaurant, moving, in office, moving, at home〉, together
with some additional restrictions regarding certain fixed day time intervals, such as “in
restaurantduring noon”, etc. Thus, the DDA also contains these day time intervals.
An ordinary office day is therefore a complex event aggregating a series of subevents
and should thus be recognizable from the types of its subevents and from the temporal
relations holding between them.

The challenging questions, then, are:a) how to represent such events and b), how
to define “event recognizers” for them (either as defined concepts or as recognition
queries / rules).A first case study was perfomed in [3]. Both answers to these questions
have to take into account the side conditions that existing standard DL or OWL rea-
soners (such as RACERPRO) shall be used in order to get a working system with good
performancetoday.

Regarding a), the least “ontological commitment” we can make is saying that we
want to represent actual events in the ABox which satisfy thefollowing axiom:

event≡̇∃start state.state ⊓ ∃end state.state
We simply state that an event is an “aggregate” which has a start state and an end state,
and thatstates are basically thesituations just described, but augmented with some
temporal informationwhich allows to determine the temporal order between states.
We assume a linear discrete time model, e.g.(IN, <). There are various options for
the representation of the temporal relations between the states; these options will be
discussed in the next section. It is also assumedstart state < end state holds, for
all events. In addition,complex eventsare composed of (one or several) subevents:

complex event≡̇event ⊓ ∃has part .event.
Non-complex events are calledsimple events.Two important subclasses arechange
events and const events: change event⊑̇event, const event⊑̇event. The former
witnesses a change of someCA from its start state to its end state. The latterwit-
nesses the constancy (non-change) of someCA, e.g., ifCA = at place changes from
CV = home to CV = office, then this change will be reflected by a
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leaving home entering office event. Theend state should be the immediate succes-
sor w.r.t. the temporal order<. Hence, a basicchange eventshould have aminimal
temporal duration.In contrast, aconstancy eventshould havemaximal duration,and
must also behomogeneous[12], i.e., there is no state in between the start and end
state for which theCA × CV attribute value pair doesnot hold. An example is the
staying in the office event, which is a constant (and thus maximal and homogeneous)
event. These properties are very important, since otherwise the definition of more com-
plex events based on the basis of subevents becomes infeasible if one never knows in
how many “segments” a subevent is splitted.

By exploiting the epistemic first-order properties ofNRQL, maximal and homoge-
neous eventsfor somesome condition are recognized by the following query (rule);
we assume thatfuture holds betweens1 ands2 iff s1 preceedss2 on the time line, i.e.
s1 < s2, andnext betweens1 ands2 iff s2 is the direct successor ofs1 w.r.t.<:

ans(s1, s2)← state(s1), state(s2), future(s1, s2),
some condition(s1), some condition(s2),
\π(s1) (state(s0),next(s0, s1), some condition(s0)),
\π(s2) (state(s3),next(s2, s3), some condition(s3)),
\π(s1, s2) ( state(s3), future(s1, s3), future(s3, s2),

\some condition(s3))

The “\” is the NAF operator, and “π” is the projection operator. Note that\π . . . imple-
ments a first-order epistemic closed-domain quantifier. Thefirst \π . . . ensure maximal-
ity of the interval to the left, the second occurence maximality of the interval to the right,
and the third occurence verifies homogeneity, i.e., there isno states3 in betweens1 and
s2 for which we cannotprovesome condition; hence,\some condition(s3) shall
not hold. Note that¬some condition(s3) is a too strong requirement, since absence of
some condition on s3 does not imply that¬some condition(s3) holds; rather, only
\some condition(s3) holds. We refer to [9, 13] for more details.

The semantics can be paraphrased as a first-order query evaluated over the re-
lational structure (“database”)SA=(∆I , CI , . . . , RI , . . .), with ∆I =def inds(A),
CI =def { i | i ∈ inds(A),A |= C(i) } , RI =def { (i, j) | inds(A),A |= R(i, j) }, for
all relevant rolesR and all relevant (not only atomic!) conceptsC. The first-order query
evaluated overSA gives the semantics of theNRQL query above (by construction of
SA, NAF negation “\” can be replaced by classical negation, “¬”):

{ (s1, s2) | ∃s1, s2 : state(s1) ∧ state(s1) ∧ future(s1, s2) ∧
some condition(s1) ∧ some condition(s2) ∧
¬∃s0 : state(s0) ∧ next(s0, s1) ∧

some condition(s0) ∧
¬∃s3 : state(s3) ∧ next(s2, s3) ∧

some condition(s3) ∧
¬∃s3 : state(s3) ∧ future(s1, s3), future(s3, s2) ∧

¬some condition(s3) }

However, the most important question is –Where do events come from?Events can
be recognized by recognizer concepts or queries / rules. Recognizer concepts rely on
the ABox individual realization service and thus onexplicitABox assertions. However,
the situation is different for queries and rules. First of all, a NRQL rule can create
new ABox assertions, or even new individuals. These new assertions can trigger further
rule applications. Moreover,NRQL is not depending onexplicit relationsin forms of
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concept or role assertions, but also works onimplicit relations, sinceNRQL offers the
equivalent of intensional database relations similar toDatalog rules. These implicit
relations are defined by means of so-calleddefined queries.For example, the binary
recognizer rule for the Allen relationbefore :

before(x, y)← event(x), event(y), end state(x, s1), start state(y, s2), future(s1, s2)

can either be understood as a rule which adds (“materializes”) before role assertions to
the ABox, or as adefinition of the querybefore (a “query macro”) which is expanded
and replaced by its definitionwhenever it is referenced in some other query body,e.g., in
an event recognizer rule or query.5 Hence, a query or rule body referencingbefore does
not necessarily require explicitbefore role assertions in the ABox, but can work with
theseimplicit or intensionalbefore relations.As a result, the bodies of the referencing
rules can get very complex and become demanding for the queryoptimizer and proces-
sor (an exponential blowup is possible). Moreover, defined queries must be acyclic in
NRQL. If recursion is required,NRQL rules have to be used instead of defined queries.

In principle it is possible to define complex event recognizers as defined queries
rather than rules. But, as there would be no ABox individual representing the com-
plex event itself, these queries would ben-ary predicates, or binary predicates such as
ordinary office day(s1 , s2 ) on the statess1 ands2. Then-ary solution is obviously
bad, and the binary solution has the drawback that it would beimpossible to refer to
its subevents, only the states are available. This is strictly required since otherwise no
Allen relations to other events could be computed. Consequently, also the simple events
should be modelled as binary predicates. Thus, the approachrequires an entirly differ-
ent modeling and is thus not considere further in this paper (even Allen relations could
no longer be understood as roles holding between events, butwould become quadrary
defined queries for pairs of endpoints of events).

Conclusion: In principle, the Allen relation recognizers as well as the event recog-
nizers can be rules or defined queries. The latter option is rejected for event recognizers
since we want explicit visibility of the events in the ABox. Also, the modeling would be
quite different. Allen relations as defined queries were already investigated in [3] where
we have observed a rather bad performance, which was partly caused by repeated re-
computation of Allen relations, and partly due to the query /rule body blowup caused
by unfolding of the Allen definitions. Hence, this time we arematerializing Allen re-
lations via rules at the price that the ABoxes get bigger. We evaluate this decission in
Section 3. But first we want to shed some light on the question “Where do events come
from?” in order to provide guidance for developers of similar or related DL-based event
recognition systems.

First Idea - Pre-Construction of all Events by the DDGThe set of states of a given
day is finite. Is it possible for the DDG to pre-construct all possible events in the
DDA in advance, and then rely as much as possible on thestandard ABox individ-
ual realization serviceto recognize events, similar to the situational reasoning [2]? For
n states, there are mostm0 = n(n − 1)/2 simple events. Hence, there are at most
m1 =

∑

2≤k≤m0

(

m0

k

)

= 2m0 − m0 − 1 complex events which can be constructed
from thesem0 simple events. These events can in turn become subevents of more com-
plex events, and so on. For 3 states, we already get 120 eventsfor m0 + m1 + m2,

5 This does not work in concepts, e.g.,∃before. . . . would not be aware of the defined query.
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and 1329227995784915872903807060280344455 events on thenext level. The set of
pre-constructable events is in fact infinite, but it may be possible to compute an upper
bound based on the definitions of the recognizers. Although it seems reasonable to stop
at, say, level 3, still the constructed ABoxes are not managable. In the IYOUIT scenario,
a more realistic assumption is that of approx. 30 states per day and user. Already level 1
becomes infeasible then. Even worse, an additionalm2

i number of Allen relations have
to be asserted.

Since all relevant event aggregates are already explicitlypresent in the ABox, rec-
ognizer concepts become possible:

leaving home entering office≡̇ ∃start state .∃at place.home ⊓
∃end state .∃at place .office

Unfortunately, certain important event properties, such as maximality and homo-
geneity, cannot be expressed with concepts. But at least forthe basic context attribute
values which are explicitly asserted (which require no reasoning), these properties can
be taken care of by the DDG (which does not perform reasoning and so hasin general
no knowledge about the temporal extent of someCA × CV property holding), and
assure or directly assert that kind of information.

In most cases, recognizer concepts are insufficient for the representation of complex
events. The main limitation is the inability of concepts to describe anything else than
tree structures (regarding the role successors). For example, it is impossible to specify
that during the in office event , first themeeting with boss, and immediately after
(= meets relation), but still during thein office event , themeeting with customer
event occurred. An attempt:

stressful office day≡̇
∃has part .( in office event ⊓

∃during .(meeting with boss event ⊓
∃meets.meeting with customer event ⊓ . . .))

However, with that definition it cannot be taken for granted that the
meeting with customer event still takes place during thein office event . Other at-
tempts to define such a concept will have similar defects. Although it is impossible to
fix the start state and end state by means of existentials, thetemporal duration of the
complex event as well as the Allen relations to other (possibly complex) events are in
fact known, since the aggregate was constructed by the DDG which asserted the correct
correspondingstart state andend state successors. This is also the motivation for the
has part role. Without the additional individual representing the complex event as an
aggregate, start and end state of the aggregate could not be fixed, and consequently,
Allen relations could not be computed. Moreover, one of its subevents would have to
act as a proxy for the whole aggregate [14], what seems inadequate in this scenario.

Although many temporal constellations between subevents cannot be reliably rec-
ognized with defined concepts since a lot offalse positiveswill be detected, some com-
plex events can indeed be realized in that way, e.g.,those complex events for whose
description a tree-like temporal Allen network is sufficient. Another required provision
in order to minimize the amount of false positives is that onehas torestrict the visibil-
ity of Allen relation successors to those events which are part of the same aggregate–
otherwise the traversal of an Allen role assertionR via ∃R. . . . could lead into an event
being subevent of someothercomplex event, yielding another false positive. However,
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this forces the DDG to createcopiesof subnetworks and increases the ABox size by an
additional factor. Hence, the approach does not seem reasonable.

Again, a query or rule can help overcome the expressivity problems:
stressful office day(x)← has part(x, p1), has part(x, p2), has part(x, p3),

in office event(p1),meeting with boss(p2),
meeting with customer event(p3),
meets(p2, p3), during(p1, p2), during(p1, p3)

Conclusion: For complex events, the pre-construction by the DDG causes two prob-
lems. First, the number of precomputed events and Allen relations gets enormous, and
second, it is not always possible to define resonable expressive recognizer concepts for
complex events. The latter point is not resolvable unless specialized temporal logics
are used, or certain OWL extensions are accepted [15]. Only queries or rules can help
then. For simple events, some recognizer concepts can be defined, which is a big ad-
vantage, since rule / query management in DL systems has not yet reached the same
level of matuarity and state of the art as concept management. But even for simple
events, certain event properties can only be adressed usingthe first-order facilities of
NRQL. In principle, DL-safe rule languages are sufficent, since all events have been
pre-constructed.

Second Idea - Start from States, Construct Events with Non-Safe RulesWhereas the
one extreme was just described (all events are pre-constructed by the DDG), the other
extreme is to have no pre-constructed events at all in the DDA, but only states with their
temporal relations.

As a consequence, the number of recognizer rules gets very large, and rule man-
agement becomes an important issue. A big plus of theNRQL rules are the first-order
capabilities in this settings. We already demonstrated howto recognize maximal and ho-
mogeneous events. Since only states together with their temporal relations are present
in the DDA, non-safe rules which can introduce new event individuals have to be used
(we have rejected the option to implement these recognizersas defined queries above).
NRQL offers thenew ind operator (which can be understood as a function symbol). A
typical basic event recognizer / constructor rule constructing event concept instances
looks as follows:

event concept(new ind(event, s1, s2)),
start state(new ind(event, s1, s2), s1),

end state(new ind(event, s1, s2), s2) ← state(s1), state(s2),
future(s1, s2), (or next )
plus some more conditions ons1, s2

For example, given statess1 = i, s2 = j, it constructs the ABox assertions{eventi,j :
event concept , (eventi,j, i) : start state, (eventi,j , j) : end state}. Non-safe rules
are in principle subject to termination problems, since newindividuals are introduced
(on which rules may fire which introduce individuals, on which rules may fire which
introduce individuals, on which . . . ). InNRQL, this termination problem is delegated to
the client program which has to drive the rule application, since NRQL does not offer
an automatic rule application strategy. The client programthus has to run a loop of
the form “while (applicable-rules()) {execute-applicable-rules();}”
calling theNRQL rule API functions to drive the rule application. One iteration of
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this loop is called arule application cycle.Thus, all possible termination problems
are caused by the client which runs the loop. Due to the non-monotonic features, it is
possible to writeNRQL rules for which the loop actually terminates (this wouldnot be
the case in monotonic rule languages!). For example, the above rule can disable itself
after all constructible events were constructed by adding to its precondition

\π(s1, s2) (event concept(x), start state(x, s1), end state(x, s2))

The need for an external client program driving the rule application can be seen as a
drawback. However, recently the MINI L ISP functional expression language for server-
side programming has been added and reached a mature state [16]. It is thus possible to
implement a rule application strategy directly on the RACERPRO server. Since MINI L-
ISP is termination safe it does not allow to implement unboundedloops. However, it
allows bounded loops and structure traversion. In most cases, a fixed upper limit on the
number of required rule application cycles can be computed,e.g. by analyzing the rules
and the number of present states.

The recognizer rules for complex eventslook very similar to the
stressful office day example rule already discussed; the conclusion, however, has to
construct a new event individual and also cannot rely onhas part(x, p) for its parts
p in the precondition, of course. Please note that also the Allen relations have to be
computed for each constructed event. The universal closed-domain quantifier ofNRQL
(the “\π . . .”-construction) is also important for complex event recognizer rules, since
maximality and more oftenabsence of certain other events, i.e., between two subevents
has to be enforced.

From a theoretical perspective, this approach is the cleanest and most powerful one.
Only the events which are really detected are constructed (in contrast, in the previous
approach the DDG has no knowledge about what is really neededand constructs all
kinds of unnecessary events). Therefore, this approach waschoosen in [3]. As explained
above, the bad performance observed was partly caused by Allen relations as defined
queries. However, also the big amount of rules required leaves little place for recognizer
concepts. Having to construct and check homogenity and maximality even for simple
events introduces a big number of universal closed-domain quantifications which are
expensive too evaluate. We thus argue that the DDG should already construct the basic
events and take care of these properties whenever it is capabable to do so, thus leaving
only the hard recognition problems for the reasoner.

Conclusion: Constructing events with non-safe rules is conceptually very clean. The
whole process is driven solely by the ontology (consideringrules part of the ontology).
But, it has performance problems with the current state-of-the-art technology. This does
not invalidate the approach as it might run fast on future systems, however, we are
looking for a system working with today’s technology. The number of rules becomes
very large and thus issues which are curently not well-supported by DL systems, e.g.,
rule managment, become predominant. Allen relations can nolonger be computed in
advance by the DDG, but rather have to be recomputed after each rule application
cycle.

Third Idea - The Best of Both WorldsHaving analyzed both extremes, we proceed
as follows: The DDG already pre-constructs all relevant simple events, and only the
complex events and simple events whose recognition requires ontology reasoning are
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constructed via rules. Some Allen relations can in principle already be asserted by the
DDG for those pre-constructed events. Nevertheless we mustbe able to compute Allen
relations after each rule application cycle.

Hence, for everys1, s2, CA andCV , the DDG pre-constructs a simple event if
and only iftime(s1) < time(s2), the event is homogeneous, and has a maximal extent
w.r.t. theCA × CV attribute-value pair. In case the recognition ofCA× CV requires
reasoning, the event cannot be pre-constructed, and recognition rules (or concepts) have
to be written. In the current IYOUIT scenario, recognizer rules are only required for
complex events. The number of simple events is bounded by|CA||CV |n(n − 1)/2,
wheren is the number of states. Since all simple events in the DDA arenow maximal
and homogeneous, it also becomes reasonable to attach theCA attributes to the event
individuals instead of the states. For every possibleCA × CV pair, a simple event
recognizer concept can be defined:

eventCA,CV ≡̇event ⊓ ∃CA.CV .
Consequently, theCV taxonomy is automatically inherited to the taxonomy of sim-
ple events (something we would not get automatically with recognizer rules, although
NRQL is able to compute query and rule subsumption [13]). These auxilary concepts
faciliate the modeling of complex event recognizer rules.

The DDG did not pre-construct change events. Their absence is not really a draw-
back; they can still be recognized, e.g. the change ofCA from CV 1 to CV 2 can be
detected with a rule such as

. . .← eventCA,CV 1
(e1), eventCA,CV 2

(e2),meets(e1, e2)
However, in most cases changes only need to be detected in order to define complex
rules, and thus, these change detections can simply become part of the definitions of the
complex event recognizer rules. Still, some code is needed to drive the rule application.
The remarks from the previous paragraph apply (we are using MINI L ISP this time).

Conclusion: The idea seems promissing and combines the bestof both worlds. It
keeps the number of rules maintainable, allows to employ defined concepts as recog-
nizer for simple events and does not lose expressivity. As for the previous approach, the
efficent computation of Allen relations is very important.

4 Computation of Allen Relations

Since the set of states is fixed, the DDG can precompute the temporal order between any
two states by means of role assertions using the rolesnext , equal (with next≡̇prev−1),
and a transitive superrolefuture, next⊑̇future, future+≡̇future, past≡̇future−1. Note
that the explicit relation representation in terms ofnext andequal requiresn + n(n−
1)/2 role assertions (and even more if alsoprev , future andpast are made explicit in
case one wanted to get rid of the TBox axioms for the roles). Alternatively, the DDG
can attach a filler of theconcrete domain (CD) attributetime to each state. ANRQL
rule can make thenext relation explicit, or a defined query could be used:

next(s1, s2)← < (time(s1), time(s2)),
\π(s1, s2) (< (time(s1), time(s3)), < (time(s3), time(s2)))

The <-atom is a so-calledCD constraint checking atom. Whereas the evaluation
of this atom requires a concrete domain unsatisfiabilty check which may be expensive,
there is also a cheapter option inNRQL, a so-calleddata substrate querywhich can
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check such constraints on a set ofdata literalsmuch faster, since model checking of
some data substrate structure is sufficent [17].

In casenext is materialized, we also automatically get the relationsprev , future,
andpast , due to the role declarations. However, if the rule is used asa defined query,
then some more definitions are required for the other roles, e.g. forfuture we can simply
remove the “\π . . .” line from thenext definition. The implicit and intrinsic relations
between states keep the ABox small in number of role assertions, they are thus worth
considering, and should be subject to a benchmark. On the other hand, the explicit re-
lation representations require bigger ABoxes, but have thebenefit to also provide index
structures for query answering, and moreover can be used to avoid repeated computa-
tions of relations. It is not clear how to proceed without an evaluation of the alterna-
tives. Allen relations are computed from the relations between the states of the events,
as already explained with thebefore relation. The ability toefficiently compute Allen
relations is crucial for the performance and scalability of the whole approach. Thus,
for the benchmark, we are first evaluating the performance ofthe Allen computation. A
DDA with 50 random intervals is created, which is reduced to 40 intervals by removing
10 intervals, and so on, until only 10 intervals remain. We are considering four different
settings for the benchmark:

Allen 1: explicit state relations asnext role assertions, 7 Allen rules
(one rule per Allen relation and its converse),

Allen 2: implicit state relations via defined querynext and CD atom<
Allen 3: implicit state relations via defined querynext and data substrate atom<
Allen 4: implicit state relations and computation of the Allen relations with onerule

instead of 7, by means of a MINI L ISP λ expression which analyzes thetime at-
tribute fillers of the states of the eventse1, e2 and computesthe corresponding
Allen relation programmatically with a conditional expressionexpr:

λ(e1, e2) • expr ← event(e1), event(e2)

Figure 1 speaks a clear language (note the logarithmic scale): the procedural solution
(Allen 4) is by far the fastest with approx. 600 Allen relations per second (ARPS),
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then comes the data substrate solution with 170 ARPS, then the solution with explicit
state relations in the ABox with approx. 66 ARPS, and finally the CD solution with
1.8 (!) ARPS. Note that the biggest ABox contains 4225 Allen role assertions. Also, it
is important to know how much time is spend for Allen computation if a new event is
introduced into the existing network. We thus added 5 randomintervals into an existing
network of 25 intervals and measured the time required for Allen relation computation:
Allen 1 = 12.4 s, Allen 2 = 612 s, Allen 3 = 5.7 s, Allen 4 = 1.5 s. Ofcourse, the
bigger the network gets into which the new individuals are inserted, the more time is
required. The benchmark results make clear that the definition of the Allen relations as
defined queries with the help of the concrete domain in our previous work [3] was a bad
decision.

5 Conclusion

While lots of temporal logics have been designed [18–23] which could have been ap-
plied in this scenario, few of them have been implemented, less have implementations
with good performance, and thus, none of these can be used forpractical applications
today. In contrast, Description Logic (DL) systems have made tremendous progress.
Still, realizing a DL-based event recognition which exhibits a good performance is a
highly demanding task. There are no simple answers to most ofthe modeling ques-
tions. With nowadays quite complex DL and Semantic Web technology, there are often
various realization and representation options. Even for experts, the consequences of
certain design decisions can be very hard to oversee. Without performing benchmarks
and evaluations, no solid ground can be reached in applying this technology to real
world application problems. We argue that cases studies andpapers like this one are
important since they conserve and convey a lot of “how to” knowledge which may pre-
vent users from reinventing the wheel and from modeling errors. We thus wrote this
paper in a “reflective” style. Although we have used RACERPRO in this study, we argue
that the problems and solutions discussed and presented arenot specific to RACERPRO.

In future work, alternative (but implemented) approaches should be checked out,
e.g., instead of using unsafe rules, recent progress regarding multimedia and image
interpretation with horn rules in an abduction frameworkshall be exploited [24, 25]
where new individuals and corresponding assertions are abduced rather than constructed.
This technology was brought to a mature state in the BOEMIE EUproject.6 Moreover,
in the spirit of the classical event recognition system NAOS[26], a new temporal rep-
resentation and querying engine has been integrated into RACERPRO: The so-called
time netoffers an alternative way to define complex event recognizers. The feasabilty
of these options for IYOUIT should be evaluated.

Regarding IYOUIT, there are open challenges. In order to exploit events for the
offering of context dependent services on a mobile phone, the events have to be rec-
ognized incrementally and online, not offline [27]. As such,the work on incremental
plan recognition is relevant [28]. Ideally, this must happen immediatly, e.g. as in [29].
Also there is work in progress regarding the handling of events spanning multiple days,
e.g., an oversea business trip. The handling is challingingsince events get “split” at day
boundaries and have to be re-merged, etc.

6 www.boemie.org
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13. Haarslev, V., Möller, R., Wessel, M.: RacerPro User’s Guide and Reference Manual Version
1.9.0 (May 2005)

14. Haarslev, V., Wessel, M.: GenEd—an editor with generic semantics for formal reasoning
about visual notations. In: 1996 IEEE Symposium on Visual Languages, Boulder, Colorado,
USA, Sep. 3-6. (1996) 204–211

15. Motik, B., Grau, B.C., Sattler, U.: The representation of structured objects in DLs using
Description Graphs. In Baader, F., Lutz, C., Motik, B., eds.: Proceedings of the 21st In-
ternational Workshop on Description Logics (DL2008). Volume 353 of CEUR Workshop
Proceedings., CEUR-WS.org (2008)

16. Kaplunova, A., Möller, R., Wessel, M.: Leveraging the expressivity of grounded conjunctive
query languages. In: Proc. International Workshop on Scalable Semantic Web Systems.
(2007)

12
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