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Executive Summary

For multimedia interpretation, a semantically well-founded formalization is required. In accordance
with previous work, in CASAM a well-founded abduction-based approach is pursued. Extending
previous work, abduction is controlled by probabilistic knowledge, and it is done in terms of first-
order logic.

This report describes the probabilistic abduction engine and the optimization techniques for
multimedia interpretation. It extends deliverable D3.2 by providing a probabilistic scoring function
for ranking interpretation alternatives. Parameters for the CASAM Abduction Engine (CAE)
introduced already in D3.2 are now appropriately formalized such that CAE is better integrated
into the probabilistic framework. In addition, this deliverable describes how media interpretation
services can be provided that work incrementally, i.e., are able to consume new analysis results,
or new input from a human annotator, and produce notifications for additional interpretation
results or, in some cases, revision descriptions for previous interpretations. Incremental processing
is nontrivial and is realized using an Abox difference operator, which is used to interpretation
results obtained for extended inputs with one(s) previously obtained such that notifications about
additions and revisions can be computed.
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1 Introduction

The goal of the CASAM project is to support manual multimedia annotation processes where
high level concept assertions are attached as annotations for multimedia documents. In particular,
CASAM investigates shot videos as a source for investigation how manual annotation. A human
annotator can describe objects in video shots using short natural language texts or interactive
graphical means. The goal is to reduce this work by (i) providing sophisticate automatic analysis
of text and video and (2), on top of that, exploiting an additional knowledge-based interpretation
process for interpreting these analysis results on a more abstract level. For this, in CASAM, a
so-called reasoning-based media interpretation (RMI) system is developed as a first prototype.

For multimedia interpretation, a semantically well-founded formalization is required. In ac-
cordance with previous work, in CASAM a well-founded abduction-based approach is pursued.
Extending previous work, abduction is controlled by probabilistic knowledge, and it is done in
terms of first-order logic.

In Deliverable D3.2, conceptual architecture of RMI was presented, and the functionality of its
components was explained. This report describes the probabilistic abduction engine and introduces
optimization techniques for multimedia interpretation. It extends deliverable D3.2 by providing a
probabilistic scoring function for ranking interpretation alternatives. Parameters for the CASAM
Abduction Engine (CAE) introduced already in D3.2 are now appropriately formalized for the
first time such that CAE is better integrated into the probabilistic framework. In addition, this
deliverable describes how media interpretation services can be provided that work incrementally,
i.e., are able to consume new analysis results, or new input from a human annotator, and pro-
duce notifications for additional interpretation results or, in some cases, revision descriptions for
previous interpretations. Incremental processing is nontrivial and is realized using an Abox dif-
ference operator, which is used to interpretation results obtained for extended inputs with one(s)
previously obtained such that notifications about additions and revisions can be computed.

Based on a presentation of the most important preliminaries in Chapter 2, the conceptual
architecture for the probabilistic abduction engine is introduced in Chapter 3. The abduction and
interpretation procedures are discussed in detail. Optimization techniques for the probabilistic
abduction engine are pointed out. In Chapter 4, a complete example is given, showing the main
approach using intermediate steps. Chapter 5 describes how a specific operation, namely the Abox
difference operation, is implemented. The Abox difference operation is required for realizing the
incremental notification of client modules.
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2 Preliminaries

In this chapter, the most important preliminaries already explained in detail in Deliverable D3.2
are given in order to make this document self-contained.

2.1 Preliminaries on Description Logic

One of the main targets of the CASAM project is to support human annotators during their work
in producing elabortate symbolic descriptions for small video shots. Annotations are used for later
information retrieval and require a representation language. We assume that a less expressive
description logic should be applied to facilitate fast computations. We decided to represent the
domain knowledge with the DL ALHf −(D) (restricted attributive concept language with role
hierarchies, functional roles and concrete domains). We shortly describe our nomenclature in
order to make this deliverable self-contained. For details see [Baader et al., 2003].

In logic-based approaches, atomic representation units have to be specified. The atomic repre-
sentation units are fixed using a so-called signature. Whereas, up to now, the signature is defined
manually, in upcoming deliverables, machine learning techniques might be used to extend the
signature automatically such that RMI can be adapted to new contexts.

A DL signature is a tuple S = (CN,RN, IN), where CN = {A1, ..., An} is the set of concept
names (denoting sets of domain objects) and RN = {R1, ..., Rm} is the set of role names (denoting
relations between domain objects). The signature also contains a component IN indicating a set
of individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowledge) and
to talk about specific individuals (assertional knowledge), a knowledge base has to be specified.
An ALHf − knowledge base ΣS = (T ,A), defined with respect to a signature S, is comprised of
a terminological component T (called Tbox ) and an assertional component A (called Abox ). In
the following we just write Σ if the signature is clear from context. A Tbox is a set of so-called
axioms, which are restricted to the following form in ALHf −:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III) Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV) Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI) Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An

With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles) of
each other. Axioms of form (II) denote disjointness between concepts. Axioms of type (III)
introduce domain and range restrictions for roles. Axioms of the form (IV) introduce so-called
functional restrictions on roles, and axioms of type (V) specify local range restrictions (using
value restrictions, see below). With axioms of kind (VI) so-called definitions (with necessary and
sufficient conditions) can be specified for concept names found on the lefthand side of the ≡ sign.
In the axioms, so-called concepts are used. Concepts are concept names or expressions of the
form > (anything), ⊥ (nothing), ¬A (atomic negation), (≤ 1R) (role functionality), ∃R.> (limited
existential restriction), ∀R.A (value restriction) and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is a set of
expressions of the form A(a) or R(a, b) (concept assertions and role assertions, respectively) where
A stands for a concept name, R stands for a role name, and a, b stand for individuals. Aboxes
can also contain equality (a = b) and inequality assertions (a 6= b). We say that the unique name
assumption (UNA) is applied, if a 6= b is added for all pairs of individuals a and b.

In order to understand the notion of logical entailment , we introduce the semantics of ALHf −.
In DLs such as ALHf −, the semantics is defined with interpretations I = (4I , ·I), where 4I is
a non-empty set of domain objects (called the domain of I) and ·I is an interpretation function
which maps individuals to objects of the domain (aI ∈ 4I), atomic concepts to subsets of the
domain (AI ⊆ 4I) and roles to subsets of the cartesian product of the domain (RI ⊆ 4I ×4I).
The interpretation of arbitrary ALHf − concepts is then defined by extending ·I to all ALHf −
concept constructors as follows:
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>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI ]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI ]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf −-knowledge
base Σ in an interpretation I are defined. A concept inclusion C v D (concept definition C ≡ D)
is satisfied in I, if CI ⊆ DI (resp. CI = DI) and a role inclusion R v S (role definition R ≡ S),
if RI ⊆ SI (resp. RI = SI). Similarly, assertions C(a) and R(a, b) are satisfied in I, if aI ∈ CI
resp. (a, b)I ∈ RI . If an interpretation I satisfies all axioms of T resp. A it is called a model of
T resp. A. If it satisfies both T and A it is called a model of Σ. Finally, if there is a model of Σ
(i.e., a model for T and A), then Σ is called satisfiable.

We are now able to define the entailment relation |=. A DL knowledge base Σ logically entails
an assertion α (symbolically Σ |= α) if α is satisfied in all models of Σ. For an Abox A, we say
Σ |= A if Σ |= α for all α ∈ A.

2.2 Preliminaries on Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-called random
experiment. A random variable X is a function assigning a value to the result of a random experi-
ment. The random experiment itself is not represented, so random variables are functions without
arguments, which return different values at different points of time. Possible values of a random
variable comprise the so-called domain of the random variable. In the sequel, we will use boolean
random variables, whose values can be either 1 or 0 (true or false, respectively).

Let ~X = {X1, ..., Xn} be the ordered set of all random variables of a random experiment. An
event (denoted ~X = ~x) is an assignment X1 = x1, ..., Xn = xn to all random variables. In case
n = 1 we call the event simple, otherwise the event is called complex. A certain vector of values
~x is referred to as a possible world. A possible world can be associated with a probability value or
probability for short. Hence, the notion of a possible world can be used as a synonym for an event,
and depending on the context we use the former or the latter name. In case of an event with a
boolean random variable X, we write x as an abbreviation for X = true and ¬x as an abbreviation
for X = false.

Mappings of events to probabilities (or assignment of probabilities to events) are specified with
so-called probability assertions of the following syntax: P ( ~X = ~x) = p, where ~X is a vector of
random variables, and p is a real value between 0 and 1 (it is assumed that the reader is familiar
with Kolmogorov’s axioms of probability). In the special case of a simple event (single random
variable, n = 1) we write P (X = x) = p. The probability value p of an event is denoted as
P ( ~X = ~x) (or P (X = x) in the simple case). In its raw form a set of probabilistic assertions is
called a probabilistic knowledge base (with signature ~X).

A mapping from the domain of a random variable X to probability values [0, 1] is called a
distribution. For distributions we use the notation P(X). Distributions can be defined for (ordered)
sets of random variables as well. In this case we use P(X1, . . . , Xn) as a denotation for a mapping to
the n-dimensional cross product of [0, 1]. For specifying a distribution, probability assertions for all
domain values must be specified, and the values p must sum up to 1. In case all random variables
of a random experiment are involved, we speak of a (full) joint probability distribution (JPD),
otherwise the expression is said to denote a marginal distribution (projection of the n-dimensional
space of probability values to a lower-dimensional space with m dimensions). The expression
P(X1, . . . , Xm, Xm+1 = xm+1, . . . , Xl = xl) denotes an m-dimensional distribution with known
values xm+1, . . . , xl. In slight misuse of notation, we sometimes write ~e for these known values (e
stands for evidence). The fragment ~e need not necessarily be written at the end in the parameter
list of P.

A conditional probability for a set of random variables X1, ..., Xm is denoted with P (X1 =
x1, ..., Xm = xm | ~e) or, in distribution form, we write P(X1, ..., Xm | ~e) (conditional probability
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distribution). This distribution can be also written as P( ~X,~e)
P(~e) .

For a probabilistic knowledge base, formal inference problems are defined. We restrict our
attention to the two most convenient probabilistic inference problems: A conditional probability
query is the computation of the joint distribution of a set of m random variables conditioned on ~e
and is denoted with

P (x1, ..., xm | ~e) =?.

or, in distribution form:

P(X1, ..., Xm | ~e) =?.

The Maximum A Posteriori (MAP) inference returns the most-likely state of query atoms
given the evidence. Based on the MAP inference, the “most probable world” given the evidence is
determined as a set of events. The MAP inference problem given a distribution P specified for a
set of random variables X is formalized as follows:

MAPX(~e) := ~e ∪ argmax~xP (~x|~e) (1)

where vars(~x) ∩ vars(~e) = ∅ and vars(~x) ∪ vars(~e) = X with vars specified in the obvious way.

2.3 Markov Logic

The formalism of Markov logic [Domingos and Richardson, 2007] provides a means to combine the
expressivity of first-order logic augmented with the formalism of Markov networks [Pearl, 1988].
The Markov logic formalism uses first-order logic to define “templates” for constructing Markov
networks. The basic notion for this is a called a Markov logic network.

A Markov logic network MLN = (FMLN ,WMLN ) consists of an ordered multiset of first-order
formulas FMLN = {F1, ..., Fm} and an ordered multiset of real number weightsW = {w1, ..., wm}.
The association of a formula to its weight is by position in the ordered sets. For a formula
F ∈ FMLN with associated weight w we also write wF (weighted formula). Thus, a Markov logic
network can also be defined as a set of weighted formulas. Both views can be used interchangeably.
As a notational convenience, for ordered sets we nevertheless sometimes write ~X, ~Y instead of ~X∪~Y .

In contrast to standard first-order logics such as predicate logic, relational structures not satis-
fying a formula Fi are not ruled out as models. If a relational structure does not satisfy a formula
associated with a large weight it is just considered to be quite unlikely the ”right” one.

Let C = {c1, ..., cm} be the set of all constants mentioned in FMLN . A grounding of a formula
Fi ∈ FMLN is a substitution of all variables in the matrix of Fi with constants from C. From all
groundings, the (finite) set of grounded atomic formulas (also referred to as ground atoms) can be
obtained. Grounding corresponds to a domain closure assumption. The motivation is to get rid of
the quantifiers and reduce inference problems to the propositional case.

Since a ground atom can either be true or false in an interpretation (or world), it can be
considered as a boolean random variable X. Consequently, for each MLN with associated random
variables ~X, there is a set of possible worlds ~x. In this view, sets of ground atoms are sometimes
used to denote worlds. In this context, negated ground atoms correspond to false and non-negated
ones to true. We denote worlds using a sequence of (possibly negated) atoms.

When a world ~x violates a weighted formula (does not satisfy the formula) the idea is to ensure
that this world is less probable rather than impossible as in predicate logic. Note that weights do
not directly correspond to probabilities (see [Domingos and Richardson, 2007] for details).

For each possible world of a Markov logic network MLN = (FMLN ,WMLN ) there is a prob-
ability for its occurrence. Probabilistic knowledge is required to obtain this value. As usual,
probabilistic knowledge is specified using a probability distribution. In the formalism of Markov
networks the full joint probability distribution of a Markov logic network MLN could be specified
in symbolic form using a so-called log-linear form P ( ~X = ~x) = log lin(~x) (see, e.g., [Domingos
and Richardson, 2007]), with log lin being defined as

log linMLN (~x) =
1
Z
exp (

|FMLN |∑
i=1

wini(~x))
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According to this definition, the probability of a possible world ~x is determined by the exponential
of the sum of the number of true groundings (ni) of formula Fi ∈ FMLN in ~x multiplied with their
corresponding weights wi ∈ WMLN , and finally normalized with

Z =
∑
~x∈ ~X

exp (
|FMLN |∑
i=1

wini(~x)), (2)

the sum of the probabilities of all possible worlds. Thus, rather than specifying the full joint dis-
tribution directly in symbolic form as we have discussed before, in the Markov logic formalism, the
probabilistic knowledge is specified implicitly by the weights associated with formulas. Determin-
ing these formulas and their weights in a practical context is all but obvious, such that machine
learning techniques are usually employed for knowledge acquisition.

In the case of Markov logic, the definition of the MAP problem given in (1) can be rewritten
as follows. The conditional probability term P (~x|~e) is replaced with with the Markovian formula:

MAPMLN (~e) := ~e ∪ argmax~x
1
Ze

exp

(∑
i

wini (~x,~e)

)
(3)

Thus, for describing the most-probable world, MAP returns a set of events, one for each random
variable used in the Markov network derived from MLN . In the above equation, ~x denotes the
hidden variables, and Ze denotes the normalization constant which indicates that the normalization
process is performed over possible worlds consistent with the evidence ~e. In the next equation, Ze
is removed since it is constant and it does not affect the argmax operation. Similarly, in order to
optimize the MAP computation the exp function is left out since it is a monotonic function and
only its argument has to be maximized:

MAPMLN (~e) := ~e ∪ argmax~x
∑
i

wini (~x,~e) (4)

The above equation shows that the MAP problem in Markov logic formalism is reduced to a new
problem which maximizes the sum of weights of satisfied clauses.

Since the MAP determination in Markov networks is an NP-hard problem [Domingos and
Richardson, 2007], it is performed by exact and approximate solvers. The most commonly used
approximate solver is MaxWalkSAT algorithm, a weighted variant of the WalkSAT local-search
satisfiability solver. The MaxWalkSAT algorithm attempts to satisfy clauses with positive weights
and keep clauses with negative weights unsatisfied.

It has to be mentioned that there might be several worlds with the same maximal probability.
But at this step, only one of them is chosen non-deterministically.

2.4 Combining Markov Logic and Description Logic

Since ALHf − is a fragment of first-order logic, its extension to the Markovian style of formalisms
is specified in a similar way as for predicate logic in the section before. The formulas in Markov
logic correspond to Tbox axioms and Abox assertions. Weights in Markov description logics are
associated with axioms and assertions.

Groundings of Tbox axioms are defined analogously to the previous case.1 Abox assertions do
not contain variables and are already grounded. Note that since an ALHf − Abox represents a
relational structure of domain objects, it can be directly seen as a possible world itself if assertions
not contained in the Abox are assumed to be false.

For appropriately representing domain knowledge in CASAM, weights are possibly used only
for a subset of the axioms of the domain ontology. The remaining axioms can be assumed to be
strict, i.e., assumed to be true in any case. A consequence of specifying strict axioms is that lots
of possible worlds ~x can be ruled out (i.e., will have probability 0 by definition).

A Markov DL knowledge base ΣM is a tuple (T ,A), where T is comprised of a set Ts of strict
axioms and a set Tw of weighted axioms and A is comprised of a set As of strict assertions and a

1For this purpose, the variable-free syntax of axioms can be first translated to predicate logic.
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set Aw of weighted assertions. Referring to axioms, a proposal for CASAM is to consider strictness
for the domain ontology patterns (I)–(IV):

(I) subsumption A1 v A2, R1 v R2

(II) disjointness A1 v ¬A2

(III) domain and range restrictions ∃R.> v A, > v ∀R.A
(IV) functional roles > v (≤ 1R)

The main justification treating axioms as strict is that the subsumption axioms, disjointness
axioms, domain and range restrictions as well as functional role axioms (in combination with UNA)
are intended to be true in any case such that there is no need to assign large weights to them.

The advantage of this probabilistic approach is that initial ontology engineering is done as usual
with standard reasoning support and with the possibility to add weighted axioms and weighted
assertions on top of the strict fundament. Since lots of possible worlds do not have to be considered
because their probability is known to be 0, probabilistic reasoning will be significantly faster.

6



3 Probabilistic Interpretation Engine

In this chapter, the conceptual architecture of RMI is presented. The architecture has been slightly
extended in comparison to the architecture given in Deliverable D3.2. Some definitions are also
given which are required for explaining the subjects mentioned in this chapter including the ab-
duction procedure and the interpretation procedure. The abduction procedure is defined by the
abduction algorithm CAE. Additionally, the interpretation procedure is described by presenting
a probabilistic interpretation algorithm Interpret . The other important point in comparison to
Deliverable D3.2 is that we define a termination condition for the abduction process. The func-
tionality of the RMI agent is also described by an algorithm. Finally, the optimization techniques
for the probabilistic abduction engine are introduced.

3.1 RMI Conceptual Architecture

Figure 1 depicts the basic components at the conceptual level with input and output data (Aboxes
in both cases), intermediate results (Aboxes) as well as the background knowledge (a Tbox and a
set of rules) used by different modules.2

Abox A 

Rules 

Tbox 

MAP 

Abox Ak 

CAE 

Aboxi 

Aboxk 

: 
: 

MaxP 

Abox 

Select 
Wk W1,…, Wn 

KDMA 

HCI 

Queue 

Δ1 

Δ2 

RMI agent 

Abox 
Diff 

Prev. Abox  

Figure 1: Conceptual view of the reasoning-based media interpretation engine.

The above figure is described as follows: the KDMA and HCI components send their percept results
incrementally to a queue Q. RMI extracts these results from the queue using a focus strategy (e.g.,
process a video shot by shot and start over with the first shot if the last one is focused on) and
transforms them into an Abox A. Since it is possible that the Abox A is inconsistent, the MAP
process is applied to select a consistent subset Ak The MAP process determines the most probable
world based on the Markov logic formalism as explained in Chapter 2. Wk is composed of positive

2The background knowledge could also contain Abox assertions to represent background knowledge about indi-
viduals. We neglect this here, however, in order to simplify the presentation.
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and negative assertions. The functionality of the next unit called Select is to choose only the
positive assertions of Wk since only these assertions require explanations. The generated Abox
Ak is sent to the unit CAE which is the core component of the above interpretation engine.
By applying a set of rules and the Tbox T , a set of interpretation Aboxes are generated. The
functionality of the CAE unit is explained in more detail in Section 3.2.5. Afterwards, one of the
generated Aboxes is selected. The functionality of the MAXp unit is to select the Abox whose
most-probable world has the highest probability. Given the interpretation Abox that gets the best
score using this scheme and the one previously obtained, an Abox difference operation is used to
compute the Abox differences ∆1 and ∆2 for additions and omissions, respectively. RMI returns
the currently best Abox for the focus as well as ∆1 and ∆2 (and stores the currently best Abox
for the observations in focus).

3.2 Implementation of the RMI Agent

3.2.1 Sequences, Variable Substitutions and Transformations

A variable is a name of the form String where String is a string of characters from {A. . .Z}. In
the following definitions, we denote places where variables can appear with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V . z
denotes a sequence of individuals. We consider sequences of length 1 or 2 only, if not indicated
otherwise, and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉) is to be read as (X,Y ) etc.
Furthermore, we assume that sequences are automatically flattened. A function as set turns a
sequence into a set in the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individuals.
The application of a variable substitution σ to a sequence of variables 〈X〉 or 〈X,Y 〉 is defined as
〈σ(X)〉 or 〈σ(X), σ(Y )〉, respectively, with σ(X) = i and σ(Y ) = j. In this case, a sequence of
individuals is defined. If a substitution is applied to a variable X for which there exists no mapping
X ← k in σ then the result is undefined. A variable for which all required mappings are defined is
called admissible (w.r.t. the context).

3.2.2 Grounded Conjunctive Queries

Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn denote concept or role names.
A query is defined by the following syntax.

{(X) | Q1(Y1), . . . , Qn(Yn)}

The sequence X may be of arbitrary length but all variables mentioned in X must also appear in
at least one of the Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms Qi(Yi).
The list of variables to the left of the sign | is called the head and the atoms to the right of are
called the query body. The variables in the head are called distinguished variables. They define
the query result. The variables that appear only in the body are called non-distinguished variables
and are existentially quantified.

Answering a query with respect to a knowledge base Σ means finding admissible variable
substitutions σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution
σ = [X ← i, Y ← j, . . .] introduces bindings i, j, . . . for variables X,Y, . . .. Given all possible
variable substitutions σ, the result of a query is defined as {(σ(X))}. Note that the variable
substitution σ is applied before checking whether Σ |= {Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query
is grounded first.

For a query {(?y) | Person(?x), hasParticipant(?y, ?x)} and the Abox Γ1 = {HighJump(ind1),
Person(ind2), hasParticipant(ind1, ind2)}, the substitution [?x ← ind2, ?y ← ind1] allows for
answering the query, and defines bindings for ?y and ?x.

A boolean query is a query with X being of length zero. If for a boolean query there exists a
variable substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we say that the query is
answered with true, otherwise the answer is false.

Later on, we will have to convert query atoms into Abox assertions. This is done with the
function transform. The function transform applied to a set of query atoms {γ1, . . . γn} is defined
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as {transform(γ1, σ), . . . , transform(γn, σ)} where
transform(P (X), σ) := P (σ(X)).

3.2.3 Rules

A rule r has the following form P (X)← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote concept
or role names with the additional restriction (safety condition) that as set(X) ⊆ as set(Y1)∪ · · · ∪
as set(Yn).
Rules are used to derive new Abox assertions, and we say that a rule r is applied to an Abox
A. The function call apply(Σ, P (X) ← Q1(Y1), . . . , Qn(Yn),A) returns a set of Abox assertions
{σ(P (X))} if there exists an admissible variable substitution σ such that the answer to the query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}

is true with respect to Σ∪A.3 If no such σ can be found, the result of the call to apply(Σ, r,A) is
the empty set. The application of a set of rules R = {r1, . . . rn} to an Abox is defined as follows.

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds. Otherwise
the result of forward chain is determined by the recursive call
apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪ apply(Σ,R,A)).

For some set of rules R we extend the entailment relation by specifying that (T ,A) |=R A0 iff
(T ,A ∪ forward chain((T , ∅),R,A)) |= A0.4

3.2.4 Computing Explanations via Abduction

In general, abduction is formalized as Σ ∪ ∆ |=R Γ where background knowledge (Σ), rules (R),
and observations (Γ) are given, and explanations (∆) are to be computed. In terms of DLs, ∆ and
Γ are Aboxes and Σ is a pair of Tbox and Abox.

Abox abduction is implemented as a non-standard retrieval inference service in DLs. In contrast
to standard retrieval inference services where answers are found by exploiting the ontology, Abox
abduction has the task of acquiring what should be added to the knowledge base in order to
answer a query. Therefore, the result of Abox abduction is a set of hypothesized Abox assertions.
To achieve this, the space of abducibles has to be previously defined and we do this in terms of
rules.

We assume that a set of rules R as defined above (see Section 3.2.3) are specified, and define
a non-deterministic function compute explanation as follows.

• compute explanation(Σ,R,A, P (z)) = transform(Φ, σ) if there exists a rule r = P (X) ←
Q1(Y1), . . . , Qn(Yn) ∈ R that is applied to an Abox A such that a minimal set of query
atoms Φ and an admissible variable substitution σ with σ(X) = z can be found, and the
query Q := {() | expand(P (z), r,R, σ) \ Φ} is answered with true.

• If no such rule r exists in R it holds that compute explanation(Σ,R,A, P (z)) = ∅.

The goal of the function compute explanation is to determine what must be added (Φ) such that
an entailment Σ∪A∪Φ |=R P (Z) holds. Hence, for compute explanation, abductive reasoning is
used. The set of query atoms Φ defines what must be hypothesized in order to answer the query
Q with true such that Φ ⊆ expand(P (X), r,R, σ) holds. The definition of compute explanation
is non-deterministic due to several possible choices for Φ.

3We slightly misuse notation in assuming (T ,A)∪∆ = (T ,A∪∆). If Σ∪A is inconsistent the result is well-defined
but useless. It will not be used afterwards.

4We could also give a semantic definition of entailment w.r.t. a set of rules without using forward chain. However,
in this deliverable we do not attempt to prove that the abduction algorithm is correct. Thus, only proof-theoretic
definition is given.
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The function application expand(P (Z), P (X) ← Q1(Y1), . . . , Qn(Yn),R) is also defined in a
non-deterministic way as

expand′(Q1(σ′(Y1)),R, σ) ∪ · · · ∪ expand′(Qn(σ′(Yn)),R, σ)

with expand′(P (Z),R, σ) being expand(P (σ′(z)), r,R, σ′) if there exist a rule r = P (X)← . . . ∈ R
and 〈P (X)〉 otherwise. The variable substitution σ′ is an extension of σ such that:

σ′ = [X1 ← z1, X2 ← z2, . . .] (5)

The above equation shows the mapping of the free variables if it is not already defined. This means
the free variables in the body of each rule are mapped to individuals with unique IDs.

We say the set of rules is backward-chained, and since there might be multiple rules inR, backward-
chaining is non-deterministic as well. Thus, multiple explanations are generated.5

3.2.5 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining” Abox assertions in
terms of a given set of rules. Explanation of Abox assertions w.r.t. a set of rules is meant in
the sense that using the rules some high-level explanations are constructed such that the Abox
assertions are entailed. The explanation of an Abox is again an Abox. For instance, the output
Abox represents results of the RMI content interpretation process. The presentation in slightly
extended compared to the one in [Castano et al., 2008]. Let the agenda A be a set of Aboxes Γ and
let Γ be an Abox of observations whose assertions are to be explained. The goal of the explanation
process is to use a set of rules R to derive “explanations” for elements in Γ. The explanation
algorithm implemented in the CASAM abduction engine works on a set of Aboxes I.
The complete explanation process is implemented by the CAE function:

medskip

Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a background knowledge Σ, a set of
rules R, a scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l,A)};
repeat

I := I′;
(A, α) := Ω(I) // Select A ∈ I, α ∈ A according to the strategy function Ω;
l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ,R, S,A, α));

until Ξ(I) or no A and α can be selected such that I′ 6= I ;
return I′

where assign level(l,A) is defined by a lambda calculus term as follows:

assign level(l,A) = map(λ(A) • assign level(l,A),A) (6)

assign level(l,A) takes as input a superscript l and an agenda A.

In the following, assign level(l,A) is defined which superscripts each assertion α of the Abox
A with l if the assertion α does not already have a superscript:

assign level(l,A) =
{
αl | α ∈ A, α 6= βi, i ∈ N

}
(7)

Note that l is a global variable, its starting value is zero and it is incremented in the CAE function.
The map6 function is defined as follows:

map(f,X) =
⋃
x∈X
{f(x)} (8)

5In the expansion process, variables have to be renamed. We neglect these issues here.
6Please note that in this report, the expression map is used in two different contexts. The first one MAP denotes

the Maximum A Posteriori approach which is a sampling method whereas the second one map is a function used in
the assign level(l, A) function.
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It takes as parameters a function f and a set X and returns a set consisting of the values of f
applied to every element x of X.
CAE function applies the strategy function Ω in order to decide which assertion to explain, uses a
termination function Ξ in order to check whether to terminate due to resource constraints and a
scoring function S to evaluate an explanation.

The function Ω for the explanation strategy and Ξ for the termination condition are used as
an oracle and must be defined in an application-specific way. The function explanation step is
defined as follows.

explanation step(Σ,R, S,A, α):⋃
∆∈compute all explanations(Σ,R,S,A,α)

consistent completed explanations(Σ,R,A,∆).

We need two additional auxiliary functions.

consistent completed explanations(Σ,R,A,∆):

{∆′ | ∆′ = ∆ ∪ A ∪ forward chain(Σ,R,∆ ∪ A), consistentΣ(∆′)}

compute all explanations(Σ,R, S,A, α):

maximize(Σ,R,A, {∆ | ∆ = compute explanation(Σ,R, α), consistentΣ∪A(∆)}, S).

The function maximize(Σ,R,A,∆s, S) selects those explanations ∆ ∈ ∆s for which the score
S(Σ,R,A,∆) is maximal, i.e., there exists no other ∆′ ∈ ∆s such that S(Σ,R,A,∆′) > S(Σ,R,A,∆).
The function consistent(T ,A)(A′) determines if the Abox A∪A′ has a model which is also a model
of the Tbox T .

Note the call to the nondeterministic function compute explanation. It may return different
values, all of which are collected.

In the next Section we explain how probabilistic knowledge is used to (i) formalize the effect of
the “explanation”, and (ii) formalize the scoring function S used in the CAE algorithm explained
above. In addition, it is shown how the termination condition (represented with the parameter Ξ
in the above procedure) can be defined based on the probabilistic conditions.

3.2.6 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explaining the interpretation
problem and presenting a solution to this problem. The solution is presented by a probabilistic
interpretation algorithm which calls the CAE function described in the previous section. In the
given algorithm, a termination function, and a scoring function are defined. The termination
function determines if the interpretation process can be stopped since at some point during the
interpretation process it makes no sense to continue the process. The reason for stopping the
interpretation process is that no significant changes can be seen in the results. The defined scoring
function in this section assigns scores to interpretation Aboxes.

Problem The objective of the RMI component is the generation of interpretations for the ob-
servation resluts determined by the KDMA and HCI components. An interpretation is an Abox
which contains high level concept assertions. Since in the artificial intelligence, the agents are used
for solving the problems, in the following the same problem is formalized in the perspective of an
agent:
Consider an intelligent agent and some percepts in an environment where the percepts are the
analysis results of KDMA and HCI. The objective of this agent is finding explanations for the
existence of percepts. The question is how the interpretation Aboxes are determined and how
long the interpretation process must be performed by the agent. The functionality of this agent is
presented in the RMI Agent algorithm in Section 3.2.7.
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Solution In the following, an application for a probabilistic interpretation algorithm is presented
which gives a solution to the mentioned problem. This solution illustrates a new perspective to
the interpretation process and the reason why it is performed. Assume that the RMI component
receives a weighted Abox A from KDMA and HCI which contains observations. In the following,
the applied operation P (A,A′,R,WR, T ) in the algorithm is explained:

The P (A,A′,R,WR, T ) function determines the probability of the Abox A with respect to the
Abox A′, a set of rules R, a set of weighted rules WR, and the Tbox T where A ⊆ A′. Note that
R is a set of forward and backward chaining rules. The probability determination is performed
based on the Markov logic formalism as follows:

P (A,A′,R,WR, T ) = PMLN(A,A′,R,WR,T )( ~Q(A) | ~e(A′)) (9)

~Q(A) denotes the fulljoint probability of all assertions which appear in the Abox A. Assume Abox
A contains n assertions α1, . . . , αn. Consequently, the query of the Abox A is defined as follows:

~Q(A) = {〈α1 ∧ . . . ∧ αn〉 | αi ∈ A, i ∈ N} (10)

and assume that the Abox A′ contains m assertions α1, . . . , αm, so that m ≥ n. In the following,
the evidence vector ~e(A′) is defined:

~e(A′) = {〈α1, . . . , αm〉 | αi ∈ A′, i ∈ N} (11)

In order to answer the query P (A,A′,R,WR, T ), the Markov logic network MLN based on the
Aboxes A and A′, the rules R, the weighted rules WR and the Tbox T should be built which is
a time consuming process. Note that the above function is called not only once but several times.
In the following, the interpretation algorithm Interpret is presented:

Function Interpret(A, CurrentI, Γ, T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of observations Γ, a
Tbox T , a set of forward chaining rules FR, a set of backward chaining rules BR, a set of
weighted rules WR, and the desired precision of the results ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox differences for
additions ∆1 and omissions ∆2

i := 0 ;
p0 := P (Γ,Γ,R,WR, T ) ;
Ξ := λ(A) •

{
i := i+ 1; pi := maxA∈A P (Γ,A ∪A0,R,WR, T ); return | pi − pi−1 |< ε

i

}
;

Σ := (T , ∅);
R := FR ∪ BR;
S := λ((T ,A0)),R,A,∆) • P (Γ,A ∪A0 ∪∆,R,WR, T );
A′ := CAE(Ω,Ξ,Σ,R, S,A);
NewI = argmaxA∈A′(P (Γ,A,R,WR, T ));
∆1 = AboxDiff (NewI,CurrentI); // additions
∆2 = AboxDiff (CurrentI,NewI); // omissions
return (A′, NewI,∆1,∆2);

In the above algorithm, the termination function Ξ and the scoring function S are defined by
lambda calculus terms. The termination condition Ξ of the algorithm is that no significant changes
can be seen in the successive probabilities pi and pi−1 (scores) of the two successive generated in-
terpretation Aboxes in two successive levels i − 1 and i. In this case, the current interpretation
Abox CurrentI is preferred to the new interpretation Abox NewI. In the next step, the CAE
function is called which returns agenda A′. Afterwards, the interpretation Abox NewI with the
maximum score among the Aboxes A of A′ is selected. Additionally, the Abox differences ∆1 and
∆2 respectively for additions and omissions among the interpretation Aboxes CurrentI and NewI
are calculated. In Chapter 5, it is completely explained how the Abox difference process among
two Aboxes is performed. In the following, the strategy condition Ω is defined which is one of the
parameters of CAE function:
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Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I,A′ 6= A : ∃α′l

′
∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l

′
∈ A′, α′l

′
6= αl, l′ < l

}
;

return (A, random select({min αs}));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that the assigned
superscripts to their assertions are minimum. In the next step, an Abox A from A is randomly
selected. Afterwards, the min αs set is determined which contains the assertions α from A whose
superscripts are minimum. These are the assertions which require explanations. The strategy
function returns as output an Abox A and an assertion α which requires explanation.

3.2.7 The RMI Agent

In the following, the RMI Agent function is presented which calls the Interpret function:

Function RMI Agent(Q, Partners, Die, (T ,A0),FR,BR,WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a function Die for the
terminatation process, a background knowledge set (T ,A0), a set of forward chaining rules
FR, a set of backward chaining rules BR, a set of weighted rules WR, and the desired
precision of the results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ,WR, T ) ;
Γ′ := Select(W,Γ);
A′ := filter(λ(A) • consistentΣ(A),map(λ(A) • A ∪ forward chain(Σ,FR,A ∪A0),

{select(MAP (Γ′,WR, T ,A0 ∪ A),Γ′ ∪ A0 ∪ A))) | A ∈ A′′};
(A′′, NewI,∆1,∆2) := Interpret(A′, CurrentI,Γ′, T ,FR,BR,WR∪ Γ, ε);
CurrentI := NewI;
Communicate(∆1,∆2, Partners);

until Die() ;

where the filter function is defined as follows:

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else
(12)

The filter function takes as parameters a function f and a set X and returns a set consisting of
the values of f applied to every element x of X.

In the RMI Agent function, the current interpretation CurrentI and the agenda A′′ are ini-
tialized to empty set. Since the agent performance is an incremental process, it is defined by a
repeat − until loop. The percept results Γ are sent by KDMA and HCI to the queue Q. In or-
der to take the observations Γ from the queue Q, the RMI Agent calls the extractObservations
function.
The MAP (Γ,WR, T ,A) function determines the most probable world of observations Γ with
respect to a set of weighted rules WR and the Tbox T . This function performs actually the men-
tioned MAP process in Chapter 2. It returns a vector W which consists of a set of zeros and ones
assigned to the ground atoms of the considered world. The assertions with assigned zeros and ones
are called respectively, negative and positive assertions.
The Select(W,Γ) function selects the positive assertions from the bit vector W in the input Abox
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Γ. The selected positive assertions which require explanations are also known as fiat assertions.
This operation returns as output an Abox Γ′ which has the following characteristic: Γ′ ⊆ Γ.
In the next step, a set of forward chaining rules FR is applied to all the Aboxes of A′′. The
generated assertions in this process are added to the to the Abox A. In the next step, only the
consistent Aboxes are selected and the other inconsistent Aboxes are not considered for the next
steps.

In the next step, the Interpret function is called to determine the new agenda A′′, the new inter-
pretation NewI and the Abox differences ∆1 and ∆2 for additions and omissions among CurrentI
and NewI. Afterwards, the CurrentI is set to the NewI and the RMI Agent function commu-
nicates the Abox differences ∆1 and ∆2 to the partners. Additionally, the Tbox T , the set of
forward chaining rules FR, the set of backward chaining rules BR, and the set of weighted rules
WR can be learnt by the Learn function. The termination condition of the RMI Agent function
is that the Die() function is true.

Note that the RMI Agent waits at the function call extractObservations(Q) if Q = ∅.

After presenting the above algorithms, the mentioned unanswered questions can be discussed.
A reason for performing the interpretation process and explaining the fiat assertions is that the
probability of P (A,A′,R,WR, T ) will increase through the interpretation process. In other words,
by explaining the observations the agent’s belief to the percepts will increase. This shows a new
perspective for performing the interpretation process.

The answer to the question whether there is any measure for stopping the interpretation pro-
cess, is indeed positive. This is expressed by | pi − pi−1 |< ε

i which is the termination condition
Ξ of the algorithm. The reason for selecting ε

i and not ε as the upper limit for the termination
condition is to terminate the oscillation behaviour of the results. In other words, the precision
interval is tightened step by step during the interpretation process.

3.3 Additional Techniques

In the description of the concepual architecture of RMI we have discussed that the RMI agent
focuses on observations with respect to single video shots (see Chapter 3). In the detailed descrip-
tion however, we have not completely formalized this. In addition, even the following extension
can be realized.

Since the topic of the video shots does not differ completely from each other, we have to
consider the high level concept assertions of the previous video shots for the next video shots. Let
us assume that a video which shows an interview is analysed. If a concept assertion interview(ind1)
is hypothesized for a video shot, it probably makes no sense to generate new individuals of the
type interview for the next video shots. This means the individual ind1 will be reused for the next
video shots. More formally, assume the video shots S1 and S2 from the same video and consider
ΓH1 as the high level concept assertions of S1. If Γ2 denotes the assertions related to the video
shot S2, then the assertions which are considered for the interpretation process of video shot S2

are Γ2 = Γ2 ∪ΓH1 . Similarly, the considered assertions for the video shot Si are defined as follows:

Γi = Γi ∪ ΓHi−1 ∪ . . . ∪ ΓH1 (13)

In other words, the high level concept assertions generated for each video shot will be considered
for the interpretation process of the next video shots. Taking the assertions of the previous video
shots to the next video shots is performed only for the high level concept assertions and not for
the low level concept assertions.

3.4 New Results on Optimization Techniques

In the RMI architecture procedure for probabilistic queries there is interest in representing both
probabilistic and deterministic dependencies. We have introduced a Markovian style of probabilis-
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tic reasoning in first-order logic known as Markov logic and have investigated the opportunities for
restricting this formalism to DLs.

In [Gries and Möller, 2010] we show that Gibbs sampling with deterministic dependencies
specified in an appropriate fragment remains correct, i.e., probability estimates approximate the
correct probabilities. We have investigated a Gibbs sampling method incorporating deterministic
dependencies and conclude that this incorporation can speed up Gibbs sampling significantly. For
details see [Gries and Möller, 2010].
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4 Complete Example

One of the main innovation introduced in the previous section, namely the introduction of a
probabilistic preference measure to control the space of possible interpretations, is exemplified
here using examples inspired by the environmental domain used in CASAM.

At the beginning of this example, the signature of the knowledge base is presented. The set
of all concept names CN is divided into two different sets Events and PhysicalThings such that

CN = Events ∪PhysicalThings (14)

where these two sets are defined as follows:

Events = {CarEntry,EnvConference, EnvProt,HealthProt} (15)
PhysicalThings = {Car,DoorSlam,Building,Environment,Agency} (16)

EnvConference, EnvProt and HealthProt denote environmental conference, environmental pro-
tection and health protection, respectively.

The set of role names RN is defined as follows:

RN = {Causes,OccursAt,HasAgency,HasTopic,HasSubject,HasObject,HasEffect ,
HasSubEvent,HasLocation}

In the following, the set of individual names IN is given by

IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48} (17)

Note that the notations in this example are based on Alchemy notations i.e. the instance-,
concept- and role names begin with capital letters. In the next table, the set of forward chaining
rules FR is defined:

∀x CarEntry(x) → ∃y Building(y), OccursAt(x, y)
∀x EnvConference(x) → ∃y Environment(y), HasTopic(x, y)
∀x EnvProt(x) → ∃y Agency(y), HasAgency(x, y)

Table 1: Set of forward chaining rules FR

Similarly, the set of backward chaining rules BR is depicted as follows:

Causes(x, y) ← CarEntry(z), HasObject(z, x), HasEffect(z, y), Car(x), DoorSlam(y)
OccursAt(x, y) ← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)
HasTopic(x, y) ← EnvProt(z), HasSubEvent(z, x), HasObject(z, y), EnvConference(x), Environment(y)
HasAgency(x, y) ← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Table 2: Set of backward chaining rules BR

In the following a set of weighted rules WR is given where all rules have the same high weight
set to 5. The syntax of each rule is defined as follows: on the left-hand side of each rule an Events
concept name is given whose variable z is universally quantified whereas on the right-hand side of
each rule, the variables x and y are existentially restricted:

5 ∀z CarEntry(z) ⇒ ∃x, y Car(x) ∧DoorSlam(y) ∧ Causes(x, y) ∧HasObject(z, x) ∧ HasEffect(z, y)
5 ∀z EnvConference(z) ⇒ ∃x, y CarEntry(x) ∧ Building(y) ∧ OccursAt(x, y) ∧HasSubEvent(z, x) ∧HasLocation(z, y)
5 ∀z EnvP rot(z) ⇒ ∃x, y EnvConference(x) ∧ Environment(y) ∧HasT opic(x, y) ∧HasSubEvent(z, x) ∧HasObject(z, y)
5 ∀z HealthP rot(z) ⇒ ∃x, y EnvP rot(x) ∧ Agency(y) ∧HasAgency(x, y) ∧HasObject(z, x) ∧HasSubject(z, y)

Table 3: Set of weighted rules WR

Note that the weighted rules WR and their weights can be learnt by the machine learning
component of the CASAM project.
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The selected initial value for ε in this example is 0.05. In the following, ∆1 and ∆2 denote
respectively the set of assertions hypothesized by a backward chaing rule and the set of assertions
generated by a forward chaining rule at each interpretation level.

Let us assume that RMI receives the following weighted Abox A from the KDMA and HCI com-
ponents:

1.3 Car(C1)
1.2 DoorSlam(DS1)
−0.3 EngineSound(ES1)

Causes(C1, DS1).

Table 4: Received Abox A from KDMA and HCI

where the strict assertions are terminated by a period. The first applied operation to A is the
MAP function which returns the next bit vector W :

Ground atoms W
Car(C1) 1
DoorSlam(DS1) 1
EngineSound(ES1) 0
Causes(C1, DS1) 1

Table 5: Ground atoms and bit vector W

The vector W is composed of positive and negative events (bits). By applying the Select
function to Wk and the input Abox, the assertions from the input Abox are selected that correspond
to positive events inWk. Additionally, the assigned weights to the positive assertions are taken from
the input Abox A. In the following, Abox A0 is depicted which contains the positive assertions:

1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

Table 6: Abox A0, the result of Select function

The P function determines the full joint probability of the observations chosen by the Select
function:

p0 = P (Car(C1) ∧DoorSlam(DS1) ∧ Causes(C1, DS1)) = 0.650 (18)

Since no appropriate forward chaining rule from FR is applicable to Abox A0,

forward chain(T ,FR,A0) = ∅ (19)

and as a result A0 = A0 ∪ ∅. The next step is the performance of backward chain function where
the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y) (20)

Consequently, by applying the above rule the next set of assertions is hypothesized:

∆1 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}

which are considered as strict assertions. In the following, A1 = A0 ∪∆1 is depicted:
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1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Table 7: Abox A1

In the above Abox, the full joint probability of observations is determined again:

p1 = P (Car(C1) ∧DoorSlam(DS1) ∧ Causes(C1, DS1)) = 0.840 (21)

As it can be seen, p1 > p0 i.e. P (A0,Ai,WR, T ) increases by adding the new hypothesized asser-
tions. This shows that the new assertions are considered as additional support. The termination
condition of the algorithm is not fulfilled therefore the algorithm continues processing. At this
level, it is still not known whether Abox A1 can be considered as the final interpretation Abox.
Thus, this process is continued with another level. Consider the next forward chaining rule:

∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y) (22)

By applying the above rule, the next set of assertions is generated namely:

∆2 = {Building(Ind43), OccursAt(Ind42, Ind43)} (23)

The new generated asssertions are also considered as strict assertions. In the following, the ex-
panded Abox A1 = A1 ∪∆2 is illustrated:

1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

Table 8: Expanded Abox A1

Let us assume the next backward chaining rule:

OccursAt(x, y) ← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of new assertions is hypothe-
sized:

∆1 = {EnvConference(Ind44), HasSubEvent(Ind44, Ind42), HasLocation(Ind44, Ind43)}

which are considered as strict assertions. In the following, A2 = A1 ∪∆1 is depicted:
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1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

EnvConference(Ind44).
HasSubEvent(Ind44, Ind42).
HasLocation(Ind44, Ind43).

Table 9: Abox A2
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In the above Abox, again the full joint probability of observations is determined:

p2 = P (Car(C1) ∧DoorSlam(DS1) ∧ Causes(C1, DS1)) = 0.819 (24)

As it can be seen, p2 < p1 i.e. the full joint probability of the observations decreases slightly by
adding the new hypothesized assertions. The termination condition of the algorithm is fulfilled.
Therefore Abox A1 can be considered as the output Abox. To realize how the further behaviour
of the probabilities is, this process is continued. Consider the next forward chaining rule:

∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y) (25)

By applying the above rule, new assertions are generated.

∆2 = {Environment(Ind45), HasTopic(Ind44, Ind45)} (26)

In the following, the expanded Abox A2 = A2 ∪∆2 is depicted:

1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

EnvConference(Ind44).
HasSubEvent(Ind44, Ind42).
HasLocation(Ind44, Ind43).

Environment(Ind45).
HasTopic(Ind44, Ind45).

Table 10: Expanded Abox A2

Consider the next backward chaining rule:

HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y), EnvConference(x), Environment(y)

By applying the above abduction rule, the following set of assertions is hypothesized:

∆1 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}

which are considered as strict assertions. In the following, A3 is depicted so that A3 = A2 ∪∆1:
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1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

EnvConference(Ind44).
HasSubEvent(Ind44, Ind42).
HasLocation(Ind44, Ind43).

Environment(Ind45).
HasTopic(Ind44, Ind45).

EnvProt(Ind46).
HasSubEvent(Ind46, Ind44).
HasObject(Ind46, Ind45).

Table 11: Abox A3

In the above Abox A3, again the full joint probability of observations is determined:

p3 = P (Car(C1) ∧DoorSlam(DS1) ∧ Causes(C1, DS1)) = 0.833 (27)

As it can be seen, p3 > p2, i.e. the full joint probability of the observations increases slightly by
adding the new hypothesized assertions.
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Consider the next forward chaining rule:

∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y) (28)

By applying the above rule, the next assertions are generated:

∆2 = {Agency(Ind47), HasAgency(Ind46, Ind47)} (29)

In the following the expanded Abox A3 = A3 ∪∆2 is illustrated:

1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

EnvConference(Ind44).
HasSubEvent(Ind44, Ind42).
HasLocation(Ind44, Ind43).

Environment(Ind45).
HasTopic(Ind44, Ind45).

EnvProt(Ind46).
HasSubEvent(Ind46, Ind44).
HasObject(Ind46, Ind45).

Agency(Ind47).
HasAgency(Ind46, Ind47).

Table 12: Expanded Abox A3

Let us consider the next backward chaining rule:

HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Consequently, new assertions are hypothesized by applying the above abduction rule, namely:

∆1 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}

which are considered as strict assertions. In the following, A4 is depicted so that A4 = A3 ∪∆1:
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1.3 Car(C1)
1.2 DoorSlam(DS1)

Causes(C1, DS1).

CarEntry(Ind42).
HasObject(Ind42, C1).
HasEffect(Ind42, DS1).

Building(Ind43).
OccursAt(Ind42, Ind43).

EnvConference(Ind44).
HasSubEvent(Ind44, Ind42).
HasLocation(Ind44, Ind43).

Environment(Ind45).
HasTopic(Ind44, Ind45).

EnvProt(Ind46).
HasSubEvent(Ind46, Ind44).
HasObject(Ind46, Ind45).

Agency(Ind47).
HasAgency(Ind46, Ind47).

HealthProt(Ind48).
HasObject(Ind48, Ind46).
HasSubject(Ind48, Ind47).

Table 13: Abox A4

In the above Abox, again the full joint probability of observations is determined:

p4 = P (Car(C1) ∧DoorSlam(DS1) ∧ Causes(C1, DS1)) = 0.837 (30)

As it can be seen, p4 > p3, i.e. the full joint probability of the observations increases slightly by
adding the new hypothesized assertions.
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Evaluation of the Results

The determined probability values P (A0,Ai,R,WR, T ) of this example are summarized in the
next table which shows clearly the behaviour of the probabilities stepwise after perfoming the
interpretation process:

i Abox Ai pi = P (A0,Ai,WR, T )
0 A0 p0 = 0.650
1 A1 p1 = 0.840
2 A2 p2 = 0.819
3 A3 p3 = 0.833
4 A4 p4 = 0.837

Table 14: Summary of the probability values

Variable i denotes in the above table the successive levels of the interpretation process. In this
example, the interpretation process is consecutively performed four times. As it can be seen in
Table 14, through the first interpretation level the probability p1 increases strongly in comparison
to p0. By performing the second, third and the forth interpretation levels, the probability values
decrease slightly in comparison to p1. This means no significant changes can be seen in the results.
In other words, the determination of A3 and A4 were not required at all. But the determination of
A2 was required to realize the slight difference |p2− p1| < ε

2 . Consequently, Abox A1 is considered
as the final interpretation Abox.

At the end of this example, we have to mention that this example was not constructed to show the
possible branchings through the interpretation process. But the purpose of this example was to
show how the probabilities of the most probable world of observations P (A0,A,R,WR, T ) behave
during the interpretation process if there is only one possible branch to follow.
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6 Conclusion and Remarks

For multimedia interpretation, a semantically well-founded formalization is required. In accordance
with previous work, in CASAM a well-founded abduction-based approach is pursued. Extending
previous work, abduction is controlled by probabilistic knowledge, and it is done in terms of first-
order logic.

This report describes the probabilistic abduction engine and the optimization techniques for
multimedia interpretation. It extends deliverable D3.2 by providing a probabilistic scoring function
for ranking interpretation alternatives. Parameters for the CASAM Abduction Engine (CAE)
introduced already in D3.2 are now appropriately formalized first the first such that CAE is better
integrated into the probabilistic framework.

In addition, this deliverable describes how media interpretation services can be provided that
work incrementally, i.e., are able to consume new analysis results, or new input from a human
annotator, and produce notifications for additional interpretation results or, in some cases, revi-
sion descriptions for previous interpretations. Incremental processing is nontrivial and is realized
using an Abox difference operator, which is used to interpretation results obtained for extended
inputs with one(s) previously obtained such that notifications about additions and revisions can
be computed.
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