

Project Title: CASAM Contract No. FP7-217061

Project Coordinator: INTRASOFT International S.A. www.casam-project.eu

CASAM

FP7-217061

Computer-Aided Semantic Annotation of Multimedia

Deliverable D3.4

Meta-level reasoning engine, Report on meta-level
reasoning for disambiguation and preference
elicitation

Editor(s): Oliver Gries, Ralf Möller, Anahita
Nafissi, Maurice Rosenfeld, Kamil
Sokolski, Michael Wessel

Responsible Partner: TUHH

Status-Version: Final Version

Date: 26/10/10

EC Distribution:

Project Title: CASAM Contract No. FP7-217061

Project Coordinator: INTRASOFT International S.A. www.casam-project.eu

Project Number: FP7-217061

Project Title: CASAM

Title of Deliverable:
Meta-level reasoning engine, Report on meta-
level reasoning for disambiguation and
preference elicitation

Date of Delivery to the EC:

Workpackage responsible
for the Deliverable:

WP3 Knowledge representation and reasoning
for multimedia interpretation

Editor(s):
Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice
Rosenfeld, Kamil Sokolski, Michael Wessel

Contributor(s):
Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice
Rosenfeld, Kamil Sokolski, Michael Wessel

Reviewer(s):
Chris Bowers (University of Birmingham),
Sergios Petridis (NCSR “Demokritos”)

Approved by: All partners

Abstract: A mechanism for meta-level interpretations is
presented with the aim to disambiguate
interpretation alternatives. This is done by
generating queries out of the interpretation
alternatives and stating them to the user or
other agents. Queries are ranked by an
importance value representing the value of the
answer. The query generation mechanism is
explained followed by the processing of the
response and a detailed description of query
types.

Keyword List: Meta-Reasoning, Multimedia Interpretation, HCI,
Multi-Agent Communication

Project Title: CASAM Contract No. FP7-217061

Project Coordinator: INTRASOFT International S.A. www.casam-project.eu

Document Description

Document Revision History

Modifications Introduced
Version Date

Modification Reason Modified by

V0.1 30/09/10 Version for internal review

Oliver Gries, Ralf
Möller, Anahita
Nafissi, Maurice
Rosenfeld, Kamil
Sokolski, Michael
Wessel

V0.2 18/10/10 Final Version

Oliver Gries, Ralf
Möller, Anahita
Nafissi, Maurice
Rosenfeld, Kamil
Sokolski, Michael
Wessel

V0.3 26/10/10 The annex was added
Ralf Möller, Maurice
Rosenfeld

Executive Summary

In [1] and [2] an agent was presented that builds interpretations upon multimedia annota-
tions by incrementally consuming analysis results as well as input from a human annotator.
These interpretations are based on background knowledge of a specific domain, e.g. an
environmental domain as it was exemplarily chosen for the CASAM project. As a result of
the interpretation process, multiple interpretation alternatives are possible. A preference
measure for the alternatives is realised by a probabilistic scoring function. As an extension
of the interpretation agent, a mechanism for meta-level reasoning is presented with the aim
to disambiguate interpretation alternatives. This is achieved by generating queries from
a set of interpretation alternatives and stating them to the human annotator. Queries
themselves are ranked by an importance value, representing the benefit of an answer to a
query for the disambiguation process.

After a revision of the interpretation process the query generation mechanism is ex-
plained, followed by a detailed description of different query types, together with the
format they are communicated in. Furthermore, the processing of responses to queries is
addressed.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Preliminaries on Description Logic . 2
2.2 Substitutions, Queries, and Rules . 4

2.2.1 Sequences, Variable Substitutions and Transformations 4
2.2.2 Grounded Conjunctive Queries . 4
2.2.3 Rules . 5

2.3 Probabilistic Formalism . 5

3 The Media Interpretation Agent 6
3.1 Generation of Disambiguation Queries . 8
3.2 Processing of Query Responses . 10

4 Query Types 11
4.1 Concept-Assertion-Query . 11
4.2 Abstract-Concept-Assertion-Query . 12
4.3 Relation-Direction-Query . 12
4.4 Relation-Object-Query . 13
4.5 Relation-Subject-Query . 14
4.6 Relation-Type-Query . 14
4.7 Relation-Subject-Object-Query . 15
4.8 Same-As-Query . 16

5 Summary and Remarks 16

A Installation of RMI 18

1 Introduction

To speed up manual multimedia annotation processes, the CASAM project investigates
the collaboration of human annotators and machine intelligence. In [1] a Reasoning-based
Media Interpretation module (RMI) was defined as an agent that computes interpretations
given a set of observations. Generated interpretations are ranked by a probabilistic scoring
function, and the Abox with the highest score is communicated to the Human Computer
Interface module (HCI) for displaying the results. The set of all possible interpretations
is managed by a so-called agenda. During the ongoing annotation process, more and
more interpretation Aboxes have to be managed by the agenda. If additional observations
are received they have to be added to all Aboxes. Due to possible new interpretations
the probabilistic score may change. A considerable amount of computational resources
are required to manage this kind of branching. Therefore, the agent has an interest to
disambiguate interpretation alternatives and delete them from its agenda, especially when
interpretations have similar scores.

In order to achieve the disambiguation, the agent computes a so-called Abox difference
between the interpretation Aboxes. The result of this difference operation is a set of Abox
assertions, where each assertion is unique to a corresponding Abox. These difference
assertions are asked to an annotator in the form of queries. There is, however, a big gap
between the interpretations maintained by the agent and the queries that are presented to
the user. While interpretations can denote complex relational structures, queries on the
can only be presented to the user in a flat natural language form. A Screenshot of the
natural language query produced by the CASAM system is shown in Figure 1.

Select all that apply:

OpenAirInterview

StudioInterview

Engineer built from PersonFace

Speaker built from PersonFace

ANSWER JUMP ASK LATER

shot global SUBMIT

ANNOTATION TEXT:

USER INPUT QUESTIONS INFO

01:58 / 05:04

Figure 1: CASAM prototype displaying query choices

To make the translation from Abox assertions to flat natural language questions, HCI
needs to classify certain type of queries. In this document all the foreseen types are
described and specific examples are given. From the RMI agent’s point of view, query
answers have a value for the automatic annotation process, but from HCI’s point of view,
queries are a burden as they distract the user in focusing on the manual annotation. Dis-
tractions can be expressed by abstract costs. Therefore, a utility function that represents
the value of an answer to a particular query is needed. The value of information or degree
of importance for obtaining an answer is communicated by a so-called importance value.

1

This enables HCI to balance the benefit of a query versus its costs.

An answer to a query is communicated from HCI to RMI in the form of assertions. In this
deliverable it is also shown how the user responses affect the probabilistic score of Aboxes
on the agent’s agenda.

The challenges being investigated in this deliverable are the following:

1. Generation of queries, including the transformation of relational structures of expla-
nations into “flat” representations.

2. Computation of importance values for queries.

3. Processing of answers to queries.

Already in the 1980s, research has shown that meta-reasoning is useful for controlling
the reasoning process [3]. The need of self-adaptation arises when an agent operates in
a dynamic environment, such as a collaboration with a user. The meaning of the term
meta-reasoning is reasoning about reasoning. This is different from performing object-level
reasoning, which refers in some way to entities external to the system. A system capable
of meta-reasoning may be able to reflect, or introspect, i.e. to shift from meta-reasoning
to object-level reasoning and vice versa [4].

Ground
Level

Object
 Level

Meta-
 Level

Environment Reasoning
(Interpretation)

Metareasoning

Control
Interaction
(Queries)

Perception Monitoring

Figure 2: Schema of meta-reasoning

Figure 2 shows a general schema of meta-reasoning. In this deliverable it is shown that
by ranking the interpretations, managing the interpretation agenda, and generation of
queries, a monitoring and control functionality is achieved.

2 Preliminaries

In this section most important preliminaries already explained in detail in [5] are repeated
in order to make this document self-contained.

2.1 Preliminaries on Description Logic

One of the main targets of the CASAM project is to support human annotators during their
work in producing elaborate symbolic descriptions for video shots. Annotations are used
for later information retrieval and require a representation language. We assume that a
less expressive description logic (DL) should be applied to facilitate fast computations. We
decided to represent the domain knowledge with the DLALHf

−(D) (restricted attributive

2

concept language with role hierarchies, functional roles and concrete domains). For details
see [6].

In logic-based approaches, atomic representation units have to be specified. The atomic
representation units are fixed using a so-called signature. A DL signature is a tuple
S = (CN,RN, IN), where CN = {A1, ..., An} is the set of concept names (denoting sets
of domain objects) and RN = {R1, ..., Rm} is the set of role names (denoting relations
between domain objects). The signature also contains a component IN indicating a set of
individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowl-
edge) and to talk about specific individuals (assertional knowledge), a knowledge base has
to be specified. An ALHf

− knowledge base ΣS = (T ,A), defined with respect to a sig-
nature S, is comprised of a terminological component T (called Tbox) and an assertional
component A (called Abox). In the following we just write Σ if the signature is clear from
context. A Tbox is a set of so-called axioms, which are restricted to the following form in
ALHf

−:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III) Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV) Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI) Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An

With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles)
of each other. Axioms of form (II) denote disjointness between concepts. Axioms of
type (III) introduce domain and range restrictions for roles. Axioms of the form (IV)
introduce so-called functional restrictions on roles, and axioms of type (V) specify local
range restrictions (using value restrictions, see below). With axioms of kind (VI) so-
called definitions (with necessary and sufficient conditions) can be specified for concept
names found on the lefthand side of the ≡ sign. In the axioms, so-called concepts are
used. Concepts are concept names or expressions of the form > (anything), ⊥ (nothing),
¬A (atomic negation), (≤ 1R) (role functionality), ∃R.> (limited existential restriction),
∀R.A (value restriction) and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is
a set of expressions of the form A(a) or R(a, b) (concept assertions and role assertions,
respectively) where A stands for a concept name, R stands for a role name, and a, b stand
for individuals. Aboxes can also contain equality (a = b) and inequality assertions (a 6= b).
We say that the unique name assumption (UNA) is applied, if a 6= b is added for all pairs
of individuals a and b.

In order to understand the notion of logical entailment, we introduce the seman-
tics of ALHf

−. In DLs such as ALHf
−, the semantics is defined with interpretations

I = (4I , ·I), where 4I is a non-empty set of domain objects (called the domain of I)
and ·I is an interpretation function which maps individuals to objects of the domain
(aI ∈ 4I), atomic concepts to subsets of the domain (AI ⊆ 4I) and roles to subsets of
the cartesian product of the domain (RI ⊆ 4I ×4I). The interpretation of arbitrary
ALHf

− concepts is then defined by extending ·I to all ALHf
− concept constructors as

follows:

3

>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf
−-

knowledge base Σ in an interpretation I are defined. A concept inclusion C v D (concept
definition C ≡ D) is satisfied in I, if CI ⊆ DI (resp. CI = DI) and a role inclusion R v S
(role definition R ≡ S), if RI ⊆ SI (resp. RI = SI). Similarly, assertions C(a) and R(a, b)
are satisfied in I, if aI ∈ CI resp. (a, b)I ∈ RI . If an interpretation I satisfies all axioms
of T resp. A it is called a model of T resp. A. If it satisfies both T and A it is called a
model of Σ. Finally, if there is a model of Σ (i.e., a model for T and A), then Σ is called
satisfiable.

We are now able to define the entailment relation |=. A DL knowledge base Σ logically
entails an assertion α (symbolically Σ |= α) if α is satisfied in all models of Σ. For an
Abox A, we say Σ |= A if Σ |= α for all α ∈ A.

2.2 Substitutions, Queries, and Rules

2.2.1 Sequences, Variable Substitutions and Transformations

A variable is a name of the form String where String is a string of characters from
{A. . .Z}. In the following definitions, we denote places where variables can appear with
uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V .
The notation z denotes a sequence of individuals. We consider sequences of length 1 or 2
only, if not indicated otherwise, and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉)
is to be read as (X,Y) etc. Furthermore, we assume that sequences are automatically
flattened. A function as set turns a sequence into a set in the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individ-
uals mentioned in an Abox. The application of a variable substitution σ to a sequence of
variables 〈X〉 or 〈X,Y 〉 is defined as 〈σ(X)〉 or 〈σ(X), σ(Y)〉, respectively, with σ(X) = i
and σ(Y) = j. In this case, a sequence of individuals is defined. If a substitution is
applied to a variable X for which there exists no mapping X ← k in σ then the result
is undefined. A variable for which all required mappings are defined is called admissible
(w.r.t. the context).

2.2.2 Grounded Conjunctive Queries

Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn denote concept or role
names. A query is defined by the following syntax: {(X) | Q1(Y1), . . . , Qn(Yn)}. The
sequence X may be of arbitrary length but all variables mentioned in X must also appear
in at least one of the Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms
Qi(Yi). The list of variables to the left of the sign | is called the head and the atoms to the
right are called the query body. The variables in the head are called distinguished variables.
They define the query result. The variables that appear only in the body are called non-
distinguished variables and are existentially quantified. Answering a query with respect

4

to a knowledge base Σ means finding admissible variable substitutions σ such that Σ |=
{σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution σ = [X ← i, Y ← j, . . .]
introduces bindings i, j, . . . for variables X,Y, Given all possible variable substitutions
σ, the result of a query is defined as {(σ(X))}. Note that the variable substitution σ
is applied before checking whether Σ |= {Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query is
grounded first.

A boolean query is a query with X being of length zero. If for a boolean query there
exists a variable substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we
say that the query is answered with true, otherwise the answer is false. Later on, we
will have to convert query atoms into Abox assertions. This is done with the function
transform. The function transform applied to a set of query atoms {γ1, . . . γn} is defined
as {transform(γ1, σ), . . . , transform(γn, σ)} where transform(P (X), σ) := P (σ(X)).

2.2.3 Rules

A rule r has the following form P (X)← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote
concept or role names with the additional restriction (safety condition) that as set(X) ⊆
as set(Y1)∪· · ·∪as set(Yn). Rules are used to derive new Abox assertions, and we say that
a rule r is applied to an AboxA. The function call apply(Σ, P (X)← Q1(Y1), . . . , Qn(Yn),A)
returns a set of Abox assertions {σ(P (X))} if there exists an admissible variable substi-
tution σ such that the answer to the query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}

is true with respect to Σ ∪ A.1 If no such σ can be found, the result of the call to
apply(Σ, r,A) is the empty set. The application of a set of rules R = {r1, . . . rn} to an
Abox is defined as follows:

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds.
Otherwise the result of forward chain is determined by the recursive call
apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪ apply(Σ,R,A)).

For some set of rulesR we extend the entailment relation by specifying that (T ,A) |=R
A0 iff (T ,A ∪ forward chain((T , ∅),R,A)) |= A0.

2.3 Probabilistic Formalism

An observation i.e. an assertion which the agent receives has a so called certainty value.
This certainty value represents the degree of belief of another agent in that particular
assertion. All certainty values are interpreted by the receiving agent as the probability that
the corresponding assertion is true. In [2] it was shown how probabilities of observation
Aboxes can be computed given the P (A,A′,R,WR, T) function which determines the
probability of the observation Abox A with respect to the Abox A′ containing observations
and explanations, a set of rules R, a set of weighted rules WR, and the Tbox T where
A ⊆ A′. Note that R is a set of forward and backward chaining rules. The probability
determination is performed based on the Markov logic formalism (see [2] for more details).

Henceforth we use P (A′) as an abbreviation for P (A,A′,R,WR, T).

1We slightly misuse notation in assuming (T ,A) ∪ ∆ = (T ,A ∪ ∆). If Σ ∪ A is inconsistent the result
is well-defined but useless. It will not be used afterwards.

5

3 The Media Interpretation Agent

This section presents an extended version of the MI Agent, first described in [1] and [2].
The possibility to generate and ask queries for disambiguation was added and is represented
by the generateQueries function and the ask function, respectively. The generation of these
queries is described in more detail in Section 3.1. The agent also obtained a second input
queue that runs independently in a separate thread and is used exclusively for handling
answers to previously asked questions. This newly introduced ability and the way those
query responses are communicated is explained in Section 3.2.

Function MI Agent(QΓ,QΥ, partners, die, (T ,A0),FR,BR,WR, k, ε)
Input: a queue of observations QΓ, a queue of responses to queries QΥ, a set of
partners partners, a termination function die(), a background knowledge
base (T ,A0), a set of forward chaining rules FR, a set of backward chaining rules
BR, a set of weighted rules WR, a parameter k indicating the top k Aboxes on the
agenda, and a threshold control parameter ε
Output: –
currentI = ∅, A = {∅};
startThread(λ().

repeat
Γ := extractObservations(QΓ);
W := MAP (Γ,WR, T) ;
Γ′ := select(W,Γ);
A′ := filter(λ(A).consistentΣ(A),

map(λ(A).Γ′ ∪ A ∪A0∪
forwardChain(Σ,FR,Γ′ ∪ A ∪A0),

{select(MAP (Γ′ ∪ A ∪A0,WR, T),
Γ′ ∪ A ∪A0) | A ∈ A}));

(A, newI,∆+,∆−) := interpret(A′, currentI,Γ′, (T ,A0),
FR,BR,WR∪ Γ, ε);

currentI := newI ;
communicate(∆+,∆−, partners);
A := manageAgenda(A);
Q := generateDisambiguationQuery(A, k);
if Q 6= ∅ then ask(Q, partners) end;

until die();
);
startThread(λ().

repeat
Υ := extractQueryAnswer(QΥ);
Aa := find(Υ,A);
update(Aa);
A := shift(Aa,A);
newI := selectHead(A);
(∆+,∆−) := AboxDiff (newI , currentI);
currentI := newI ;
communicate(∆+,∆−, partners);

until die();
);

6

The MI Agent uses a set of auxiliary functions, which are defined as follows.

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else

It takes as parameters a function f and a set X and returns a set consisting of the values of
f applied to every element x of X. In the MI Agent function, the current interpretation
currentI is initialised to empty set and the agenda A to a set containing empty set. Since
the agent performs an incremental process, it is defined by repeat-loops. In case the agent
receives a percept result Γ, it is sent to the queue QΓ. In order to take the observations Γ
from the queue QΓ, the MI Agent calls the extractObservations function. The function
MAP (Γ,WR, T) determines the most probable world of observations Γ′ with respect to
a set of weighted rules WR and the Tbox T . It returns a vector W which consists of
ones and zeros assigned to indicate whether the ground atoms of the considered world
are true (positive) or false (negative), respectively. The function select(W,Γ) then selects
the positive assertions in the input Abox Γ using the bit vector W . The selected positive
assertions are the assertions which require explanations. The select operation returns as
output an Abox Γ′ which has the following characteristic: Γ′ ⊆ Γ. The determination of
the most probable world by the MAP function and the selection of the positive assertions
is carried out on Γ′∪A∪A0. In the next step, a set of forward chaining rules FR is applied
to Γ′∪A∪A0. The generated assertions in this process are added to Γ′∪A∪A0. In the next
step, only the consistent Aboxes are selected and the inconsistent Aboxes are removed.
Afterwards, the interpret function is called to determine the new agenda A, the new
interpretation Abox newI and the Abox differences ∆+ and ∆− for additions and omissions
among currentI and newI. Afterwards, the Abox currentI is assigned to newI and
the MI Agent function communicates the Abox differences ∆+ and ∆− to partners. In
CASAM partners = {KDMA,HCI} applies. Subsequently, the manageAgenda function
is called with the aim to improve the overall performance. It is applied to the agenda A
which usually contains multiple interpretation Aboxes and makes use of the following
techniques:

• Elimination of the interpretation Aboxes: This technique is applied if there are
multiple interpretation Aboxes with different scoring values where one of the Aboxes
has a higher scoring value. At this step, we can select this Abox, eliminate the
remaining interpretation Aboxes and continue the interpretation process with the
selected Abox.

• Combining the interpretation Aboxes: Consider the interpretation Aboxes I1, . . . , In.
In order to determine the final interpretation Abox, the MAP process can be applied
to the union of all interpretation Aboxes I1∪ . . .∪ In. The MAP process determines
the most probable world based on the Tbox T and the set of weighted rules WR.

The last two functions in the processing loop for observations are generateQueries and a
conditional ask. As stated above, they are used to calculate disambiguation queries and
communicate them to the partners. The former function is explained in more detail in the
next Section 3.1.

The termination condition of the MI Agent function is that the function die is true. Note
that the MI Agent waits in the function call extractObservations(QΓ) if QΓ = ∅ and
QΥ = ∅.

7

3.1 Generation of Disambiguation Queries

As described in the previous section, we consider an agent that receives some percepts
in an environment. These percepts typically come from other agents that act in the
same environment. Please note that the term agent in this sense is not restricted to
machines or programs only; we also want to think of agents that represent the action
of humans, or even a direct interaction of humans and agents. This view is adopted in
the CASAM project and allows the interaction of the system with a human expert. The
very basic functionality of receiving percepts from other agent’s is only one part of an
agents ability that is often referred to as social ability. As a logical consequence, agents
are also able to produce output that affects the environment. One type of output are
messages that are sent to other participants. To be even more specific, queries can be sent
to humans in order to facilitate the interpretation process. The selection of an Abox Ai

from A representing the interpretation with the maximum score is an essential step in the
interpret function. In fact, there could be multiple Aboxes which satisfy this criterion or,
in a slightly weakened condition, do not differ much. In this case, the generation of queries
for disambiguation between preferable Aboxes is performed by the agent. The function
generateDisambiguationQuery is defined as follows.

Function generateDisambiguationQuery(A, k)
Input: an agenda A and an offset parameter k
Output: a disambiguation query Q
I := {Ai ∈ A | i = 1 . . . k};
D := ∅, Q := ∅;
foreach Ai ∈ I do
DAi :=

⋂
1≤j≤k,i6=j Ai \ Aj ;

dAi := selectAssertion(DAi);
D := D ∪ dAi ;

end
if D 6= ∅ then

Op := computeLogicalCompound(D);
Iv := computeImportanceV alue(D, I);
Q := concat(buildQuery(D, Op), Iv);

end
return Q;

It takes as input an agenda A and an offset parameter k. Since the Aboxes Ai on A
are ordered by a scoring function, the integer value k is used to determine the top k
Aboxes on the Agenda, respectively those k Aboxes with the highest scores, denoted as I.
Additionally, a set of difference assertions D is initialised to empty set. After the Aboxes
were selected from A, each of them is processed in a foreach loop. First, the set DAi ,
denoting the intersection of all Abox differences between the currently chosen Abox Ai

and all other Aboxes Aj , 1 ≤ j ≤ k and i 6= j, is computed.

Compared to all other Aboxes, these assertions are unique to Ai. Considering Aboxes as
sets, Figure 3 shows a schematic diagram of the Abox difference operation. Aboxes are
represented by circles and intersections of them are marked as darker grey areas. Assuming
the Abox Ai is the current selected Abox and the area DAi represents the assertion that is
unique to Ai. If this set contains more than one assertion, one of them is chosen randomly,
because it does not matter which assertion represents the uniqueness. This step is realised
by the function selectAssertion. The resulting assertion dAi is then added to D.

8

AiAj

A�
j

DA�
j

DAj

DAi

Figure 3: Schema of Abox difference

After the loop terminates, D = {dA1 , ..., dAk
} holds difference assertions that are unique to

every Abox among the top k Aboxes on the agenda A. Subsequently, the found difference
assertions must be transformed into a query. This is done by using a logical conjunction.
The logical compound that is told by the agent to connect the assertions is OR if there
is no pair of assertions that is inconsistent with the background knowledge and XOR
otherwise. This condition is examined by the computeLogicalCompound function and
the result is assigned to an operator variable Op. The next step includes the calculation
of an importance value Iv, for which a first proposal is given at the end of this section.

Function buildQuery(D, Op)
Input: a set of assertions D and a logical operator Op
Output: assertions concatenated with a logical operator
if D = {dAi} then

return dAi ;
else

return concat(dAi , Op, buildQuery(D \ dAi , Op));
end

Afterwards, the query Q is built by using the recursive function buildQuery that takes as
input all the difference assertions, hold in D, together with the logical operator Op. As a
result, all assertions, concatenated with Op, are returned. This concatenated construct,
together with the calculated value Iv, builds the final query that is communicated to the
partners. Syntactically, we define a disambiguation query, or query for short, using the
Backus-Naur form as

Q ::= Q′ Iv | Q′′ Iv
Q′ ::= α | α OR Q′

Q′′ ::= α | α XOR Q′′

where α is an assertion, and Iv ∈ (0, 1] is a real value denoting the so-called importance
value of the query.

Importance Value

Queries are asked to users in order to reduce the large space of abducibles to the most
appropriate explanations for the observations. In order to specify the degree of disam-
biguation that is expected by RMI when a particular query is answered, each generated

9

query is associated with an importance value. In the following, a first proposal is presented
to compute these values. For answering queries, the user has to invest an amount of time
as well as some cognitive ressoures (“costs”) such that this proposal is not based on simply
considering the number of query disjuncts that are asked to the user.

In order to obtain a degree of disambiguation, queries can be favoured in which there is
a pair of disjuncts (dAi , dAj) where the probabilities of the corresponding Aboxes (Ai,Aj)
are most similar. According to this, an importance value is the reciprocal of the minimum
min(|P (Ai)− P (Aj)|) of all pairs of disjuncts.

However, in addition, queries can be ranked according to the similarity of the disjuncts
itself, since the more similar the disjuncts are, the more they cannot hold in parallel (i.e.,
according to the current scene in the video), and, following to this, the more disjuncts
probably will be disambiguated by the user. For example, the concepts Drought and
Pollution are less probable to hold in parallel than Drought and Microphone (being less
similar) such that an answer to the former pair is believed to provide more information for
disambiguation than an answer to the latter pair. An estimation for the similarity of a pair
of disjuncts is the reciprocal of their distance with respect to the underlying taxonomy.
For computing the taxonomical distance of a pair of disjuncts (Ai, Aj), the least common
subsumer lcs(Ai, Aj) [7] of these concepts is computed. Then, dist(Ai, Aj) is the sum
of the distances of Ai to lcs(Ai, Aj) and Aj to lcs(Ai, Aj) (cf. [8]). In the case that
Ai = lcs(Ai, Aj) resp. Aj = lcs(Ai, Aj) one of the disjuncts subsumes the other such that
no disambiguation is needed and dist(Ai, Aj) is set to the maximal taxonomic distance
of pairs of disjuncts occurring (or to the maximal depth of the underlying taxonomy, if
there is no such maximum). The same holds for queries with a single disjunct, for pairs
of query disjuncts that include a role, or for disjuncts that refer to the same concept, i.e.,
differ only in the associated individual.

Let pairs be the set of all unordered pairs (dAi , dAj) of query disjuncts. An importance
value for a set D of query disjuncts in (0, 1] is defined by

importance(D) = 1
(1+min(|P (Ai)−P (Aj)|))· 1

2|pairs|
∑

pairs dist(pairs)
.

The minimal distance of two concepts is 2, since pairs of disjuncts subsuming each other
are excluded. In order to guarantee that the maximal importance of a query is 1, the sum
of distances is divided by 2 |pairs |.

3.2 Processing of Query Responses

In the beginning of this section the updated MI Agent was presented. As mentioned before,
the agent now makes use of two distinct threads. In the following we present how the agent
reacts to user responses, buffered in the queue QΥ. Each assertion in D = {dA1 , ..., dAi},
computed by the generateQueries function, has also a certainty value ci. This certainty
value represents how confident the agent is about this assertion. After presenting the
queries in an human readable form on the user interface, the user is able to select one or
more assertions as an answer. A confirmation of an assertion results in a response where
the certainty is increased to 1 and a rejection of the user, given by a non selected answer
possibility, lowers the certainty value to 0.

As soon as the agent receives a response, it extracts the query answer from QΥ by call-
ing the function extractQueryAnswer(QΥ). Afterwards it has to look up all the Aboxes
which contain the assertions in the response. This functionality is provided by the function
find(Υ,A) which returns a set of all interpretation Aboxes Ia = {Aa ∈ A | υ ∈ Aa ∧ υ ∈ Υ}
that are affected by the answer. Then these Aboxes have to be updated according to the

10

new certainty value of these assertions given by the answer from the user. This is done by
the function update(Ia). Changes of the certainty value of a particular assertion can have
an influence on the certainty value of structures built upon that assertion as well as on the
probability of the whole Abox. Therefore, the certainty values of the assertions and the
probability of the Abox has to be recomputed. If the probability of an Abox changes, also
the ranking of that Abox in the agenda might have changed and the position has to be up-
dated. This is done by the function shift(Ia,A) which sorts all Aboxes from Ia such that
{A1, . . . ,Ai,Aa,Aj , . . . ,An | P (A≤i) ≥ P (Aa) ≥ P (A≥j)} holds. As a consequence
of the shift operation the most probable Abox, ranked at the first position of the agenda,
might have changed. To handle this possibility, the eventually new most probable Abox
is selected by selectHead and assigned to newI . Afterwards, the Abox-Difference (see [1])
between this Abox and the former best Abox currentI (and vice versa) is computed by
AboxDiff . This operation results in additions ∆+ as well as in omissions ∆−. The next
step consists of assigning the newly found most probable Abox to currentI . Finally, the
additions and omissions are communicated to the partners.

4 Query Types

Queries can be further classified in different types depending on the disjuncts they include.
First, queries can contain concept assertions resp. role assertions only. Further, the
disjuncts can be represent concrete or abstract knowledge or the order of individuals in
role assertions can differ. These types are required for the human-computer-interaction
component (HCI) in order to display the respective query accordingly. In the following, the
types that have been agreed on are presented in the form of examples including figures that
sketch the presentation of these example queries on the screen. As we focus on the types
of the disjuncts in this section, importance values are not considered for these examples.
For further details, background regarding the graphical user interface and several context-
specific screenshots, please refer to [9].

4.1 Concept-Assertion-Query

Let us assume the RMI agent receives the following observations:

A0 = {PersonName(IND0), hasConcreteV alue(IND0, “Bob”)}

Based on the observations and the background knowledge the following interpretations
are provided by the agent.

I0 = {EnergyMinister(IND1), hasName(IND1, IND0)}
I1 = {Journalist(IND1), hasName(IND1, IND0)}
I2 = {PopStar(IND1), hasName(IND1, IND0)}

If the concepts EnergyMinister, Journalist and Popstar are disjoint with respect to
the background knowledge, RMI generates an XOR-query, since each concept assertion
is associated to the same individual IND1:2

Q′1 = EnergyMinister(IND1) XOR Journalist(IND1) XOR PopStar(IND1)

2Please note that the format of the query presented here is not the format transmitted through the
CASAM system. For exact XML-schema specifications refer to [10]

11

If EnergyMinister, Journalist and PopStar are not specified pairwise disjoint, RMI gener-
ates an OR-query:

Q′2 = EnergyMinister(IND1) OR Journalist(IND1) OR PopStar(IND1)

The OR-query Q′2 is shown on the UI in the form of a natural language question with
a check box for each concept as depicted in Figure 4. By activating a check box a users
confirms the associated assertion computed by the RMI agent, whereby leaving a check box
inactivated means an objection of the assertion. This applies to all OR-queries.

Is “Bob” a(n)...
2� Energy minister?
2 Journalist?
2 Pop star?

Figure 4: Example of a Concept-Assertion-Query

In the case of XOR-queries, the UI provides radio buttons such that only a single choice
is possible.

4.2 Abstract-Concept-Assertion-Query

Concept assertions in queries may refer to individuals which are neither related to concrete
values nor to bounding boxes. For example, given the observations

A1 = {Winds(IND2), Power(IND3)}
and assumed that RMI has computed the following two interpretations:

I3 = {WindEnergy(IND4), associatedWith(IND4, IND2), associatedWith(IND4, IND3)}
I4 = {Climate(IND4), associatedWith(IND4, IND2), associatedWith(IND4, IND3)}
the resulting query is similar to Q′2:

Q′3 = WindEnergy(IND4) OR Climate(IND4)

As a result HCI will display the query as depicted in Figure 5.

Tick all that apply:
2� Wind energy
2 Climate change

Figure 5: Example of an Abstract-Concept-Assertion-Query

4.3 Relation-Direction-Query

Queries may not only refer to concept assertions but also to relation assertions. For
example, RMI can ask for the order of the individuals of a specific role assertion. Given
the observations

A2 = {PersonName(IND4), hasConcreteV alue(IND4, “John”),

P ersonName(IND5), hasConcreteV alue(IND5, “Pete”)},

12

we assume that the following interpretations are given by the RMI agent:

I5 = {Person(IND5), associatedWith(IND5, IND4),

P erson(IND6), associatedWith(IND6, IND5), visits(IND6, IND5)}
I6 = {Person(IND5), associatedWith(IND5, IND4),

P erson(IND6), associatedWith(IND6, IND5), visits(IND5, IND6)}

The only difference between I5 and I6 is the order of the individuals which are related with
the role visits. Since the intention is that only one assertion can be true, RMI generates
an XOR-query:

Q′4 = visits(IND5, IND6) XOR visits(IND6, IND5)

HCI displays the OR-query as shown in Figure 6. In this case the user can only con-
firm one of the possibilities and all other are automatically rejected. This applies to all
XOR-queries.

Choose which applies:
John visits Pete
� Pete visits John

Figure 6: Example of a Relation-Direction-Query

4.4 Relation-Object-Query

A Relation-Object-Query is a relation query to disambiguate an uncertain object of a
relation. It will be sent if two or more interpretations differ in the object of a role assertion
such that only the object will vary in this query type.
Given the observations

A3 = {CityName(IND7), hasConcreteV alue(IND7, “Berlin”),

CityName(IND8), hasConcreteV alue(IND8, “London”)}

and assuming that RMI computes the following interpretations:

I7 = {Conference(IND9), associatedWith(IND9, IND7), hasLocation(IND9, IND7)}
I8 = {Conference(IND9), associatedWith(IND9, IND8), hasLocation(IND9, IND8)}

The difference results in the following query.

Q′5 = hasLocation(IND9, IND7) XOR hasLocation(IND9, IND8)

13

On the UI the query will be presented as depicted in Figure 7.

Is this conference in...
Berlin?
� London?

Figure 7: Example of a Relation-Object-Query

4.5 Relation-Subject-Query

A Relation-Subject-Query is a relation query to disambiguate an uncertain subject of a
relation. It will be sent if two or more interpretations differ in the subject of a relation.
Only the subject will vary in this query type.
Given the observations

A4 = {PersonName(IND10), hasConcreteV alue(IND10, “John”),

P ersonName(IND11), hasConcreteV alue(IND11, “Pete”)}

RMI computes the following interpretations.

I9 = {Person(IND12), associatedWith(IND12, IND11), hasName(IND12, IND11)

Person(IND13), associatedWith(IND13, IND10), hasName(IND13, IND10)

Conference(IND14), talksAt(IND12, IND14)}
I10 = {Person(IND12), associatedWith(IND12, IND11), hasName(IND12, IND11)

Person(IND13), associatedWith(IND13, IND10), hasName(IND13, IND10)

Conference(IND14), talksAt(IND13, IND14)}

The difference results in the following query:

Q′6 = talksAt(IND12, IND14) OR talksAt(IND13, IND14)

On the UI the query is shown as can be seen in Figure 8.

Choose which apply?
2 John talks at the conference
2� Pete talks at the conference

Figure 8: Example of a Relation-Subject-Query

4.6 Relation-Type-Query

A Relation-Type-Query is a relation query to disambiguate an uncertain relation between
two individuals. It will be sent if two or more interpretations differ in the relation be-
tween two individuals. Only the relation name will vary in this query type. Given the
observations

A5 = {PersonName(IND15), hasConcreteV alue(IND15, “John”)}

14

The following interpretations are made by the RMI Agent.

I11 = {Person(IND16), associatedWith(IND16, IND15), hasName(IND16, IND15),

Car(IND17), enters(IND16, IND17)}
I12 = {Person(IND16), associatedWith(IND16, IND15), hasName(IND16, IND15),

Car(IND17), exits(IND16, IND17)}

The two interpretations differ only in the name of the relation.

Q′7 = enters(IND16, IND17) XOR exits(IND16, IND17)

This is displayed on the UI in the form:

Choose which apply?
John enters a car
� John exits a car

Figure 9: Example of a Relation-Type-Query

4.7 Relation-Subject-Object-Query

This is the most general form of a query that could be sent. These queries will only be in
the form of OR statements. Given the observations

A6 = {PersonName(IND18), hasConcreteV alue(IND18, “John”)

LocationName(IND19), hasConcreteV alue(IND19, “Hollywood”)}

The following interpretations are made by the RMI Agent.

I13 = {EnergyMinister(IND20), associatedWith(IND20, IND18), hasName(IND20, IND18)

Location(IND21), associatedWith(IND21, IND19), hasName(IND21, IND19)}
I14 = {PopStar(IND22), livesIn(IND22, IND21)

Location(IND21), associatedWith(IND21, IND19), hasName(IND21, IND19)}

The difference is now in two complete different assertions, which leads to the query:

Q′8 = EnergyMinister(IND20) OR livesIn(IND22, IND21)

15

This is displayed on the UI as shown in Figure 10:

Choose which apply?
2 The energy minister has the name John
2� The pop star lives in Hollywood

Figure 10: Example of a Relation-Subject-Object-Query

4.8 Same-As-Query

A Same-As-Query is used to disambiguate if two individuals in different modalities refer
to the same object in the domain. It will be send if there is an indication for fusion of
the two individuals but the evidence leads to a low certainty. Same-As-Queries will be
addressed if time permits.

5 Summary and Remarks

At the beginning of this deliverable, three challenges have been posed. This section refers
to these challenges and summarises the main results that were achieved.

Generation of queries, including the transformation of relational structures
of explanations into flat representations. In Section 3 an enhanced version of the
MI Agent, introduced in [1] and [2], was represented. It was shown how it had to be
extended in order to facilitate the generation and communication of queries, used to re-
duce the large space of abducibles. Section 3.1 explained in detail how these queries are
computed by the generateQueries function based on semantic differences between Aboxes
and how a unique assertion for each of them can be found. It was also mentioned that
there are two different types of queries, namely OR- and XOR-queries, that could be
generated and asked by the agent.

In the CASAM project a set of query types was agreed upon between the partners.
Those types were listed in Section 4. In total eight of them were specified from which the
Relation-Subject-Object-Query, exemplarily explained in 4.7, represents the most general
form of a query. All other types listed in this deliverable can be seen as special cases.

Computation of importance values for queries. Responses of users to queries have
the objective to disambiguate different interpretation possibilities. Section 3.1 presents an
approach to the computation of importance values for queries. The general idea behind
this value is to prefer queries in which there is a pair of disjuncts where the probabilities
of the corresponding Aboxes are most similar. It is also based on the computation of a
taxonomical distance, further described in that section.

Processing of answers to queries. This challenge was addressed in Section 3.2 which
describes the additions to the former MI Agent that enable it to handle query responses.
Therefore, a second thread was established which buffers all incoming answers and pro-
cesses them with respect to the Aboxes on the agenda. It is also explained which influence
those answers have on the agenda.

16

References

[1] Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., Wessel, M.: D3.3
Probabilistic abduction engine: Report on algorithms and the optimization techniques
used in the implementation. Project deliverable, Hamburg University of Technology
(2010)

[2] Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., Wessel, M.: A
probabilistic abduction engine for media interpretation. In Alferes, J., Hitzler, P.,
Lukasiewicz, T., eds.: Proc. International Conference on Web Reasoning and Rule
Systems (RR-2010). (2010)

[3] Davis, R.: Meta-rules: Reasoning about control. Artif. Intell. 15(1) (1980) 179–222

[4] Costantini, S.: Meta-reasoning: A Survey. In: Computational Logic: Logic Program-
ming and Beyond. Springer (2002)

[5] Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K.: D3.2 Basic reason-
ing engine: Report on optimization techniques for first-order probabilistic reasoning.
Project deliverable, Hamburg University of Technology (2009)

[6] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

[7] Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in de-
scription logics. In: Proc. of AAAI. (1992)

[8] Wolter, K., Smialek, M., Hotz, L., Knab, S., Bojarski, J., Nowakowski, W.: Mapping
MOF-based requirements representations to ontologies for software reuse. In: Proc of
the 2nd International Workshop on Transformation and weaving ontologies in model
driven engineering. (2009)

[9] University of Birmingham: D5.3: HCI final prototype for user studies and evaluation.
Project deliverable (2010)

[10] INTRASOFT International S.A.: D7.1: Integrated system conceptual architecture
and design (2009)

17

Annex

A Installation of RMI

The RMI software module (RMI), previously written in Java, was completely rewritten
by using the programming language Common Lisp (CL). It comes precompiled as a single
archive file for computers running a Linux64 operating system. It is extensively tested
under Ubuntu 10.04.1 LTS, but other operating systems, such as Unix, Windows, and
Mac OS X are also supported by the CL compiler (although this functionality was not
tested during the project). To install RMI, you should have access to the file RMI.tar.gz

(download link: http://www.sts.tu-harburg.de/~r.f.moeller/RMI.tar.gz) and fol-
low the step-by-step instruction below.

• Copy RMI.tar.gz to the home directory of the user who installs RMI.

• Gunzip and untar the file RMI.tar.gz by using the command:
gzip -dc RMI.tar.gz | tar -xvf -

• Copy the file ~/RMI/hosts.cl to ~/hosts.cl

• Copy the file ~/RMI/rmi-master-license.lic to ~/rmi-master-license.lic

• In the file ~/RMI/init.racer you need to specify the domain addresses and ports
of the RMI server (see the variable cl-user::*server-service-url*) and the
Orchestrator (see the variable cl-user::*client-service-url*).

• Run the shell script ~/RMI/startup.sh in order to start the RMI web service. The
script is written in a way such that RMI persists if the shell is detached.

The WSDL files on which RMI is based are included into the archive.

18

