
A Probabilistic Abduction Engine for Media Interpretation
based on Ontologies
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Abstract. We propose an abduction-based formalism that uses description logics for the on-
tology and Horn rules for defining the space of hypotheses for explanations, and we use Markov
logic to define the motivation for the agent to generate explanations on the one hand, and for
ranking different explanations on the other. The formalism is applied to media interpretation
problems in a agent-oriented scenario.1

1 Introduction

For multimedia interpretation in the context of an agent-based scenario, and for the combined inter-
pretation of information coming from different modalities in particular, a semantically well-founded
formalization is required. Low-level percepts, which are represented symbolically, define the observa-
tions of an agent w.r.t. some content, and interpretations of the content are defined as explanations
for the observations. In [1] we have proposed an abduction-based formalism that uses description log-
ics for the ontology and Horn rules for defining the space of hypotheses for explanations (i.e., the
space of possible interpretations of media content). An evaluation of the abduction approach based on
description logics and rules is presented in [3]. A discussion of related work can be found in [4].

In this paper, we propose the use of a probabilistic logic to define the motivation for the agent to
generate explanations on the one hand, and for ranking different explanations on the other. Further-
more, we discuss how the interpretation process is performed, possibly with uncertainty and inconsis-
tency in the input data. We also introduce a new approach for ranking interpretation Aboxes. The
explanationranking process is performed based on a probabilistic scoring function (as opposed to the
proof-theoretic scoring function used in [3]). A termination condition is also defined which determines
how long the interpretation process should be performed. The approach is evaluation using a detailed
example.

Due to space restrictions, not all preliminaries could be specified in this paper. For an introduction
to description logics, grounded conjunctive queries, and rules we refer to [3]. For specifying the ontology
used to describe low-level analysis results as well as high-level interpretation results, a less expressive
description logic is applied to facilitate fast computations. We decided to represent the domain knowl-
edge with the DL ALHf − (restricted attributive concept language with role hierarchies, functional
roles and concrete domains). The motivation to only allow a restricted use of existential restrictions
is to support a well-founded integration of the description logic part of the knowledge base with the
probabilistic part, based on Markov logics.

The Markov logic formalism [2] provides a means to combine the expressivity of first-order logic
augmented with the formalism of Markov networks [6]. The Markov logic formalism uses first-order
logic to define “templates” for constructing Markov networks. The basic notion for this is called a
Markov logic network [2].

A Markov logic network MLN = (FMLN ,WMLN ) consists of a sequence of first-order formulas
FMLN = 〈F1, ..., Fm〉 and a sequence of real number weights WMLN = 〈w1, ..., wm〉. The association
of a formula to its weight is by position in the sequence. For a formula F ∈ FMLN with associated
weight w ∈ WMLN we also write wF (weighted formula). Weights are used to specify probability
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distributions. For a more detailed introduction to description logics and their combination with Markov
logic networks, we refer to [5].

The central idea is to use abduction to compute possible explanations for observations of an agent,
which are seen as high-level interpretations. The space of abducibles is defined in terms of Horn
rules in combination with ontologies (see [3] for details). Compared to other approaches (e.g., [7])
also the ontology is used for checking whether something must be abduced. In addition, a motivation
for computing explanations (or interpretations) using abduction is given by assuming that the agent
would like to increase increase the probability that the observations are true. If there is no significant
increase (due to a threshold ε), possible interpretations are considered as irrelevant for the agent.2

Another important idea is that, given a “current” interpretation, the agent should be able to compute
what must be added due to new percepts and what must be retracted (for this purpose, an Abox
difference operator is used).

The abduction and interpretation procedures are discussed in detail in Section 2. In Section 3, a
complete example is given showing the main approach using intermediate steps. Section 4 summarizes
this paper.

2 Probabilistic Interpretation Engine

At the beginning of this section, the most important preliminaries to the abduction process are speci-
fied. Afterwards, functions are introduced for the abduction procedure, interpretation procedure, and
the media interpretation agent.

2.1 Computing Explanations

In general, abduction is formalized as Σ ∪ ∆ |=R Γ where background knowledge (Σ), rules (R),
and observations (Γ ) are given, and explanations (∆) are to be computed. In terms of DLs, ∆ and
Γ are Aboxes and Σ is a pair of Tbox and Abox. Abox abduction is implemented as a non-standard
retrieval inference service in DLs. In contrast to standard retrieval inference services where answers
are found by exploiting the ontology, Abox abduction has the task of acquiring what should be added
to the knowledge base in order to answer a query. Therefore, the result of Abox abduction is a set of
hypothesized Abox assertions. To achieve this, the space of abducibles has to be defined. We do this
in terms of rules. We assume that a set of rules R as defined in [3] are specified, and use a function
explanation step, see [3] or [5] for details.

2.2 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining” Abox assertions in terms
of a given set of rules. Explanation of Abox assertions w.r.t. a set of rules is meant in the sense that
using the rules some high-level explanations are constructed such that the Abox assertions are entailed.
The explanation of an Abox is again an Abox. For instance, the output Abox represents results of the
content interpretation process. Let the agenda A be a set of Aboxes Γ and let Γ be an Abox of
observations whose assertions are to be explained. The goal of the explanation process is to use a set
of rules R to derive “explanations” for elements in Γ . The explanation algorithm implemented in the
Conceptual Abduction Engine (CAE) works on a set of Aboxes I.

The complete explanation process is implemented by the CAE function:

2 Obviously, there is a horizon problem, which we neglect for the time being.



Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a knowledge base Σ, a set of rules R, a
scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l,A)};
repeat

I := I′;
(A, α) := Ω(I);
l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ,R, S,A, α));

until Ξ(I) or no A and α can be selected such that I′ 6= I ;
return I′

where assign level(l,A) is defined as follows:

assign level(l,A) = map(λ(A) • assign level(l,A),A) (1)

assign level(l,A) takes as input a superscript l and an agenda A. In the following, assign level(l,A)
is defined which superscripts each assertion α of the Abox A with l if the assertion α does not already
have a superscript:

assign level(l,A) =
{
αl | α ∈ A, α 6= βi, i ∈ N

}
(2)

The motivation for adding levels to assertions is to support different strategies Ω. Note that l is a global
variable, its starting value is zero, and it is incremented in the CAE function. The map3 function is
defined as follows:

map(f,X) =
⋃
x∈X
{f(x)} (3)

It takes as parameters a function f and a set X and returns a set consisting of the values of f
applied to every element x of X. The CAE function applies the strategy function Ω in order to decide
which assertions to explain, uses a termination function Ξ in order to check whether to terminate due
to resource constraints and a scoring function S to valuate an explanation. The function Ω for the
explanation strategy and Ξ for the termination condition are used as an oracle and must be defined
in an application-specific way.

In the next Section we explain how probabilistic knowledge is used to (i) formalize the effect of the
“explanation”, and (ii) formalize the scoring function S used in the CAE algorithm explained above.
In addition, it is shown how the termination condition (represented with the parameter Ξ in the above
procedure) can be defined based on the probabilistic conditions.

2.3 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explaining the interpretation
problem and presenting a solution to this problem. The solution is presented by a probabilistic in-
terpretation algorithm which calls the CAE function described in the previous section. In the given
algorithm, a termination function, and a scoring function are defined. The termination function de-
termines if the interpretation process can be stopped since at some point during the interpretation
process it makes no sense to continue the process. The reason for stopping the interpretation process
is that no significant changes can be seen in the results. The defined scoring function in this section
assigns probabilistic scores to the interpretation Aboxes.
3 Please note that in this report, the expression map is used in two different contexts. The first one MAP

denotes the Maximum A Posteriori approach which is a sampling method whereas the second one map is a
function used in the assign level(l,A) function.



Problem The objective of the interpretation component is the generation of interpretations for the
observations. An interpretation is an Abox which contains high level concept assertions. Since in this
paper we adopt the view that agents are used for solving the problems while acquiring information,
in the following the same problem is formalized in the perspective of an agent: Consider an agent
given some percepts in an environment where the percepts are the analysis results of the multimedia
documents.4 The objective of this agent is finding explanations for the existence of percepts. The
question is how the interpretation Aboxes are determined and how long the interpretation process
must be performed by the agent. The functionality of this Media Interpretation Agent is presented in
the MI Agent algorithm in Section 2.4.

Solution In the following, an application for a probabilistic interpretation algorithm is presented which
gives a solution to the mentioned problem. This solution illustrates a new perspective to the interpre-
tation process and the reason why it is performed. In this approach, we define a probabilistic scoring
function which assigns probabilities to the interpretation Aboxes. Additionally, we define a termination
function which determines whether the interpretation process can be terminated. The central idea is to
check whether interpretation results computed by a call to CAE substantially increase the probability
the the observations are true. If there is no significant increase (due to a threshold ε, possible interpre-
tations are considered as irrelevant for the agent.5 Another important idea is that, given a “current”
interpretation, the agent should be able to compute what must be added due to new percepts and
what must be retracted (for this purpose, an Abox difference operator is used).

We are now ready to define the algorithm. Assume that the media interpretation component
receives a weighted Abox A which contains observations. In the following, the applied operation
P (A,A′,R,WR, T ) in the algorithm is explained:

The P (A,A′,R,WR, T ) function determines the probability of the Abox A with respect to the
Abox A′, a set of rules R, a set of weighted rules WR, and the Tbox T where A ⊆ A′. Note that R
is a set of forward and backward chaining rules. The probability determination is performed based on
the Markov logic formalism as follows:

P (A,A′,R,WR, T ) = PMLN(A,A′,R,WR,T )( ~Q(A) | ~e(A′)) (4)

~Q(A) denotes an event composed of the conjunction of all assertions which appear in the Abox A.
Assume that the Abox A contains n assertions α1, . . . , αn. Consequently, the event for the Abox A is
defined as follows:

~Q(A) = 〈α1 = true ∧ . . . ∧ αn = true〉 (5)

Consider Abox A contains m assertions α1, . . . , αm. Then, the evidence vector ~e(A) is defined by:

~e(A) = 〈α1 = true, . . . , αm = true〉 (6)

Note that α1, . . . , αn denote the boolean random variables of the MLN . In order to answer the query
PMLN(A,A′,R,WR,T )( ~Q(A) | ~e(A′)) the function MLN(A,A′,R,WR, T ) is called. This function re-
turns a Markov logic network MLN = (FMLN ,WMLN ) where FMLN and WMLN are ordered sets
initialized as follows: FMLN = ∅ and WMLN = ∅. In the following, it is described how the MLN is
built based on the Aboxes A and A′, the rules R and WR and the Tbox T :6

MLN(A,A′,R,WR, T ) =

8>>>>>>>>>>><>>>>>>>>>>>:

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ R
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ WR
FMLN = FMLN ∪ {FOL(α)}; WMLN =WMLN ∪ {∞} if α ∈ T

4 The analysis might also be carried out by the agent.
5 Obviously, there is a horizon problem, which we neglect for the time being.
6 FOL(φ) represents the GCI φ in first-order notation.



where w and α denote a weight and an assertion, respectively. In the following, the interpretation
algorithm Interpret is presented:

Function Interpret(A, CurrentI, Γ , T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of observations Γ , a
Tbox T , a set of forward chaining rules FR, a set of backward chaining rules BR, a set of
weighted rules WR, and the desired explanation significance threshold ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox differences for additions
∆1 and omissions ∆2

i := 0 ;
R := FR ∪ BR;
p0 := P (Γ, Γ,R,WR, T ) ;
Ξ := λ(A) •

{
i := i+ 1; pi := maxA∈A P (Γ,A ∪A0,R,WR, T ); return | pi − pi−1 |< ε

i

}
;

Σ := (T , ∅);
S := λ((T ,A0)),R,A, ∆) • P (Γ,A ∪A0 ∪∆,R,WR, T );
A′ := CAE(Ω,Ξ,Σ,R, S,A);
NewI = argmaxA∈A′(P (Γ,A,R,WR, T ));
∆+ = AboxDiff (NewI,CurrentI); // additions
∆− = AboxDiff (CurrentI,NewI); // omissions
return (A′, NewI,∆+, ∆−);

In the above algorithm, the termination function Ξ and the scoring function S are defined by lambda
calculus terms. The termination condition Ξ of the algorithm is that no significant changes can be
seen in the successive probabilities pi and pi−1 (scores) of the two successive generated interpretation
Aboxes in two successive levels i − 1 and i. In this case, the current interpretation Abox CurrentI
is preferred to the new interpretation Abox NewI. The CAE function is called which returns the
agenda A′. Afterwards, the interpretation Abox NewI with the maximum score among the Aboxes
A of A′ is selected. Additionally, the Abox differences ∆+ and ∆−, respectively, for additions and
omissions among the interpretation Aboxes CurrentI and NewI are computed. In this paper, we
formalize AboxDiff as set difference, knowing that a semantic approach would be desirable (see [5] for
a semantics-based definition of AboxDiff ).

In the following, the strategy condition Ω is defined which is one of the parameters of the CAE
function:

Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I,A′ 6= A : ∃α′l

′
∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l

′
∈ A′, α′l

′
6= αl, l′ < l

}
;

return (A, random select(min αs));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that the assigned superscripts
to their assertions are minimum. In the next step, an Abox A from A is randomly selected. Afterwards,
the min αs set is determined which contains the assertions α from A whose superscripts are minimal.
These are the assertions which require explanations. The strategy function returns as output an Abox
A and an assertion α which requires explanation.

2.4 The Media Interpretation Agent

In the following, the MI Agent function is presented which calls the Interpret function:



Function MI Agent(Q, Partners, Die, (T ,A0),FR,BR,WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a function Die, a background
knowledge base (T ,A0), a set of forward chaining rules FR, a set of backward chaining rules
BR, a set of weighted rules WR, and the desired precision of the results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ,WR, T ) ;
Γ ′ := select(W,Γ );
A′ := filter(λ(A) • consistentΣ(A),

map(λ(A) • Γ ′ ∪ A ∪A0 ∪ forward chain(Σ,FR, Γ ′ ∪ A ∪A0),
{select(MAP (Γ ′ ∪ A ∪A0,WR, T ), Γ ′ ∪ A ∪A0) | A ∈ A′′}));

(A′′, NewI,∆+, ∆−) := Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR∪ Γ, ε);
CurrentI := NewI;
Communicate(∆+, ∆−, Partners);
A′′ := manage agenda(A′′);

until Die() ;

The body of MI Agent uses a set of auxiliary functions, which are defined as follows.

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else
(7)

The function filter takes as parameters a function f and a set X and returns a set consisting of the
values of f applied to every element x of X. In the MI Agent function, the current interpretation
CurrentI is initialized to the empty set and the agenda A′′ to a set containing the empty set. Since
the agent performs an incremental process, it is defined by a repeat-loop. The percept results Γ are
sent to the queue Q. In order to take the observations Γ from the queue Q, the MI Agent calls the
extractObservations function.

In the following we assume that Γ represents an ordered set. MAP (Γ,WR, T ) determines the most
probable world of observations Γ with respect to a set of weighted rules WR and the Tbox T . This
function performs the MAP process defined in Section ??. It returns a vector W which consists of zeros
and ones assigned to indicate whether the ground atoms of the considered world are true (positive)
and false (negative), respectively. The function select(W,Γ ) then selects the positive assertions in the
input Abox Γ using the bit vector W . The selected positive assertions are the assertions which require
explanations. The select operation returns as output an Abox Γ ′ which has the following characteristic:
Γ ′ ⊆ Γ . The determination of the most probable world by the MAP function and the selection of the
positive assertions is also carried out on Γ ′ ∪ A ∪A0.

In the next step, a set of forward chaining rules FR is applied to Γ ′ ∪ A ∪ A0. The generated
assertions in this process are added to the to Γ ′ ∪A∪A0. In the next step, only the consistent Aboxes
are selected and the inconsistent Aboxes are removed. Afterwards, the Interpret function is called to
determine the new agenda A′′, the new interpretation Abox NewI and the Abox differences ∆1 and
∆2 for additions and omissions among CurrentI and NewI. Afterwards, the CurrentI is set to the
NewI and the MI Agent function communicates the Abox differences ∆1 and ∆2 to the Partners.
The manage agenda function is also called. This function is explained in Section ??. The termination
condition of the MI Agent function is that the Die() function is true. Note that the MI Agent waits
in the function call extractObservations(Q) if Q = ∅.

The manage agenda(A) function is called in the MI Agent function to improve its performance.
The agent can eliminate, shrink, or combine Aboxes.

After presenting the above algorithms, the mentioned unanswered questions can be discussed. A
reason for performing the interpretation process and explaining the fiat assertions is that the probability



of P (A,A′,R,WR, T ) will increase through the interpretation process. In other words, by explaining
the observations the agent’s belief to the percepts will increase. This shows a new perspective for
performing the interpretation process. The answer to the question whether there is any measure for
stopping the interpretation process, is indeed positive. This is expressed by | pi−pi−1 |< ε

i which is the
termination condition Ξ of the algorithm. The reason for selecting ε

i and not ε as the upper limit for
the termination condition is to terminate the oscillation behaviour of the results. In other words, the
precision interval is tightened step by step during the interpretation process. In Section 3, we discuss
an example for interpreting a single video shot.

3 Preference-Based Video Shot Interpretation

One of the main innovations introduced in the previous section, namely the introduction of a proba-
bilistic preference measure to control the space of possible interpretations, is demonstrated here using
examples from an environmental domain.

We have to mention that this example is not constructed to show the possible branchings through
the interpretation process. The purpose of this example is to show how the probabilities of the most
probable world of observations P (A0,A,R,WR, T ) behave during the interpretation process.

At the beginning of this example, the signature of the knowledge base is presented. The set of all
concept names CN is divided into two disjoint sets Events and PhysicalThings such that

CN = Events ∪PhysicalThings where these two sets are defined as follows:
Events = {CarEntry,EnvConference, EnvProt,HealthProt}
PhysicalThings = {Car,DoorSlam,Building,Environment,Agency}

EnvConference, EnvProt and HealthProt denote respectively environmental conference, environmen-
tal protection and health protection. The set of role names RN is defined as follows:

RN = {Causes,OccursAt,HasAgency,HasTopic,HasSubject,HasObject,HasEffect ,
HasSubEvent,HasLocation}

The set of individual names IN is defined as follows:
IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48}

In the following, the set of the forward chaining rules FR is defined:
FR = {∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y),

∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y),
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)}

Similarly, the set of backward chaining rules BR is given as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y),

HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y),

HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)}
In the following, a set of weighted rules WR is defined where the weight of each rule is 5:

WR = {5 ∀x, y, z CarEntry(z)∧HasObject(z, x)∧HasEffect(z, y)→ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z EnvConference(z) ∧HasSubEvent(z, x) ∧HasLocation(z, y)→
CarEntry(x) ∧Building(y) ∧OccursAt(x, y),

5 ∀x, y, z EnvProt(z) ∧HasSubEvent(z, x) ∧HasObject(z, y)→
EnvConference(x) ∧ Environment(y) ∧HasTopic(x, y),

5 ∀x, y, z HealthProt(z) ∧HasObject(z, x) ∧HasSubject(z, y)→
EnvProt(x) ∧Agency(y) ∧HasAgency(x, y)}

The selected value for ε in this example is 0.05. In the following, ∆1 and ∆2 denote respectively
the set of assertions hypothesized by a forward chaining rule and the set of assertions generated by a
backward chaining rule at each interpretation level. Let us assume that the media interpretation agent
receives the following weighted Abox A:
A = {1.3 Car(C1), 1.2 DoorSlam(DS1),−0.3 EngineSound(ES1), Causes(C1, DS1)}



The first applied operation to A is the MAP function which returns the bit vector W = 〈1, 1, 0, 1〉. By
applying the select function to W and the input Abox A, the assertions from the input Abox A are
selected that correspond to the positive events in W . Additionally, the assigned weights to the positive
assertions are also taken from the input Abox A. In the following, Abox A0 is depicted which contains
the positive assertions:
A0 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}

At this step, p0 = P (A0,A0,R,WR, T ) = 0.755. Since no appropriate forward chaining rule from FR
is applicable to Abox A0, ∆1 = ∅ and as a result A0 := A0 ∪ ∅. The next step is the execution of the
backward chain function where the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y)
Consequently, by applying the above rule the next set of assertions is hypothesized:
∆2 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}
which are considered as strict assertions. Consequently, A1 is defined as follows: A1 := A0 ∪∆2.

In the above Abox, p1 = P (A0,A1,R,WR, T ) = 0.993. As it can be seen, p1 > p0 i.e. P (A0,Ai,R,WR, T )
used in Ξ increases by adding the new hypothesized assertions. This shows that the new assertions are
considered as additional support. The termination condition of the algorithm is not fulfilled therefore
the algorithm continues processing. At this level, it is still not known whether Abox A1 can be con-
sidered as the final interpretation Abox. Thus, this process is continued with another level. Consider
the next forward chaining rule:
∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y)
By applying the above rule, the next set of assertions is generated, namely:
∆1 = {Building(Ind43), OccursAt(Ind42, Ind43)}
The generated assertions are also considered as strict assertions. In the following, the expanded

Abox A1 is defined as follows: A1 := A1 ∪∆1.
Let us assume the next backward chaining rule from BR:
OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of assertions is hypothesized:
∆2 = {EnvConference(Ind44), HasSubEvent(Ind44, Ind42), HasLocation(Ind44, Ind43)}
which are considered as strict assertions. Consequently, A2 := A1 ∪∆2.
In the above Abox, p2 = P (A0,A2,R,WR, T ) = 0.988. As it can be seen, p2 < p1 i.e.

P (A0,Ai,R,WR, T ) decreases slightly by adding the new hypothesized assertions. Since the termina-
tion condition of the algorithm is fulfilled, Abox A1 can be considered as the final interpretation Abox.
To realize how the further behaviour of the probabilities is, this process is continued for the sake of
illustration. Consider the next forward chaining rule from FR:
∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y)
By applying the above rule, new assertions are generated.
∆1 = {Environment(Ind45), HasTopic(Ind44, Ind45)}
In the following, the expanded Abox A2 is defined: A2 := A2 ∪∆1.

Consider the next backward chaining rule from BR:
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y)

By applying the above abduction rule, the following set of assertions is hypothesized:
∆2 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}
which are considered as strict assertions. In the following, A3 is defined as follows A3 := A2 ∪∆2.

In the above Abox A3, p3 = P (A0,A3,R,WR, T ) = 0.99. As it can be seen, p3 > p2, i.e.
P (A0,Ai,R,WR, T ) increases slightly by adding the new hypothesized assertions.
Consider the next forward chaining rule:
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)
By applying the above rule, the next assertions are generated:
∆1 = {Agency(Ind47), HasAgency(Ind46, Ind47)}
As a result, the expanded Abox A3 is presented as follows: A3 := A3 ∪∆1.
Let us consider the next backward chaining rule from BR:
HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)



Consequently, new assertions are hypothesized by applying the above abduction rule, namely:
∆2 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}
which are considered as strict assertions. Consequently, A4 is defined as follows: A4 := A3 ∪∆2.
In the above Abox, p4 = P (A0,A4,R,WR, T ) = 0.985. As it can be seen, p4 < p3, i.e.
P (A0,Ai,R,WR, T ) decreases slightly by adding the new hypothesized assertions.

Discussion of the Results:
The determined probability values P (A0,Ai,R,WR, T ) of this example are summarized in the

next table which shows clearly the behaviour of the probabilities stepwise after performing the inter-
pretation process. In this table, variable i denotes the successive levels of the interpretation process.

i Abox Ai pi = P (A0,Ai,R,WR, T )
0 A0 p0 = 0.755
1 A1 p1 = 0.993
2 A2 p2 = 0.988
3 A3 p3 = 0.99
4 A4 p4 = 0.985

In this example, the interpretation process is consecutively
performed four times. As it can be seen, through the first
interpretation level the probability p1 increases strongly in
comparison to p0. By performing the second, third and
the forth interpretation levels, the probability values de-
crease slightly in comparison to p1. This means no significant
changes can be seen in the results. In other words, the de-
termination of A3 and A4 were not required at all. But the
determination of A2 was required to realize the slight differ-
ence |p2 − p1| < ε

2 . Consequently, Abox A1 is considered as
the final interpretation Abox.

4 Summary

For multimedia interpretation, a semantically well-founded formalization is required. In accordance
with previous work, a well-founded abduction-based approach is pursued. Extending previous work,
abduction is controlled by probabilistic knowledge, and it is done in terms of first-order logic. Rather
than merely using abduction for computing explanations with which observations are entailed, the
approach presented in this paper, uses a probabilistic logic to motivate the explanation endeavor
by increasing the belief in the observations. Hence, there exists a certain utility for an agent for the
computational resources it spends for generating explanations. Thus, we have presented a first attempt
to more appropriately model a media interpretation agent and evaluated it using a detailed example.
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