
A Probabilistic Abduction Engine for Media Interpretation

Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Michael Wessel

July 22, 2010

Abstract

For multimedia interpretation, and in particular for the combined interpretation of information com-
ing from different modalities, a semantically well-founded formalization is required in the context of an
agent-based scenario. Low-level percepts, which are represented symbolically, define the observations of
an agent, and interpretations of content are defined as explanations for the observations. We propose an
abduction-based formalism that uses description logics for the ontology and Horn rules for defining the
space of hypotheses for explanations (i.e., the space of possible interpretations of media content), and we
use Markov logic to define the motivation for the agent to generate explanations on the one hand, and
for ranking different explanations on the other.1

1This work has been funded by the European Community with the project CASAM (Contract FP7-217061 CASAM) and
by the German Science Foundation with the project PRESINT (DFG MO 801/1-1).

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Preliminaries on Description Logics . 1
2.2 Substitutions, Queries, and Rules . 2

2.2.1 Sequences, Variable Substitutions and Transformations 2
2.2.2 Grounded Conjunctive Queries . 3
2.2.3 Rules . 3

2.3 Probabilistic Knowledge Representation . 3
2.4 Markov Logic . 4
2.5 Combining Markov Logic and Description Logics . 6

3 Probabilistic Interpretation Engine 6
3.1 Computing Explanations . 6
3.2 The Abduction Procedure . 7
3.3 The Interpretation Procedure . 8
3.4 The Media Interpretation Agent . 10

4 Preference-Based Video Shot Interpretation 12

5 Preference-based Scene Interpretation 14

6 Manage Agenda 15

7 Computing Abox Differences 16

8 Summary 16

1 Introduction

For multimedia interpretation in the context of an agent-based scenario, and for the combined interpretation
of information coming from different modalities in particular, a semantically well-founded formalization is
required. Low-level percepts, which are represented symbolically, define the observations of an agent w.r.t.
some content, and interpretations of the content are defined as explanations for the observations. In [Castano
et al., 2008] we have proposed an abduction-based formalism that uses description logics for the ontology and
Horn rules for defining the space of hypotheses for explanations (i.e., the space of possible interpretations of
media content). An evaluation of the abduction approach based on description logics and rules is presented
in [Espinosa-Peraldi et al., 2010b]. A discussion of related work can be found in [Espinosa-Peraldi et al.,
2010a].

In this paper, we propose the use of Markov logic to define the motivation for the agent to generate
explanations on the one hand, and for ranking different explanations on the other. Furthermore, we discuss
completely how the reasoning process is performed with uncertainty and under inconsistency in the input
data. In this paper, we introduce a new approach for ranking interpretation Aboxes. The ranking process is
performed based on a probabilistic scoring function (as opposed to the proof-theoretic scoring function used
in [Espinosa-Peraldi et al., 2010b]). A termination condition is also defined which determines how long the
interpretation process should be performed.

On the one hand, the approach presented in this paper can be used to formalize media interpretation
whereas, in the long run, the approach can be seen as a theory for agent behavior for interpreting obser-
vations (which are inherently uncertain). We use a probabilistic logic to motivate the media interpretation
strategy (or the agent’s explanation endeavor) by increasing the belief in the observations. Hence, we de-
fine a semantically well-founded utility measure to justify the computational resources spent for generating
interpretations. In this paper we focus on the media interpretation scenario.

Based on a presentation of the most important preliminaries in Section 2, the abduction and interpretation
procedures are discussed in detail in Section 3. Optimization techniques for the probabilistic abduction engine
are pointed out. In Section 4, a complete example is given showing the main approach using intermediate
steps. In Section 6 an agenda is described which applies some techniques to improve the performance of
the interpretation process. An Abox difference operator is described in Section 7. Section 8 summarizes this
paper.

2 Preliminaries

In this section, the most important preliminaries are specified in order to make this document self-contained.

2.1 Preliminaries on Description Logics

For specifying the ontology used to describe low-level analysis results as well as high-level interpretation
results, a less expressive description logic is applied to facilitate fast computations. We decided to represent
the domain knowledge with the DL ALHf − (restricted attributive concept language with role hierarchies,
functional roles and concrete domains). The motivation to only allow a restricted use of existential restric-
tions is to support a well-founded integration of the description logic part of the knowledge base with the
probabilistic part (based on Markov logic networks, see Section 2.4).

In logic-based approaches, atomic representation units have to be specified. The atomic representation
units are fixed using a so-called signature. A DL signature is a tuple S = (CN,RN, IN), where CN =
{A1, ..., An} is the set of concept names (denoting sets of domain objects) and RN = {R1, ..., Rm} is the
set of role names (denoting relations between domain objects). The signature also contains a component IN
indicating a set of individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowledge) and to talk
about specific individuals (assertional knowledge), a knowledge base has to be specified.

An ALHf − knowledge base ΣS = (T ,A), defined with respect to a signature S, is comprised of a ter-
minological component T (called Tbox) and an assertional component A (called Abox). In the following we

1

just write Σ if the signature is clear from context. A Tbox is a set of so-called axioms, which are restricted
to the following form in ALHf −:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III) Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV) Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI) Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An

With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles) of each other.
Axioms of form (II) denote disjointness between concepts. Axioms of type (III) introduce domain and range
restrictions for roles. Axioms of the form (IV) introduce so-called functional restrictions on roles, and axioms
of type (V) specify local range restrictions (using value restrictions, see below). With axioms of kind (VI)
so-called definitions (with necessary and sufficient conditions) can be specified for concept names found on
the left-hand side of the ≡ sign. In the axioms, so-called concepts are used. Concepts are concept names
or expressions of the form > (anything), ⊥ (nothing), ¬A (atomic negation), (≤ 1R) (role functionality),
∃R.> (limited existential restriction), ∀R.A (value restriction) and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is a set of expressions of
the form A(a) or R(a, b) (concept assertions and role assertions, respectively) where A stands for a concept
name, R stands for a role name, and a, b stand for individuals. Aboxes can also contain equality (a = b) and
inequality assertions (a 6= b). We say that the unique name assumption (UNA) is applied, if a 6= b is added
for all pairs of individuals a and b.

In order to understand the notion of logical entailment, we introduce the semantics of ALHf −. In DLs
such as ALHf −, the semantics is defined with interpretations I = (4I , ·I), where 4I is a non-empty set
of domain objects (called the domain of I) and ·I is an interpretation function which maps individuals to
objects of the domain (aI ∈ 4I), atomic concepts to subsets of the domain (AI ⊆ 4I) and roles to subsets
of the cartesian product of the domain (RI ⊆ 4I ×4I). The interpretation of arbitrary ALHf − concepts
is then defined by extending ·I to all ALHf − concept constructors:

>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf −-knowledge base Σ
in an interpretation I are defined. A concept inclusion C v D (concept definition C ≡ D) is satisfied in I, if
CI ⊆ DI (resp. CI = DI) and a role inclusion R v S (role definition R ≡ S), if RI ⊆ SI (resp. RI = SI).
Similarly, assertions C(a) and R(a, b) are satisfied in I, if aI ∈ CI resp. (a, b)I ∈ RI . If an interpretation
I satisfies all axioms of T resp. A it is called a model of T resp. A. If it satisfies both T and A it is called
a model of Σ. Finally, if there is a model of Σ (i.e., a model for T and A), then Σ is called satisfiable. We
are now able to define the entailment relation |=. A DL knowledge base Σ logically entails an assertion α
(symbolically Σ |= α) if α is satisfied in all models of Σ. For an Abox A, we say Σ |= A if Σ |= α for all
α ∈ A.

2.2 Substitutions, Queries, and Rules

2.2.1 Sequences, Variable Substitutions and Transformations

A variable is a name of the form String where String is a string of characters from {A. . .Z}. In the following
definitions, we denote places where variables can appear with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V . The notation z
denotes a sequence of individuals. We consider sequences of length 1 or 2 only, if not indicated otherwise,
and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉) is to be read as (X,Y) etc. Furthermore, we assume
that sequences are automatically flattened. A function as set turns a sequence into a set in the obvious way.

2

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individuals mentioned in
an Abox. The application of a variable substitution σ to a sequence of variables 〈X〉 or 〈X,Y 〉 is defined as
〈σ(X)〉 or 〈σ(X), σ(Y)〉, respectively, with σ(X) = i and σ(Y) = j. In this case, a sequence of individuals is
defined. If a substitution is applied to a variable X for which there exists no mapping X ← k in σ then the
result is undefined. A variable for which all required mappings are defined is called admissible (w.r.t. the
context).

2.2.2 Grounded Conjunctive Queries

Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn denote concept or role names. A query
is defined by the following syntax: {(X) | Q1(Y1), . . . , Qn(Yn)}. The sequence X may be of arbitrary
length but all variables mentioned in X must also appear in at least one of the Y1, · · · , Yn: as set(X) ⊆
as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms Qi(Yi). The
list of variables to the left of the sign | is called the head and the atoms to the right are called the query
body. The variables in the head are called distinguished variables. They define the query result. The
variables that appear only in the body are called non-distinguished variables and are existentially quantified.
Answering a query with respect to a knowledge base Σ means finding admissible variable substitutions σ
such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution σ = [X ← i, Y ← j, . . .]
introduces bindings i, j, . . . for variables X,Y, Given all possible variable substitutions σ, the result of
a query is defined as {(σ(X))}. Note that the variable substitution σ is applied before checking whether
Σ |= {Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query is grounded first.

A boolean query is a query with X being of length zero. If for a boolean query there exists a variable
substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we say that the query is answered with
true, otherwise the answer is false. Later on, we will have to convert query atoms into Abox assertions. This
is done with the function transform. The function transform applied to a set of query atoms {γ1, . . . γn} is
defined as {transform(γ1, σ), . . . , transform(γn, σ)} where transform(P (X), σ) := P (σ(X)).

2.2.3 Rules

A rule r has the following form P (X) ← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote concept or role
names with the additional restriction (safety condition) that as set(X) ⊆ as set(Y1)∪· · ·∪as set(Yn). Rules
are used to derive new Abox assertions, and we say that a rule r is applied to an Abox A. The function
call apply(Σ, P (X)← Q1(Y1), . . . , Qn(Yn),A) returns a set of Abox assertions {σ(P (X))} if there exists an
admissible variable substitution σ such that the answer to the query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}

is true with respect to Σ∪A.2 If no such σ can be found, the result of the call to apply(Σ, r,A) is the empty
set. The application of a set of rules R = {r1, . . . rn} to an Abox is defined as follows:

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds. Otherwise the
result of forward chain is determined by the recursive call
apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪ apply(Σ,R,A)).

For some set of rules R we extend the entailment relation by specifying that (T ,A) |=R A0 iff (T ,A ∪
forward chain((T , ∅),R,A)) |= A0.

2.3 Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-called random experiment.
A random variable X is a function assigning a value to the result of a random experiment. The random
experiment itself is not represented, so random variables are functions without arguments, which return

2We slightly misuse notation in assuming (T ,A) ∪∆ = (T ,A ∪∆). If Σ ∪ A is inconsistent the result is well-defined but
useless. It will not be used afterwards.

3

different values at different points of time. Possible values of a random variable comprise the so-called
domain of the random variable. In the sequel, we will use boolean random variables, whose values can be
either 1 or 0 (true or false, respectively). Let ~X = {X1, ..., Xn} be the ordered set of all random variables
of a random experiment. An event (denoted ~X = ~x) is an assignment X1 = x1, ..., Xn = xn to all random
variables. In case n = 1 we call the event simple, otherwise the event is called complex. A certain vector
of values ~x is referred to as a possible world. A possible world can be associated with a probability value
or probability for short. Hence, the notion of a possible world can be used as a synonym for an event,
and depending on the context we use the former or the latter name. In case of an event with a boolean
random variable X, we write x as an abbreviation for X = true and ¬x as an abbreviation for X = false.
Mappings of events to probabilities (or assignment of probabilities to events) are specified with so-called
probability assertions of the following syntax: P (~X = ~x) = p, where ~X is a vector of random variables, and
p is a real value between 0 and 1 (it is assumed that the reader is familiar with Kolmogorov’s axioms of
probability). In the special case of a simple event (single random variable, n = 1) we write P (X = x) = p.
The probability value p of an event is denoted as P (~X = ~x) (or P (X = x) in the simple case). In its raw
form a set of probabilistic assertions is called a probabilistic knowledge base (with signature ~X). A mapping
from the domain of a random variable X to probability values [0, 1] is called a distribution. For distributions
we use the notation P(X). Distributions can be defined for (ordered) sets of random variables as well. In
this case we use P(X1, . . . , Xn) as a denotation for a mapping to the n-dimensional cross product of [0, 1].
For specifying a distribution, probability assertions for all domain values must be specified, and the values
p must sum up to 1. In case all random variables of a random experiment are involved, we speak of a
full joint probability distribution (JPD), otherwise the expression is said to denote a joint distribution or
a marginal distribution (projection of the n-dimensional space of probability values to a lower-dimensional
space with m dimensions). The expression P(X1, . . . , Xm, Xm+1 = xm+1, . . . , Xl = xl) denotes an m-
dimensional distribution with known values xm+1, . . . , xl. In slight misuse of notation, we sometimes write
~e for these known values (e stands for evidence). The fragment ~e need not necessarily be written at the end
in the parameter list of P. A conditional probability for a set of random variables X1, ..., Xm is denoted with
P (X1 = x1, ..., Xm = xm | ~e) or, in distribution form, we write P(X1, ..., Xm | ~e) (conditional probability
distribution). This distribution can also be written as P(~X,~e)

P(~e) . For a probabilistic knowledge base, formal
inference problems are defined. We restrict our attention to the two most convenient probabilistic inference
problems: A conditional probability query is the computation of the joint distribution of a set of m random
variables conditioned on ~e and is denoted with PX(x1 ∧ ... ∧ xm | ~e) where vars(x1, . . . , xm) ∩ vars(~e) = ∅
and vars(x1, . . . , xm)∪ vars(~e) ⊆ X with vars specified in the obvious way. Note that xi indicates Xi = xi.
In the following we have the distribution form of the above query: PX(X1, ..., Xm | ~e). If the set of random
variables X is known from the context, the subscript X is often omitted. The Maximum A Posteriori (MAP)
inference returns the most-likely state of query atoms given the evidence. Based on the MAP inference, the
“most probable world” given the evidence is determined as a set of events. The MAP inference problem
given a distribution for a set of random variables X is formalized as follows:

MAPX(~e) := ~e ∪ argmax~xP (~x|~e) (1)

where vars(~x)∩vars(~e) = ∅ and vars(~x)∪vars(~e) = X. For both inference problems, conditional probability
queries as well as the MAP problem, different kinds of algorithms exist, which possibly exploit additional
assertions (such as, e.g., conditional independence assumptions in so-called Bayesian networks, or factored
probability distribution specifications as in so-called Markov networks). In the next subsection, we focus on
the latter formalism.

2.4 Markov Logic

The formalism of Markov logic [Domingos and Richardson, 2007] provides a means to combine the expres-
sivity of first-order logic augmented with the formalism of Markov networks [Pearl, 1988]. The Markov logic
formalism uses first-order logic to define “templates” for constructing Markov networks. The basic notion
for this is called a Markov logic network.

A Markov logic network MLN = (FMLN ,WMLN) consists of a sequence of first-order formulas FMLN =
〈F1, ..., Fm〉 and a sequence of real number weightsWMLN = 〈w1, ..., wm〉. The association of a formula to its
weight is by position in the sequence. For a formula F ∈ FMLN with associated weight w ∈ WMLN we also
write wF (weighted formula). Thus, a Markov logic network can also be defined as a set of weighted formulas.

4

Both views can be used interchangeably. As a notational convenience, for ordered sets we nevertheless
sometimes write ~X, ~Y instead of ~X ∪ ~Y .

In contrast to standard first-order logics such as predicate logic, relational structures not satisfying a
formula Fi are not ruled out as models. If a relational structure does not satisfy a formula associated with
a large weight it is just considered to be quite unlikely the ”right” one.

Let C = {c1, ..., cm} be the set of all constants mentioned in FMLN . A grounding of a formula Fi ∈ FMLN

is a substitution of all variables in the matrix of Fi with constants from C. From all groundings, the (finite)
set of grounded atomic formulas (also referred to as ground atoms) can be obtained. Grounding corresponds
to a domain closure assumption. The motivation is to get rid of the quantifiers and reduce inference problems
to the propositional case.

Since a ground atom can either be true or false in an interpretation (or world), it can be considered as
a boolean random variable X. Consequently, for each MLN with associated random variables ~X, there is
a set of possible worlds ~x. In this view, sets of ground atoms are sometimes used to denote worlds. In this
context, negated ground atoms correspond to false and non-negated ones to true. We denote worlds using
a sequence of (possibly negated) atoms.

When a world ~x violates a weighted formula (does not satisfy the formula) the idea is to ensure that
this world is less probable rather than impossible as in predicate logic. Note that weights do not directly
correspond to probabilities (see [Domingos and Richardson, 2007] for details).

For each possible world of a Markov logic network MLN = (FMLN ,WMLN) there is a probability for
its occurrence. Probabilistic knowledge is required to obtain this value. As usual, probabilistic knowledge
is specified using a probability distribution. In the formalism of Markov networks the full joint probabil-
ity distribution of a Markov logic network MLN is specified in symbolic form as PMLN (~X) = (P (~X =
~x1), . . . , P (~X = ~xn)), for every possible ~xi ∈ {true, false}n, n = | ~X| and P (~X = ~x) := log linMLN (~x) (for
a motivation of the log-linear form, see, e.g., [Domingos and Richardson, 2007]), with log lin being defined
as

log linMLN (~x) =
1
Z
exp (

|FMLN |∑
i=1

wini(~x))

According to this definition, the probability of a possible world ~x is determined by the exponential of the
sum of the number of true groundings (ni) formulas Fi ∈ FMLN in ~x, multiplied with their corresponding
weights wi ∈ WMLN , and finally normalized with

Z =
∑
~x∈ ~X

exp (
|FMLN |∑
i=1

wini(~x)), (2)

the sum of the probabilities of all possible worlds. Thus, rather than specifying the full joint distribution
directly in symbolic form as we have discussed before, in the Markov logic formalism, the probabilistic
knowledge is specified implicitly by the weights associated with formulas. Determining these formulas and
their weights in a practical context is all but obvious, such that machine learning techniques are usually
employed for knowledge acquisition.

A conditional probability query for a Markov logic network MLN is the computation of the joint distri-
bution of a set of m events involving random variables conditioned on ~e and is denoted with

PMLN (x1 ∧ . . . ∧ xm | ~e)

The semantics of this query is given as:

Prand vars(MLN)(x1 ∧ . . . ∧ xm | ~e) w.r.t. PMLN (rand vars(MLN))

where vars(x1, . . . , xm) ∩ vars(~e) = ∅ and vars(x1, . . . , xm) ⊆ rand vars(MLN). The function rand vars
is defined as follows: rand vars((F ,W)) := {A(C) | A(C) is mentioned in some grounded formula F ∈ F}.
Grounding is accomplished w.r.t. all constants that appear in F where A denotes atomic concept or atomic
role. An algorithm for answering queries of the above form is investigated in [Gries and Möller, 2010]. In
the case of Markov logic, the definition of the MAP problem given in (1) can be rewritten as follows. The
conditional probability term P (~x|~e) is replaced with the Markovian formula:

MAPMLN (~e) := ~e ∪ argmax~x
1
Ze

exp

(∑
i

wini (~x,~e)

)
(3)

5

Thus, for describing the most-probable world, MAP returns a set of events, one for each random variable
used in the Markov network derived from MLN . In the above equation, ~x denotes the hidden variables,
and Ze denotes the normalization constant which indicates that the normalization process is performed over
possible worlds consistent with the evidence ~e. In the next equation, Ze is removed since it is constant and
it does not affect the argmax operation. Similarly, in order to optimize the MAP computation the exp
function is left out since it is a monotonic function and only its argument has to be maximized:

MAPMLN (~e) := ~e ∪ argmax~x
∑
i

wini (~x,~e) (4)

The above equation shows that the MAP problem in Markov logic formalism is reduced to a new problem
which maximizes the sum of weights of satisfied clauses. Since the MAP determination in Markov networks
is an NP-hard problem [Domingos and Richardson, 2007], it is performed by exact and approximate solvers.
The most commonly used approximate solver is theMaxWalkSAT algorithm, a weighted variant of the
WalkSAT local-search satisfiability solver. The MaxWalkSAT algorithm attempts to satisfy clauses with
positive weights and keeps clauses with negative weights unsatisfied.

2.5 Combining Markov Logic and Description Logics

Since ALHf − is a fragment of first-order logic, its extension to the Markovian style of formalisms is specified
in a similar way as for predicate logic in the section before. The formulas in Markov logic correspond to
Tbox axioms and Abox assertions. Weights in Markov description logics are associated with axioms and
assertions. Groundings of Tbox axioms are defined analogously to the previous case.3 Abox assertions do
not contain variables and are already grounded. Note that due to the restricted use of existential restrictions
in ALHf − there always exists a model with a domain whose elements correspond the individuals mentioned
in an Abox (no “unnamed domain objects” are required).

For appropriately representing domain knowledge, weights might be used only for a subset of the axioms
of the domain ontology. The remaining axioms can be assumed to be strict, i.e., assumed to be true in any
case. A consequence of specifying strict axioms is that lots of possible worlds ~x can be ruled out (i.e., will have
probability 0 by definition). This has a direct consequence for implementing sampling approaches to answer
probabilistic queries. Using deterministic knowledge (rather than high weights) can speed up Gibbs sampling
significantly. Since lots of possible worlds do not have to be considered because their probability is known
to be 0, probabilistic reasoning will be significantly faster, given one can show the ergodic character of the
corresponding Markov chains. In [Gries and Möller, 2010] we show that Gibbs sampling with deterministic
dependencies specified in a fragment of ALH−f remains correct, i.e., probability estimations approximate the
correct probabilities. The advantage of this approach is that initial ontology engineering is done as usual
with standard reasoning support and with the possibility to add weighted axioms and weighted assertions
on top of the strict fundament.

3 Probabilistic Interpretation Engine

At the beginning of this section, the most important preliminaries to the abduction process are specified.
Afterwards, functions are introduced for the abduction procedure, interpretation procedure, and the media
interpretation agent.

3.1 Computing Explanations

In general, abduction is formalized as Σ ∪ ∆ |=R Γ where background knowledge (Σ), rules (R), and
observations (Γ) are given, and explanations (∆) are to be computed. In terms of DLs, ∆ and Γ are Aboxes
and Σ is a pair of Tbox and Abox. Abox abduction is implemented as a non-standard retrieval inference
service in DLs. In contrast to standard retrieval inference services where answers are found by exploiting
the ontology, Abox abduction has the task of acquiring what should be added to the knowledge base in
order to answer a query. Therefore, the result of Abox abduction is a set of hypothesized Abox assertions.
To achieve this, the space of abducibles has to be defined. We do this in terms of rules. We assume that

3For this purpose, the variable-free syntax of axioms can be first translated to predicate logic.

6

a set of rules R as defined above (see Section 2.2.3) are specified, and define a non-deterministic function
compute explanation as follows.4

• compute explanation(Σ,R,A, P (z)) = transform(Φ, σ) if there exists a rule

r = P (X)← Q1(Y1), . . . , Qn(Yn) ∈ R

that is applied to an Abox A such that a minimal set of atoms Φ and an admissible variable substitution
σ with σ(X) = z can be found such that the query Q := {() | expand(P (z), r,R, σ) \ Φ} is answered
with true. Note that σ might introduce mappings to individuals not mentioned in A (new individuals).
The number of new individuals is bounded by the number of variables.

• If no such rule r exists in R it holds that compute explanation(Σ,R,A, P (z)) = ∅.

The goal of the function compute explanation is to determine what must be added (σ(Φ)) such that an
entailment Σ ∪ A ∪ Φ |=R P (z) holds. Hence, for compute explanation, abductive reasoning is used. The
set of assertions Φ ⊆ expand(P (X), r,R, σ) represents what needs to be hypothesized in order to answer
the query Q with true. The definition of compute explanation is non-deterministic due to several possible
choices for Φ.

Assuming a fresh name fresh prefix for each application of rule r = P (X) ← Q1(Y1), . . . , Qn(Yn), the
function application expand(P (z), P (X)← Q1(Y1), . . . , Qn(Yn),R, σ) is also defined in a non-deterministic
way as

expand′(Q1(σ′fresh prefix(Y1)),R, σ) ∪ · · · ∪ expand′(Qn(σ′fresh prefix(Yn)),R, σ)

with expand′(P (z),R, σ) being expand(P (z), r,R, σ) if there exists a rule r = (P (X)← . . .) ∈ R and 〈P (X)〉
otherwise. The variable substitution σ′ is an extension of σ such that σ′prefix(x) = σ(x) if x ∈ as set(X)
and, otherwise, σ′prefix(x) = concat(prefix, x) where concat is a function for concatenating prefix and x.

Applying the expand proedure, we say the set of rules is backward-chained, and since there might be
multiple rules in R, backward-chaining is non-deterministic. Thus, multiple explanations are generated.

3.2 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining” Abox assertions in terms of
a given set of rules. Explanation of Abox assertions w.r.t. a set of rules is meant in the sense that using
the rules some high-level explanations are constructed such that the Abox assertions are entailed. The
explanation of an Abox is again an Abox. For instance, the output Abox represents results of the content
interpretation process. The presentation is slightly extended compared to the one in [Castano et al., 2008].
Let the agenda A be a set of Aboxes Γ and let Γ be an Abox of observations whose assertions are to be
explained. The goal of the explanation process is to use a set of rules R to derive “explanations” for elements
in Γ. The explanation algorithm implemented in the Conceptual Abduction Engine (CAE) works on a set
of Aboxes I.

The complete explanation process is implemented by the CAE function:

Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a knowledge base Σ, a set of rules R, a
scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l,A)};
repeat

I := I′;
(A, α) := Ω(I);
l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ,R, S,A, α));

until Ξ(I) or no A and α can be selected such that I′ 6= I ;
return I′

4The funcion transform is defined in Section 2.2.1.

7

where assign level(l,A) is defined as follows:

assign level(l,A) = map(λ(A) • assign level(l,A),A) (5)

assign level(l,A) takes as input a superscript l and an agenda A. In the following, assign level(l,A) is
defined which superscripts each assertion α of the Abox A with l if the assertion α does not already have a
superscript:

assign level(l,A) =
{
αl | α ∈ A, α 6= βi, i ∈ N

}
(6)

The motivation for adding levels to assertions is to support different strategies Ω. Note that l is a global
variable, its starting value is zero, and it is incremented in the CAE function. The map5 function is defined
as follows:

map(f,X) =
⋃
x∈X
{f(x)} (7)

It takes as parameters a function f and a set X and returns a set consisting of the values of f applied to
every element x of X. The CAE function applies the strategy function Ω in order to decide which assertions
to explain, uses a termination function Ξ in order to check whether to terminate due to resource constraints
and a scoring function S to valuate an explanation. The function Ω for the explanation strategy and Ξ for
the termination condition are used as an oracle and must be defined in an application-specific way. The
function explanation step is defined as follows.

explanation step(Σ,R, S,A, α):⋃
∆∈compute all explanations(Σ,R,S,A,α)

consistent completed explanations(Σ,R,A,∆).

We need two additional auxiliary functions.

consistent completed explanations(Σ,R,A,∆):

{∆′ | ∆′ = ∆ ∪ A ∪ forward chain(Σ,R,∆ ∪ A), consistentΣ(∆′)}

compute all explanations(Σ,R, S,A, α):

maximize(Σ,R,A, {∆ | ∆ = compute explanation(Σ,R, α), consistentΣ∪A(∆)}, S).

The function maximize(Σ,R,A,∆s, S) selects those explanations ∆ ∈ ∆s for which the score
S(Σ,R,A,∆) is maximal, i.e., there exists no other ∆′ ∈ ∆s such that S(Σ,R,A,∆′) > S(Σ,R,A,∆). The
function consistent(T ,A)(A′) determines if the Abox A∪A′ has a model which is also a model of the Tbox
T . Note the call to the nondeterministic function compute explanation. It may return different values, all of
which are collected. In the next Section we explain how probabilistic knowledge is used to (i) formalize the
effect of the “explanation”, and (ii) formalize the scoring function S used in the CAE algorithm explained
above. In addition, it is shown how the termination condition (represented with the parameter Ξ in the
above procedure) can be defined based on the probabilistic conditions.

3.3 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explaining the interpretation prob-
lem and presenting a solution to this problem. The solution is presented by a probabilistic interpretation
algorithm which calls the CAE function described in the previous section. In the given algorithm, a termina-
tion function, and a scoring function are defined. The termination function determines if the interpretation
process can be stopped since at some point during the interpretation process it makes no sense to continue
the process. The reason for stopping the interpretation process is that no significant changes can be seen
in the results. The defined scoring function in this section assigns probabilistic scores to the interpretation
Aboxes.

5Please note that in this report, the expression map is used in two different contexts. The first one MAP denotes the Maxi-
mum A Posteriori approach which is a sampling method whereas the second one map is a function used in the assign level(l,A)
function.

8

Problem The objective of the interpretation component is the generation of interpretations for the ob-
servations. An interpretation is an Abox which contains high level concept assertions. Since in we adopt
the view that agents are used for solving the problems while acquiring information, in the following the
same problem is formalized in the perspective of an agent: Consider an agent given some percepts in an
environment where the percepts are the analysis results of the multimedia documents.6 The objective of this
agent is finding explanations for the existence of percepts. The question is how the interpretation Aboxes
are determined and how long the interpretation process must be performed by the agent. The functionality
of this Media Interpretation Agent is presented in the MI Agent algorithm in Section 3.4.

Solution In the following, an application for a probabilistic interpretation algorithm is presented which
gives a solution to the mentioned problem. This solution illustrates a new perspective to the interpretation
process and the reason why it is performed. In this approach, we define a probabilistic scoring function
which assigns probabilities to the interpretation Aboxes. Additionally, we define a termination function
which determines whether the interpretation process can be terminated. The central idea is to check whether
interpretation results computed by a call to CAE substantially increase the probability the the observations
are true. If there is no significant increase (due to a threshold ε, possible interpretations are considered as
irrelevant for the agent.7 Another important idea is that, given a “current” interpretation, the agent should
be able to compute what must be added due to new percepts and what must be retracted (for this purpose,
an Abox difference operator is used).

We are now ready to define the algorithm. Assume that the media interpretation component receives a
weighted Abox A which contains observations. In the following, the applied operation P (A,A′,R,WR, T)
in the algorithm is explained:

The P (A,A′,R,WR, T) function determines the probability of the Abox A with respect to the Abox
A′, a set of rules R, a set of weighted rules WR, and the Tbox T where A ⊆ A′. Note that R is a set
of forward and backward chaining rules. The probability determination is performed based on the Markov
logic formalism as follows:

P (A,A′,R,WR, T) = PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) (8)

~Q(A) denotes an event composed of the conjunction of all assertions which appear in the Abox A. Assume
that the Abox A contains n assertions α1, . . . , αn. Consequently, the event for the Abox A is defined as
follows:

~Q(A) = 〈α1 = true ∧ . . . ∧ αn = true〉 (9)

Consider Abox A contains m assertions α1, . . . , αm. Then, the evidence vector ~e(A) is defined by:

~e(A) = 〈α1 = true, . . . , αm = true〉 (10)

Note that α1, . . . , αn denote the boolean random variables of the MLN . In order to answer the query
PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) the function MLN(A,A′,R,WR, T) is called. This function returns a
Markov logic network MLN = (FMLN ,WMLN) where FMLN and WMLN are ordered sets initialized as
follows: FMLN = ∅ and WMLN = ∅. In the following, it is described how the MLN is built based on the
Aboxes A and A′, the rules R and WR and the Tbox T :8

MLN(A,A′,R,WR, T) =

8>>>>>>>>>>><>>>>>>>>>>>:

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ R
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ WR
FMLN = FMLN ∪ {FOL(α)}; WMLN =WMLN ∪ {∞} if α ∈ T

where w and α denote a weight and an assertion, respectively. In the following, the interpretation algorithm
Interpret is presented:

6The analysis might also be carried out by the agent.
7Obviously, there is a horizon problem, which we neglect for the time being.
8FOL(φ) represents the GCI φ is first-order notation.

9

Function Interpret(A, CurrentI, Γ, T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of observations Γ, a Tbox T ,
a set of forward chaining rules FR, a set of backward chaining rules BR, a set of weighted rules WR,
and the desired explanation significance threshold ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox differences for additions ∆1 and
omissions ∆2

i := 0 ;
p0 := P (Γ,Γ,R,WR, T) ;
Ξ := λ(A) •

{
i := i+ 1; pi := maxA∈A P (Γ,A ∪A0,R,WR, T); return | pi − pi−1 |< ε

i

}
;

Σ := (T , ∅);
R := FR ∪ BR;
S := λ((T ,A0)),R,A,∆) • P (Γ,A ∪A0 ∪∆,R,WR, T);
A′ := CAE(Ω,Ξ,Σ,R, S,A);
NewI = argmaxA∈A′(P (Γ,A,R,WR, T));
∆+ = AboxDiff (NewI,CurrentI); // additions
∆− = AboxDiff (CurrentI,NewI); // omissions
return (A′, NewI,∆+,∆−);

In the above algorithm, the termination function Ξ and the scoring function S are defined by lambda
calculus terms. The termination condition Ξ of the algorithm is that no significant changes can be seen in
the successive probabilities pi and pi−1 (scores) of the two successive generated interpretation Aboxes in
two successive levels i − 1 and i. In this case, the current interpretation Abox CurrentI is preferred to
the new interpretation Abox NewI. The CAE function is called which returns agenda A′. Afterwards, the
interpretation Abox NewI with the maximum score among the Aboxes A of A′ is selected. Additionally,
the Abox differences ∆+ and ∆−, respectively, for additions and omissions among the interpretation Aboxes
CurrentI and NewI are computed. For AboxDiff one could use the set difference operator, which might
be too simple since the semantics of Aboxes is not considered. A semantics-based definition for AboxDiff
is given in Section 7.

Next we define the strategy condition Ω which is one of the parameters of CAE function:

Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I,A′ 6= A : ∃α′l

′
∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l

′
∈ A′, α′l

′
6= αl, l′ < l

}
;

return (A, random select(min αs));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that the assigned superscripts to
their assertions are minimum. In the next step, an Abox A from A is randomly selected. Afterwards, the
min αs set is determined which contains the assertions α from A whose superscripts are minimal. These
are the assertions which require explanations. The strategy function returns as output an Abox A and an
assertion α which requires explanation.

3.4 The Media Interpretation Agent

In the following, the MI Agent function is presented which calls the Interpret function:

10

Function MI Agent(Q, Partners, Die, (T ,A0),FR,BR,WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a function Die, a background
knowledge base (T ,A0), a set of forward chaining rules FR, a set of backward chaining rules BR, a
set of weighted rules WR, and the desired precision of the results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ,WR, T) ;
Γ′ := select(W,Γ);
A′ := filter(λ(A) • consistentΣ(A),map(λ(A) • Γ′ ∪ A ∪A0 ∪ forward chain(Σ,FR,Γ′ ∪ A ∪A0),

{select(MAP (Γ′ ∪ A ∪A0,WR, T),Γ′ ∪ A ∪A0) | A ∈ A′′}));
(A′′, NewI,∆+,∆−) := Interpret(A′, CurrentI,Γ′, T ,FR,BR,WR∪ Γ, ε);
CurrentI := NewI;
Communicate(∆+,∆−, Partners);
A′′ := manage agenda(A′′);

until Die() ;

The body of MI Agent uses a set of auxiliary functions, which are defined as follows.

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else
(11)

The function filter takes as parameters a function f and a set X and returns a set consisting of the values
of f applied to every element x of X. In the MI Agent function, the current interpretation CurrentI is
initialized to empty set and the agenda A′′ to a set containing empty set. Since the agent performs an
incremental process, it is defined by a repeat-loop. The percept results Γ are sent to the queue Q. In order
to take the observations Γ from the queue Q, the MI Agent calls the extractObservations function.

In the following we assume that Γ represents an ordered set. The MAP (Γ,WR, T) determines the
most probable world of observations Γ with respect to a set of weighted rules WR and the Tbox T . This
function performs the MAP process defined in Section 2. It returns a vector W which consists of zeros and
ones assigned to indicate whether the ground atoms of the considered world are true (positive) and false
(negative), respectively. The function select(W,Γ) then selects the positive assertions in the input Abox
Γ using the bit vector W . The selected positive assertions are the assertions which require explanations.
The Select operation returns as output an Abox Γ′ which has the following characteristic: Γ′ ⊆ Γ. The
determination of the most probable world by the MAP function and the selection of the positive assertions
is also carried out on Γ′ ∪ A ∪A0.

In the next step, a set of forward chaining rules FR is applied to Γ′ ∪A∪A0. The generated assertions
in this process are added to the to Γ′ ∪ A ∪ A0. In the next step, only the consistent Aboxes are selected
and the inconsistent Aboxes are removed. Afterwards, the Interpret function is called to determine the
new agenda A′′, the new interpretation Abox NewI and the Abox differences ∆1 and ∆2 for additions and
omissions among CurrentI and NewI. Afterwards, the CurrentI is set to the NewI and the MI Agent
function communicates the Abox differences ∆1 and ∆2 to the Partners. The manage agenda function is
also called. This function is explained in Section 6. The termination condition of the MI Agent function is
that the Die() function is true. Note that the MI Agent waits in the function call extractObservations(Q)
if Q = ∅.

After presenting the above algorithms, the mentioned unanswered questions can be discussed. A rea-
son for performing the interpretation process and explaining the fiat assertions is that the probability of
P (A,A′,R,WR, T) will increase through the interpretation process. In other words, by explaining the ob-
servations the agent’s belief to the percepts will increase. This shows a new perspective for performing the
interpretation process. The answer to the question whether there is any measure for stopping the interpre-
tation process, is indeed positive. This is expressed by | pi − pi−1 |< ε

i which is the termination condition Ξ
of the algorithm. The reason for selecting ε

i and not ε as the upper limit for the termination condition is to
terminate the oscillation behaviour of the results. In other words, the precision interval is tightened step by
step during the interpretation process. In Section 4, we discuss an example for interpreting a single video
shot.

11

4 Preference-Based Video Shot Interpretation

One of the main innovations introduced in the previous section, namely the introduction of a probabilistic
preference measure to control the space of possible interpretations, is demonstrated here using examples
from an environmental domain.

We have to mention that this example is not constructed to show the possible branchings through the
interpretation process. The purpose of this example is to show how the probabilities of the most probable
world of observations P (A0,A,R,WR, T) behave during the interpretation process.

At the beginning of this example, the signature of the knowledge base is presented. The set of all
concept names CN is divided into two disjoint sets Events and PhysicalThings such that

CN = Events ∪PhysicalThings where these two sets are defined as follows:
Events = {CarEntry,EnvConference, EnvProt,HealthProt}
PhysicalThings = {Car,DoorSlam,Building,Environment,Agency}

EnvConference, EnvProt and HealthProt denote respectively environmental conference, environmental
protection and health protection. The set of role names RN is defined as follows:

RN = {Causes,OccursAt,HasAgency,HasTopic,HasSubject,HasObject,HasEffect ,
HasSubEvent,HasLocation}

In the following, the set of individual names IN is given:
IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48}

In the following, the set of the forward chaining rules FR is defined:
FR = {∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y),

∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y),
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)}

Similarly, the set of backward chaining rules BR is given as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y),

HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y),

HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)}
In the following, a set of weighted rules WR is defined where the weight of each rule is 5:
WR = {5 ∀x, y, z CarEntry(z) ∧HasObject(z, x) ∧HasEffect(z, y)→ Car(x) ∧DoorSlam(y) ∧ Causes(x, y),

5 ∀x, y, z EnvConference(z) ∧HasSubEvent(z, x) ∧HasLocation(z, y)→ CarEntry(x) ∧Building(y) ∧OccursAt(x, y),

5 ∀x, y, z EnvProt(z) ∧HasSubEvent(z, x) ∧HasObject(z, y)→ EnvConference(x) ∧ Environment(y) ∧HasTopic(x, y),

5 ∀x, y, z HealthProt(z) ∧HasObject(z, x) ∧HasSubject(z, y)→ EnvProt(x) ∧Agency(y) ∧HasAgency(x, y)}
The selected value for ε in this example is 0.05. In the following, ∆1 and ∆2 denote respectively the

set of assertions hypothesized by a forward chaining rule and the set of assertions generated by a backward
chaining rule at each interpretation level. Let us assume that the media interpretation agent receives the
following weighted Abox A:
A = {1.3 Car(C1), 1.2 DoorSlam(DS1),−0.3 EngineSound(ES1), Causes(C1, DS1)}

The first applied operation to A is the MAP function which returns the bit vector W = 〈1, 1, 0, 1〉. By
applying the select function to W and the input Abox A, the assertions from the input Abox A are selected
that correspond to the positive events in W . Additionally, the assigned weights to the positive assertions
are also taken from the input Abox A. In the following, Abox A0 is depicted which contains the positive
assertions:
A0 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}

At this step, p0 = P (A0,A0,R,WR, T) = 0.755. Since no appropriate forward chaining rule from FR
is applicable to Abox A0, ∆1 = ∅ and as a result A0 = A0 ∪ ∅. The next step is the performance of
backward chain function where the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y)
Consequently, by applying the above rule the next set of assertions is hypothesized:
∆2 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}
which are considered as strict assertions. Consequently, A1 is defined as follows: A1 = A0 ∪∆2.

In the above Abox, p1 = P (A0,A1,R,WR, T) = 0.993. As it can be seen, p1 > p0 i.e.
P (A0,Ai,R,WR, T) increases by adding the new hypothesized assertions. This shows that the new as-
sertions are considered as additional support. The termination condition of the algorithm is not fulfilled
therefore the algorithm continues processing. At this level, it is still not known whether Abox A1 can be

12

considered as the final interpretation Abox. Thus, this process is continued with another level. Consider the
next forward chaining rule:
∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y)
By applying the above rule, the next set of assertions is generated namely:
∆1 = {Building(Ind43), OccursAt(Ind42, Ind43)}
The generated assertions are also considered as strict assertions. In the following, the expanded Abox

A1 is defined as follows: A1 := A1 ∪∆1.
Let us assume the next backward chaining rule from BR:
OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of assertions is hypothesized:
∆2 = {EnvConference(Ind44), HasSubEvent(Ind44, Ind42), HasLocation(Ind44, Ind43)}
which are considered as strict assertions. Consequently, A2 = A1 ∪∆2.
In the above Abox, p2 = P (A0,A2,R,WR, T) = 0.988. As it can be seen, p2 < p1 i.e.

P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions. Since the termination
condition of the algorithm is fulfilled, Abox A1 can be considered as the final interpretation Abox. To
realize how the further behaviour of the probabilities is, this process is continued for the sake of illustration.
Consider the next forward chaining rule from FR:
∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y)
By applying the above rule, new assertions are generated.
∆1 = {Environment(Ind45), HasTopic(Ind44, Ind45)}
In the following, the expanded Abox A2 is defined: A2 = A2 ∪∆1.

Consider the next backward chaining rule from BR:
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y) By applying

the above abduction rule, the following set of assertions is hypothesized:
∆2 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}
which are considered as strict assertions. In the following, A3 is defined as follows A3 = A2 ∪∆2.

In the above Abox A3, p3 = P (A0,A3,R,WR, T) = 0.99. As it can be seen, p3 > p2, i.e.
P (A0,Ai,R,WR, T) increases slightly by adding the new hypothesized assertions.
Consider the next forward chaining rule:
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)
By applying the above rule, the next assertions are generated:
∆1 = {Agency(Ind47), HasAgency(Ind46, Ind47)}
As a result, the expanded Abox A3 is presented as follows: A3 = A3 ∪∆1.
Let us consider the next backward chaining rule from BR:
HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Consequently, new assertions are hypothesized by applying the above abduction rule, namely:
∆2 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}
which are considered as strict assertions. Consequently, A4 is defined as follows: A4 = A3 ∪∆2.
In the above Abox, p4 = P (A0,A4,R,WR, T) = 0.985. As it can be seen, p4 < p3, i.e.
P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions.

Discussion of the Results:
The determined probability values P (A0,Ai,R,WR, T) of this example are summarized in the next table

which shows clearly the behaviour of the probabilities stepwise after performing the interpretation process. In
this table, variable i denotes the successive levels of the interpretation process.

i Abox Ai pi = P (A0,Ai,R,WR, T)
0 A0 p0 = 0.755
1 A1 p1 = 0.993
2 A2 p2 = 0.988
3 A3 p3 = 0.99
4 A4 p4 = 0.985

In this example, the interpretation process is consecutively per-
formed four times. As it can be seen, through the first interpre-
tation level the probability p1 increases strongly in comparison to
p0. By performing the second, third and the forth interpretation
levels, the probability values decrease slightly in comparison to p1.
This means no significant changes can be seen in the results. In
other words, the determination of A3 and A4 were not required at
all. But the determination of A2 was required to realize the slight
difference |p2 − p1| < ε

2 . Consequently, Abox A1 is considered as
the final interpretation Abox.

13

5 Preference-based Scene Interpretation

In this example, we discuss how an interpretation process is performed by considering the analysis results
of two consecutive video shots. For the interpretation of each video shot we require information about the
previous video shots, otherwise the interpretation process does not work as intended. The question is which
assertions have to be considered from the previous video shots. As was discussed in this paper we would
like to consider the assertions from the previous video shots which increase P (A0,Ai,R,WR, T). At the
beginning of this example, the signature of the knowledge base is presented. The set of the concept names
CN is divided into two disjoint sets Events and PhysicalThings which are described as follows:

Events = {CarEntry, CarExit, CarRide}
PhysicalThings = {Car,DoorSlam}
Additionally, the set of the role names RN and the set of the individual names IN are represented as

follows:
RN = {Causes,HasObject,HasEffect ,Before, HasStartEvent,HasEndEvent}
IN = {C1, C2, DS1, DS2, Ind41, Ind42, Ind44}
The Tbox T contains the axiom CarEntry v ¬CarExit. In the following, the set of the forward chaining

rules FR is given:
FR = {
∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarEntry(w), CarEntry(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),
Depicts(x,w), Depicts(y, z), CarEntry(w), CarExit(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),
Depicts(x,w), Depicts(y, z), CarExit(w), CarEntry(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarExit(w), CarExit(z)→ Before(z, w)}
where AudioSeg, HasSegLoc and V ideoSeg denote AudioSegment, HasSegmentLocator and
V ideoSegment respectively. Note that the concepts and roles in FR which are not given in CN and RN
appear only in the multimedia content ontology. The multimedia content ontology determines the structure
of the multimedia document. Additionally, it determines whether the concpts are originated from video,
audio or text. The above rules mean that the concept assertion CarEntry or CarExit from the first video
shot appear chronologically before the concept assertion CarEntry or CarExit from the second video shot.
The set of the backward chaining rules BR is presented as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Causes(x, y)← CarExit(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Before(x, y)← CarRide(z), HasStartEvent(z, x), HasEndEvent(z, y), CarEntry(x), CarExit(y)} Ad-
ditionally, the set of the weighted rules is defined as follows:
WR = {5 ∀x, y, z CarEntry(z) ∧HasObject(z, x) ∧HasEffect(z, y)⇒ Car(x) ∧DoorSlam(y) ∧ Causes(x, y),

5 ∀x, y, z CarExit(z) ∧HasObject(z, x) ∧HasEffect(z, y)⇒ Car(x) ∧DoorSlam(y) ∧ Causes(x, y),

5 ∀x, y, z, k,m CarRide(z) ∧HasStartEvent(z, x) ∧HasEndEvent(z, y) ∧HasObject(x, k)∧
HasObject(y,m)⇒ CarEntry(x) ∧ CarExit(y) ∧ Car(k) ∧ Car(m) ∧ k = m}

The selected value for ε in this example is 0.05. Consider the next figure as the first video shot of a video.
Let us assume that the analysis results of the first video shot represented in the Abox A1

are sent to the queue Q:
A1 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}
For the interpretation of the first video shot, we will call the function
MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). At the beginning of this function,
there are initializations for some variables, namely CurrentI = ∅ and A′′ = {∅}. After-
wards extracting observations from the queue Q is performed, which leads to Γ = A1.
Determination of the most probable world W = 〈1, 1, 1〉 is performed in the next step
and selecting the positive assertions and their related weights determines Γ′ = Γ. At

this step, A = ∅ since A′′ = {∅}. Additionally, A0 = ∅. Consequently, MAP (Γ′,WR, T) = W and
select(W,Γ′) = Γ′. forward Chain(Σ,FR,Γ′) = ∅ since there is no forward chaining rule applicable to
Γ′. A′ = Γ′. The Interpret(A′, CurrentI,Γ′, T ,FR,BR,WR ∪ Γ, ε) is called in the next step which de-
termines p0 = P (Γ′,Γ′,R,WR, T) = 0.733. The Interpret function calls CAE function which returns
A′ = {Γ′ ∪∆1,Γ′ ∪∆2} where the two possible explanations ∆1 and ∆2 are defined as follows:

14

∆1 = {CarEntry(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
∆2 = {CarExit(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
Each of the above interpretation Aboxes have scoring values:
p1 = P (Γ′,Γ′ ∪ ∆1,R,WR, T) = 0.941 and p1 = P (Γ′,Γ′ ∪ ∆2,R,WR, T) = 0.935. NewI = Γ′ ∪ ∆1

since this is the interpretation Abox with the maximum scoring value. The termination condition is not
fulfilled since p1 − p0 = 0.208 > 0.05. The Abox difference for additions is defined as follows: ∆+ =
NewI − CurrentI = NewI − ∅ = NewI. Simiarly, ∆− = ∅ is the Abox difference for the omissions. The
CAE function returns NewI, A′ and the Abox differences ∆+ and ∆− to the Interpret function. Consider
the next figure depicts the second video shot. Assume that the analysis results of the second video shot
given in the next Abox are sent to the queue Q:

A2 = {1.3 Car(C2), 1.2 DoorSlam(DS2), Causes(C2, DS2)}
Similarly, for the interpretation of the second video shot we will call the function
MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). The observation extraction pro-
cess from Q leads to Γ = A2. Afterwards, the most probable world W = 〈1, 1, 1〉
is determined and applying select function on W gives Γ′ = A2. Consider A ∈ A′′

where A′′ = {A1 ∪∆1,A1 ∪∆2}. Γ′ ∪ A = {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. Applying
MAP (Γ′ ∪ A,WR, T) gives W = 〈1, . . . , 1〉 and applying the select(W,Γ′ ∪ A) function
gives {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. Since no forward chaining rule is applicable to the
above set and this set contains consistent Aboxes, A′ = {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}.

In the next step, the function Interpret(A′, CurrentI,Γ′, T ,FR,BR,WR∪Γ, ε) is called which determines
P (Γ′,Γ′,R,WR, T) = 0.733. Afterwards, the CAE function is called which determines the next exaplana-
tions:

∆3 = {CarEntry(Ind42), HasObject(Ind42, C2),HasEffect(Ind42, DS2)}
∆4 = {CarExit(Ind42), HasObject(Ind42, C2),HasEffect(Ind42, DS2)}

The CAE function generates the following agenda which contains all possible interpretation Aboxes {I1, I2, I3, I4}
where:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 I2 = A2 ∪ A1 ∪∆1 ∪∆4

I3 = A2 ∪ A1 ∪∆2 ∪∆3 I4 = A2 ∪ A1 ∪∆2 ∪∆4

Afterwards applies the forward chaining rules on the above agenda. A new assertion Before(Ind41, Ind42)
is generated and added to the four interpretation Aboxes. In the following, the possible four interpretation
Aboxes are given:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 ∪ {Before(Ind41, Ind42)}
I2 = A2 ∪ A1 ∪∆1 ∪∆4 ∪ {Before(Ind41, Ind42)}
I3 = A2 ∪ A1 ∪∆2 ∪∆3 ∪ {Before(Ind41, Ind42)}
I4 = A2 ∪ A1 ∪∆2 ∪∆4 ∪ {Before(Ind41, Ind42)}

Afterwards the backward chaining rule is applied which generates the following set only for the interpretation
Abox I2:

∆ = {CarRide(Ind44), HasStartEvent(Ind44, Ind41), HasEndEvent(Ind44, Ind42)}
Consequently I2 = I2 ∪∆. The interpretation Aboxes have the next scoring values:

P (A1 ∪ A2, I1,R,WR, T) = 0.964
P (A1 ∪ A2, I2,R,WR, T) = 0.978
P (A1 ∪ A2, I3,R,WR, T) = 0.952
P (A1 ∪ A2, I4,R,WR, T) = 0.959

The above values show that the interpretation Abox I2 has a higher scoring value than the other interpreta-
tion Aboxes. Therefore the final interpretation Abox is NewI = I2. The Abox differences for additions and
omissions are defined as follows:

∆+ = A2 ∪∆4 ∪∆ ∪ {Before(Ind41, Ind42)} ∆− = ∅
For the next interpretation steps, the agenda can continue with I2 and eliminate the other interpretation
Aboxes since this Abox has a higher scoring value.

6 Manage Agenda

The manage agenda(A) function is called in the MI Agent function to improve its performance. In this
section, we briefly introduce some techniques which are applied by the manage agenda function to an agenda
A which contains multiple interpretation Aboxes.

15

• Elimination of the interpretation Aboxes: This technique is applied if there are multiple interpretation
Aboxes with different scoring values where one of the Aboxes has a higher scoring value. At this step,
we can select this Abox, eliminate the remaining interpretation Aboxes and continue the interpretation
process with the selected Abox.

• Combining the interpretation Aboxes: Consider the interpretation Aboxes I1, . . . , In. In order to deter-
mine the final interpretation Abox, the MAP process can be applied to the union of all interpretation
Aboxes I1 ∪ . . . ∪ In. The MAP process determines the most probable world based on the Tbox T
and the set of weighted rules WR.

• Shrinking the interpretation Aboxes: This approach determines which assertions from the previous
video shots have to be considered for the interpretation process of the next video shots since considering
all assertions of the previous video shots will slow down the interpretation process. We believe that
only the high level concept assertions from the previous video shots play an important role and not
the low level concept assertions.

7 Computing Abox Differences

[Will be provided after patent negotiations are completed]

8 Summary

For multimedia interpretation, a semantically well-founded formalization is required. In accordance with
previous work, a well-founded abduction-based approach is pursued. Extending previous work, abduction
is controlled by probabilistic knowledge, and it is done in terms of first-order logic. Rather than merely
using abduction for computing explanation with which observations are entailed, the approach presented in
this paper, uses a probabilistic logic to motivate the explanation endeavor by increasing the belief in the
observations. Hence, there exists a certain utility for an agent for the computational resources it spends
for generating explanations. Thus, we have presented a first attempt to more appropriately model a media
interpretation agent. Additionally, we have discussed how the video shot interpretation process is perfomed.
A manage agenda is also introduced which improves the interpretation process by applying some techniques.
Describing the mentioned techniques is our future work.

References

[Castano et al., 2008] Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R., Mon-
tanelli, S., Petasis, G., and Wessel, M. (2008). Multimedia interpretation for dynamic ontology evolution.
In Journal of Logic and Computation. Oxford University Press.

[Domingos and Richardson, 2007] Domingos, P. and Richardson, M. (2007). Markov logic: A unifying frame-
work for statistical relational learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning, pages 339–371. Cambridge, MA: MIT Press.

[Espinosa-Peraldi et al., 2010a] Espinosa-Peraldi, S., Kaya, A., and Möller, R. (2010a). BOEMIE: State
of the Art in Ontology-based Multimedia Interpretation, chapter Logical Formalization of Multimedia
Interpretation. Springer.

[Espinosa-Peraldi et al., 2010b] Espinosa-Peraldi, S., Kaya, A., and Möller, R. (2010b). Formalizing multi-
media interpretation based on abduction over description logic aboxes. In Cuena-Grau, B., Horrocks, I.,
and Motik, B., editors, Proc. of the 22nd International Workshop on Description Logics (DL2009).

[Gries and Möller, 2010] Gries, O. and Möller, R. (2010). Gibbs sampling in probabilistic description log-
ics with deterministic dependencies. In Proc. of the First International Workshop on Uncertainty in
Description Logics, Edinburgh.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, CA.

16

