
I

Distributed Island-based Query Answering for
Semi-Expressive Ontologies

Sebastian Wandelt and Ralf Moeller

31.05.2010

Abstract. Scalability of reasoning systems is one of the main criteria
which will determine the success of Semantic Web systems in the future.
The focus of recent work is either on (a) systems which rely on in-memory
structures or (b) not so expressive ontology languages, which can be dealt
with by using database technologies.
In this paper we introduce a method to perform query answering for
semi-expressive ontologies without the limit of in-memory structures.
Our main idea is to compute small and characteristic representations of
the assertional part of the input ontology. Query answering is then more
efficiently performed over a reduced set of these small representations. We
show that query answering can be distributed in a network of description
logic reasoning systems to scale for reasoning. Our initial results are
encouraging.



II

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes in-
creasingly important. While in recent years the focus was on pure terminological
reasoning, the interest shifts now more to reasoning with respect to large asser-
tional parts, e.g. in the order of millions or billions of triples. The first steps were
done in [AF06]. The authors propose to extract a condensed summary graph out
of the assertional part of an ontology, and then perform reasoning on that sum-
mary. [AF06] reports encouraging performance results. However, for avoiding
inconsistencies due to merging, the summaries have to be rewritten in expen-
sive query-dependent refinement steps. With increasing number of refinement
steps necessary, the performance of the aproach degrades [JDS09]. Moreover, the
technical criteria for summarization (creating representative nodes by grouping
concept sets), seems arbitrary. In [WM08], a method is proposed to identify the
relevant islands, i.e. set of assertions/information, required to reason about a
given individual. The main motivation is to enable in-memory reasoning over
ontologies with a large ABox, for traditional tableau-based reasoning systems.

Given the island of an individual, we will make the idea of summarization
more formal. In this paper we present an approach to execute efficient instant
retrieval tests on database-oriented ontologies. The main insight of our work is
that the islands computed in [WM08] can be checked for similarity and instance
retrieval can then be performed over equivalence classes of similar islands. The
query answering algorithm for instance retrieval over similar islands is imple-
mented in a distributed manner. We report interesting scalability results with
respect to our test ontology: increasing the number of nodes in the network by
the factor of n almost reduces the query answering time to 1

n . Moreover, we
implemented our algorithm in such a way that the input ontology can be loaded
in a offline phase and changed afterwards incrementally online.

For the remaining part of the introduction, we will discuss a general frame-
work to reason about description logics, and show which parts are relevant for
our proposal. For description languages as expressive as, for instance, SHIQ, pro-
posals to ensure scalability have been made in the literature as well. The goal of
this is to apply approximation techniques without sacrificing the quality of the
results [KMWW08]. For scalable query answering over an expressive Tbox, it
has been proposed to apply a completeness-preserving approximation step (see
Figure 1). A SHIQ-Tbox is transformed into a DL-Lite Tbox which is then used
to provide ontology-based query answering. Query answering yields complete
results (no result w.r.t. the original Tbox is missing). But there might be some
elements in the result set corresponding to the approximated Tbox that would
not be return if the query was answered w.r.t. the original Tbox [ZWC95] and
[GST90]. Thus, we only have a set of candidates (usually not much larger than
the true result set), and a subsequent filtering step is required. For this step, we
exploit that the original Abox can be partitioned, i.e., segments can be found
that can be processed in isolation [WM08]. The set of candidates is then filtered
w.r.t. segments corresponding to the candidates. Different approaches can be
used to further reduce the candidates with a scalable process. A compressor (see



III

Fig. 1. Efficient query answering for expressive description logics ([KMWW08])

Figure 7) is used to produce a synopsis, which is then used to eliminate obvious
elements of the candidate set which must not be in the result set (for details see
[WM07]). A new research goal is to test the combination of approximation and
segment-wise treatment of data description in a large-scale industrial scenario
using the results of [HM08]. Our approach is situated in the modules Parti-
tioning and Candidate Eliminator (Figure 1). Furthermore, it can be used as
a stand-alone reasoning system, under the assumption that the ontology yields
many similar islands (in case of database-like assertional data).

The remaining parts of the paper are structured as follows. Section 2 intro-
duces necessary formal notions and gives an overview over Related Work. In
Section 3 we adopt the underlying island computation process from [WM08].
The main theoretical contribution of our work is in Section 4, the isomorphism
criteria for islands. We show our implementation in Section 5 and provide initial
evaluation results in Section 6. The paper is concluded in Section 7.

2 Preliminaries

For details about syntax and semantics of the description logic ALCHI we refer
to [BCM+07]. Some definitions are appropriate to explain our nomenclature,
however. We assume a collection of disjoint sets: a set of concept names NCN ,
a set of role names NRN and a set of individual names NI . The set of roles NR
is NRN ∪ {R−|R ∈ NRN}. We say that a concept description is atomic, if it is a
concept name or its negation. With SAC we denote all atomic concepts.

Furthermore we assume the notions of TBoxes (T ), RBoxes (R) and ABoxes
(A) as in [BCM+07]. A ontology O consists of a 3-tuple 〈T ,R,A〉, where T is a



IV

Fig. 2. Example ABox AEX1

TBox, R is a RBox and A is a ABox. We restrict the concept assertions in A to
only use atomic concepts. This is a common assumption, e.g. in [GH06], when
dealing with large assertional datasets stemming from databases. With Ind(A)
we denote the set of individuals occurring in A. Throughout the remaining part
of the paper we assume the Unique Name Assumption (UNA), i.e. two distinct
individual names denote distinct domain objects.

In Example 1 we define an example ontology, used throughout the remain-
ing part of the paper to explain definitions. The example ontology is setting
of universities. We evaluate our ideas w.r.t. to “full” LUBM [GPH05] in Sec-
tion 6. Although this is a synthetic benchmark, several (if not most) papers on
scalability of ontological reasoning consider it as a base reference.

Example 1. Let OEX1 = 〈TEX1,REX1,AEX1〉, s.t.

TEX1 ={Chair ≡ ∃headOf.Department u Person, Prof v Person,
GraduateCourseTeacher ≡ Prof u ∃teaches.GraduateCourse}

REX1 ={headOf v worksFor}
AEX1 =see Figure 2

Next we discuss related work relevant to our contribution. In [SP08], the au-
thors discuss a general approach to partition OWL knowledge bases and dis-
tribute reasoning over partitions to different processors/nodes. The idea is that
the input for their partitioning algorithm is a fixed number of desired parti-
tions, which will be calculated by different means (weighted graphs, hash-based
distribution or domain specific partitions). The partitions are not independent
from each other. Moreover, in some cases, the data is just arbitrarily spread
over the different nodes in the networks. This leads to a noticeable amount
of communication overhead between the nodes, because partial results have to
be passed in between the nodes. The authors discuss rather small data sets,



V

e.g. 1 million triples. These problems can already be solved with state-of-the-
art tableau-based reasoning systems. Furthermore, their evaluation only talks
about speed-up, without mentioning the actual run-time, or referring to some
open/state-of-the art implementation.

The work in [UKOvH09] proposes a MapReduce [DG04]-based technique, to
compute the closure (set of all implications) over ontologies. Given the under-
lying MapReduce framework, their approach could scale in theory. The major
difference to our work is that we focus on query answering, instead of brute force
(bottom-up) generation of all possible implications of a given knowledge base.
Moreover we focus on more expressive description logics and it is at least doubt-
ful, whether their approach will work for non-deterministic logics (e.g. allowing
for disjunctions).

The authors of [BS03] discuss an approach to integrate ontologies from different
sources in a distributed setting. They introduce so-called bridge-rules to identify,
which parts of the ontologies overlap (and thus need to be communicated between
the different reasoning nodes). The main focus of their work is rather on the
integration of distributed ontologies, but not on scalable reasoning over large
ontologies in general.

There is additional work on distributed Datalog implementations (e.g. [ZWC95]
and [GST90]) and on non-distributed reasoning optimizations/techniques for
description logics, e.g. [GH06].

3 Island calculation

Fig. 3. Example: Island relevant for reasoning about individual a

In [WM08], a method is proposed to identify the relevant information (assertions)
to reason about a given individuals. The main motivation is to enable in-memory
reasoning over large ontologies, i.e. ontologies with a large ABox, for traditional
tableau-based reasoning systems. The general idea is visualized in Figure 3. More
formally, given an input individual a, the proposal is to compute a set of ABox
assertions Aisl (a subset of the source ABox A), such that 〈T,R,A〉 � C(a) iff
〈T,R,Aisl〉 � C(a).



VI

Figure 4 shows the general algorithm to compute the island of an individual,
getIsland(a, ∅). Please note that we generalized the algorithm from [WM08] by
hiding the criteria for checking role (in-)separability vie ∀-info structures, since
the particular choice of strategy does not have an impact on our simulation
algorithm. Thus, we make use of a general function insepO , which determines
whether a role assertion R(A, b) is inseparable with respect to ontology O. In
the following we will use ISLAND(a) to refer to the island (set of assertions
”relevant” for reasoning) computed for individual a.

Function getIsland(a, seen)
Parameter: Individual a, list of visited individuals seen
Returns: Set S of relevant ABox assertions
Algorithm:

1. If a ∈ seen then Return ∅
2. seen = seen ∪ {a}
3. S = {a : X ∈ A}
4. For R(a, b) ∈ A do

(a) If insepO (R(a, b)) then
S = S ∪ {R(a, b)} ∪ build(b, seen)

5. For R(b, a) ∈ A do
(a) If insepO (R(b, a)) then

S = S ∪ {R(b, a)} ∪ build(b, seen)
6. Return S

Fig. 4. Build island for individual a

The goal of the approach [WM08] is that it enables to use tableau-based in-
memory reasoning systems to be run on ontologies, which are too large to fit into
main memory. But if you want to preform more complex reasoning than instance
checking on ontologies, e.g. answering conjunctive queries, the optimization is not
yet enough. To make this more clear, we look on how traditional description logic
reasoning systems answer instance retrieval queries based on instance checks.

Given an instance retrieval task for concept C with respect to ontology O
=〈T,R,A〉, a naive reasoner will iterate all individuals a ∈ Ind(A) of the input
ABox and check, whether 〈T,R,A〉 � C(a). If yes, then a is included in the
result set for the instance retrieval query. The performance of instance retrieval
queries in [WM08] depends highly on the number of individuals in the ABox.
For 100 universities, we have around 300.000 individuals, i.e. 300.000 islands.
When we assume that one instance retrieval check takes around 1 ms, we would
need already 1 hour to answer one instance retrieval query on a single machine.
If we want to improve query answering times, one could parallelize these islands
checks. For example, one would need to have 3600 machines at his disposal, to
obtain all the answers within one second. If the average instance checking time
is higher, or the number of individuals is larger (= more universities), then these
statistics become even worse. Thus, our motivation to further improve instance
retrieval time for database-oriented ontologies.



VII

4 Similarity of Islands

In the following, we discuss how islands can be used for optimized instance
retrieval tests and answering conjunctive queries. The main insight is that many
of the computed islands are similar to each other. Especially in database-oriented
scenarios, ontologies contain a lot of individuals, which follow patterns defined
by a schema (i.e. the terminology of the ontology). If it is possible to define a
formal notion of similarity for islands, and show that it is sufficient to perform
reasoning over one representative island, instead of all these similar islands, then
query answering can potentially be increased by several orders of magnitude
(depending on the number dissimilar island classes). We consider an example to
clarify the idea of island isomorphisms more clear.

Fig. 5. Example: Islands of the four Professors in OEX1

In Figure 5 we show the extracted islands of all professors in our example on-
tology OEX1. While all four graphs are different, they have some similarities in
common, which can be used to optimize reasoning over these islands. To define
similarities over islands, we introduce formally the notion of an island and define
a similarity criterion.



VIII

Definition 1. A individual-island-graph IIG is a tuple 〈N,φn , φe , root〉, such
that

– N is a set of nodes,
– φn : N → 2SAC is a node-labeling function (SAC is the set of atomic con-

cepts),
– φe : N ×N → 2Le is a edge-labeling function
– root ∈ N is a distinguished root node.

If we have φe(a, b) = ρ and ρ 6= ∅, then we write a
ρ−→IIG b. The definition of

individual-island-graphs is quite straight-forward. In the following we define a
similarity relation over two individual-island-graphs, based on graph bisimula-
tions. Although the term bisimulation is usually used in process algebra to define
similar processes, we use it here in the context of graphs.

Definition 2. A bisimulation over IIG1 = 〈NIIG1 , φnIIG1
, φeIIG1

, rootIIG1〉
and IIG2 = 〈NIIG2

, φnIIG2
, φeIIG2

, rootIIG2
〉 is a binary relation RIIG1,IIG2

⊆
N ×N , such that

– RIIG1,IIG2
(rootIIG1

, rootIIG2
)

– if RIIG1,IIG2
(a, b) then φnIIG1

(a) = φnIIG2
(b)

– if RIIG1,IIG2
(a, b) and a

ρ−→IIG1
a‘ then there exists a b‘ ∈ NIIG2

with

b
ρ−→IIG2 b‘ and RIIG1,IIG2(a‘, b‘)

– if RIIG1,IIG2
(a, b) and b →ρ

IIG2
b‘ then there exists a a‘ ∈ NIIG1

with

a
ρ−→IIG2

a‘ and RIIG1,IIG2
(a‘, b‘)

Definition 3. Two individual-island-graphs IIG1 and IIG2 are called bisimi-
lar, if there exists a bisimilation R for them.

Example 2. To make these definitions more clear, we show individual-island-
graphs for amanda, jim and frank, plus a possible bisimulation between amanda
and jim:

– IIGamanda = 〈Namanda, φnamanda, φeamanda, rootamanda〉, s.t.

Namanda ={xamanda, xcl, xlaura}
φnamanda ={xamanda → {Prof}, xcl → {Course}, xlaura → {Student}}
φeamanda ={(xamanda, xcl) → {teaches}, (xlaura, xcl) → {takes}}

rootamanda ={xamanda}

– IIGjim = 〈Njim, φnjim, φejim, rootjim〉, s.t.

Njim ={yjim, yai2, ytl, yluis, yanna, ylisa}
φnjim ={yjim → {Prof}, yai2 → {Course}, ytl → {Course}, yluis → {Student}, ...}
φejim ={(yjim, yai2) → {teaches}, (yjim, ytl) → {teaches}, (yluis, xai2) → {takes}, ...}

rootjim ={yjim}



IX

– IIGfrank = 〈Nfrank, φnfrank, φefrank, rootfrank〉, s.t.

Nfrank ={zfrank, zai, zinf , zalice, zanna}
φnfrank ={zfrank → {Prof}, zai → {Course}, zinf → {Department},

zalice → {Student}, zanna → {Student}}
φefrank ={(zfrank, zai) → {teaches}, (zfrank, zinf ) → {headOf},

(zalice, zai) → {takes}, (zanna, zai) → {takes}}
rootjim ={zfrank}

– Rjim,amanda =

{(xamanda, yjim), (xcl, yai2), (xcl, ytl), (xlaura, yluis),

(xlaura, yluis), (xanna, ylisa)}

It is easy to see, that Rjim,amanda is a bisimulation for the islands (graphs) of the
individuals jim and amanda. Furthermore, it is easy to see that there cannot
be a bisimulation, for instance, between jim and frank.

The important insight is that bisimilar islands entail the same concept sets for
their root individual, if the underlying description logic is restricted to ALCHI.
This is shown in the following theorem.

Theorem 1. Given two individuals a and b, we have 〈T,R, ISLAND(a)〉 �
C(a) ⇐⇒ 〈T,R, ISLAND(b)〉 � C(b), if we can find a bisimulation Ra,b, for
ISLAND(a) and ISLAND(b).

Proof. We assume that we have a bisimulation Ra,b for the islands ISLAND(a)
and ISLAND(b). Now we have to prove two directions:

1. 〈T,R, ISLAND(a)〉 � C(a) =⇒ 〈T,R, ISLAND(b)〉 � C(b):
Sketch (proof by contradiction):
Assume that we have 〈T,R, ISLAND(a)〉 � C(a), and therefore Oa =
〈T,R, ISLAND(a)∪{¬C(a)}〉 can be shown to be inconsistent by a tableau-
proof. That means that all tableau-runs are closed (lead to a clash). By
〈T,R, ISLAND(b)〉 2 C(b), we know thatO2 = 〈T,R, ISLAND(b)∪{¬C(b)}〉
can be shown to be consistent by a tableau-proof, i.e. there exists an open
tableau run TRb on Ob. Now it is easy to show that RT can be transformed
into a open tableau-run TRa on Oa, by applying tableau rules always to the
corresponding nodes of the bisimulation Ra,b. The only slightly difficult part
is the ∃-rule for the ALCHI-tableau algorithm, because one has to update
the bisimulation relation on the newly created successor nodes. Since we can
find an open tableau-run TRa, the initial assumption (all tableau-runs are
closed) is shown to be contradicting.

2. 〈T,R, ISLAND(b)〉 � C(b) =⇒ 〈T,R, ISLAND(a)〉 � C(a) Analogous to
the first case.

The above theorem can be easily lifted to the case of more than two individuals,
i.e. if we have n individuals, and for all of their islands one can find a bisimilarity



X

relation, it is sufficient to perform instance checking on one island. In practice,
especially in database-oriented ontologies, this can dramatically speed up the
time for instance retrieval. To show this, we need to further introduce some
mathematical notions.

Definition 4. A individual-island-equivalence ∼ISL is an equivalence relation
over individual islands, such that we have ∼ISL (ISL, ISL), if we can find a
bisimulation RISL,ISL between the two islands ISL and ISL. With [∼ISL] we
denote the set of equivalence classes of ∼ISL.

The main theoretical result of our work is summarized in the following theorem.

Theorem 2. Given an ontology 〈T,R,A〉, one can perform grounded instance
retrieval for the atomic concept C over [∼ISL], instead of all islands.

Proof. Follows immediately from the above Theorem and the fact from [WM08],
that instance retrieval can be performed over all islands.

Please note that our approach does not work directly for more expressive de-
scription logics, e.g. SHOIQ. In the presence of cardinality restrictions we will
need more sophisticated bisimulation criteria to identify similar nodes, since the
number of related similar individuals matters. Nominals further complicate the
bisimulation criteria, since individuals can be forced by the terminological ax-
ioms to refer to the same domain object, i.e. one might need to calculate all
TBox-implications in the worst calse.

5 Distributed Implementation

We have implemented our proposal for Island Simulations in Java. For ontology
access we use the OWLAPI 2.2.0[BVL03].

The general structure of our implementation is shown in Figure 6. In the
following we give a short description of each component and especially provide
performance optimization insights we gained during the implementation of the
prototype.

– (Server) OWL-Converter: Our tests with OWLAPI showed that, if we use
OWLAPI directly to load ontologies, there are some memory leaks, which
will degrade performance over time. Thus we decided to convert ontologies
from OWL to an internal representation in a preprocessing step.

– (Server) Update Handler: This module is responsible update the internal
structures (representation of islands) in case of an ontology update. De-
pending on the kind of update - terminological or assertional - the module
determine which islands, i.e. which individuals, have to be recomputed.

– (Server) Island Computor: This module computes the island for a given an
individual. It uses the current state of the TBox and ABox to obtain the
currently valid island.



XI

Fig. 6. Structure of our prototypical implementation

– (Server) Node Scheduler : Whenever a new island is found, the task of the
Node Scheduler is to determine the responsible node for the island. At first,
we implemented a simple Round-Robin-Strategy, i.e. the number of islands
on every node would be (roughly) the same. But since we ran some of our
tests in a heterogeneous network, it turned out, that the server always had to
wait for the slowest node. Thus, we revised the Node scheduling as follows:
1. Once a node connects to the server, we perform some basic inference tests

with a standardized ontology and measure the time needed to report the
results to the server.

2. During node population phase, i.e. for loading the actual ontology, we
distribute the islands corresponding to the time taken for the initial tests
(faster nodes obtain more islands).

This measure greatly improved the overall performance of query answering
in the (heterogeneous) network, since almost all nodes finish their complete
task at roughly the same time now.

– (Server) TBox/ABox Storage: This part of the server is responsible for stor-
ing the current state of the terminological/assertional part of the ontology.

– (Client) Query Manager: Given an incoming query, this module determines
all active islands and uses the DL Reasoner module to find out which islands
match the input query.

– (Client) DL Reasoner: A module implementing an interface to a general
description logic reasoner (in our case we used Racer [HM01]). The main task
is to load an island and perform instance checking or individual classification
respectively.

One more remark on our implementation: while loading an ontology we built a
dependency tree, which stores which impact updates on particular islands have,



XII

e.g. we store that, adding a teaches-relation to a particular individual (island),
then we obtain another fixed island. This kind of lookup-table greatly improved
the performance in our tests, because we do not have to recompute complete
islands in case we had ”‘similar”’ updates before.

6 Evaluation

Our tests were run with respect to the synthetic benchmark ontology LUBM
[GPH05]. Although some people claim that LUBM does not fully represent all
the capabilities provided by the complete OWL specification, we think that it fits
our constraint of database-oriented ontologies: rather small and simple TBox,
but a bulk of assertional information with a realistic distribution with respect to
numbers of professors, students, departments, etc. In our evaluation we compare
three different measures, to determine the performance of our implementation:

– Load time: In Figure 7 we show the size of the assertional part in triples and
compare the load time with different number of nodes in our network (1, 2
and 4 nodes). The load time only represents the time spent to traverse the
input ontology one time and compute that bisimilarity relation over islands
of all individuals. It can be seen that the load time increases linearly with
the number of triples in the assertional part. Please note that our loading
algorithm is designed and implemented as an incremental algorithm. Thus,
if we add a new assertion, we do not have to recompute all the internal
structures, but only update the relevant structures.
Furthermore note that the load time is independent from the number of
nodes. This is because we focused on improving query answering times, not
load times, and thus major computations for loading are performed on the
server (island computation and bisimulation tests). It is possible to distribute
the loading process over nodes as well, but then one has to deal with the
problem of a distributed ABox. In our tests the communication overhead for
a distributed ABox implementation was usually too high. Thus we leave the
further improvement of load times for future work.

– Preparation time: This measure indicates an initial preparation time after
the ontology is fully loaded. The time is spent to prepare the internal struc-
tures of the DL reasoner for incoming queries. Please note that this pre-
processing step is query independent and only performed one time after the
ontology was updated. The idea is that we can perform incremental bulk
loading (measured in load time), without updating the (expensive) internal
structures of the DL reasoner all the time.
In the left part of Figure 8, we show the query preparation time for different
numbers of universities and different numbers of nodes in the network. The
number of nodes indeed affects the query preparation time. If we use 8 nodes,
the preparation time is almost 1

8 of the time needed for one node. Thus, the
distribution of computational power works for query preparation.
In the right part of Figure 8 we compare the necessary number of islands
to perform instance retrieval with the original work in [WM08]. It can be



XIII

Fig. 7. Input size and load time

Fig. 8. Query preparation time and island count

seen, that the number of islands increases linearly with the size of the input
ontology for [WM08] (please note the logarithmic scale). Using bisimulation,
the number of islands is almost constant for all input ontologies, since most
of the newly introduced individual-islands are bisimilar to each other, e.g.
professors who teach particular students in particular kinds of courses.

– Query answering time: The third measure indicates how long the actual
query answering takes. In Figure 9, the query answering time (for instance
retrieval) for the concepts Chair (small number of answers, linearly growing
with the number of universities) are shown. Please note that query answer-
ing times are rather independent from the chosen concept description for
instance retrieval. We only focus on Chair, since it is also commonly used
in the literature to perform benchmarks on LUBM.

In Figure 9 (upper part) we show the time needed to identify the islands
which entail the concept Chair. This is the actual ”‘description-logic”’-hard
task. To return the answers one has to further lookup the names of all
individuals for the matching islands, e.g. in a hashmap. The actual query
answering time (including lookup) for one node is shown in the lower part of
Figure 9. It can be seen that our bisimulation-based approach can improve
query answering times in the order of several magnitudes in the case of
instance retrieval.



XIV

Fig. 9. Query answering time

Please note that the compact representation of solutions for instance retrieval
queries (sets of solution islands), can have a high potential to improve an-
swering tiems for conjunctive queries, since the system does not have to
deal with large sets of solution individuals. Further investigations about this
potential are part of future work.

7 Conclusions

We have proposed a method for instance retrieval over ontologies in a distributed
system of DL reasoners. To the best of our knowledge, we are the first to propose
instance retrieval reasoning based on similarity of individual-islands. The results
are encouraging so far. We emphasize that our approach especially works for
ontologies with a rather simple or average size terminological part. For future
work, it will be important to investigate more ontologies and check the perfor-
mance of our proposal. Furthermore, we want to extend our proposal to more
expressive description logics, e.g. SHIQ or even SHOIQ.

References

[AF06] Li Ma E. Schonberg K. Srinivas A. Fokoue, A. Kershenbaum. The Sum-
mary ABox: Cutting ontologies down to size. In SSWS 2006, pages 61–74,
Athens, GA, USA, November 2006.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook. Cam-
bridge University Press, New York, NY, USA, 2007.

[BS03] Alex Borgida and Luciano Serafini. Distributed description logics: Assim-
ilating information from peer sources. J. of Data Semantics, 2003.

[BVL03] S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the
OWL API, 2003.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In OSDI 2004, pages 137–150, 2004.



XV

[GH06] Yuanbo Guo and Jeff Heflin. A Scalable Approach for Partitioning OWL
Knowledge Bases. In SSWS 2006, Athens, GA, USA, November 2006.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for
owl knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[GST90] Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. A framework for the
parallel processing of datalog queries. SIGMOD Rec., 19(2):143–152, 1990.

[HM01] V. Haarslev and R. Möller. Description of the RACER System and its Ap-
plications. In Proceedings International Workshop on Description Logics
(DL-2001), Stanford, USA, 1.-3. August, pages 131–141, 2001.

[HM08] V. Haarslev and R. Möller. On the scalability of description logic instance
retrieval. Journal of Automated Reasoning, 41(2):99–142, 2008.

[JDS09] Aditya Kalyanpur Edith Schonberg Julian Dolby, Achille Fokoue and
Kavitha Srinivas. Efficient reasoning on large SHIN Aboxes in relational
databases. In SSWS 2009, 2009.

[KMWW08] Alissa Kaplunova, Ralf Möller, Sebastian Wandelt, and Michael Wessel.
Approximation and ABox Segmentation. Technical report, Institute for
Software Systems (STS), Hamburg University of Technology, Germany,
2008. See http://www.sts.tu-harburg.de/tech-reports/papers.html.

[SP08] R. Soma and V.K. Prasanna. Parallel inferencing for OWL knowledge
bases. In Parallel Processing, 2008. ICPP ’08. 37th International Confer-
ence on, pages 75–82, Sept. 2008.

[UKOvH09] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen.
Scalable distributed reasoning using MapReduce. In 8th International
Semantic Web Conference (ISWC2009), October 2009.

[WM07] S. Wandelt and R. Möller. Scalability of OWL Reasoning: Role conden-
sates. In Proc. International Workshop on Scalable Semantic Web Sys-
tems, 2007.

[WM08] Sebastian Wandelt and Ralf Möller. Island reasoning for ALCHI ontolo-
gies. In Proceedings of the 2008 conference on Formal Ontology in In-
formation Systems, pages 164–177, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press.

[ZWC95] Weining Zhang, Ke Wang, and Siu-Cheung Chau. Data partition and
parallel evaluation of datalog programs. IEEE Transactions on Knowledge
and Data Engineering, 7(1):163–176, 1995.


