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Abstract: In the last years, the vision of the Semantic Web fostered the interest in reasoning over ever larger sets of
assertional statements in ontologies. In this senario, state-of-the-art description logic reasoning systems cannot
deal with real-world ontologies any longer, since they rely on in-memory structures.
In these scenarios it will become more important to rely on unsound or incomplete reasoning structures, to
obtain a set of candidates/obvious solutions to queries, i.e. only apply state-of-the-art reasoning systems to the
computationally hard solutions. In this paper we propose a summarization-based approach which is always
sound, but possibly incomplete. We think that this technique will support description logic systems to deal
with the steadily growing amounts of assertional data.

1 INTRODUCTION

As the Semantic Web evolves, scalability of inference
techniques becomes increasingly important. Even for
basic description logic-based inference techniques,
e.g. concept satisfiability, it is only recently under-
stood on how to perform reasoning on large ABoxes
in an efficient way. This is not yet the case for prob-
lems that are too large to fit into main memory. In this
paper we present an approach to optimize instance re-
trieval tests on ontologies, by summarization of sim-
ilar individuals in the assertional part of an ontology.
The general picture is as follows:

• Keep a sound, but possibly incomplete data-
structure, called Summarization, in main memory

• On incoming queries, consult the summarization
first to obtain a list of candidate solutions/obvious
answers

• For all left-over potential answers, compute the
outcome with a description logic reasoner, e.g. in
our case Racer(Haarslev and Möller, 2001)

The remaining part of the paper is structured as fol-
lows. Section 2 provides the formal background for
description logics, presents some related work and
introduces an example ontology, which will be used

throughout the paper. In Section 3 and 4, we present
our data-structure for sound, and possibly incomplete
reasoning. How to use these results for description
logic reasoning is shown in 5. In Section 6 we present
preliminary evaluation of the proposed algorithm with
respect to a benchmark ontology. We conclude with
Section 7.

2 FOUNDATIONS

2.1 Description Logics

We briefly recall syntax and semantics of the descrip-
tion logic ALCH I . For the details about the descrip-
tion logic ALCH I , please refer to (Baader et al.,
2007). We assume a collection of disjoint sets: a set
of concept names NCN , a set of role names NRN and
a set of individual names NI . The set of roles NR is
NRN ∪{R−|R ∈ NRN}. We say that a concept descrip-
tion is atomic, if it is a concept name. With NC we de-
note all atomic concepts. For defining the semantics
see (Baader et al., 2007). Furthermore we assume the
notions of TBoxes (T ), RBoxes (R ) and ABoxes (A)
as in (Baader et al., 2007). With ASSERT IONS(A)



Figure 1: Guiding Example: ABox AEX for ontology OEX

we denote the set of assertions in an ABox A and with
SA we denote the set of all ABoxes.

A ontology O consists of a 3-tuple 〈T ,R ,A〉,
where T is a TBox, R is a RBox and A is a ABox.
We restrict the concept assertions in A in such a
way that each concept description is an atomic con-
cept or a negated atomic concept. This is a com-
mon assumption, e.g. in (Guo and Heflin, 2006),
when dealing with large assertional datasets in on-
tologies. With Ind(A) we denote the set of in-
dividuals occurring in A . The set of equivalence
classes of an equivalence relation Rel is denoted
[Rel]. When defining an equivalence relation, we will
sometimes use the following syntax for convenience:
R = {(a,b,c,d),(e, f ),(g,h, i)}. The meaning is, that
a,b,c,d are equivalent, e and f are equivalent, and
g,h, i are equivalent w.r.t. R. The expression ran( f )
denotes the range of a function f . Whenever we have
a pair p = 〈A,B〉, we access the elements by a dot-
operator, e.g. p.A.

2.2 Related Work

Recently, an approach for partitioning large OWL
ontologies has been presented in (Guo and Heflin,
2006). The idea is to partition a large ABox into
smaller ABoxes, s.t. reasoning on the smaller asser-
tional subsets is complete, but possibly unsound. Al-
though the authors report impressive results for the
increase in performance, we see some issues as iden-
tified (Wandelt, 2008). In (Fokoue et al., 2006), the
authors propose a method to reduce the number of in-
dividuals in an ABox for complete but unsound rea-
soning. Afterwards, a filtering algorithm is applied
to obtain soundness again. This filter-step is usually
quite sophisticated and time-consuming. In a similar
way as the partitioning-approach given in (Guo and
Heflin, 2006), a Summary ABox has to be build in
a precomputation step, which depends on the actual
and complete ABox. Thus, the approach is not per-
se applicable to updateable ontologies. After all, our
work can be seen as complementary to other work.
For more information refer to Section 6.

2.3 Guiding Example

In the following we define an example ontology,
which is used throughout the remaining part of the pa-
per. The ontology is inspired by LUBM (Guo et al.,
2005), a benchmark-ontology in the setting of univer-
sities. Although this is a synthetic benchmark, sev-
eral (if not most) papers on scalability of ontological
reasoning consider it as a base reference. We take a
particular a snapshot from the LUBM-ontology (Ex-
ample 1) to make our approach more visible and clear.
We evaluate our ideas w.r.t. to “full” LUBM in Sec-
tion 6.
Example 1. Let OEX = 〈TEX ,REX ,AEX 〉, s.t.

TEX ={Chair ≡ ∃headO f .Department uPerson,Pro f v Person

Graduatev Student,Student ≡ Personu∃takes.Course}

REX ={headO f v worksFor}

AEX =see Figure 1

3 ABOX SUMMARIZATIONS

Definition 1. Let Nsum be a set of summarization in-
dividuals, then a ABox-Summarization (for an ABox
A) is a pair AS = 〈φsum,ωsum〉, s.t.
• φsum is a total function Ind(A)→ Nsum and
• ωsum is a total function Nsum→ SA

The intuition of Definition 1 is that φsum maps each
named individual in the source ABox A to a sum-
marization individual, and ωsum determines a set of
ABox-assertions for each such summarization indi-
vidual.
Example 2. Example for ABox-Summarization
ASEX1 w.r.t. AEX :

Nsum ={s,c, p}
φsumEX = {( joe,s),(laura,s),(alice,s),

(luis,s),(anna,s),(cl,c),
(ai,c),(ai2,c),(tl,c),(amanda, p),
( f rank, p),( jim, p),(in f , p)}



ωsumEX = {(s,{Student(s), takes(s,e),Course(e)}),
(c,{Course(c)}),
(p,{Pro f (p)})}

Please note that the ABoxes ωsumEX might introduce
new individual names, e.g. the name e here.
We will define φsum usually by use of an equivalence
relation Rφsum , where Nsum (the range of φsum) is as-
sumed the set of equivalence classes in Rφsum , i.e.
[Rφsum ]. The correspondence between both notions is
as defined follows:

φsum(a) = φsum(b) ⇐⇒ Rφsum(a,b)

Example 3. An example equivalence relation
Rφsum EX for φsumEX could be:

Rφsum EX = {( joe, laura),(laura, joe),

(laura,alice),(alice, laura),
( joe,alice),(alice, joe),
..

( f rank, jim),( jim, f rank),
( f rank, f rank)}

Let us relate ABox-Summarizations to description
logic reasoning. Therefore, we can distinguish two
properties: soundness and completeness with respect
to description logic inferences.
Definition 2. An ABox-Summarization (for an ABox
A) is sound, if we have that

〈T ,R ,ωsum(φsum(a))〉 � C(φsum(a)) =⇒
〈T ,R ,A〉 � C(a).

Definition 3. A ABox-Summarization (for an ABox
A) is complete, if we have that

〈T ,R ,A〉 � C(a) =⇒
〈T ,R ,ωsum(φsum(a))〉 � C(φsum(a)).

Both properties can be used to assess the quality
of an ABox-Summarization, i.e. if you have nei-
ther soundness nor completeness, then the ABox-
Summarization is usually not of use for descrip-
tion logic inferences. To further evaluate ABox-
Summarizations, we introduce the notion of ”‘am-
icability”’, which estimates how much the ABox-
Summarization can speed up solving description logic
decision problems.
Definition 4. The amicability of an ABox-
Summarization AS = 〈φsum,ωsum〉 (for an ABox
A) is defined as

amic(AS) =−log10(
ran(φsum)
|Ind(A)|

)

Example 4. An Example ABox-Summarization
ASEX2, which is trivially sound and complete, is

• Nsum = Ind(AEX )
• Rφsum EX = {(x,x)|x ∈ Ind(AEX )}
• ωsumEX (x) = AEX , for all x ∈ Ind(AEX )

In the example above, we do not merge any two indi-
viduals, and for reasoning over each individual we use
the whole ABox. As one can see from amic(ASEX1) =
0, this trivial ”‘summarization”’ will not yield any im-
provement for reasoning over individuals.

4 SOUND SUMMARIZATION

In the following we discuss a non-trivial summariza-
tion, which always enables sound reasoning, and in
some cases even complete reasoning; with a quite en-
couraging amicability. To define the summarizations,
we first look at which individuals we want to merge.
Our general intuition is, informally, that similar indi-
viduals should behave equally during reasoning. Thus
we will define some notions to talk about similarity of
two individuals in an ABox A .

Definition 5. An Anonymous Node Successor (ANS)
of an individual a for an ABox A is a pair ANSa

A =
〈rs,cs〉, s.t. ∃b ∈ Ind(A) with

1. ∀R ∈ rs.(R(a,b) ∈ A ∨R−(b,a) ∈ A)
2. ∀C ∈ cs.C(b) ∈ A
3. cs and rs are maximal

The third criteria (maximality) is important for cases,
when two individuals can be connected by more than
one role assertion.

Example 5. An example for two anonymous node
successors of f rank are:

• ANS1 f rank
AEX

= 〈{teaches},{Course}〉

• ANS2 f rank
AEX

= 〈{headO f},{Department}〉
Next, we combine all anonymous node successors

of an individual a in an ABox A and add the directly
asserted concepts of a, to create a summarization rep-
resentative, called One Step Node.

Definition 6. A One Step Node of an individual a for
an ABox A is a pair OSNa

A = 〈rootconset,ansset〉, s.t.

• rootconset = {C|a : C ∈ A} and
• ansset is the set of all Anonymous Node Succes-

sors of individual a

Example 6. We have

OSN f rank
AEX

= 〈{Pro f},{〈{teaches},{Course}〉,
〈{headO f},{Department}〉}〉



We use One Step Nodes to define a similarity relation
among individuals in an ABox A .
Definition 7. Two individuals a and b are called One
Step Node-similar for an ABox A , if we have OSNa

A =
OSNb

A . We denote the One Step Node-similarity rela-
tion for an ABox A with ROSNSim.

And last but not least, we define the notion of an OSN-
based ABox-Summarization.
Definition 8. An ABox-OSN-Summarization (for
an ABox A and an One Step Node-similarity rela-
tion ROSNSim) is an ABox-Summarization AOSNSA =
〈φsum,ωsum〉, s.t.

• Nsum=[ROSNSim]
• We define φsum by the equivalence relation

ROSNSim

• For each osn ∈ [ROSNSim]

ωsum(osn) ={C(osn∗)|C ∈ osn.rootconset}∪⋃
ans∈osn.ansset

{R(a,ans∗)|R ∈ ans.rs}∪
⋃

ans∈osn.ansset
{C(ans∗)|C ∈ ans.cs}

, where x∗ denotes a fresh and unique individual name
for each OSN-/ANS-object x.

Example 7. One ABox-OSN-Summarization ASEX3
for AEX and Rφsum EX3 = {( joe, lara,alice, luis),
(cl,ai,ai2),(tl),(ana),(amanda),( f rank),( jim),(in f )}
is

NsumEX3 ={s1,s2,c1,c2, p1, p2, p3,d1}
φsum( joe) = s1

φsum(lara) = s1
..

φsum(cl) = c1
..

φsum(in f ) = d1
ωsumEX3(s1) = {Student(s1), takes(s1,cnew1),

Course(cnew1)}
ωsumEX3(s2) = {GradStudent(s2), takes(s2,cnew2),

Course(cnew2)}
..

ωsumEX3(p2) = {Pro f (p2), teaches(p2,cnew5),
Course(cnew5),headO f (p2,newd1),
Department(newd1)}

..

5 HOW TO SOLVE DECISION
PROBLEMS?

The main theorem of our work is presented in The-
orem 5.1.

Theorem 5.1. Given an Ontology 〈T ,R ,A〉, every
ABox-OSN-Summarization AOSNSA for A is sound.

This is, informally, clear, since the ABox of each
summarization individual is a subset of the original
ABox A (modulo renaming).

Proof. We have to show that 〈T ,R ,ωsum(φsum(a))〉�
C(φsum(a)) =⇒ 〈T ,R ,A〉 � C(a).

We show the proof by contraposition and then
derive a contradiction: Given 〈T ,R ,A〉 2 C(a), we
have that there exists a model I1 for 〈T ,R ,A ∪
{¬C(a)}〉. Now, I1 has to satisfy all the asser-
tions in A ∪ {¬C(a)}, and since ωsum(φsum(a)) ∪
{¬C(φsum(a))} is structurally equivalent (by con-
struction in Definitions 5, 6 and 8) to a subset of A ∪
{¬C(a)}, we have that a rewriting of I1 has to satisfy
all the assertions in ωsum(φsum(a))∪{¬C(φsum(a))}.
Thus, there exists a model for 〈T ,R ,ωsum(φsum(a))∪
{¬C(φsum(a))}〉. Contradiction, since we assumed
〈T ,R ,ωsum(φsum(a))〉 2 C(φsum(a)) (by Contraposi-
tion).

Given Theorem 5.1 above, we can speedup query an-
swering over description logics in the following ways.

Given an individual a and an atomic concept de-
scription C, Instance Checking is the problem to de-
termine, whether an Ontology 〈T ,R ,A〉 � C(a). In
common description logic systems, this is done by
checking, whether 〈T ,R ,A ∪{¬C(a)}〉 is inconsis-
tent. Once the ABox is reasonably big, the underlying
exponential behavior of tableau algorithms shows up
easily, albeit all known optimizations techniques.

Given an ABox-OSN-Summarization AOSNSA
for A , we can perform some kind of sanity check with
existing tableau algorithms, but dramatically reduced
ABoxes.

1. Check, whether 〈T ,R ,ωsum(φsum(a))〉 2
C(φsum(a)). If this is true, then we already
know that 〈T ,R ,A〉 � C(a).

2. Check, whether 〈T ,R ,ωsum(φsum(a))〉 2
¬C(φsum(a)). If this is true, than we already
know that 〈T ,R ,A〉 � ¬C(a), and it is safe to
assume that 〈T ,R ,A〉 2 C(a) (if the underlying
ontology is consistent).

Please note that we deal with a dramatically reduced
assertional part in both cases. Only if both sanity
checks fail, then we still have to apply the full reason-
ing machine, i.e. we have to check 〈T ,R ,A〉 � C(a).



The main contribution of this work is the speedup
of Instance Retrieval. Given an atomic concept de-
scription C, Grounded Instance Retrieval is the prob-
lem to determine all individuals a ∈ A , s.t. we have
〈T ,R ,A〉 � C(a).

Given an ABox-OSN-Summarization AOSNSA
for A , we can obtain a sound result set as follows:

1. SoundResult = /0

2. For all s ∈ Nsum do

• If 〈T ,R ,ωsum(s)〉 � C(s), then SoundResult =
SoundResult ∪φ−sum(a)

Informally, we iterate over all summarization individ-
uals s∈Nsum and check, whether they are instances of
concept description C. If yes, then we add all individ-
uals represented by that summarization individual to
the set of sound answers.

6 IMPLEMENTATION AND
EVALUATION

We implemented our proposal in Java with the
help of OWLAPI(Bechhofer et al., 2003) and inves-
tigated several criteria for evaluation w.r.t. to the
Lehigh University Benchmark with up to 1000 univer-
sities. Each university in the benchmark has around
20 associated departments. Please note that we have
implemented all data structures in an updateable way.
This is important when one deals with constantly
changing information, e.g. in streams of information.
To the best of our knowledge, other related work does
not yet discuss updateable information yet.

1. Figure 2 shows the time needed to create ABox-
OSN-Summarizations for a given number of uni-
versities. It is worth to notice that the loading time
exhibits linear-time behavior, which corresponds
to the size of the input data. When breaking down
the loading time to triples, we are able to load
around 4000 Triples/second in average.

2. Number of summarization individuals Figure 4
shows the size of Nsum, i.e. the number of summa-
rization individuals in the corresponding ABox-
OSN-Summarization. The number of individuals
remains constant over time. Only during load-
ing the first universities, the size grows, until the
Summarization becomes saturated, i.e. no more
new One Step Nodes are created, but only already
known One Step Nodes used. The constant num-
ber enables constant-time sound instance retrieval
in case of LUBM.

3. Time for Sound Instance Retrieval We performed
Grounded Instance Retrieval for the concept de-
scription Chair over LUBM. As expected, the
time for sound instance retrieval, shown in Fig-
ure 4, is constant as well (the number of Sum-
marization Individuals does not change). Please
note that Figure 4 only shows the time for real
reasoning over the corresponding ABox-OSN-
Summarization with Racer.

Separately, we show the time necessary to look up
the individual names for the summarization indi-
viduals in Figure 5. It is easy to see that, while
the reasoning itself is constant, the lookup time
grows linear. The reason is that the number of
Chair-instances grows linearly as well, as shown
in Figure 6. E.g. in LUBM with 1000 universities,
we have already around 20000 Chair-instances.

4. Amicability Finally, we show the amicability of
the corresponding ABox-OSN-Summarization in
Figure 7.

5. Completeness It is interesting to notice that our
further analysis showed that all ABox-OSN-
Summarization for LUBM turned out to be not
only sound, but also complete. That means, we
have constant time grounded instance retrieval for
LUBM. The reason is that most of the termino-
logical axioms in LUBM are rather domain/range-
constraints, which are completely covered by our
One Step Nodes. We did not have time to finish
these investigations, but the results look quite en-
couraging so far.

Figure 2: Loading time

Figure 3: Size of Nsum



Figure 4: Reasoning over summarization individuals - solu-
tion determination

Figure 5: Reasoning over summarization individuals - look
up

7 CONCLUSIONS AND FUTURE
WORK

We have proposed a method for sound instance re-
trieval over ontologies. Our idea for summarization of
individuals is not completely new, but to the best of
our knowledge we are the first to propose sound rea-
soning over individuals based on similarity. The re-
sults are encouraging so far, especially in combination
with the recently discovered completeness-property
for LUBM. Even though other real-world ontologies
might not share the completeness-property, it seems
likely, that large subsets of these ontologies are still
domain-/range-constraints, and thus easily covered
by ABox-OSN-Summarizations. It was furthermore
shown that the approach has potential to deal with up-
dateable information.

For Future Work, we plan to further investigate the
completeness of ABox-OSN-Summarizations. Fur-
thermore it will be important to investigate more on-
tologies and check the performance of our proposal.
In the end, LUBM is only a synthetic benchmark cre-
ated to score description logic reasoning systems. But
whether it will perform in real-world scenarios is still
vague. Finally, we want to extend our proposal to
more expressive description logics, e.g. SHIQ or even
SHOIQ. While the extension is easy w.r.t. soundness,
completeness testing seems to be the harder problem.

Figure 6: Number of Chair instances

Figure 7: Amicability
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