
Distributed Island-based Query Answering for
Expressive Ontologies

Sebastian Wandelt and Ralf Moeller

Hamburg University of Technology, Hamburg, Germany,
wandelt@tuhh.de, r.f.moeller@tuhh.de

Abstract. Scalability of reasoning systems is one of the main criteria
which will determine the success of Semantic Web systems in the future.
The focus of recent work is either on (a) expressive description logic sys-
tems which rely on in-memory structures or (b) not-so-expressive ontol-
ogy languages, which can be dealt with by using database technologies.
In this paper we introduce a method to perform query answering for
semi-expressive ontologies without the limit of in-memory structures.
Our main idea is to compute small and characteristic representations of
the assertional part of the input ontology. Query answering is then more
efficiently performed over a reduced set of these small representations. We
show that query answering can be distributed in a network of description
logic reasoning systems in order to support scalable reasoning. Our initial
results are encouraging.

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes in-
creasingly important. While in recent years the focus was on pure terminological
reasoning, the interest shifts now more to reasoning with respect to large asser-
tional parts, e.g. in the order of millions or billions of triples. Research on on-
tologies with medium-sized assertional information has already been conducted
on less expressive description logics, e.g. in [CDGL+05]. Further techniques were
investigated in [FKM+06]. The authors propose to extract a condensed summary
graph out of the assertional part of an ontology, and then perform reasoning on
that summary. [FKM+06] reports encouraging performance results. However,
for avoiding inconsistencies due to merging, the summaries have to be rewritten
in expensive query-dependent refinement steps. With increasing numbers of re-
finement steps necessary, the performance of the approach degrades [DFK+09].
Moreover, the technical criteria for summarization (creating representative nodes
by grouping concept sets), seems arbitrary. In [WM08], a method is proposed to
identify the relevant islands, i.e. set of assertions/information, required to reason
about a given individual. The main motivation is to enable in-memory reason-
ing over ontologies with a large ABox, for traditional tableau-based reasoning
systems.

Given the island of an individual, we will make the idea of summarization
more formal. In this paper we present an approach to execute efficient instance



Fig. 1. Efficient query answering for expressive description logics ([KMWW08])

retrieval tests on database-oriented ontologies. The main insight of our work is
that the islands computed in [WM08] can be checked for similarity and instance
retrieval can then be performed over equivalence classes of similar islands. The
query answering algorithm for instance retrieval over similar islands is imple-
mented in a distributed manner. We report interesting scalability results with
respect to our test ontology: increasing the number of nodes in the network by
the factor of n almost reduces the query answering time to 1

n . Moreover, we
implemented our algorithm in such a way that the input ontology can be loaded
in an offline phase and changed afterwards incrementally online.

Figure 1 is taken from [KMWW08] and shows the general structure of an op-
timized query answering system for expressive description logics. Let us assumed
that a query Q is to be answered w.r.t. a Tbox (lower-left corner). The Tbox
is approximated into a DL-Lite Tbox (a complete but unsound approximation
is use). Exploiting DL-Lite query answering by transforming queries w.r.t. on-
tologies (Tboxes) into SQL queries (see the rectangle in the left-upper corner)
[CDGL+05], candidates are generated for the query w.r.t. the original Tbox. Af-
terwards, candidates can possibly be eliminated in beforehand. The remaining
candidates must be investigated using a reasoner for the expressive Tbox. In
order to be able to do this, huge Aboxes are partitioned (as explained above).
The approach described in this paper is situated in the modules Partitioning
and Candidate Eliminator.

The remaining parts of the paper are structured as follows. Section 2 in-
troduces necessary formal notions and gives an overview over related work. In
Section 3 we adopt the underlying island computation process from [WM08].
The main theoretical contribution of our work is in Section 4, the isomorphism



criteria for islands. We show our implementation in Section 5 and provide initial
evaluation results in Section 6. The paper is concluded in Section 7.

There is an extended version of this paper available with proofs and further
comments on the implementation and evaluation [WM10].

2 Preliminaries

For details about syntax and semantics of the description logic ALCHI we refer
to [BCM+07]. Some definitions are appropriate to explain our nomenclature,
however. We assume a collection of disjoint sets: a set of concept names NCN ,
a set of role names NRN and a set of individual names NI . The set of roles NR
is NRN ∪ {R−|R ∈ NRN}. We say that a concept description is atomic, if it is a
concept name or its negation. With SAC we denote all atomic concepts.

Furthermore we assume the notions of TBoxes (T ), RBoxes (R) and ABoxes
(A) as in [BCM+07]. An ontology O is a tuple 〈T ,R,A〉, where T is a TBox,
R is a RBox and A is a ABox. We restrict the concept assertions in A to
only use atomic concepts. This is a common assumption, e.g. in [GH06], when
dealing with large assertional datasets stemming from databases. With Ind(A)
we denote the set of individuals occurring in A. Throughout the remaining part
of the paper we assume the Unique Name Assumption (UNA), i.e. two distinct
individual names denote distinct domain objects.

In Example 1 we define an example ontology, used throughout the remain-
ing part of the paper to explain definitions. The example ontology is in the
setting of universities. We evaluate our ideas w.r.t. to “full” LUBM [GPH05]
(in fact LUBM without the transitive role subOrganzationOf , because we han-
dle ALCHI) in Section 6. Although this is a synthetic benchmark, several (if
not most) papers on scalability of ontological reasoning consider it as a base
reference.

Example 1. Let OEX1 = 〈TEX1,REX1,AEX1〉, s.t.

TEX1 ={Chair ≡ (∃headOf.Department) u Person, Prof v Person,
GraduateCourseTeacher ≡ Prof u ∃teaches.GraduateCourse}

REX1 ={headOf v worksFor}
AEX1 =see Figure 2

Next we discuss related work relevant to our contribution. In [SP08], the
authors discuss a general approach to partition OWL knowledge bases and dis-
tribute reasoning over partitions to different processors/nodes. The idea is that
the input for their partitioning algorithm is a fixed number of desired parti-
tions, which can be calculated by different means (weighted graphs, hash-based
distribution or domain specific partitions). The partitions are not independent
from each other. Moreover, in some cases, the data is just arbitrarily spread
over the different nodes in the networks. This leads to a noticeable amount
of communication overhead between the nodes because partial results have to
be passed in between the nodes. The authors discuss rather small data sets,



Fig. 2. Example ABox AEX1

e.g., 1 million triples. These problems can already be solved with state-of-the-
art tableau-based reasoning systems. Furthermore, their evaluation only talks
about speed-up, without mentioning the actual run-time, or referring to some
open/state-of-the art implementation.

The work in [UKOvH09] proposes a technique based on MapReduce [DG04]
to compute the closure (set of all implications) over ontologies (in the spirit of
Abox realization). Given the underlying MapReduce framework, their approach
could scale in theory. The major difference to our work is that we focus on
query answering instead of brute force (bottom-up) generation of all possible
implications of a given knowledge base. Moreover we focus on more expressive
description logics and it is at least doubtful, whether their approach will work
for expressive logics, i.e., logics allowing for disjunctions or the specification of
ontologies which have only infinite models.

The authors of [BS03] discuss an approach to integrate ontologies from dif-
ferent sources in a distributed setting. They introduce so-called bridge-rules to
identify, which parts of the ontologies overlap (and thus need to be communi-
cated between the different reasoning nodes). The main focus of their work is
rather on the integration of distributed ontologies, but not on scalable query
answering over large ontologies. There is additional work on distributed Data-
log implementations (see, e.g., [ZWC95] and [GST90]) and on non-distributed
reasoning optimization techniques for description logics [GH06].

3 Island calculation

In [WM08], a method is proposed to identify the relevant information (assertions)
to reason about an individual. The main motivation is to enable in-memory
reasoning over large ontologies, i.e. ontologies with a large ABox, for traditional



tableau-based reasoning systems. More formally, given an input individual a,
the proposal is to compute a set of ABox assertions Aisl (a subset of the source
ABox A), such that for all concept descriptions C, we have 〈T,R,A〉 � C(a)
iff 〈T,R,Aisl〉 � C(a). We call these sets of assertions islands. Despite the fact
that query answering is , in order to support more complex reasoning tasks, e.g.,
answering conjunctive queries, island computation as described in [WM08] is not
enough. Given an instance retrieval task for concept C with respect to ontology
O =〈T,R,A〉, a naive approach will iterate over all individuals a ∈ Ind(A) of
the input ABox in order to determine whether 〈T,R,A〉 � C(a). If yes, then a
is included in the result set for the instance retrieval query.

The performance of instance retrieval queries in [WM08] depends highly on
the number of individuals in the ABox. For 100 universities, we have around
300.000 individuals, i.e., 300.000 islands. If we assumed that one instance re-
trieval check takes around 1 ms, we would need already 1 hour to answer one
instance retrieval query on a single machine. If one intended to improve query
answering times using a MapReduce approach, one could parallelize the island
checks. For example, in the best case, one would need to have 3600 machines at
ones disposal to obtain all answers within one second. If the average instance
checking time is higher, or the number of individuals is larger (= more universi-
ties), then the situation becomes even worse. Thus, our motivation is to further
improve instance retrieval time, while still supporting expressive logics.

4 Similarity of Islands

In the following, we discuss how islands can be used for optimized instance
retrieval tests. The main insight is that many of the computed islands are similar
to each other. Especially in database-oriented scenarios, ontologies contain a lot
of individuals following patterns defined by a schema (the terminology of the
ontology). If it is possible to define a formal notion of similarity for islands, and
to show that it is sufficient to perform reasoning over one representative island
instead, then query answering can potentially be increased by several orders of
magnitude (depending on the number of dissimilar island classes). We consider
an example to demonstrate the idea of island similarities.

In Figure 3 we show the extracted islands of all professors in our example
ontology OEX1. While all four graphs are different, they have some similarities
in common, and this can be exploited to optimize reasoning over these islands.
To define similarities over islands, we formally introduce the notion of an island
and define the similarity criterion.

Definition 1. A individual-island-graph IIG is a tuple 〈N,φn , φe , root〉, such
that
– N is a set of nodes,
– φn : N → 2SAC is a node-labeling function (SAC is the set of atomic con-

cepts),
– φe : N ×N → 2Le is a edge-labeling function



Fig. 3. Example: Islands of the four Professors in OEX1

– root ∈ N is a distinguished root node.

If we have φe(a, b) = ρ and ρ 6= ∅, then we write a
ρ−→IIG b. The definition

of individual-island-graphs is quite straight-forward. In the following we define
a similarity relation over two individual-island-graphs, based on graph bisim-
ulations. Although the term bisimulation is usually used in process algebra to
define similar processes, we use it here in the context of graphs.

Definition 2. A bisimulation over IIG1 = 〈NIIG1 , φnIIG1
, φeIIG1

, rootIIG1〉
and IIG2 = 〈NIIG2 , φnIIG2

, φeIIG2
, rootIIG2〉 is a binary relation RIIG1,IIG2 ⊆

NIIG1 ×NIIG2 , such that
– RIIG1,IIG2(rootIIG1 , rootIIG2)
– if RIIG1,IIG2(a, b) then φnIIG1

(a) = φnIIG2
(b)

– if RIIG1,IIG2(a, b) and a
ρ−→IIG1 a‘ then there exists a b‘ ∈ NIIG2 with

b
ρ−→IIG2 b‘ and RIIG1,IIG2(a‘, b‘)

– if RIIG1,IIG2(a, b) and b →ρ
IIG2

b‘ then there exists a a‘ ∈ NIIG1 with
a
ρ−→IIG2 a‘ and RIIG1,IIG2(a‘, b‘)

Definition 3. Two individual-island-graphs IIG1 and IIG2 are called bisimi-
lar, if there exists a bisimulation R for them.



Example 2. To illustrate these definitions we show individual-island-graphs for
amanda, jim, and frank, together with a possible bisimulation between amanda
and jim:
– IIGamanda = 〈Namanda, φnamanda, φeamanda, rootamanda〉, s.t.

Namanda ={xamanda, xcl, xlaura}
φnamanda ={xamanda → {Prof}, xcl → {Course}, xlaura → {Student}}
φeamanda ={(xamanda, xcl) → {teaches}, (xlaura, xcl) → {takes}}

rootamanda ={xamanda}

– IIGjim = 〈Njim, φnjim, φejim, rootjim〉, s.t.

Njim ={yjim, yai2, ytl, yluis, yanna, ylisa}
φnjim ={yjim → {Prof}, yai2 → {Course}, ytl → {Course}, yluis → {Student}, ...}
φejim ={(yjim, yai2) → {teaches}, (yjim, ytl) → {teaches}, (yluis,

xai2) → {takes}, ...}
rootjim ={yjim}

– IIGfrank = 〈Nfrank, φnfrank, φefrank, rootfrank〉, s.t.

Nfrank ={zfrank, zai, zinf , zalice, zanna}
φnfrank ={zfrank → {Prof}, zai → {Course}, zinf → {Department},

zalice → {Student}, zanna → {Student}}
φefrank ={(zfrank, zai) → {teaches}, (zfrank, zinf ) → {headOf},

(zalice, zai) → {takes}, (zanna, zai) → {takes}}
rootjim ={zjim}

– Rjim,amanda =

{(xamanda, yjim), (xcl, yai2), (xcl, ytl), (xlaura, yluis),

(xanna, ylisa)}

It is easy to see that Rjim,amanda is a bisimulation for the islands (graphs)
of the individuals jim and amanda. Furthermore, it is easy to see that there
cannot be a bisimulation, for instance, between jim and frank.

The important insight is that bisimilar islands entail the same concept sets for
their root individual if the underlying description logic is restricted to ALCHI.
This is shown in the following theorem.

Theorem 1. Given two individuals a and b and any concept description C, it
holds that 〈T,R, ISLAND(a)〉 � C(a) ⇐⇒ 〈T,R, ISLAND(b)〉 � C(b) if there
exists a bisimulation Ra,b, for ISLAND(a) and ISLAND(b).

For the proof see [WM10]. The above theorem can be easily lifted to the case
of more than two individuals, i.e. if we have n individuals, and for all of their
islands one can find a bisimilarity relation, it is sufficient to perform instance
checking on one island. In practice, especially in database-oriented ontologies,
this can dramatically speed up the time for instance retrieval. To show this, we
need to further introduce some mathematical notions.



Definition 4. An individual-island-equivalence ∼ISL is an equivalence relation
over individual islands, such that we have ∼ISL (ISL1, ISL2) if we can find a
bisimulation RISL1,ISL2 between the two islands ISL1 and ISL2. With [∼ISL]
we denote the set of equivalence classes of ∼ISL.

The main theoretical result of our work is summarized in the following theorem.

Theorem 2. Given an ontology 〈T,R,A〉, one can perform grounded instance
retrieval for the atomic concept C over [∼ISL].

For details see [WM10]. Please note that our approach does not work directly
for more expressive description logics, e.g. SHOIQ. In the presence of cardinal-
ity restrictions we will need more sophisticated bisimulation criteria to identify
similar nodes, since the number of related similar individuals matters. Nominals
can further complicate the bisimulation criteria, since individuals can be forced
by the terminological axioms to refer to the same domain object, i.e. one might
need to compute all TBox consequences in the worst case.

5 Distributed Implementation

We have implemented our proposal for Island Simulations in Java. For ontol-
ogy access we use the OWLAPI 2.2.0 [BVL03]. The general structure of our
implementation, a description of each component, and additional performance
optimization insights can be found in [WM10]. Here we only give a short overview
on the modules.
– (Server) OWL-Converter: converts OWL data to an internal representation
– (Server) Update Handler: determines changed islands in case of ontology

updates
– (Server) Island Computer: computes the island for a given individual and

performs similarity computation
– (Server) Node Scheduler : determines the responsible node for the island:

Round-Robin / capability-based
– (Server) TBox/ABox Storage: terminological/assertional part of the ontol-

ogy.
– (Client) Query Manager: determines all active islands and uses the DL Rea-

soner module to find out which islands match the input query.
– (Client) DL Reasoner: implements an interface to a general description logic

reasoner (in our case we used RacerPro [HM03]).
One more remark on our implementation should be pointed out here: While
loading an ontology we built a dependency tree for storing which impact updates
on particular islands have, e.g., we store that if we add a teaches-relation to
a particular individual (island), we obtain another fixed island. This kind of
lookup-table greatly improved the performance in our tests because we do not
have to recompute complete islands in case there were similar updates before.
As usual, in order to obtain optimal performances, many details have to be
appropriately handled.



Fig. 4. Input size and load time (number of universities on the x-axis)

6 Evaluation

Our tests were run with respect to the synthetic benchmark ontology LUBM
[GPH05]. Although some people claim that LUBM does not fully represent all
the capabilities provided by the complete OWL specification, we think that it fits
our constraint of database-oriented ontologies: rather small and simple TBox,
but a bulk of assertional information with a realistic distribution with respect to
numbers of professors, students, departments, etc. In our evaluation we compare
three different measures to determine the performance of our implementation:

– Load time: In Figure 4 we show the size of the assertional part in triples and
compare the load time with different number of nodes in our network (1, 2
and 4 nodes). The load time only represents the time spent to traverse the
input ontology once in order to compute the bisimilarity relation over all
islands of all individuals. It can be seen that the load time increases linearly
with the number of triples in the assertional part. Please note that our
loading algorithm is designed and implemented as an incremental algorithm.
Thus, if we add a new assertion, we do not have to recompute all internal
structures, but only update relevant structures.

– Preparation time: This measure indicates an initial preparation time after the
ontology is fully loaded. The time is spent to prepare the internal structures
of the DL reasoner for incoming queries. Please note that this preprocessing
step is independent of the query and only performed once after the ontology
was updated. The idea is that we can perform incremental bulk loading
(measured in load time) without updating the (expensive) internal structures
of the DL reasoner all the time.
In the left part of Figure 5, we show the query preparation time for different
numbers of universities and different numbers of nodes in the network. The
number of nodes indeed affects the query preparation time. If we use 8 nodes,
the preparation time is almost 1

8 of the time needed for one node. Thus, the
distribution of computational power works for query preparation.
In the right part of Figure 5 we indicate the necessary number of islands to
perform instance retrieval with the original work in [WM08]. The number



Fig. 5. Query preparation time and island count

of islands increases linearly with the size of the input ontology for [WM08]
(please note the logarithmic scale). Using bisimulation, the number of islands
is almost constant for all input ontologies, since most of the newly introduced
individual-islands are bisimilar to each other, e.g., professors who teach par-
ticular students in particular kinds of courses.

– Query answering time: The third measure indicates how long the actual
query answering process takes. In Figure 6, the query answering time (for
instance retrieval) for the concepts Chair (small number of answers, linearly
growing with the number of universities) are shown. Please note that query
answering times are rather independent from the chosen concept description
for instance retrieval. We only focus on Chair, since it is also commonly
used in the literature to perform benchmarks on LUBM because instances of
Chair are not syntactically identifiable. In Figure 6 we show the time needed
to identify the islands which entail instances of the concept Chair. This is
the actual description-logic-hard task. In addition one needs to lookup all
individuals for the given islands, which is a database-dominated task and
usually takes linear time.

Fig. 6. Query answering time



7 Conclusions

We have proposed a method for instance retrieval over ontologies in a distributed
system of DL reasoners. To the best of our knowledge, we are the first to propose
instance retrieval reasoning based on similarity of individual-islands. The results
are encouraging so far. We emphasize that our approach especially works for
ontologies with a rather simple or average size terminological part. For future
work, it will be important to investigate more ontologies and check the perfor-
mance of our proposal. Furthermore, we want to extend our proposal to more
expressive description logics, e.g. SHIQ or even SHOIQ.

References

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook. Cam-
bridge University Press, New York, NY, USA, 2007.

[BS03] Alex Borgida and Luciano Serafini. Distributed description logics: Assim-
ilating information from peer sources. J. of Data Semantics, 1:153–184,
2003.

[BVL03] S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the
OWL API, 2003.

[CDGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics for
ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI
2005), pages 602–607, 2005.

[DFK+09] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and
Kavitha Srinivas. Scalable highly expressive reasoner (SHER). Web Se-
mant., 7(4):357–361, 2009.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In OSDI 2004, pages 137–150, 2004.

[FKM+06] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and
Kavitha Srinivas. The summary abox: Cutting ontologies down to size.
The Semantic Web - ISWC 2006, pages 343–356, 2006.

[GH06] Yuanbo Guo and Jeff Heflin. A scalable approach for partitioning OWL
knowledge bases. In SSWS 2006, Athens, GA, USA, November 2006.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[GST90] Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. A framework for the
parallel processing of datalog queries. SIGMOD Rec., 19(2):143–152, 1990.

[HM03] V. Haarslev and R. Möller. Racer: A core inference engine for the semantic
web. In Proceedings of the 2nd International Workshop on Evaluation of
Ontology-based Tools (EON2003), located at the 2nd International Seman-
tic Web Conference ISWC 2003, Sanibel Island, Florida, USA, October 20,
pages 27–36, 2003.

[KMWW08] Alissa Kaplunova, Ralf Möller, Sebastian Wandelt, and Michael Wessel.
Approximation and ABox Segmentation. Technical report, Institute for
Software Systems (STS), Hamburg University of Technology, Germany,
2008. See http://www.sts.tu-harburg.de/tech-reports/papers.html.



[SP08] Ramakrishna Soma and V. K. Prasanna. Parallel inferencing for OWL
knowledge bases. In ICPP ’08: Proceedings of the 2008 37th International
Conference on Parallel Processing, pages 75–82, Washington, DC, USA,
2008. IEEE Computer Society.

[UKOvH09] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen.
Scalable distributed reasoning using MapReduce. In 8th International
Semantic Web Conference (ISWC2009), October 2009.

[WM08] Sebastian Wandelt and Ralf Möller. Island reasoning for ALCHI ontolo-
gies. In Proceedings of the 2008 conference on Formal Ontology in Infor-
mation Systems, pages 164–177, Amsterdam, The Netherlands, 2008. IOS
Press.

[WM10] Sebastian Wandelt and Ralf Möller. Distributed island-based query an-
swering for expressive ontologies. Technical report, Institute for Software
Systems (STS), Hamburg University of Technology, Germany, 2010. See
http://www.sts.tu-harburg.de/tech-reports/papers.html.

[ZWC95] Weining Zhang, Ke Wang, and Siu-Cheung Chau. Data partition and
parallel evaluation of datalog programs. IEEE Transactions on Knowledge
and Data Engineering, 7(1):163–176, 1995.


