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Abstract. Scalability of reasoning systems is one of the main criteria
which will determine the success of Semantic Web systems in the future.
The focus of recent work is either on (a) systems which rely on in-memory
structures or (b) not so expressive ontology languages, which can be dealt
with by using database technologies.

In this paper we introduce a method to perform query answering for
semi-expressive ontologies without the limit of in-memory structures.
Our main idea is to compute small and characteristic representations of
the assertional part of the input ontology. Query answering is then more
efficiently performed over a reduced set of these small represenations. We
show that query answering can be distributed in a network of description
logic reasoning systems to scale for reasoning. Our initial results are
encouraging.

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes in-
creasingly important. While in recent years the focus was on pure terminological
reasoning, the interest shifts now more to reasoning with respect to large as-
sertional parts, e.g. in the order of millions or billions of triples. The first steps
were done in [FKM™06]. The authors propose to extract a condensed summary
graph out of the assertional part of an ontology, and then perform reasoning on
that summary. [FKM™06] reports encouraging performance results. However,
for avoiding inconsistencies due to merging, the summaries have to be rewrit-
ten in expensive query-dependent refinement steps. With increasing number of
refinement steps necessary, the performance of the aproach degrades [DFK*09].
Moreover, the technical criteria for summarization (creating representative nodes
by grouping concept sets), seems arbitrary. In [WMO08], a method is proposed to
identify the relevant islands, i.e. set of assertions/information, required to reason
about a given individual. The main motivation is to enable in-memory reason-
ing over ontologies with a large ABox, for traditional tableau-based reasoning
systems.

Given the island of an individual, we will make the idea of summarization
more formal. In this paper we present an approach to execute efficient instant
retrieval tests on database-oriented ontologies. The main insight of our work is
that the islands computed in [WMO8] can be checked for similarity and instance
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Fig. 1. Efficient query answering for expressive description logics ((KMWWO08])
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retrieval can then be performed over equivalence classes of similar islands. The
query answering algorithm for instance retrieval over similar islands is imple-
mented in a distributed manner. We report interesting scalability results with
respect to our test ontology: increasing the number of nodes in the network by
the factor of n almost reduces the query answering time to % Moreover, we
implemented our algorithm in such a way that the input ontology can be loaded
in a offline phase and changed afterwards incrementally online.

Figure 1 is taken from [KMWWO08] and shows the general structure of a
reasoning system for expressive description logics. Our approach is situated in
the modules Partitioning and Candidate Eliminator.

The remaining parts of the paper are structured as follows. Section 2 intro-
duces necessary formal notions and gives an overview over Related Work. The
main theoretical contribution of our work is in Section 3, the isomorphism cri-
teria for islands. We show our implementation in Section 4 and provide initial
evaluation results in Section 5. The paper is concluded in Section 6.

There is an extended verison of this paper available with proofs and further
comments on the implementation and evaluation [WM10].

2 Preliminaries

For details about syntax and semantics of the description logic ALCHZ we refer
to [BCM™07]. Some definitions are appropriate to explain our nomenclature,
however. We assume a collection of disjoint sets: a set of concept names Ncoy
a set of role names Nry and a set of individual names Nj. The set of roles Nr
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is Ngy U{R™|R € Nrn}. We say that a concept description is atomic, if it is a
concept name or its negation. With S4¢ we denote all atomic concepts.

Furthermore we assume the notions of TBoxes (7'), RBoxes (R) and ABoxes
(A) as in [BCMT07]. A ontology O consists of a 3-tuple (7, R, A), where 7 is a
TBox, R is a RBox and A is a ABox. We restrict the concept assertions in A to
only use atomic concepts. This is a common assumption, e.g. in [GH06], when
dealing with large assertional datasets stemming from databases. With Ind(.A)
we denote the set of individuals occurring in 4. Throughout the remaining part
of the paper we assume the Unique Name Assumption (UNA), i.e. two distinct
individual names denote distinct domain objects.

In Example 1 we define an example ontology, used throughout the remain-
ing part of the paper to explain definitions. The example ontology is setting
of universities. We evaluate our ideas w.r.t. to “full” LUBM [GPHO5] in Sec-
tion 5. Although this is a synthetic benchmark, several (if not most) papers on
scalability of ontological reasoning consider it as a base reference.

Ezxample 1. Let Opx1 = (Tex1, Rex1, Aex1), s.t.

Tex1 ={Chair = 3headO f.Department M Person, Prof C Person,
GraduateCourseTeacher = Prof M Jteaches.GraduateCourse}
Rex1 ={headOf C worksFor}

Agx1 =see Figure 2

Next we discuss related work relevant to our contribution. In [SP08], the authors
discuss a general approach to partition OWL knowledge bases and distribute rea-
soning over partitions to different processors/nodes. The idea is that the input
for their partitioning algorithm is a fixed number of desired partitions, which will
be calculated by different means (weighted graphs, hash-based distribution or
domain specific partitions). The partitions are not independent from each other.
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Moreover, in some cases, the data is just arbitrarily spread over the different
nodes in the networks. This leads to a noticeable amount of communication
overhead between the nodes, because partial results have to be passed in be-
tween the nodes. The authors discuss rather small data sets, e.g. 1 million triples.
These problems can already be solved with state-of-the-art tableau-based reason-
ing systems. Furthermore, their evaluation only talks about speed-up, without
mentioning the actual run-time, or referring to some open/state-of-the art im-
plementation. The work in [UKOvHO09] proposes a MapReduce [DG04]-based
technique, to compute the closure (set of all implications) over ontologies. Given
the underlying MapReduce framework, their approach could scale in theory.
The major difference to our work is that we focus on query answering, instead of
brute force (bottom-up) generation of all possible implications of a given knowl-
edge base. Moreover we focus on more expressive description logics and it is
at least doubtful, whether their approach will work for non-deterministic logics
(e.g. allowing for disjunctions). The authors of [BS03] discuss an approach to
integrate ontologies from different sources in a distributed setting. They intro-
duce so-called bridge-rules to identify, which parts of the ontologies overlap (and
thus need to be communicated between the different reasoning nodes). The main
focus of their work is rather on the integration of distributed ontologies, but not
on scalable reasoning over large ontologies in general. There is additional work
on distributed Datalog implementations (e.g. [ZWC95] and [GST90]) and on
non-distributed reasoning optimizations/techniques for description logics, e.g.
[GHO6].

3 Similarity of Islands

In the following, we discuss how islands can be used for optimized instance
retrieval tests and answering conjunctive queries. The main insight is that many
of the computed islands are similar to each other. Especially in database-oriented
scenarios, ontologies contain a lot of individuals, which follow patterns defined
by a schema (i.e. the terminology of the ontology). If it is possible to define a
formal notion of similarity for islands, and show that it is sufficient to perform
reasoning over one representative island, instead of all these similar islands, then
query answering can potentially be increased by several orders of magnitude
(depending on the number dissimilar island classes). We consider an example to
clarify the idea of island isomorphisms more clear.

In Figure 3 we show the extracted islands of all professors in our example on-
tology Ogx1. While all four graphs are different, they have some similarities in
common, which can be used to optimize reasoning over these islands. To define
similarities over islands, we introduce formally the notion of an island and define
a similarity criterion.

Definition 1. A individual-island-graph ITG is a tuple (N, ¢y, de,T00t), such
that
— N is a set of nodes,
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Fig. 3. Example: Islands of the four Professors in Ogx1

— ¢n : N — 254¢ s q node-labeling function (Sac is the set of atomic con-
cepts),

— ¢e : N x N — 25 s q edge-labeling function

— root € N is a distinguished root node.

If we have ¢.(a,b) = p and p # 0, then we write a £77¢ b. The definition of
individual-island-graphs is quite straight-forward. In the following we define a
similarity relation over two individual-island-graphs, based on graph bisimula-
tions. Although the term bisimulation is usually used in process algebra to define
similar processes, we use it here in the context of graphs.

Definition 2. A bisimulation over I1G1 = (Nira,,Pnirc,s Perra, rootira,)
and I1G2 = (N11Gy, Pn11Gys Perrc, TOOLIIG,) is a binary relation Ry, rra, €
N x N, such that

— Rirey 116, (rootrra,, rootric,)

— if R11Gy,1165(a,b) then én 1, (a) = dnyra, ()

— if Rrig,.116,(a,b) and a LHGI a‘ then there exists a b° € Nyjq, with
b Lrra, b and Ry, ric, (a', b))
if Rrrc, 11¢,(a,b) and b —>’;IG2 b then there exists a a* € Nirg, with

p
a =116, 0 and Rrrg, 11G,(a‘,b’)
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Definition 3. Two individual-island-graphs [1G, and I1IGs are called bisimi-
lar, if there exists a bisimilation R for them.

Ezample 2. To make these definitions more clear, we show individual-island-
graphs for amanda, jim and frank, plus a possible bisimulation between amanda
and jim:

- IIGamanda = <Namanda7 ¢namanda7 ¢e amanda’ TOOtamanda>7 s.t.

Na.manda :{$amanda7 ZLel, mlau'ra}
d)"amanda :{xamanda - {PTOf}, Lel — {COUTS@}, Llaura — {Student}}
¢6amanda :{(xamandayxcl) g {teaChes}a (xlauray :Ecl) - {takes}}

T00tamanda :{xamanda}
- [IGjim = <Njim7¢njim7¢ejim7T00tjim>7 s.t.

Njim :{yjzrru Yai2, Yty Yluisy Yanna, ylisa}
P jim =1Yjim — {PTof}, Yaiz — {Course}, yu — {Course}, yiuis — {Student}, ...}
b jim ={(Yjim> Yaiz) — {teaches}, (Yjim,yu) — {teaches}, (Yiuis, Taiz) — {takes},...}

r00tjim ={yjim}
- IIGf’rank = <Nf7‘ank7 ¢’ﬂf’rank7 ¢5frank7 TOOtf’rank)y s.t.

Nirank ={Zfrank, Zai, Zinf, Zalices Zanna

Wn prank =1Zfrank — {Prof}, za; — {Course}, ziny — {Department},
Zatice — {Student}, zanne — {Student}}

Pe frank ={(2frank, 2ai) — {teaches}, (zfrank, zins) — {headOf},
(2atice, zai) — {takes}, (Zanna, 2ai) — {takes}}

TOOtjim :{Zfrank}
- Rjim,amanda =

{(Iamandaa y]zm), (mch yai2)a (:L'ch ytl), (-Tla'uma7 yluis)7

(xlauTag yluis)g (mannay ylisa)}

It is easy to see, that Rjim amanda 1S a bisimulation for the islands (graphs) of the
individuals jim and amanda. Furthermore, it is easy to see that there cannot
be a bisimulation, for instance, between jim and frank.

The important insight is that bisimilar islands entail the same concept sets for
their root individual, if the underlying description logic is restricted to ALCHI.
This is shown in the following theorem.

Theorem 1. Given two individuals a and b, we have (T, R,ISLAND(a)) F
C(a) <= (T,R,ISLAND()) E C(b), if we can find a bisimulation Ry, for
ISLAND(a) and ISLAND(b).
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The above theorem can be easily lifted to the case of more than two individuals,
i.e. if we have n individuals, and for all of their islands one can find a bisimilarity
relation, it is sufficient to perform instance checking on one island. In practice,
especially in database-oriented ontologies, this can dramatically speed up the
time for instance retrieval. To show this, we need to further introduce some
mathematical notions.

Definition 4. A individual-island-equivalence ~;g; is an equivalence relation
over indwidual islands, such that we have ~jgr, (ISL,ISL), if we can find a
bistimulation Rrsr, rsr between the two islands ISL and ISL. With [~rsr] we
denote the set of equivalence classes of ~sy,.

The main theoretical result of our work is summarized in the following theorem.

Theorem 2. Given an ontology (T, R, A), one can perform grounded instance
retrieval for the atomic concept C over [~rsr], instead of all islands.

Please note that our approach does not work directly for more expressive de-
scription logics, e.g. SHOZQ. In the presence of cardinality restrictions we will
need more sophisticated bisimulation criteria to identify similar nodes, since the
number of related similar individuals matters. Nominals further complicate the
bisimulation criteria, since individuals can be forced by the terminological ax-
ioms to refer to the same domain object, i.e. one might need to calculate all
TBox-implications in the worst calse.

4 Distributed Implementation

We have implemented our proposal for Island Simulations in Java. For ontol-
ogy access we use the OWLAPI 2.2.0[BVL03]. The general structure of our
implementation, a description of each component and performance optimization
insights can be found in [WM10]. Here we only give a short overview on the
modules.
— (Server) OWL-Converter: converts OWL data to an internal representation
(Server) Update Handler: determines changed islands in case of ontology
updates
— (Server) Island Computor: computes the island for a given an individual and
performs similarity computation

— (Server) Node Scheduler: determines the responsible node for the island:
Round-Robin / capability-based

— (Server) TBox/ABox Storage: terminological/assertional part of the ontol-
ogy.

— (Client) Query Manager: determines all active islands and uses the DL Rea-
soner module to find out which islands match the input query.

— (Client) DL Reasoner: implements an interface to a general description logic
reasoner (in our case we used Racer [HMO1]).
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5 Evaluation

Our tests were run with respect to the synthetic benchmark ontology LUBM
[GPHO5]. Although some people claim that LUBM does not fully represent all
the capabilities provided by the complete OWL specification, we think that it fits
our constraint of database-oriented ontologies: rather small and simple TBox,
but a bulk of assertional information with a realistic distribution with respect to
numbers of professors, students, departments, etc. In our evaluation we compare
three different measures, to determine the performance of our implementation:

— Load time: In Figure 4 we show the size of the assertional part in triples
and compare the load time with different number of nodes in our network
(1, 2 and 4 nodes). The load time only represents the time spent to traverse
the input ontology one time and compute that bisimilarity relation over all
islands of all individuals. It can be seen that the load time increases linearly
with the number of triples in the assertional part. Please note that our
loading algorithm is designed and implemented as an incremental algorithm.
Thus, if we add a new assertion, we do not have to recompute all the internal
structures, but only update the relevant structures.
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Fig. 4. Input size and load time

— Preparation time: This measure indicates an initial preparation time after
the ontology is fully loaded. Please note that this preprocessing step is query
independent and only performed one time after the ontology was updated.
The idea is that we can perform incremental bulk loading (measured in
load time), without updating the (expensive) internal structures of the DL
reasoner all the time.

In the left part of Figure 5, we show the query preparation time for different
numbers of universities and different numbers of nodes in the network. The
number of nodes indeed affects the query preparation time. If we use 8 nodes,
the preparation time is almost % of the time needed for one node.

In the right part of Figure 5 we compare the necessary number of islands
to perform instance retrieval with the original work in [WMO0S]. It can be
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seen, that the number of islands increases linearly with the size of the input
ontology for [WMO8] (please note the logarithmic scale). Using bisimulation,
the number of islands is almost constant for all input ontologies, since most
of the newly introduced individual-islands are bisimilar to each other, e.g.
professors who teach particular students in particular kinds of courses.

— Query answering time: The third measure indicates how long the actual
query answering takes. In Figure 6, the query answering time (for instance
retrieval) for the concepts Chair) are shown. This is the actual description-
logic-hard task.
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We have proposed a method for instance retrieval over ontologies in a distributed
system of DL reasoners. To the best of our knowledge, we are the first to propose
instance retrieval reasoning based on similarity of individual-islands. The results
are encouraging so far. We emphasize that our approach especially works for
ontologies with a rather simple or average size terminological part. For future
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work, it will be important to investigate more ontologies and check the perfor-
mance of our proposal. Furthermore, we want to extend our proposal to more
expressive description logics, e.g. SHIQ or even SHOIQ.
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