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1

Logical Formalization of Multimedia
Interpretation

Nowadays, many documents in local repositories as well as in resources on the
web are multimedia documents that contain not only textual but also visual
and auditory information. Despite this fact, retrieval techniques that rely only
on information from textual sources are still widely used due to the success
of current text indexing technology. However, to increase precision and recall
of multimedia retrieval, the exploitation of information from all modalities is
indispensable, and high-level descriptions of multimedia content are required.
These symbolic descriptions, also called deep-level semantic annotations, play
a crucial role in facilitating expressive multimedia retrieval. Even for text-
based retrieval systems, deep-level descriptions of content are useful (see, e.g.,
[BCSWOT]).

There is a general consensus that manual annotation of multimedia doc-
uments is a tedious and expensive task which must be automated in order to
obtain annotations for large document repositories. Multimedia interpretation
is defined here as the process of producing deep-level semantic annotations
based on low-level media analysis processes and domain-specific conceptual
data models with formal, logical semantics.

The primary goal of this chapter is to present logical formalizations of
interpretation. The chapter presents pioneering work on logic-based scene in-
terpretation that has a strong influence on multimedia interpretation. Early
approaches are discussed in more detail to analyze the main reasoning tech-
niques. More recent approaches, which are more formal and therefore harder
to understand, are referred to by providing references to the literature such
that the reader can get an overview over the research field of logic-based media
interpretation.

The discussion about scene interpretation is complemented with a presen-
tation of logical approaches to text interpretation. Logical representations for
deep-level video interpretation are discussed afterwards. The main goal of the
chapter is to investigate the role of logic in the interpretation process. In order
to focus on this goal, we neglect probabilistic approaches to this topic (but
we give some pointers to the literature).
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Logic-based media interpretation builds on initial symbolic descriptions of
media content. In the next section, we argue that it is reasonable to expect so-
called multimedia analysis processes to be able to reliably produce description
about information that is, more or less, directly observable.

1.1 Prerequisites for Interpretation: Media Analysis

The identification of directly observable information in different modalities,
also called surface-level information, has been studied in the past for at least
three decades. In natural language processing, information extraction is one
of the major tasks that aims to automatically extract structured information
such as named entities and certain relations between entities. Evaluations have
shown that state-of-the-art information extraction systems are very powerful
language analysis tools that can recognize names and noun groups with an
accuracy higher than 90% [CY99]. Different systems exploit various machine-
learning techniques such as k-nearest neighbors or Hidden Markov Models.
They have been successfully used for solving real-world problems [AHB193].
However, information extraction is a more restricted problem than general
language understanding, and language analysis techniques employed in these
systems provides for simple, reliable symbolic content descriptions but are not
as powerful as full syntactic language analysis. A state of the art system for
text analysis is OpenCalais (http://www.opencalais. com), which returns its
results as annotations to a text in a logic-based language. However, when it
comes to extracting more abstract information such as events that require
a deep understanding of the domain, information extraction systems are re-
ported not to perform well in general [Gri03].

In computer vision, object recognition aims to find objects in images
(scenes) or image sequences (videos). Even though object recognition has
been successfully applied in specific domains, e.g., for finding faces in im-
ages [VJ01], general object recognition is still an unsolved problem. In many
approaches, object recognition follows segmentation, where images are parti-
tioned into homogeneous regions, i.e. sets of pixels. The pixels in a region are
similar w.r.t. some feature such as color, intensity or texture [SHBO7]. The
derivation of homogeneous regions is supported by techniques such as color
histograms or shape analysis. However, when used without further knowledge
resources, these “global” techniques are not appropriate for general-purpose
object recognition in images [JB08]. Therefore, a wide range of local descrip-
tors, such as Harris corners [HS88], Shape Context [BMP02] and Scale Invari-
ant Transform (SIFT) [Low04], have been proposed. Nowadays, local descrip-
tors are successfully used for solving practical problems. For example, SIFT
has been applied to the problem of robot localization in unknown environ-
ments in robotics [SLLO02]. Mikolajczyk and Schmid present a comprehensive
evaluation of various local descriptors [MS05]. We would like to point out that
logic-based representations have also been used at the analysis level (maybe
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in combination with probabilistic or fuzzy representations such as, e.g., in
[SS08]).

Recently, Leibe and Schiele presented an approach that considers object
recognition and segmentation as intertwined processes and uses top-down
knowledge for guiding the segmentation process [LS03]. The authors reported
on experimental results that show the capacity of the approach to categorize
and segment diverse categories such as cars and cows. As a result, even though
object and event recognition in the general domain is beyond the capabilities
of current technology [KLSGO3], the identification of observable information
in image and video sequences in specific domains can indeed be achieved with
state-of-the-art computer vision systems. Information extraction from text
and the field of computer vision are related research fields providing the input
required for the interpretation process.

Thus we can reasonably assume that the above-mentioned analysis pro-
cesses can compute symbolic descriptions of media content, and make such
descriptions available as input to multimedia interpretation processes. It is
also very well possible that media analysis can be influenced by media inter-
pretation. But for the time being we consider analysis and interpretation as
sequential steps. In any case, the discussion reveals that recent advances in
media analysis provide for a solid foundation to the derivation of deep-level
abstract content descriptions based on a logical representation language.

1.2 Logic-based Scene Interpretation

In this section we present related work on scene interpretation that has a
strong influence on the design of multimedia interpretation processes. In fact,
the multimedia interpretation problem, for which also modalities beyond im-
ages are relevant, can be considered as a generalization of scene interpretation.
Although there exist a substantial number of approaches to high-level scene
interpretation in the literature, unfortunately, many of them are not built on
representation languages with a formal semantics. In this section we focus
on approaches that exploit formal, declarative representations for scene in-
terpretation and that have been implemented as software systems. Our goal
is not only to cite relevant work on scene interpretation but also to identify
key problems in scene interpretation. We expect the reader to be familiar
with first-order logic and, to some extent, with logic programming as well as
description logic (see pointers to the literature in the text).

1.2.1 Scene Interpretation Based on Model Construction

The first formal theory of scene interpretation based on logics was intro-
duced by Reiter and Mackworth [RM87]. They propose a so-called theory of
depiction and interpretation that formalizes image-domain knowledge, scene-
domain knowledge and a mapping between the image and scene domains using
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first-order logic [RM90]. An interpretation of an image is then defined as a log-
ical model of a set of logical formulae which formalize background knowledge
as well as the output of low-level scene analysis processes.

We shortly discuss the main ideas of the approach in [RM90], and we re-
capitulate the system Mapsee, which has been implemented for the interpre-
tation of hand-drawn sketch maps of geographical regions [MMHS88]. Given a
sketch map consisting of chains', regions and various relations between them,
the goal of the system is to compute an interpretation in terms of roads, rivers,
shores, areas of land, and areas of water, etc.

The image-domain knowledge includes general knowledge about maps such
as the taxonomy of image-domain objects, which are specified through first-
order logic axioms:

Va : image-object(x) < chain(x) V region(z)
Vo : —(chain(x) A region(z))

The first axiom states that chains and regions, so-called image primitives, are
the only objects that can exist in a map, whereas the latter axiom states that
an object cannot be both chain and region at the same time (disjointness
of image primitives). Relations between image-domain objects are also part
of the image-domain knowledge and are specified using predicates such as
tee(c, '), bound(c,r) etc. For example, the predicate tee(c,c¢’) means that
chain ¢ meets chain ¢’ at a T-junction.

The approach assumes a map description to consist of finitely many chains
and regions together with finitely many relations between the chains and re-
gions. Therefore, the system makes the domain closure assumption by postu-
lating that all map objects are completely known. To this end, closure axioms
of the following form are used (i, and i/, are constants):

Ve : chain(z) & =z = i1 V-V =iy
Vo region(z) & x = V.- Ve =i
Va,y: tee(z,y) & (x = 1Ay = )V---V (z = ixp Ay = 1})

Furthermore, the system makes the unique name assumption by assuming
that all constants (e.g., image primitives such as chains and regions) denote
different objects. Scene-domain knowledge is represented by axioms for ob-
jects such as roads, rivers, shores, or land and water areas. For instance, the
following equivalence, coverage and disjointness axioms are used.

Yz : scene-object(x) < linear-scene-object(x) V area(x)
Va : linear-scene-object(x) < road(zx)V river(x), Vshore(z)
Vo : —(road(z) A river(z))

Va : —(linear-scene-object(x) A area(x)) ...

! Chain is the term used in the original paper for polylines.
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In addition, the scene-domain knowledge base contains also specific re-
strictions such as, for instance, rivers do not cross each other:

Yo,y : river(z) Ariver(y) = - cross(z,y)

Axioms that restrict the domain and range of relations to scene objects only
are also used:

Va,y: cross(x,y) = scene-object(x) A scene-object(y)

Besides the specification of intra image- and scene-domain axioms, also
inter-domain axioms between the image and scene domain are specified (so
called mapping axioms). The mapping axioms are represented using the binary
predicate A(i,s) meaning that image object ¢ depicts scene object s. The
depiction relation only holds between image and scene objects:

Vi, s: A(i, 8) = image-object(i) A scene-object(s)

For specifying image-scene-domain mappings, closure and disjointness axioms
are provided.

YV : image-object(x) V scene-object(x)
YV : —(image-object(x) A scene-object(z))

Furthermore, it is assumed that every image object i depicts a unique scene
object, which is denoted by o (%):

Vi : image-object(i) = scene-object(c(i)) N A(i,o(i)) A [Vs : A(i,s) = s = o(i)]
and every scene object is depicted by a unique image object:
Vs : scene-object(s) = (3} : image-object(i) A A(i, s))

The notation 3} : a(x) means that there exists exactly one x for which a(z)
holds. Finally, mappings between the image- and scene-objects

Vi,s: A(i,s) Aregion(i) = area(s)
Vi, s: A(i, 8) A chain(i) = linear-scene-object(s)

and mappings between relations of the image and scene domains are specified:

Vii, 42,81, 82 : A(il, 81) A\ A(ig, 52) = tee(il,ig) = jOi’I’LS(Sl, 82)
Vi1, ia, 81,82 1 A1, 81) A Alia, s2) = chi(iy,iz) < cross(sy, $2)

The above-mentioned axioms state that tee? relations in the image depict joins
relations in the scene and vice versa, whereas chi® relations in the image depict
cross relations in the scene.

2 Shorthand for T-junction.
3 Shorthand for X-junction.
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Given the specification of all relevant image-domain axioms, scene-domain
axioms and mapping axioms, Reiter and Mackworth define an interpretation
of an image, specified as set of logical facts, as a logical model of these facts
w.r.t. the axioms in the knowledge base.

The main problem here is that, in principle, a set of first-order formulas
may have infinitely many models, which in turn might be infinite, and, there-
fore, the computation of all models may become impossible. Even worse, it is
undecidable in general whether a set of first-order formulas has a model at all.
However, Reiter and Mackworth show that as a consequence of the assump-
tions made in their logical framework, it is possible to enumerate all models.
In fact, under the additional closed-world assumption, finite extensions of all
predicates can be used in the models, and therefore quantified formulas can
be replaced with quantifier-free formulas. Consequently, first-order formulas
can be reduced to propositional formulas, for which the computation of all
models is possible [GN87]. Reiter and Mackworth formulate the problem of
determining all models of the resulting propositional formulas as a constraint
satisfaction problem (CSP). Although, in general, CSPs of this kind are NP-
hard, and thus computationally intractable, several efficient approximation
algorithms exist, which have also been used in the Mapsee system [MMHS88].

Reiter and Mackworth also show that for the computation of the models
using CSP algorithms, only scene axioms are relevant and all other axioms
can be ignored. This gives rise to the question whether the distinction between
image- and scene-domain knowledge is necessary. This distinction makes the
formal specification more involved, but at the same time, allows for a sepa-
rate representation of general knowledge about the image and scene domains.
However, in the first-order logical framework it is not possible to check for the
consistency of general knowledge bases, for which no domain-closure axioms
can be specified. Furthermore, the logical framework presumes the unambigu-
ous acquisition of image objects, scene objects and their relations, as well
as the depiction relations such that unique specifications can be obtained.
These assumptions are obviously too strict for general purpose scene interpre-
tation and largely neglect issues such as noise and incompleteness (see also
the discussion in [RM90]). Therefore, in [Po093] Poole, the exploitation of
probabilistic knowledge is studied using the Mapsee scenario.

Schroder [Sch98] criticizes that representing interpretation results in terms
of logical models (as done in the Mapsee approach) yield interpretations that
might be too specific, which, in turn, might cause an over-interpretation of
observations. He suggests the notion of a partial model [Sch98], a relational
structure detailed enough to represent the commonalities between all models.

1.2.2 Scene Interpretation Based on Abduction

Inspired by the work of Reiter and Mackworth, Matsuyama and Hwang
present a vision system called SIGMA, in which they apply logic to scene
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interpretation [MH90]. In contrast to Reiter and Mackworth, they do not as-
sume the availability of an a priori image segmentation, and do not make
domain-closure and unique-name assumptions for the image domain. Con-
stant symbols representing image-domain objects are not available in the be-
ginning, but have to be created through an expectation-driven segmentation
approach, which is part of the interpretation process. Consequently, also con-
stant symbols representing scene objects are not available in the beginning of
the interpretation process and have to be computed through hypotheses. This
is why Matsuyama and Hwang call their approach constructive, and we will
argue that nowadays it would have been called abductive.

Matsuyama and Hwang use aerial images of suburban areas that typically
show houses and roads. First-order logic axioms are used to represent general
knowledge about the application domain. For example, the fact that every
house is related to exactly one street is represented as follows (for the sake of
the example the relation is called rel)

Va : house(x) = (y : road(y) Arel(z,y) AVz : (road(z) Arel(z,2)) = z =y)

This formula can be transformed into clausal normal form (with an implicit
conjunction operator between the formulas on separate lines).

—house(x) V road(f(x))
—house(x) V rel(x, f(x))
—house(x) V —road(z) V —rel(x,z) V z = f(x)

Existential quantification is replaced with terms using so-called Skolem func-
tions. A Skolem term replaces an existentially quantified variable and denotes
a certain domain object, depending on the universally quantified variable in
whose scope the replaced existentially quantified variable is located. As an ex-
ample, assume an aerial image depicting a house. The house is represented by
the constant hy. Given the above-mentioned axioms representing the general
knowledge about the domain and information about the existence of a house
in the scene, namely house(hq), the following information is entailed:

road(f(h1))
rel(hy, f(h1))
—road(z) V —rel(h,z) V z = f(h1)

Here, the new domain object f(h1) denoted using the Skolem term f is called
an expected object, in this example a road, and has to be identified in the
image.

In the SIGMA system, different classes of scene objects and spatial rela-
tions are defined through necessary conditions.

Vz : road(x) = greater(width(z),5) A less(width(zx), 100) A ribbon(shape(z))
Vx,y : rel(z,y) = parallel(axis(z), axis(y)) A distance(center(x), center(y), 50)
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Object attributes such as width, shape, axis or center are modeled through
functions, predicates regarding spatial attributes such as greater, less, ribbon,
parallel or distance are modeled as constraints. These axioms define conditions
that must hold for objects of the scene domain, and thus can eliminate certain
models.

Assume that our sample image depicts also a road. Then, the road is
represented in the scene domain as well, e.g. by the constant r;. After adding
a new axiom to represent this information, namely road(r1), the following
information is entailed:

—rel(hy, 1) Ve = f(hy)

In the SIGMA system, spatial relations of the image domain are not mapped
to relations whose domain and range are the scene domain. In addition, for
spatial relations of the scene domain such as rel only necessary conditions
are defined but not sufficient ones. Therefore, it cannot be proved logically,
whether rel(hq,r1) holds or not. To solve this problem, a special equality
predicate is used in SIGMA, which reflects two important assumptions about
equality of objects: 1) Two scene objects are considered to be identical, if they
are of the same type, e.g. road, and have the same shape and position, i.e.
occupy the same space. ii) If an existing object in the scene domain fulfills all
conditions that an expected object has to fulfill, both objects are considered
to be identical.

In our example, if r; fulfills all conditions that have to be fulfilled by
the expected object f(hi) then as a result of the equality assumption, the
hypothesis r1 = f(hy) is generated, and later rel(hy,r1) is derived. In case
no suitable scene object that is identical to the expected object f(h1) exists,
the conditions of the expected object f(hi) are used for an expectation-driven
image analysis process to identify an object in the image. In case an object is
identified, a new constant symbol is introduced in the image domain, e.g. rs,
and the hypothesis road(rs) is created. Afterwards, the hypothesis ro = f(hq)
is generated and rel(hy,rs) is derived.

In order to guarantee termination, expected objects are not allowed to
trigger the derivation of new expected objects, e.g. g(f(r1)). In other words,
expectations are not used to derive further expectations. Expectation gener-
ation is done solely through the exploitation of constant symbols, which can
only be introduced by an expectation-driven image analysis process.

The hypothesis generation process in SIGMA computes so-called interpre-
tation networks, i.e., networks consisting of mutually related object instances.
Multiple interpretation networks can possibly be constructed for an image. In
an interpretation network, multiple objects instances may be located in the
same place in the scene. Such instances are called conflicting instances, and
a so-called in-conflict-with relation is established between them. It should be
noted that the SIGMA system applies no heuristics to select among the pos-
sible sets of networks but delivers the first computed set of networks as the
result.
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In [MH90], Matsuyama and Hwang not only present the general approach
followed in the SIGMA system, but also discuss the computation of scene
interpretations. According to the authors the goal of scene interpretation is
to provide for an explanation of the observations, i.e. of the images, through
the exploitation of axiomatize general knowledge about the world. They ob-
serve that the computation of scene interpretation cannot be achieved through
deductive reasoning only: axioms [~ observations.

The axioms representing general knowledge in terms of universally quanti-
fied formulas do not entail concrete observations (facts). Instead of a deductive
reasoning approach, Matsuyama and Hwang follow the hypothetical reasoning
approach of Poole et al. [PGA87, Poo89] where the task is to compute a set
of logical hypotheses such that following conditions are fulfilled:

i) Azioms U Logical _Hypotheses |= Observations
ii) SAT(Azioms U Logical _Hypotheses)

Poole’s work is the first in which the space of abducibles is declaratively spec-
ified. He uses Horn rules and a set of so-called assumables (aka abducibles)
in order to specify which predicates are assumed to be true in a backward-
chaining inference process over the Horn rules. The set of these hypotheses
are returned as part of the result of the reasoning process (see also [P0093]).
This form of reasoning has been introduced by Peirce [Pei78] under the name
abduction in the late 19th century. Contrary to deduction where we can reason
from causes to effects, in abduction we can reason ‘backwards’, i.e, from effects
(observations) to causes (explanations). Abduction is also often defined as a
reasoning process from evidence to explanation, which is a type of reasoning
required in several situations where the available information is incomplete
[Ali06]. Abduction has been widely used to formalize explanation-based rea-
soning and plays an important role in intelligent problem solving tasks such
as medical diagnosis [PGAS87] and plan recognition [CG91]. Formalizing the
interpretation of camera data in a robotics scenario, Shanahan has also ar-
gued for an explanation-based (abductive) approach to scene interpretation
[Sha05]. As described in [Sha05], logic is used for analyzing the behavior of
specific procedural programs developed for scene interpretation.

Despite the fact that logic is a useful tool for analyzing (and describing) the
behavior of computational systems, and despite the fact that the retrospective
use of logic has its merits, nowadays logical reasoning systems have reached
a state of maturity such that declarative reasoning services can be used to
directly solve the interpretation problems in an abductive way. As has been
said before, [Po093] uses Horn clauses for generating scene interpretations (in
an abductive way) and exploits Bayesian networks for ranking alternatives.
Recent developments of this significant theory, for which even a practical
reasoner implementation exists, can be found in [Poo08] and [PM10].

Another logical approach in which scene interpretation is realized by a
practical reasoning engine for ontologies (which are, in some sense, more
expressive than Horn clauses) is described in [EKMT07, CEF*49]. This
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approach has been extended in [GMNT10] in terms of control strategies
and w.r.t. ranking explanation probabilities using Markov logic networks.
[GMNT10] is the first approach in which the abduction process is system-
atically controlled by generating an explanation only if the agent can prove
that the probability that the observations are true is substantially increased.
This solves the termination problem in explanation generation inherent in
early approaches such as, e.g., the one of Matsuyama and Huang.

Besides abduction, in [EKM'07] also deduction plays an important role.
Something is abduced only if it cannot be proven to hold. We therefore analyze
related work on scene interpretation based on deduction. The main question
is whether the input (stemming from low-level scene analysis processes) can
be made specific enough such that useful conclusions can be computed using
deduction principles. Interestingly, somewhat contrary to common expecta-
tions, the main message here is, logical deduction is indeed able to compute
important results w.r.t. scene interpretation based on sensible expectations
w.r.t. analysis results.

1.2.3 Scene Interpretation Based on Deduction
First Approaches to Logic-based Interpretation using Deduction

The VEIL project (Vision Environment Integrating Loom) [RPM*98, RMS97]
is a research project that aims to improve computer vision programs by ap-
plying formal knowledge representation and reasoning technology. To this end
a layered architecture integrating vision processing and knowledge representa-
tion has been proposed. In this architecture a computer vision program oper-
ates at the pixel level using specialized data structures to deal with low-level
processing, whereas the knowledge representation system Loom uses symbolic
structures to represent and reason higher-level knowledge.

One of the major goals of VEIL is to enable the construction of explicit
declarative vision models. This is achieved by exploiting the knowledge repre-
sentation and reasoning facilities provided by the Loom system [MB87, Bri93].
The Loom system provides support for an expressive knowledge representa-
tion language in the KL-ONE family and reasoning tasks. It supports not only
deductive reasoning but provides also facilities to apply production rules. The
declarative specification of knowledge offers various benefits: i) It is easier to
maintain than a procedurally specified program. ii) It enables the application
of automatic validation and verification techniques. iii) Data is represented in
a high-level specification instead of application-specific data structures, and
thus can easily be shared or reused by other applications.

Similar to the Mapsee and to SIGMA systems, also in the VEIL project
domain knowledge is represented in two different models. The site model is a
geometric model of concrete objects found in a particular image such as run-
ways, markings, buildings and vehicles. The so-called domain model contains



1.2 Logic-based Scene Interpretation 11

not only concrete objects such as roads, buildings, and vehicles but also ab-
stract objects such as convoys (groups of vehicles) and field training exercise
events.

The VEIL application scenario is the detection and analysis of aerial pho-
tographs of airports. Airports are modeled as collections of runways, which
are long thin ribbons with markings (smaller ribbons) in certain locations.
Aerial images are analyzed by the computer vision system through standard
analysis techniques such as the Canny edge detector [Can86] to produce hy-
potheses. A sequence of filtering and grouping operations are then applied
to reduce the number of hypotheses. In the next step, hypotheses are veri-
fied using the information in Loom’s site model. For example, the site model
describes markings in terms of their sizes, relative positions and position on
the runway. The domain knowledge represented using Loom is used to con-
strain the set of possible hypotheses. For example, descriptions of the size
and location of markings are used to rule out some hypotheses generated by
the computer vision system. The generation of hypotheses, however, is not
declaratively modeled. Logic-based deduction (consistency checking) is used
to narrow down the space of possible hypotheses.

The work on VEIL shows that declarative representations and deduction
as an inference service are useful for scene understanding, although the con-
struction of the space of hypotheses for each scene is not done in terms of log-
ical reasoning in VEIL but using a procedural program. In the VEIL project,
deductive reasoning is employed to classify an instance as belonging to a con-
cept. For example, assume that a group of pixels in an image is identified as a
vehicle instance v; and added to the knowledge base. Further analysis of the
same group of pixels might unveil that v; has tracks. Adding this information
to the knowledge base, Loom classifies vy as a tracked-vehicle instance, where
the concept tracked-vehicle is defined as a subconcept of the concept vehicle.
This is possible, because the concept tracked-vehicle is defined with necessary
and sufficient conditions, which are all fulfilled by v;. Note that instance clas-
sification has been used even before VEIL in the context of detecting visual
constellations in diagrammatic languages (cf. [Haa95, Haa96]).

Ontology-based Interpretation

The exploitation of the ideas behind VEIL in the much more formal context
of ontologies has been investigated by Hummel in [HTL07, Hum10]. In her
work, Hummel describes a realistic scenario for logic-based traffic intersection
interpretation. Based on a crossing model using carefully selected primitives,
ambiguity is reduced by “integrating” cues in a logical framework. It is in-
teresting to see how underspecified information derived by low-level analysis
processes can be enriched using logical reasoning. In contrast to VEIL, which
is based on incomplete reasoning, the work of Hummel uses a sound and com-
plete reasoner and an expressive description language. Hummel found that
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soundness and completeness are mandatory in order to effectively reduce am-
biguity such that (indefinite) cues from analysis processes are condensed to
obtain useful interpretation results by deductive interpretation processes.

The overall goal of the system defined by Hummel is to facilitate au-
tonomous car driving through the interpretation of road intersections. To this
end, the system is provided as input with sensor data from a camera and a
global positioning system (GPS) mounted on a vehicle, as well as with data
from a digital map. For each road intersection the system is then requested
to answer questions such as ‘Which driving directions are allowed on each
lane?’, "Which of the map’s lanes is equivalent to the vehicle’s ego lane?’; etc.
Answering such questions requires reasoning since general regulations of roads
and intersections as well as partial and non-complementary information from
various sensors about the current situation of the car have to be considered
together.

In her work, Hummel investigates appropriate ways for representing rele-
vant scene information in description logics (DLs). Being a decidable subset
of first-order logic, DLs are are family of logical representation languages for
which highly optimized reasoning systems exist. Terminological knowledge
is formalized in terms of terminology (concepts and relations) in a so-called
Thox. Assertional knowledge about particular objects is described in a so-
called Abox. For an introduction to DLs see [BCM™T03].

For typical classes of scene information she proposes generic DL representa-
tions, which she refers to as design patterns. In particular, she presents design
patterns for representing sensor data and qualitative scene geometry models in
DLs. In the context of road intersection interpretation, different sensor setups
are investigated as well. If a still image from a single sensor is interpreted, the
unique-name assumption (UNA) should be imposed such that two individuals
in the Abox are always interpreted (in the sense of first-order logic) as different
objects. However if data is acquired by multiple, non-complementary sensors,
objects are detected multiple times, and hence the UNA need not hold. For
the multiple sensor setup, Hummel requires the UNA to hold within data ac-
quired by a single sensor only, which she calls the local UNA. She reports the
local UNA to have been implemented as a procedural extension that enhances
a knowledge base through the application of rules in a forward-chaining way.

Furthermore, Hummel investigates scene interpretation tasks with respect
to their solvability through standard deductive DL inference services. These
tasks are

1. Object detection, i.e., the discovery of new scene objects

2. Object classification, i.e., the assignment of labels to a detected object

3. Link prediction, i.e., predicting the existence and types of relationships
between objects

4. Data association, i.e., the identification of a set of measurements as refer-
ring to the same object.
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For her experiments Hummel develops a sophisticated Thox for represent-
ing a road network ontology (RONNY), in which the qualitative geometry
and building regulations of roads and intersections are specified. Building on
these grounds, she describes a case study where the logic-enhanced system
solves interpretation tasks using RONNY and sensor data from a stereo vi-
sion sensor, a global positioning system, and a digital map. The performance
of the system in solving object detection, object classification and data asso-
ciation tasks has been evaluated on a sample set of 23 diverse and complex
intersections from urban and non-urban roads in Germany.

She shows that in order solve the object classification task with standard
DL inference services, the maximum number of individuals in a scene have to
be added a priori to the Abox, which describes the scene. A corresponding
design pattern has been proposed in [Hum10]. In fact, if this design pattern
is applied, the task of object detection can be reduced to the task of object
classification, which can be solved using the so-called Abox realization DL
inference service. In a nutshell, Abox realization is a deductive DL inference
service that computes for all individuals in an Abox A their most-specific con-
cept names w.r.t. a Thox T. This way, in a sense, objects are “classified”, and
the classification determines in terms of symbols (names) what the systems
knows about domain objects (see the previous subsection on VEIL).

In contrast to object detection and object classification, Hummel identified
that the task of link prediction and data association cannot elegantly be solved
using DLs.

In [Huml0], it is shown that the system built through the integration
of a deductive DL reasoner and a computer vision system can be used to
significantly improve recognition rates of the computer vision system.

1.3 Logic-based Text Interpretation

In a similar way as for scene interpretation, logic-based approaches have
been used for text interpretation. In particular, the work of Hobbs et al. in
[HSMESS8, HSM93] has been influential in conceptualizing text interpretation
as a problem that requires abduction in order to be solved. They developed
a linguistic and knowledge-intensive framework to solve the problem of text
interpretation starting from the derivation of the so-called logical form of a
sentence, a first-order representation capturing its logical structure, together
with the constraints that predicates impose on their arguments. The central
idea of Hobbs et al. is to show that logical forms of (parts of) sentences can
be established as consequences from background knowledge and additional as-
sumptions (formulae to be added). The added formulae provide for a deeper
interpretation.

As an example, consider the following sentence, on which a sequence of
interpretation steps are applied.

(1) Disengaged compressor after lube-oil alarm.
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The reference resolution step analyzes the words “compressor” and “alarm”
and identifies them as so-called references. To establish the reference of com-
pressor, the following logical form is generated for this part of the sentence

(2) 3x : compressor(x)
Given a background knowledge base containing,

starting_air_compressor(cy)
Y @ starting_air_compressor(x) = compressor(x)

i.e., an instance of a “starting air compressor”, namely ¢;, and the definition
of starting air compressor as a specific type of compressor, then the logical
form (2) extracted from the sentence (1) can be resolved to the instance ¢,
ie.,

compressor(cy)

is derived, and in this sense, the entailment of expression (2) is proved. In this
case no additional assumptions are required.

When a reference formula cannot be proved to be entailed (w.r.t. the back-
ground knowledge), then it is assumed to be true. Here, we find the principle
of abduction be applied. For example, “Lube-oil alarm” is a compound nomi-
nal, thus composed of two entities which are implicitly related to each other.
The problem of determining the implicit relation between the two is called
compound nominal resolution. To interpret “lube-oil alarm”, a logical form is
first extracted, namely

Ty, z,nn : lube_oil(ys) A alarm(z) A nn(y, z),

and, due to the principle explained above, w.r.t. the background knowledge,
it should be possible to find one entity for lube-oil and another for alarm,
and there must be some implicit relation (called nn) between them. If the
entailment of the above formulae cannot be shown, assumptions are necessary
(possible with Skolem terms, see above). Note, however, that assumptions
need not be “least-specific”. For instance, if the background knowledge con-
tains information about the most common possible relations for an implicit
relation, e.g. to denote part-whole relations,

(3) Va,y : part(z,y) = nn(z,y)
or complex relations that can be explained as a for relation,

(4) Va,y : for(z,y) = nn(x,y)

an assumption using part or for can in principle be made rather than use the
more “abstract” relation directly.

As can be observed, there might exist more than one possibility to make
assumptions. To choose between possible candidates, [HSM93] defines a pref-
erence strategy to support this decision problem, called weighted abduction
which will be explained below. We first continue with the example.



1.3 Logic-based Text Interpretation 15

Deciding whether “after lube-oil alarm” modifies the compressor or the
disengaging event is the problem of syntactic ambiguity resolution. To solve
this problem, Hobbs et al. propose the transformation of the problem to a
constrained coreference problem, where the first argument of the predicate
is considered as existentially quantified. In this sense, the extracted logical
expression is:

(5) Fe,c,y,a: after(y,a) Ay € {c,e}

where the existentially quantified variable y should be resolved to the compres-
sor ¢ or the disengaging event e. This problem is often solved as a by-product
of metonymy resolution. metonymy resolution which involves the “coercion”
of words such that the constraints that predicates impose on their arguments
are fulfilled.

For example, in the above sentence (1), the predicate after requires events
as arguments:

(6) Ver,eq : after(er, ea) = event(er) A event(es).

Therefore, it is necessary to coerce the logical form in (5) such that the require-
ments of the predicate after are fulfilled. For this purpose, coercion variables
satisfying the constraints are introduced:

(7) 3k1, ka,rely, rela,y, a : after(ky, ka) A event(ki) A rely(ki,y) A
event(ks) A rely(ka, a)

in this case k1 and ko are the coercion variables related to after instead of
y and a as it was before. Also coercion relations (rely,rels) are introduced.
As can be seen from the example, coercion variables and relations are im-
plicit information and are also generic, which suggests that any relation can
hold between the implicit and the explicit arguments. If there are axioms in
the background knowledge base, expressing the kind of “coercions” that are
possible:

Va,y : part(x,y) = rel(x,y)
Va, e : function(e,x) = rel(e, x)

then, metonymy resolution is solved by abduction.

The next phase aims at computing the cost of the resulting interpretation.
It is anticipated that during the process of proving the entailment of a logical
form (see above) different proofs can be found. In order to find the “less-
expensive” proof Hobbs et al. developed a method called weighted abduction,
which is characterized by the following three features: First, goal expressions
should be assumable at varying costs, second it should be possible to make
assumptions at various levels of specificity, and third, natural language re-
dundancy should be exploited to yield more economic proofs. In this method,
each atom of the resulting ungrounded logical form is weighted with a cost.
For instance, in the formula
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Je, x, ¢, ki, k2, y, a,0 : Past(e)®® A disengage’ (e, x,¢)¥ A compressor(c)®> A
after(ky, k2)® Aevent(k1)310Arel(ky, )30y € {c, e} Nevent (kz)$10 A
rel(ka, a)¥20 A alarm(a)®® A nn(o,a)%2° A lube_oil(0)®®

costs are indicated as superscripts with $ signs. Costs indicate different
weights. An explanation is preferred if the costs of the things to assume are
minimal.

The costs are given according to linguistic characteristics of the sentence,
thus if the same sentences is expressed in a different way, the cost might
vary accordingly. They have analyzed how likely it is that a linguistic expres-
sion conveys new information, and therefore failing to prove the entailment
of the construct is not so costly, contrary to other expressions in which no
new information is conveyed, and therefore it should be possible to prove the
corresponding entailment. For example, the main verb is more likely to convey
new information than a definite noun phrase which is generally used referen-
tially. Failing to prove a definite noun phrase is therefore expensive. For a
more detailed description of this linguistic characteristics, refer to [HSM93].

Besides these weights, there are other factors used to determine the appro-
priateness of an interpretation, namely simplicity and consilience. A simple
interpretation would be one that exploits redundancy in the discourse, such
that the number of assumptions can be reduced, for example by assuming
that two atoms are identical due to semantic knowledge. Consilience refers to
the relation between the number of atoms that have been proved exploiting
redundancy and the total number of atoms to prove. The highest the number
of atoms that have been proved with the less number of assumptions, the more
the explanation is consilient.

In their approach, less-specific explanations are preferred, due to the fact
that the more specific the assumptions are, the more information can be ob-
tained but it is also more likely that they are not correct. This is the so
called informativeness-correctness trade-off. However, if there is evidence in
the background knowledge that allows for a more specific assumption, then
the more specific proof is considered.

As we have argued, the work of Hobbs et al. show us that logic-based
interpretation can account for a large number of effects that naturally occur
in text interpretation. We are now ready to study another modality, namely
the video modality.

1.4 Logic-Based Video Interpretation

For video interpretation, various ontologies have been used. Whereas in some
approaches time points are used (with time points being specified by quanti-
tative numerical values), other approaches use time intervals and qualitative
relations between them. What distinguishes the approaches is the level of
declarativeness of how events to be recognized are specified.
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1.4.1 Early Approaches

The beginnings of symbolic video interpretation can be dated back to the
seminal publication of Tsotsos et al. [TMCZ80] describing the ALVEN sys-
tem for automatic heart disease detection. The basic idea of ALVEN is to
use a frame-based representation in which each frame can be associated
with spatio-temporal constraints describing instantiation restrictions. Spatio-
temporal motion phenomena such as heart contractions are described in terms
of area changes (the initial area is larger than the resulting area). The change
can, for instance, be further characterized using a speed specification, which
can be further constrained using additional predicates describing necessary
conditions (e.g., the area change must not be too large or too small). A small
set of primitive movement descriptors, such as time interval, location change,
length change, area change, shape change, and so on are used to describe all
higher-level motion concepts. Event frames can be linked to one another us-
ing so-called similarity links. Different techniques for event recognition and
hypothesis ranking are explored. The description language used in ALVEN
is inspired by natural language descriptions for motion events investigated in
[Bad75].

Although ALVEN uses a procedural description for the event recognition
process, and does not model event recognition as a logical reasoning problem
(besides inheritance reasoning), it was one of the first systems to use explicit
symbolic representations. ALVEN has influenced the work of Neumann et al.
who were among the first to use a logic-based approach for recognizing events
in street scenes.

1.4.2 Quantitative Approaches for Event Definitions

The goal of Neumann and Novak [NN83, Neu85, NN86] was to support query
answering and the generation of natural language descriptions for street scene
events (the system was called NAOS: NAtural language description of Object
movements in Street scenes). The basis for the NAOS system is a so-called
geometric scene description (GSD): Per timepoint the description consists of
detected objects including their types and their positions.

Given a GSD determined by low-level video analysis processes, basic mo-
tion event descriptions of single objects are generated. Basic motion events
such as move, accelerate, approach, etc. are associated with two timepoints
(start point and end point) in such a way that the resulting interval is max-
imal w.r.t. a sequence of GSD snapshots. Given a set of assertions for basic
motion events, high-level motion events are instantiated based on a set of
declarative event models. The following example demonstrates the main ideas
behind NAOS.*

4 The original syntax used in the NAOS system slightly deviates from the example
presented here. We describe the syntax used in a reimplementation of the NAOS
event recognition engine, which is based on the work described in [MNO08].



18 1 Logical Formalization of Multimedia Interpretation

(define-event-class ((overtake 7objl 7obj2) *tl *t2)
(70bjl vehicle)
(70bj2 vehicle)
((move 7objl) *tl *t2)
((move 7obj2) *tl *t2)
((approach 7objl 7obj2) *tl *t3)
((behind 7objl 70bj2) *tl1 *t3)
((beside 7objl 7obj2) *t3 *t4)
((in-front-of 7objl 7obj2) *t4d *t2)
((recede 7objl 7obj2) *t4 *t2))

Events are specified as Horn rules with object variables (indicated with 7)
and time variables (prefixed with *). The first two conditions impose non-
temporal static restrictions on the types of 7obj1 and 7obj2. The temporal
relation between subevents are indicated using corresponding time variables.
See [MNOS] for a detailed definition of the semantics of event classes in terms
of logical rules.

Implicit constraints are established between temporal variables. We give
the semantics of the above definition in CLP(R) [JMSY92], where holds(Atom)
means that Atom can be proven using an external prover, in this case a de-
scription logic reasoner.

overtake(Objl, 0bj2, T1, T2) :- Tl < T2,
holds(vehicle(Obj1)),
holds(vehicle(0bj2)),
move(Obj1l, T1, T2), T1 < T2,
move (0bj2, T1, T2), T1 < T2,
approach(Objl, 0bj2, T1, T3), T1 < T3,
behind((0Obj1, 0bj2, T1, T3), T1 < T3,
beside((0bjl, Obj2, T3, T4), T3 < T4,
in_front_of ((Obj1, 0bj2, T4, T2), T4 < T2,
recede(0bjl, 0bj2, T4, T2), T4 < T2.

An example for a set of basic motion events derived from a GSD is given
below (we use constants vwl and vw2).

(define-assertion ((move vwl) 7 80))
(define-assertion ((move vw2) 3 70))
(define-assertion ((approach vwl vw2) 10 30))
(define-assertion ((behind vwl vw2) 10 30))
(define-assertion ((beside vwl vw2) 30 40))
(define-assertion ((in-front-of vwl vw2) 40 80))
(define-assertion ((recede vwl vw2) 40 60))

With (define-assertion ((R X) T1 R2)) a corresponding CLP(R) fact
R(X, T1, T2). is denoted (analogously for (R X Y)).
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An example query for our scenario is given as follows (with query results
printed below in terms of variable bindings).

(7- ((overtake 7objl 7obj2) *tl *t2))
-> 0BJ1 = VW1 0OBJ2 = VW2 T1 = [10, 29] T2 = [41, 60]

The substitutions for object and time variables indicate recognized events.
Time intervals indicate the minimum and maximum values for which the
event can be instantiated given the assertions for basic motion events specified
above. It is also possible to query for events involving specific objects (e.g.,
vw2).

(7- ((overtake 7objl vw2) *tl *t2))
-> 0BJ1 = VW1 T1 = [10, 29] T2 = [41, 60]

Note that in contrast to CLP(R), in NAOS there are actual solutions being
generated, and not only consistency checks performed for time variables (or
real variables). Given a query (goal specification), NAOS applies some form
of backward chaining of event class rules to determine bindings for variables.
Backward chaining involves constraint propagation for time variables [Neu85].

In NAOS it is also possible to find instantiations of all declared event
models. The rules are applied in a forward chaining way if there is no specific
goal.

(?-)
Rule OVERTAKE indicates ((OVERTAKE VW1 VW2) 10 60).

Based on the bindings found for events, it is possible to explicitly add event
assertions to the knowledge base (e.g., define-assertion ((overtake vwl
vw2) 10 60). These assertions can then be used to detect even higher-level
events.

As can be seen from the example, the original NAOS system can be used
for an a-posterior analysis of a given set of event assertions. In principle,
the approach can be extended to support incremental event recognition (see
[KNS94] for an early approach based on quantitative data) such that one can
also query for events which might be possible at a certain timepoint.

It should also be emphasized that in general there might be multiple pos-
sibilities for instantiating events. Thus, a combinatorial space for navigating
through logic-based scene models is defined (see [NWO03] for details). Scene
models define classes for high-level events using a first-order language. The
construction process for valid interpretation hypotheses described in [NW03]
is extra-logical, however.

Horn clauses are not the only logical representation language that has
been used in the literature to specify events. In an attempt to formulate scene
understanding and event recognition as a (sequence of) logical decision prob-
lem(s), the approach described in [NMO6] uses ontologies (aka description
logic knowledge bases) as the underlying formalism. In particular, high-level
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event descriptions are generated by employing ontology-based query answer-
ing. The approach in [NMO06] does not specify, however, from which knowledge
sources the queries are taken. Along the same lines, a more methodological ap-
proach is presented by the same authors in [MNOS8]. In this work, event-query
generation is formalized as a form of abductive reasoning, and the space of
abducibles is defined by rules.

As we have seen, in the NAOS approach, event recognition is based on
quantitative information on timepoints, and (simple) constraints over the reals
ensure the semantics of time to be represented in NAOS. In addition, event
assertion with maximal time intervals must be made available to the NAOS
formalism. All assertions are maintained in a large knowledge base.

1.4.3 Qualitative Approaches for Event Definitions

Another idea to represent events is to subdivide facts into temporally ordered
partitions and use qualitative relations between the partitions. This has been
explored in the VEIL system (see above) in order to detect event sequences
that span multiple images. The goal of this scenario is to process a sequence
of images and detect events such as field training exercises. Forty images of a
hypothetical armored brigade garrison and exercise area that share a common
site model have been used in the experiments reported in [RPM198].

In the VEIL context, an event is a sequence of scenes that satisfy certain
criteria. A scene is represented as a set of object descriptions (called a world),
which can be associated with a timestamp. Some of the criteria such as the
temporal order apply across different scenes, whereas other criteria apply only
within a single scene.

A field training exercise is a sequence of scenes showing an armored unit
in a garrison, then moving in convoy, then deployed in a training area and
finally in a convoy again. In order to extract the scenes that meet the criteria
of a field training exercise event, the following query is used:

(retrieve (?Y 781 ?S2 7S3 754)
(and (within-world 7S1 (in-garrison ?7Y))
(within-world ?S2 (convoy ?7Y))
(within-world 7S3 (deployed-unit ?7Y))
(within-world 7S4 (convoy ?7Y))
(before+ 7S1 7S2) (before+ 7S2 7S3) (before+ 783 7S4)))

Query terms, e.g. in-garrison and deployed-unit, are defined in the domain
model. The result of the query is a set of tuples. Each tuple is a field training
exercise event since it satisfies all conditions defined in the query.

It should be pointed out that qualitative relations between states (worlds)
are used in the query language. In this context, there are means for adding
specification of events to the Thox (see, e.g., [ALT07]).

In all approaches to image sequence understanding, be they quantitative
or qualitative, it is important to understand what is made explicit and what is
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added by logical reasoning. The corresponding “design space” is investigated
in detail in [WLMO09]. The main insight is that, given the features of contempo-
rary reasoning systems, event recognition can be formalized as query answer-
ing in the expressive description logic Abox query language nRQL (for an in-
troduction to nRQL see [WMO05]). Building on this query language, [BBB*09)
formalize event recognition (actually, in [BBBT09] event recognition is called
situation recognition) by transforming specifications of linear temporal logic
into nRQL queries.

1.5 Summary

We have sketched major logic-based representation languages that formalize
interpretation using logical decision processes. The most important insights
gained from these works are:

e Existing computer vision systems are well-equipped to process pixel-level
data, whereas formal knowledge representation and reasoning systems are
more appropriate to process symbolic structures. Therefore it is reason-
able to distinguish between surface-level and deep-level information when
building a software system for scene interpretation.

e Even though a scalable system for declarative scene interpretation could
not be built yet, promising results have been achieved. Various benefits
such a system would offer motivate us to develop future logic-based ap-
proaches for multimedia interpretation.

e [t is hardly possible to compute interpretations of an image through de-
ductive reasoning only. The generation of hypothesis in an abductive way
is crucial for scene interpretation, and provides for an appropriate formal-
ization of the generative nature of the interpretation process. Representing
interpretation results in terms of logical models (see the Mapsee approach)
seems to be too specific, and the specificity of models provides for an over-
interpretation of observations.

The goal of scene interpretation is to provide for explanations of the ob-
servations made through the analysis of an image. The explanations have to
be hypothesized since, in general, observations are not entailed by available
background knowledge. In fact, if the available background knowledge would
contain explanations of observations, the computation of an scene interpreta-
tion would be unnecessary since the scene interpretation would already be part
of the background knowledge. Therefore the observations can logically follow
from the background knowledge only if appropriate explanations are hypoth-
esized and added to the background knowledge before. Different approaches
exist in the literature for specifying the “space of abducibles”.
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