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Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Sebastian Wandelt

2011

Abstract. In order to provide automatic ontology-based multimedia annotation for producing linked
data, scalable high-level media interpretation processes are required. In this paper we shortly describe
an abductive media interpretation agent, and based on a Multimedia Content Ontology we introduce
partitioning techniques for huge sets of time-related annotation assertions such that interpretation as
well as retrieval processes refer to manageable sets of metadata.
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1 Introduction

A large amount of multimedia content is available on the Web, and these days appropriate multimedia
documents can hardly be systematically found using keyword-based search. Therefore, the field of Linked
Data has emerged [1]. Linked data are also called rich semantic media in the literature [2]. These research
fields investigate the derivation and mangement of symbolic descriptions for multimedia content. Symbolic
descriptions are anchored at various parts of a multimedia object, and they can be used to link various (parts
of) multimedia objects. Hence the term linked data has emerged. Symbolic content descriptions approximate
human-level interpretations of media content, and, therefore, can be used for systematic document retrieval
based on high-level topic-based queries. Retrieval based on linked data can be enhanced if retrieval processes
are based on ontologies, namely a domain ontology and a general ontology for describing document structure
and content (see, e.g., [3]).

Linked data can to some extent be automatically derived using existing data-driven media analysis
systems. However, there still exists a gap between, for instance, low-level image/video analysis and high-
level image/video interpretation, not to mention human-level understanding. Thus, analysis-level results
obtained from state-of-the-art tools have to be augmented with more abstract symbolic descriptions. This
is accomplished in an automatic process which we call media interpretation. Recent research in the area of
ontology-based media interpretation has shown enormous advances, and we assume that media interpretation
processes can safely generate linked data, to be used in ontology-oriented media retrieval processes. For
brevity, linked-data generation is also called (automatic) annotation in this paper, and we focus on videos
as multimedia objects in order to be as concrete as possible.

The sheer amount of assertions for appropriately describing the content of large media objects makes
media interpretation as well as annotation-based retrieval increasingly difficult. In this paper we advance the
state-of-the-art in several areas by:

1. Proposing a description language for video annotations that supports scalable high-level reasoning about
video content (interpretation as well as retrieval).

2. Explaining ontology-based reasoning techniques for an annotation agent, which is used to compute high-
level interpretations of videos.

3. Showing how to support decomposition-based scalability for reasoning in the context of long streams of
video content.

There already exist various proposals for annotation languages (see, e.g., early approaches based on
MPEG-7 [4, 5] or newer ones dedicated to knowledge management [6]). However, none of the languages
has been developed while keeping in mind scalable stream-based reasoning w.r.t. an ontology (rather than
mere data retrieval). Reasoning is used for media interpretation, which is a service being used for computer-
aided semantics annotation of multimedia (funded by the EU commission in the project CASAM http:

//www.casam-project.eu/). The CASAM Multimedia Content Ontology introduced in this paper (called
MCO for short) is an extension and modification of a previous multimedia ontology described in [7].

Scalability is a significant issue in at least two respects. If we talk about interpretation of a video doc-
ument, then, on the one hand, there is the time dimension to be considered. On the other hand, another
dimension is the interpretation depth. As we have argued above, we can assume that interpretation is based
on explicit (symbolic) low-level information for each perceptive unit. A perceptive unit, such as a video shots,

? This work has been supported by the European Commision under contract FP7-217061 CASAM and by Deutsche
Forschungsgemeinschaft under contract MO-801-1 PRESINT.



2 Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Sebastian Wandelt

is called “segment” in MCO. The aim of interpretation is to compute high-level information for a segment
given the knowledge acquired so far. Thus, in our annotation language we need to be able to represent time
information as well as to support the ability to draw conclusions on higher levels of interpretation. Hence,
the notion of a segment has to be appropriately defined using an ontology, and assertions representing inter-
pretation results at various levels of detail have to be attached to segments using an appropriate annotation
language.

It can easily be seen that this kind of two-dimensional streaming scenario, with multiple streams for
multiple modalities, yields a significant growth of assertions over time. Although our low-level annotation
language is based on a description logic for which efficient typical-case reasoning systems are known, we
need to exploit new partitioning techniques to break down the data descriptions used for interpretation into
smaller pieces to be handled over time. This is even more important if low-level results become available
for time frames in an asynchronous way (maybe with substantial time delays according to the intricacies
of certain tools for different modalities). In order to improve scalability, we identify and use locality in the
video stream. Given an annotation of a video stream, we use split-operations to compute so called “islands,”
which are sufficient for reasoning with respect to the current state of annotation. Running interpretation
tasks on separate islands (instead of the whole set of assertions) improves performance significantly.

The remaining part of the paper is structured as follows. Section 2 presents our motivation for choosing
the description logic ALH−f R+(D) as an ontology language for definition of an annotation language MCO.

In Section 3, we introduce the Multimedia Content Ontology in detail and explain how ALH−f R+(D) is
used to represent the content of multimedia documents. We discuss scalability issues and present solutions
for partitioning large sets of assertions into manageable “islands” or “chunks” in Section 4 such that inter-
pretation processes run efficiently. With several examples we demonstrate the effectiveness of the proposed
techniques. We conclude in Section 5. Due to space contraints, retrieval is not covered in this paper. For
details on island-based instance retrieval, we refer to [8].

2 Representation of Multimedia Content

In order to describe multimedia documents in terms of annotations (stored as metadata), the Moving Pictures
Experts Group (MPEG) has specified the ISO standard Multimedia Content Description Interface, also
denoted as MPEG-7 [4]. In this framework, XML descriptions of multimedia data are associated with content,
with the objective to allow for efficient search and retrieval of multimedia documents. The MPEG-7 schema
language provides for restrictions on valid media descriptions, for which XML query languages defined. If, in
the context of linked data, the inherent problem of XML query languages comes into play, namely the lack
of facilities for querying the name of a relation of which a certain annotation tuple is an element, then RDF-
based representations are beneficial. Proposals for using RDF in the context of MPEG-7-alike representations
have been discussed in the literature as well (e.g., [5]), and retrieval languages such as SPARQL can be used
to find media objects based on RDF content descriptions. RDF query answering with respect to ontologies
means that data (tuples, or triples to be more precise) that can be inferred w.r.t. the ontology are implicitly
added to what is given explicitly in the RDF annotation. Efficient query engines might not materialize
implicit tuples, though. In this case, given the implicit tuples (deductive closure), more media objects are
likely to be found if ontologies come into play for query answering. Note that w.r.t. an ontology, a set of
RDF triples can also become inconsistent. This can be detected with reasoning engines, but is not relevant
throughout this paper (although inconsistencies also restrict the set of possible annotations in the same way
as an XML schema restricts the set of valid annotations).

Ontology languages such as RDFS or OWL2 are languages which have a formal semantics, a feature
that is beneficial for formally defining decision problems and checking correctness of corresponding decision
procedures (aka inference algorithms). However, specific ontologies (aka knowledge bases) specified using
an expressive ontology language reveal more of the “semantics” of media documents as mere RDF triples
do. Ontologies achieve this by adding (lots of) implicit content description tuples to the annotations given
explicitly as part of the documents’ annotations. Thus, we have “semantics” in the sense of formal semantics
of a represenation language and “semantics” in the sense of implciit tuples added to the explicitly given
ones. Many papers in the Semantic Web literature amalgamate these two kinds of “semantics”, suggesting
that semantics in the sense of content descriptions come for free using formal representation languages. For
the latter notion of “semantics,” we prefer the name content description in order not to confuse the reader.
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Content descriptions do not come for free but must be derived using media interpretation processes, which
require dedicated knowledge bases for interpretation knowledge [9].

In MPEG-7, a multimedia document is related to its modality specific content, composed of, e.g., video,
audio, or text, and each of these parts consists of a set of segments specifying “regions” of modality specific
data. At first, we believe it is necessary to be able to specify more general resp. more specific concepts and
roles (e.g. that video content also is of type multimedia content) for building up a taxonomy. Further, it is
important to be able to specify concept disjointness. In order to represent relations (e.g. from content to
segments) roles can be specified, whose domain and range usually are constrained to a specific concept (e.g.,
the role hasMediaDecomposition is constrained to only relate instances of multimedia content to multimedia
segments) and which are possibly functional or transitive. In addition, we propose that for modality specific
concepts the range of roles is further restricted to modality specific concepts (e.g. audio content is only
allowed to be related to audio segments). Finally, for representing multimedia content it is usually necessary
to be able to specify concrete domains such as integers or strings.

We argue that this expressivity is sufficient for the representation and interpretation of multimedia con-
tent for a large range of problems. For example, we propose to abandon existential restrictions on the right
side of inclusion axioms, since we believe that it is not required to constrain multimedia content descrip-
tions to consist of “anonymous” individuals of a specific type (which cannot be retrieved explicitly [10]).
The respective DL is denoted ALH−f R+(D) (restricted attributive concept language with role hierarchies,

functional roles, transitive roles and concrete domains). We made several experiments with the DL reasoner
RacerPro [11] strongly indicating that reasoning with ALH−f R+(D) is efficient.

We now shortly introduce the descripton logic (DL) nomenclature. A DL signature is a tuple S =
(CN,RN,AN, IN), where CN = {A1, ..., An} is the set of concept names (we also use A for concept names
in the sequel). RN = {R1, ..., Rm} is the set of role names. Further, AN is a set of concrete domain attributes
(i.e., roles whose range is a concrete domain). The signature also contains a component IN indicating a set
of individuals. A DL knowledge base OS = (T ,A), defined with respect to a signature S, is comprised of a
terminological component T (called Tbox ) and an assertional component A (called Abox ). In the following
we just write O if the signature is clear from context. An ALH−f R+(D) Tbox is a set of axioms A1 v A2

and R1 v R2 (atomic subsumption), A1 v ¬A2 (disjointness), ∃R.> v A and > v ∀R.A (domain and range
restrictions on roles), > v (≤ 1R) (functional roles), Trans(R) (transitive roles) and A1 v ∀R.A2 (local
range restrictions on roles). An Abox A i is a set of concept assertions A(a) and role assertions R(a, b),
where A is a concept name, R is a role name, and a, b represent individuals. Aboxes can also contain equality
(a = b) and inequality assertions (a 6= b) as well as attribute assertions of the form Attr(a, val) where
Attr is an attribute and val is either a string or an integer (with the obvious denotation). For a detailed
introduction to the incorporation of concrete domains into DLs, to the semantics of concepts and roles, as
well as an introduction to the satisfiability conditions for axioms and assertions we refer to [12] and [13],
respectively. Standard DL decision problems are also formally defined in [13] (e.g., computing the concept
and role hierarchies, as well as concept-based and conjunctive instance retrieval).

3 The Multimedia Content Ontology

In this section the CASAM Multimedia Content Ontology is presented to an extent that the solution to
scalabilitiy problems can be understood. The full MCO can be found at http://www.sts.tu-harburg.de/
casam/mco.owl. In contrast to approaches transforming the complete MPEG-7 standard to RDFS (see e.g.
[5]) or OWL (cf. [14]), our approach is inspired by only use those parts of MPEG-7 describing a general
structure for multimedia documents. The main objective is to effectively exploit quantitative and qualitative
time information in order to relate co-occurring observations. Co-occurrences are detected either within the
same or between different modalities regarding the video shots. In the following, we focus on axioms relating
concept and role names required for these capabilities.

3.1 Concept Hierarchy

In Fig. 1 the concept hierarchy of the multimedia ontology is shown. The A complete multimedia document
is represented by the concept MultimediaDocument . Only one instance of type MultimediaDocument should
be specified for a document to be annotated.
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Individuals which are instances of (subconcepts of) MultimediaContent represent different modalities of
the video. The concept VideoContent represents the video modality and holds all video segments. In the
same way AudioContent holds all segments from the audio modality.

l5cm

Fig. 1. Concept Hierarchy structure of the CASAM Multimedia Content Ontology

The concept TextContent represents text paragraphs associated with certain segments or the whole video.
Auxiliary text documents that are related with the whole annotated video are represented by the subconcept
AuxiliaryContent . During the annotation process, a user can make free text annotations, which describe
the whole multimedia document or a single segment (shot) of the video. These free text annotations are
represented by GlobalUserAnnotationContent resp. LocalUserAnnotationContent . As speech recognized in
the video is transformed into text, the concept SpeechRecognitionContent is also subsumed by TextContent .

To represent parts of the content, MultimediaContent instances can be decomposed into MultimediaSegment
instances. TextSegment refers to words in the text modality. The concept SegmentLocator is used to specify
start and end of segments. The concrete values of start and end represent temporal position information for
audio and video, or denote character positions for text. BoundingBox is used to determine the position of a
recognized object in a video frame. All concepts within the same hierarchy level are disjoint.

3.2 Role Hierarchy

The role hasLogicalDecomposition decomposes the whole media document into the different parts by relating
instances of type MultimediaDocument with modality specific content description individuals (instances of
MultimediaContent). An individual of the type MultimediaContent is associated to its segments by the
role hasMediaDecomposition. To relate an individual of type MultimediaSegment with its locators, the role
hasSegmentLocator is used.

The roles nextTextContent and nextTextSegment are used to specify the order in the text paragraphs resp.
words. Both are transitive roles. Subroles of correlatesWith can be used to represent associations between
content descriptors. A TextContent instance can be related to a VideoSegment using the role belongsTo. We
also use a small subset of the Allen relations [15] to relate video segment, or, more precisely, the locators
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associated with video segments. Note that we do not require reasoning on Allen relations since the corre-
sponding relations are generated based on quantitative data. While o (overlap) describes an intersection
between audio and video locators, m (meets) describes the alignment of two video or two audio segments.
Please note that we compute (qualitative) relations such as o using (quantitative) information about loca-
tor objects. Quantitative information is given in terms of restrictions on values for attributes hasStart and
hasEnd (see Section 3.4).

r4cm

Fig. 2. Role structure of the CASAM Multimedia Content Ontology

The role depicts is used to establish a mapping from individuals of the Mulitmedia Content Ontology
to observations from the domain ontology that were extracted by analysis modules. In a similar way as
depicts, hasInterpretation provides a map to individuals that were generated as a part of interpretations of
observations. To represent the aggregating characteristc of high-level interpretations, the role associatedWith
is used to related high-level interpretations with other interpretations or with directly with observations.

3.3 Range Restrictions

Range restrictions on roles constrain the corresponding role fillers to be of a specific type. For example,

> v ∀hasMediaDecomposition.MultimediaSegment

defines the range restrictions on the role hasMediaDecomposition such that the role filler is constrained to
be of type MultimediaSegment.

Local range restrictions constrain the range of roles further when the role is applied to a specific concept.
The local range restriction

AudioContent v ∀hasMediaDecomposition.AudioSegment

specifies that the range of the role hasMediaDecomposition associated with the concept AudioContent is
further restricted to AudioSegment.

3.4 Attribute values

The attributes hasStart and hasEnd are used to specify time information of video or audio segments. For
example:

AudioLocator(as1), AudioLocator(al1), hasSegmentLocator(as1, al1)

hasStart(al1, “00:43”), hasEnd(al1, “00:52”)

defines the starting time of an AudioSegment e.g. as1 by specifying concrete values to its corresponding
AudioLocator al1. Integer values are used to specify character positions to identify words in larger text
strings. Also regarding the text modality, the property hasConcreteValue is used to associate strings to
instances of specific types such as CityName.

Given quantitative information about start and end time, qualitative relations between locator instances
are computed by the media interpretation agent. From the potential 13 qualitative relations defined by
Allen [15] we explicitly represent o (overlaps) , d (during), and m (meets) between segment locators. As
we will see in the next section the main motivation for the agent for switching from a quantitative temporal
representation to a qualitative one is to achieve scalability. Given the MI Agent defined above, qualitative
relations provide for a possibility to partition the interpretation Abox(es) that always grow(s) over time.
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4 Scalable Video Interpretation

As we have seen above, for improving shot-based video annotation, interpretations are computed for co-
occurrences of locator individuals according to temporal information. In the course of the video interpreta-
tions, Aboxes grow significantly over time. If, for instance, a particular video segment is focused on because
there is a new assertion coming in, referring to this video segment, only very few other assertions are relevant.
Large parts of Aboxes (e.g., for termporally far away parts of the video) need not be processed. In this section
we formalize the subdivision of large Aboxes into meaningful parts (partitions) such that reasoning problems
are handled in the same way as with the large Abox. Reasoning on the small partitions, also called island
reasoning, is known to improve reasoning performance significantly [16]. We start with the introduction of
some important aspects of the media interpretation agent.

4.1 The Multimedia Interpretation Agent

In [9], an agent for Multimedia Interpretation (MI Agent) was introduced. It uses a probabilistic inter-
pretation engine which, among others, is based upon abduction. The idea is to generate explanations for
observations in the form of hypothesized Abox assertions. Given the added assertions and a set of rules
as part of the agent’s knowledge base, the observations are then entailed. The agent computes assertions
that “support” the observations. The MI Agent receives percepts in the form of assertions that represent
the ongoing video analysis and annotation process. The assertions are received in a streaming way by the
MI Agent in small bunches, which we formalize as sets Γ here.

Each Γ is added to the Abox that the agent maintains. Subsequently, a set of forward-chaining rules is
applied. The general form of these rules is

Q1(Y1), . . . , Qn(Yn)→ P (X)

where Q1, . . . , Qn, P denote concept or role names and underlined letters denote (possible) tuples of all-
quantified variables with the condition that each variable appearing in P (X) does also appear in at least
one Qi(Yi). In order to be able to apply a rule, appropriate individuals have to be substituted for the
variables. Conclusions P (i) are then added to the Abox. For the conclusions P (i) the MI Agent seeks
further explanation using an abduction process. The main idea is to backward chain a set of rules of the
form introduced above. Due to space restrictions, this process cannot be explained in detail, and we refer
to [9]. In any case, if the Aboxes get larger and large, performance will degrade if there are no specific
techniques employed.

Example 1 Let us consider an example. There might be a car shown in a video shot, represented by an
assertion Car(c1), and there might be the sound of a door slam, represented by an assertion DoorSlam(ds1).
The car and the door slam are associated to video and audio segments, respectively. Those, in turn, are
associated with locator object. Now let us assume that the car and the door slam co-occur, i.e., the locator
objects for the audio segment is located during the video segment. In Figure 3 a complete scenario for the
example is depicted.

Using relations between time points, one might use rules to define a during relation as a view based on
the quantitative temporal information for the locator objects. However, using relations between time points,
in principle, every locator might be associated with every other locator, and thus the agent can hardly
partition the large Abox into smaller parts. Therefore, we have designed the agent in such a way that it adds
qualitative relations such as overlaps (o), during (d), and meets (m) to make certain temporal information
explicit that is hidden in the quantitative locator time specifications. The motivation for the agent to switch
to the more verbose qualitative representation is that the input Abox becomes partitionable.

Qualitative temporal relations are used in forward-chaining rules to compute assertions the agents then
explains (see above). For instance, based on the forward-chaining rule

∀x, xl, y, yl, w, z V ideoSegment(x), hasSegmentLocator(x, xl),
V ideoLocator(xl), AudioSegment(y), hasSegmentLocator(y, yl),

AudioLocator(yl), d(yl, xl), depicts(x,w), depicts(y, z),
Car(w), DoorSlam(z)→ CarDoorSlam(w, z)
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…

vc1: VideoContent

md1: MultimediaDocument

ac1: AudioContent

as1: AudioSegmentvs1: VideoSegment

hasLogicalDecomposition

hasMediaDecomposition

al1: AudioLocator

hasSegmentLocatordepicts

hasStart hasEnd

depicts

vl1: VideoLocator

00:00:40

hasDocID

c1: Car

“ ID57“

hasLogicalDecomposition

hasMediaDecomposition

ds1: DoorSlam

hasSegmentLocator

hasEndhasStart

00:00:50 00:00:43 00:00:49

d

CarDoorSlam

… ……
…

…

vs2: VideoSegment

vl2: VideoLocator

m

al2: AudioLocator

m

o

…

…

as2: AudioSegment

Fig. 3. A multimedia content structure with co-occurring domain ontology individuals

the role assertion CarDoorSlam(c1, ds1) (marked with an ellipse in Figure 3) is generated and added to
the Abox. This new assertion is seen as a specific observation that requires an explanation [9]. Possible
explanations, e.g., are car entry or car exit events, which might be represented using assertions CarEntry(i1)
or CarExit(i2), where i1 and i2 are new individuals. Both individuals are associated with the car end the
door slam individuals (role associatedWith, see above). Inevitably, in the course of explanation generation,
the Abox grows again significantly. This leads to very large Aboxes (imagine the annotation of a two-hour
movie) and the application of forward-chaining rules (as well as the abduction process) will be very inefficient,
since complex joins for huge relations can hardly be avoided in order to check whether rules are applicable
(and to compute the bindings for variables). Pretty soon, the video description Abox does not fit into main
memory any longer. In the following, we present a proposal to overcome the problem of Aboxes becoming
too large.

4.2 Island Reasoning

As stated before, the input can be considered as a stream. The information content derived from a stream is
collected over time and stored together with the interpretations in an Abox or in multiple ones, respectively,
if more than one interpretation is possible. These Aboxes are put to the previously introduced agenda A. The
more knowledge is gathered, the larger those Aboxes get and the longer it takes to complete all necessary
computations such as applying the forward-chaining rules or arranging the interpretation process itself. In
this case, current state-of-the-art DL reasoning systems cannot deal with this amount of information any
more, because they are build to rely on in-memory structures. To overcome this problem, in [16] island-based
reasoning for ALCHI ontologies is proposed as a solution. In the meantime the island approach is extended
to SHIQ(D) by a more fine-grained syntactical analysis. Since SHIQ(D) is a more expressive description
logic than ALH−f R+(D), the mechanism is also applicable for our annotation language.

The underlying idea is that only a small subset of concept and role assertions called island is necessary to
perform instance checking for a particular given individual i and a given (complex) concept C. The approach
undertaken here is to identify role assertions which can be used during the application of a tableau algorithm
for instance checking [13] (note that (T ,A) �? C(i) can be reduced to checking whether (T ∪ A ∪ {¬C(i)})
is unsatisfiable via a tableau algorithm). First, the ontology is transformed into some kind of normal form,
called shallow normal form. For the details of the transformation please refer to [16]. Given the shallow
normal form, a so-called ∀-info structure for an ontology O is used to determine which concepts are (worst-
case) propagated over role assertions in an Abox. This helps to define a notion of separability. The following
definition of O-separability is used to determine the importance of role assertions in a given Abox A.
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Definition 1. Given an ontology O = (T ,A), a role assertion R(a, b) is called O-separable, if we have
INC(O) iff INC(〈T ,A2}〉), where

A2 = A \ {R(a, b)} ∪ {R(a, b′), R(a′, b)} ∪ {b′ : C|b : C ∈ A} ∪ {a′ : C|a : C ∈ A},

s.t. a′ and b′ are fresh individual names and INC(O) denotes an inconsistent ontology O.

R

R R

a b

a ba�b�

Fig. 4. O-separability of a role R

Figure 4 shows a graphical representation of a role that matches the defi-
nition of O-separability. Informally speaking, the idea is that O-separable
assertions will never be used to propagate “complex and new information”
via role assertions. The extraction of islands for instance checking in an
ontology O, given an individual i, is now straightforward. A graph search
can be used that starts from an individual i and follows each non-O-
separable role assertion in the original ABox, until at most O-separable
role assertions are left. All visited assertions are then worst-case relevant
for the reasoning process. Regarding the proposed MCO, the objective is

that implicit information due to value restrictions ∀R.A(i) prevents a separation for role assertions R(i, j),
if A(j) is not explicitly specified in the respective Abox.

Example 1 (cont.) Applying the definition of O-separability to the Abox depicted in Figure 3, islands are

md1: MultimediaDocument

vc1‘: VideoContent

vs1: VideoSegment as1: AudioSegment

hasLogicalDecomposition

hasMediaDecomposition

hasSegmentLocatordepicts

al1: AudioLocator

hasStart hasEnd

depicts

vl1: VideoLocator

hasDocID

c1: Car

“ ID57“
hasLogicalDecomposition

hasMediaDecomposition

ds1: DoorSlam

hasSegmentLocator

hasEndhasStart

d

ac1‘: AudioContent

CarDoorSlam

md1‘‘: MultimediaDocument md1‘: MultimediaDocument

vc1‘‘: VideoContent ac1‘‘: AudioContent

hasLogicalDecomposition

vc1: VideoContent

vs1‘: VideoSegment as1‘: AudioSegment

ac1: AudioContent

hasMediaDecomposition

hasLogicalDecomposition

hasMediaDecomposition

… … … …

00:00:40 00:00:50 00:00:43 00:00:49

vl2‘: VideoLocator

m

al2‘: AudioLocator

m

Fig. 5. Multimedia content structure divided into islands

computed as shown in Figure 5. Instead of applying all possible substitutions, the forward-chaining rule does
only need to be applied to the island with the locators vl1 and al1 in order to add CarDoorSlam(c1, ds1). This
enables parallel processing for abduction and retrieval scenarios. However, given the local range restriction
for AudioContent, if as1 is not explicitly specified as AudioSegment but rather as MultimediaSegment, the
definition of O-separability would be violated for hasMediaDecomposition(ac1, as1) such that the respective
island would be larger than before.

5 Conclusion

Under the consideration of MPEG-7 and [7], a multimedia content ontology has been introduced that is
represented with the DL ALH−f R+(D). Based on time information in Aboxes corresponding to this MCO,
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a multimedia agent performs stream-based forward-chaining and abductive backward chaining in order to
obtain interpretation possibliities. We have seen that partitioning techniques ensure that interpretation
Aboxes can be decomposed into manageable part such that even large videos can be handled (Aboxes can
be swapped to secondary memory).

Some initial experiments were performed to see how the approach behaves in the CASAM context. The
results are very promising and almost all roles were O-separable after qualitative assertions were added to
Aboxes such that quantitative information is no longer required. Thus, we have shown that switching from
a quantitative to a qualitative representation provides practical benefits for the agent.

Our works complements other work on stream reasoning, i.e., for efficiently maintain materialized views
as described in [17]. We show that in some cases the views based on quantitative information can be avoided.
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