
1

Media Interpretation and Companion Feedback for Multimedia
Annotation

Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Sebastian Wandelt

2011

Abstract. Companion technology supports, for instance, context-specific dialogues between a user
and a computational system. We explore this technology in the context of cooperative computer-aided
semantic annotation of multimedia (CASAM). Reasoning-based media interpretation exploits user in-
put and multimedia analysis results to propose high-level media annotations (called interpretations). In
this paper it is shown how queries are generated that are addressed to users of the system, with the goal
to exploit answers such that the number of internal interpretations is substantially reduced. Queries
are associated with so-called importance values specifying the expected degree of disambiguation for
interpretation alternatives.

2

Media Interpretation and Companion Feedback for Multimedia
Annotation

Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, and Michael Wessel

Institute for Software Systems, Hamburg University of Technology
21073 Hamburg, Germany

1 Introduction

To speed up the manual multimedia annotation process, the CASAM project1 (Computer-Aided Semantic
Annotation of Multimedia) investigates the collaboration of human annotators and machine intelligence. Ini-
tially, multimedia analysis results provided by a Knowledge-Driven Multimedia Analysis component (KDMA)
as well as text provided by the user of the system are sent to the Reasoning-based Media Interpretation com-
ponent (RMI) in the form of description logics assertions. RMI explains the received observations in terms
of a set of possible interpretations (additional assertions) based on formalized background knowledge about
domain of interest. Maintaining (large) sets of assertions as interpretation alternatives is a very resource-
consuming task for RMI, especially because interpretations have to be recomputed if new observations are
processed. Therefore, there is an interest to disambiguate interpretation alternatives and to delete them from
the so-called agenda, in particular if interpretations are considered to hold with similar probability. Thus,
the idea is to obtain the extra information in a controlled dialogue with the user.

Recently, a new technology emerged accompanied with the vision of providing new dimensions to the field
of human-computer interaction. The so-called companion technology is targeted to be adaptable, collaborative
and persistent. Instead of helping a user to achieve a clearly defined goal, systems using companion technology
are capable to guide the users also in more complex tasks or even in tasks that are not clearly definable
at all [1]. This technology is based on multimodal interaction with the system, context-specific dialogues
between the user and the system and the ability to transform information regarding the user to a symbolic
representation of knowledge.

In the context of companion technology the main target of CASAM is to enable a dialogue between
the system and the user in order to disambiguate interpretation alternatives. This dialogue is performed by
asking queries to the user of the system. In order to generate queries, the system has to reason about its own
reasoning processes, i.e., it has to perform so-called meta-reasoning, with the objective to provide queries to
the user, such that, given the user provides answers, it expects the largest degree of disambiguation.

The query mechanism of CASAM – as other systems using companion technology – is able to solve
complex tasks in cooperation with the user, in our case a video annotation task. In order to support the
Human Computer Interaction (HCI) component in this way, RMI provides queries, i.e., disjunctions of
assertions. Given the user responds to these queries, RMI can eliminate possible interpretations from the
internal agenda.Queries displayed to a user have certain “costs” since they distract the user from the main annotation task.
In order to specify the value of an answer to a particular query, each generated query is associated with a
so-called importance value. Summarizing, the challenges being investigated in this paper are the following:

1. Generation of context-specific disambiguation queries.
2. Computation of expected degrees of disambiguation for queries (importance values).
3. Processing of answers to queries.

2 Preliminaries

2.1 Preliminaries on Description Logic

One of the main targets of the CASAM project is to support human annotators during their work in producing
elaborate symbolic descriptions for video shots. Annotations are used for later information retrieval and
require a representation language. We assume that a less expressive description logic (DL) should be applied

1 www.casam-project.eu

2 O. Gries, R. Möller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel

Select all that apply:

OpenAirInterview

StudioInterview

Engineer built from PersonFace

Speaker built from PersonFace

ANSWER JUMP ASK LATER

shot global SUBMIT

ANNOTATION TEXT:

USER INPUT QUESTIONS INFO

01:58 / 05:04

Fig. 1. CASAM prototype displaying query choices

to facilitate fast computations. We decided to represent the domain knowledge with the DL ALHf −(D)
(restricted attributive concept language with role hierarchies, functional roles and concrete domains). For
details see [2].

In logic-based approaches, atomic representation units have to be specified. The atomic representation
units are fixed using a so-called signature. A DL signature is a tuple S = (CN,RN, IN), where CN =
{A1, ..., An} is a set of concept names (denoting sets of domain objects) and RN = {R1, ..., Rm} is a set
of role names (denoting relations between domain objects). The signature also contains a component IN
indicating a set of individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowledge) and to talk
about specific individuals (assertional knowledge), a knowledge base has to be specified. AnALHf − knowledge base
ΣS = (T ,A), defined with respect to a signature S, is comprised of a terminological component T (called
Tbox) and an assertional component A (called Abox). In the following we just write Σ if the signature is
clear from context. A Tbox is a set of so-called axioms, which are restricted to the following form in ALHf −:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III)Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV)Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI)Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An

With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles) of each other.
Axioms of form (II) denote disjointness between concepts. Axioms of type (III) introduce domain and range
restrictions for roles. Axioms of the form (IV) introduce so-called functional restrictions on roles, and axioms
of type (V) specify local range restrictions (using value restrictions, see below). With axioms of kind (VI)
so-called definitions (with necessary and sufficient conditions) can be specified for concept names found on
the lefthand side of the ≡ sign. In the axioms, so-called concepts are used. Concepts are concept names or
expressions of the form > (anything), ⊥ (nothing), ¬A (atomic negation), (≤ 1R) (role functionality), ∃R.>
(limited existential restriction), ∀R.A (value restriction) and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is a set of expressions of
the form A(a) or R(a, b) (concept assertions and role assertions, respectively) where A stands for a concept
name, R stands for a role name, and a, b stand for individuals. Aboxes can also contain equality (a = b) and
inequality assertions (a 6= b). We say that the unique name assumption (UNA) is applied, if a 6= b is added
for all pairs of individuals a and b.

In order to understand the notion of logical entailment, we introduce the semantics of ALHf −. In DLs
such as ALHf −, the semantics is defined with interpretations I = (4I , ·I), where 4I is a non-empty set
of domain objects (called the domain of I) and ·I is an interpretation function which maps individuals to

Media Interpretation and Companion Feedback for Multimedia Annotation 3

objects of the domain (aI ∈ 4I), atomic concepts to subsets of the domain (AI ⊆ 4I) and roles to subsets
of the cartesian product of the domain (RI ⊆ 4I ×4I). The interpretation of arbitrary ALHf − concepts
is then defined by extending ·I to all ALHf − concept constructors as follows:

>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf −-knowledge base Σ in
an interpretation I are defined. A concept inclusion C v D (concept definition C ≡ D) is satisfied in I, if
CI ⊆ DI (resp. CI = DI) and a role inclusion R v S (role definition R ≡ S), if RI ⊆ SI (resp. RI = SI).
Similarly, assertions C(a) and R(a, b) are satisfied in I, if aI ∈ CI resp. (a, b)I ∈ RI . If an interpretation I
satisfies all axioms of T resp. A it is called a model of T resp. A. If it satisfies both T and A it is called a
model of Σ. Finally, if there is a model of Σ (i.e., a model for T and A), then Σ is called satisfiable.

We are now able to define the entailment relation |=. A DL knowledge base Σ logically entails an assertion
α (symbolically Σ |= α) if α is satisfied in all models of Σ. For an Abox A, we say Σ |= A if Σ |= α for all
α ∈ A.

2.2 Substitutions, Conjunctive Queries, and Rules

Sequences, Variable Substitutions and Transformations A variable is a name of the form String
where String is a string of characters from {A. . .Z}. In the following definitions, we denote places where
variables can appear with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V . The notation z
denotes a sequence of individuals. We consider sequences of length 1 or 2 only, if not indicated otherwise,
and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉) is to be read as (X,Y) etc. Furthermore, we assume
that sequences are automatically flattened. A function as set turns a sequence into a set in the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individuals mentioned in
an Abox. The application of a variable substitution σ to a sequence of variables 〈X〉 or 〈X,Y 〉 is defined as
〈σ(X)〉 or 〈σ(X), σ(Y)〉, respectively, with σ(X) = i and σ(Y) = j. In this case, a sequence of individuals
is defined. If a substitution is applied to a variable X for which there exists no mapping X ← k in σ then
the result is undefined. A variable for which all required mappings are defined is called admissible (w.r.t. the
context).

Grounded Conjunctive Queries Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn denote
concept or role names. A query is defined by the following syntax: {(X) | Q1(Y1), . . . , Qn(Yn)}. The sequence
X may be of arbitrary length but all variables mentioned in X must also appear in at least one of the
Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms Qi(Yi). The list
of variables to the left of the sign | is called the head and the atoms to the right are called the query body.
The variables in the head are called distinguished variables. They define the query result. The variables that
appear only in the body are called non-distinguished variables and are existentially quantified. Answering
a query with respect to a knowledge base Σ means finding admissible variable substitutions σ such that
Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution σ = [X ← i, Y ← j, . . .] introduces
bindings i, j, . . . for variables X,Y, Given all possible variable substitutions σ, the result of a query
is defined as {(σ(X))}. Note that the variable substitution σ is applied before checking whether Σ |=
{Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query is grounded first.

For a query {(?y) | Person(?x), hasParticipant(?y, ?x)} and the Abox Γ1 = {HighJump(ind1), Person(ind2),
hasParticipant(ind1, ind2)}, the substitution [?x ← ind2, ?y ← ind1] allows for answering the query, and
defines bindings for ?y and ?x.

A boolean query is a query with X being of length zero. If for a boolean query there exists a variable
substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we say that the query is answered with

4 O. Gries, R. Möller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel

true, otherwise the answer is false. Later on, we will have to convert query atoms into Abox assertions. This
is done with the function transform. The function transform applied to a set of query atoms {γ1, . . . γn} is
defined as {transform(γ1, σ), . . . , transform(γn, σ)} where transform(P (X), σ) := P (σ(X)).

Rules A rule r has the following form P (X)← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote concept or
role names with the additional restriction (safety condition) that as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).
Rules are used to derive new Abox assertions, and we say that a rule r is applied to an Abox A. The function
call apply(Σ,P (X)← Q1(Y1), . . . , Qn(Yn),A) returns a set of Abox assertions {σ(P (X))} if there exists an
admissible variable substitution σ such that the answer to the conjunctive query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}

is true with respect to Σ∪A.2 If no such σ can be found, the result of the call to apply(Σ, r,A) is the empty
set. The application of a set of rules R = {r1, . . . rn} to an Abox is defined as follows:

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds. Otherwise
the result of forward chain is determined by the recursive call apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪
apply(Σ,R,A)). For some set of rules R we extend the entailment relation by specifying that (T ,A) |=R A0

iff (T ,A ∪ forward chain((T , ∅),R,A)) |= A0.

2.3 Probabilistic Formalism

An observation is an assertion received by the RMI component with an associated certainty value representing
the degree of belief in that particular assertion. All certainty values are considered as the probability that the
corresponding assertion is true. In [3] it is shown how probabilities of observation Aboxes can be computed
given specific explanations for the observations and the background knowledge that is comprised of a set of
rules R, a set of weighted rules WR, and the Tbox T . Note that rules in R are either applied in a forward-
or in a backward chaining way (see [3] for more details). The determination of the probability is performed
based on the Markov logic formalism [4].

Henceforth, we use P (A) as an abbreviation for the probability of an Abox with respect to the background
knowledge.

3 Companion-Oriented Media Interpretation

The overall CASAM system can also be seen as an agent environment in which the three main compo-
nents HCI, KDMA, and RMI act together as agents. This section describes a Media Interpretation Agent
(MI Agent) which represents the RMI module. It receives low-level analysis results from KDMA as obser-
vations and builds high-level interpretations on it. These interpretations are then communicated to HCI,
in order to be displayed on the user interface, and to KDMA that takes those interpretations as input to
refine its analysis processes (see also [3] for details). As a new feature, in this paper we address how the
agent acquires addtional information for disambiguation purposes. If multiple interpretations are possible,
the MI Agent is interested in disambiguating between the different possibilities. This feature is supported
by the ability to generate disambiguation queries that are sent out to the other agents. Responses to queries,
mainly given by a human annotator through the user interface on which the queries are displayed by HCI,
are then taken into account for the ongoing interpretation process. While the general functionality of the
agent is described in 3.1 and the following figure, the generation of queries is explained in Section 3.2 and
the way the responses are processed is shown in Section 3.3.

2 We slightly misuse notation in assuming (T ,A)∪∆ = (T ,A∪∆). If Σ ∪A is inconsistent the result is well-defined
but useless. It will not be used afterwards.

Media Interpretation and Companion Feedback for Multimedia Annotation 5

Function MI Agent(QΓ ,QΥ , partners, die, (T ,A0),FR,BR,WR, k, ε)
Input: a queue of observations QΓ , a queue of responses to queries QΥ , a set of partners partners, a
termination function die(), a background knowledge base (T ,A0), a set of forward chaining rules FR,
a set of backward chaining rules BR, a set of weighted rules WR, a parameter k indicating the top k
Aboxes on the agenda, and a threshold control parameter ε
Output: –
currentI = ∅, A = {∅};
startThread(λ().

repeat
Γ := extractObservations(QΓ);
W := MAP (Γ,WR, T) ;
Γ ′ := select(W,Γ);
A′ := filter(λ(A).consistentΣ(A),

map(λ(A).Γ ′ ∪ A ∪A0∪
forwardChain(Σ,FR, Γ ′ ∪ A ∪A0),

{select(MAP (Γ ′ ∪ A ∪A0,WR, T),
Γ ′ ∪ A ∪A0) | A ∈ A}));

(A, newI,∆+, ∆−) := interpret(A′, currentI, Γ ′, (T ,A0),
FR,BR,WR∪ Γ, ε);

currentI := newI ;
communicate(∆+, ∆−, partners);
A := manageAgenda(A);
Q := generateDisambiguationQuery(A, k);
if Q 6= ∅ then ask(Q, partners) end;

until die();
);
startThread(λ().

repeat
Υ := extractQueryAnswer(QΥ);
Aa := find(Υ,A);
update(Aa);
A := shift(Aa,A);
newI := head(A);
(∆+, ∆−) := AboxDiff (newI , currentI);
currentI := newI ;
communicate(∆+, ∆−, partners);

until die();
);

3.1 Functionality of the Agent

The MI Agent uses a set of standard functional programming patterns such as map,filter , and zip. Fur-
thermore, a function select is defined that uses the latter two functions. For convenience reasons they are
included in this document.

filter(f,X) =
⋃
x∈X

{
{f(x)} unless f(x) = false

∅ else

The function filter takes as parameters a function f and a set X and returns a set consisting of the values
of f applied to every element x of X.

zip(X,Y) =
⋃

x∈X,y∈Y
{(x, y)}

The function zip produces as output a set of tuples by taking as input two sets X and Y and pairing their
successive elements.

6 O. Gries, R. Möller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel

To select elements y from an ordered set Y using a bit vector that is also represented by an ordered set X,
the function select is defined as follows.

select(X,Y) := λ(X,Y).filter(λ((x, y)).if x then y else false,

zip(X ,Y))

In the MI Agent function, the current interpretation currentI is initialized to empty set and the agenda
A to a set containing empty set. The agent performs an incremental process and uses two distinct threads
for its operation, each one containing a repeat-loop. The first thread will be described below, whereas the
second one, responsible for handling and processing answers to queries, will be explained in 3.3. In case the
agent receives a percept result Γ , it is sent to the queue QΓ . In order to take the observations Γ from the
queue QΓ , the MI Agent calls the extractObservations function. The function MAP (Γ,WR, T), explained
in [3], determines the most probable world of observations Γ ′ with respect to a set of weighted rulesWR and
the Tbox T . It returns a vector W which consists of ones and zeros assigned to indicate whether the ground
atoms of the considered world are true (positive) or false (negative), respectively. The function select(W,Γ)
then selects the positive assertions in the input Abox Γ using the bit vector W as described above. The
selected positive assertions are the assertions which require explanations. The select operation returns as
output an Abox Γ ′ ⊆ Γ .

Next, iterating over all agenda entries A ∈ A the determination of the most probable world by the MAP
function and the selection of the positive assertions is carried out on Γ ′ ∪ A ∪ A0. Then, a set of forward
chaining rules FR is applied to Γ ′∪A∪A0. The generated assertions in this process are added to Γ ′∪A∪A0.
In the next step, only the consistent Aboxes are chosen and the inconsistent Aboxes are removed. Afterwards,
the interpret function is called to determine the new agenda A, the new interpretation Abox newI and the
Abox differences ∆+ and ∆− for additions and omissions among currentI and newI. Afterwards, the Abox
currentI is assigned to newI and the MI Agent function communicates the Abox differences ∆+ and ∆−

to partners. In CASAM, partners = {KDMA,HCI} applies.
Subsequently, the manageAgenda function is called. It incorporates several self-protective techniques,

e.g. the elimination of interpretation Aboxes from A, the agent can apply in order to remain operable if
too many interpretation possibilities exist. This function will be described in detail in a subsequent report.
The last two functions in the processing loop for observations are generateDisambiguationQuery and ask.
As stated above, they are used to calculate disambiguation queries and communicate them to the partners.
The termination condition of the MI Agent function is that the die function returns true. We assume that
the function calls extractObservations(QΓ) and extractQueryAnswer(QΥ) wait for the respective results
to become available.

3.2 Generation of Disambiguation Queries

As stated at the beginning of this section, queries for disambiguation, or queries for short, are sent to the
HCI agent in order to better control the interpretation process. Interpretations are represented by Aboxes
and selecting the Abox Ai from A with the maximum score is an essential step in the interpret function.
In fact, there could be multiple Aboxes which satisfy this criterion or, in a slightly weakened condition,
do not differ much. In this case, the generation of queries for disambiguation between preferable Aboxes is
performed by the agent.
First, we syntactically define a query in Backus-Naur form as

Q ::= Q′ Iv | Q′′ Iv
Q′ ::= α | α OR Q′

Q′′ ::= α | α XOR Q′′

where α is an assertion and Iv ∈ (0, 1] is a real value denoting a so-called importance value of a query. The
assertions are connected by a logical operator, called compound operator.
Using the previously defined syntax, an example query could be

Q = visits(ind1, ind2) XOR visits(ind2, ind1) 0.8.

Media Interpretation and Companion Feedback for Multimedia Annotation 7

This query asks if either the role assertion visits(ind1, ind2) or the role assertion visits(ind2, ind1) applies
to the interpreted content. Because the role visits is defined as an asymmetric role in the domain knowledge,
only one of the assertions can be consistent which is why XOR is chosen as the logical compound operator.
Based on the probabilities of the possible interpretations, we assume that the importance value for this query
is computed to be 0.8. Now that we defined the query syntax, we can take a closer look at the implementation
of the query generation mechanism. It is realized by the function generateDisambiguationQuery which is
defined as follows.

Function generateDisambiguationQuery(A, k)
Input: an agenda A and a parameter k indicating the top k Aboxes on A
Output: a disambiguation query Q
I := {Ai ∈ A | i = 1 . . . k};
D := ∅, Q := ∅;
foreach Ai ∈ I do
DAi

:=
⋂

1≤j≤k,i 6=j Ai \ Aj ;
dAi := selectAssertion(DAi);
D := D ∪ dAi

;

end
if D 6= ∅ then

Op := computeLogicalCompound(D);
Iv := computeImportanceV alue(D, I);
Q := concat(buildQuery(D, Op), Iv);

end
return Q;

Function buildQuery(D, Op)
Input: a set of assertions D and a logical operator Op
Output: assertions concatenated with a logical operator
if D = {dAi} then

return dAi ;
else

return concat(dAi
, Op, buildQuery(D \ dAi

, Op));
end

AiAj

A�
j

DA�
j

DAj

DAi

Fig. 2. Schema of Abox difference

The function generateDisambiguationQuery takes as input an
agenda A of ordered interpretation Aboxes (the order is deter-
mined by a scoring function, see Chapter 2.3) and a parameter
k that indicates the top k Aboxes on A. This is possible because
the Aboxes Ai are ordered by a scoring function. The selected
k Aboxes are those with the highest scores, denoted as I. Addi-
tionally, a set of difference assertions D is initialised to empty
set. After the Aboxes were selected from A, each of them is
processed in a foreach loop. First, the set DAi

, the intersection
of all Abox differences Ai \ Aj between the currently chosen
Abox Ai and all other Aboxes Aj is computed. Compared to
all other Aboxes, these assertions are unique to Ai.

Considering Aboxes as sets, Figure 2 shows a schematic dia-
gram of the Abox difference operation. Aboxes are represented
by light gray circles and intersections of them are marked as
darker gray areas. Assuming the Abox Ai is the current se-
lected Abox and the area DAi

represents the assertion that is unique to Ai. If this set contains more than
one assertion, one of them is chosen randomly, because it does not matter which assertion represents the
uniqueness. This step is realized by the function selectAssertion. The resulting assertion dAi is then added
to D. After the loop terminates, D contains a set of difference assertions that are unique to every Abox
among the top k Aboxes on the agenda A. By using logical conjunction, these assertions build a query that

8 O. Gries, R. Möller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel

is sent out by the agent. The logical compound Op that is told by the agent to connect the assertions is OR
if there is no pair of assertions that is inconsistent with the background knowledge and XOR otherwise.

Importance Value Queries are asked to users in order to reduce the large space of abducibles to the most
appropriate explanations for the observations.

In order to specify the degree of disambiguation that is expected by RMI when a particular query is
answered, each generated query is associated with an importance value. In the following, a first proposal is
presented to compute these values. For answering queries, the user has to invest an amount of time as well
as some cognitive ressoures (“costs”) such that this proposal is not based on simply considering the number
of query disjuncts that are asked to the user.

In order to obtain a degree of disambiguation, queries can be favoured in which there is a pair of disjuncts
(dAi

, dAj
) where the probabilities of the corresponding Aboxes (Ai,Aj) are most similar. According to this,

an importance value is the reciprocal of the minimum min(|P (Ai)− P (Aj)|) of all pairs of disjuncts.
However, in addition, queries can be ranked according to the similarity of the disjuncts itself, since the

more similar the disjuncts are, the more they cannot hold in parallel (i.e., according to the current scene in the
video), and, following to this, the more disjuncts probably will be disambiguated by the user. For example,
the concepts Drought and Pollution are less probable to hold in parallel than Drought and Microphone
(being less similar) such that an answer to the former pair is believed to provide more information for
disambiguation than an answer to the latter pair. An estimation for the similarity of a pair of disjuncts is
the reciprocal of their distance with respect to the underlying taxonomy. For computing the taxonomical
distance of a pair of disjuncts (Ai, Aj), the least common subsumer lcs(Ai, Aj) [5] of these concepts is
computed. Then, dist(Ai, Aj) is the sum of the distances of Ai to lcs(Ai, Aj) and Aj to lcs(Ai, Aj) (cf. [6]).
In the case that Ai = lcs(Ai, Aj) resp. Aj = lcs(Ai, Aj) one of the disjuncts subsumes the other such that
no disambiguation is needed and dist(Ai, Aj) is set to the maximal taxonomic distance of pairs of disjuncts
occurring (or to the maximal depth of the underlying taxonomy, if there is no such maximum). The same
holds for queries with a single disjunct, for pairs of query disjuncts that include a role, or for disjuncts that
refer to the same concept, i.e., differ only in the associated individual.

Let pairs be the set of all unordered pairs (dAi
, dAj

) of query disjuncts. An importance value for a set
D of query disjuncts in (0, 1] is defined by

importance(D) = 1
(1+min(|P (Ai)−P (Aj)|))· 1

2|pairs|
∑

pairs dist(pairs)

The minimal distance of two concepts is 2, since pairs of disjuncts subsuming each other are excluded. In
order to guarantee that the maximal importance of a query is 1, the sum of distances is divided by 2 |pairs |.

3.3 Processing of Query Responses

In the beginning of this section the updated MI Agent was presented. As mentioned before, the agent now
makes use of two distinct threads. In the following we present how the agent reacts to user responses, buffered
in the queue QΥ . Each assertion in D = {dA1

, ..., dAi
}, computed by the generateQueries function, has also

a certainty value ci. This certainty value represents how confident the agent is about this assertion. After
presenting the queries in an human readable form on the user interface, the user is able to select one or more
assertions as an answer. A confirmation of an assertions results in a response where the certainty is increased
to 1 and a rejection of the user, given by a non selected answer possibility, lowers the certainty value to 0.

As soon as the agent receives a response, it extracts the query answer from QΥ by calling the function
extractQueryAnswer(QΥ). Afterwards it has to look up all the Aboxes which contain the assertions in the
response. This functionality is provided by the function find(Υ,A) which returns a set of all interpretation
Aboxes Ia = {Aa ∈ A | υ ∈ Aa ∧ υ ∈ Υ} that are affected by the answer. Then these Aboxes have to be
updated according to the new certainty value of these assertions given by the answer from the user. This
is done by the function update(Ia). Changes of the certainty value of a particular assertion can have an
influence on the certainty value of structures built upon that assertion as well as on the probability of the
whole Abox. Therefore, the certainty values of the assertions and the probability of the Abox has to be
recomputed. If the probability of an Abox changes, also the ranking of that Abox in the agenda might have
changed and the position has to be updated. This is done by the function shift(Ia,A) which sorts all Aboxes
from Ia such that {A1, . . . ,Ai,Aa,Aj , . . . ,An | P (A≤i) ≥ P (Aa) ≥ P (A≥j)} holds. As a consequence of
the shift operation the most probable Abox, ranked at the first position of the agenda, might have changed.

Media Interpretation and Companion Feedback for Multimedia Annotation 9

To handle this possibility, the eventually new most probable Abox is selected by selectHead and assigned to
newI . Afterwards, the Abox-Difference (see [3]) between this Abox and the former best Abox currentI (and
vice versa) is computed. This operation results in additions ∆+ as well as in omissions ∆−. The next step
consists of assigning the newly found most probable Abox to currentI . Finally, the additions and omissions
are communicated to the partners.

3.4 Complete Example

In this section, we discuss an example which shows how the disambiguation queries are generated and how the
user response affects the interpretation process. Let us use a Tbox T := {CarEntry v ¬CarExit, CarEntry v
Movement, CarExit vMovement, . . .} expressing concept disjointness and concept subsumption. Further-
more, we assume that

Γ = {1.3 Car(c1), 1.2 DoorSlam(ds1), causes(c1, ds1)} indicates the set of observation results. Consider
the set of backward chaining rules is

BR = {
causes(x, y)← CarEntry(z), Car(x), DoorSlam(y), hasObject(z, x), hasEffect(z, y)

causes(x, y)← CarExit(z), Car(x), DoorSlam(y), hasObject(z, x), hasEffect(z , y)

causes(x, y)← PickUp(z), Car(x), DoorSlam(y), hasObject(z, x), hasEffect(z , y),

P erson(u), P erson(w), hasParticipant(z, u), hasParticipant(z, w),

hasPart(z, v), House(v), owns(u, x), owns(w, v)

· · · }
Further assume that the set of forward chaining rules FR = ∅. In addition to the above mentioned sets,

we require a set of weighted rules
WR = {

5 ∀x, y, z CarEntry(z) ∧ hasObject(z, x) ∧ hasEffect(z, y)→
Car(x) ∧DoorSlam(y) ∧ causes(x, y),

5 ∀x, y, z CarExit(z) ∧ hasObject(z, x) ∧ hasEffect(z, y)→
Car(x) ∧DoorSlam(y) ∧ causes(x, y)

1 ∀x, y, z, u, v, w PickUp(z) ∧ hasObject(z, x) ∧ hasEffect(z, y)∧
hasParticipant(z, u) ∧ hasParticipant(z, w) ∧ hasPart(z, v)→
Car(x) ∧DoorSlam(y) ∧ causes(x, y) ∧ Person(u)∧
Person(w) ∧House(v) ∧ owns(u, x) ∧ owns(w, v)}

By applying BR to Γ based on the MI Agent function, the agenda is A = {A1,A2,A3, · · · ,A6} which is
sorted in descending order based on the scoring values of the interpretation Aboxes. Due to space constraints,
only the first three interpretation Aboxes with the highest scoring values are presented here:

A1 = Γ ∪ {CarEntry(ind42), hasObject(ind42, c1), hasEffect(ind42, ds1)}
A2 = Γ ∪ {CarExit(ind42), hasObject(ind42, c1), hasEffect(ind42, ds1)}
A3 = Γ ∪ {PickUp(ind42), hasObject(ind42, c1), hasEffect(ind42, ds1),

hasParticipant(ind42, ind1), hasParticipant(ind42, ind2),

P erson(ind1), P erson(ind2), hasPart(ind42, ind3), owns(ind1, c1),

owns(ind2, ind3), House(ind3)}
The above Aboxes have the following scoring values P (A1) = 0.913, P (A2) = 0.908, and P (A3) = 0.71.
The scoring value of each interpretation Abox P (A′) which is an abbreviation for P (A,A′,R,WR, T)
characterizes the probability that the conjunction of observations is true, namely:

P (Car(c1) = true ∧DoorSlam(ds1) = true ∧ causes(c1, ds1) = true)

For the determination of the set I in the generateQuery function, there is a variable k which indicates the
top k interpretation Aboxes from A with the maximum scoring value. Let us assume k = 2. Consequently,
I = {A1,A2}. This means that the top two interpretation Aboxes namely, A1 and A2 are considered
for the generation of the first disambiguation query. At this step the Abox differences are determined:
DA1 = {CarEntry(ind42)} and DA2 = {CarExit(ind42)}. Consequently, D = DA1∪DA2 . Since the concepts
CarEntry and CarExit are disjoint and the individual name in these assertions is the same, the appropriate
operator for this query is XOR. The importance value of this query is Iv = 1

(1+0.005)× 1
2×2

= 0.99. This

shows that asking this query is very important. Consequently, the first generated query is:

CarEntry(ind42) XOR CarExit(ind42) 0.99

10 O. Gries, R. Möller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel

Choose which apply?
� CarEntry
CarExit

Fig. 3. The first generated query

At the user interface the query is shown as indicated in Figure 3.

Let us assume the user response to this query is CarEntry, or, to be more precise, CarEntry(ind42)
and ¬CarExit(ind42). At this step, we have:

A2 = Γ ∪ {¬CarExit(ind42), hasObject(ind42, c1), hasEffect(ind42, ds1)}
The above change reduces the scoring value to P (A2) = 0.7. The next step is sorting the interpretation

Aboxes of the agenda A based on the new scoring values. Let us assume P (A2) > P (A4). Consequently, the
new order is A = {A1,A3,A2,A4, ...}.

The top two interpretation Aboxes at this step are in the following set I = {A1,A3}. In order to generate
the next query, the Abox differences are calculated as follows:

DA1 = {CarEntry(ind42)}
DA3

= {PickUp(ind42), hasParticipant(ind42, ind1), P erson(ind1),

hasParticipant(ind42, ind2), P erson(ind2), hasPart(ind42, ind3),

owns(ind1, c1), owns(ind2, ind3), House(ind3)}
At this step, dA3 has to be selected from DA3 . Since we would like to have a query with a high importance
value, we prefer to select concept assertions from DA3

. The following set contains only the concept assertion
pairs. D′A3

= {PickUp(ind42), P erson(ind1), P erson(ind2), House(ind3)}. There are four possible pairs
namely,

{(CarEntry(ind42), P ickUp(ind42)), (CarEntry(ind42), P erson(ind1)),

(CarEntry(ind42), P erson(ind2)), (CarEntry(ind42), House(ind3))}
Additionally, in order to have a high importance value for the query, we have to search for the concept

assertion pair with minimum distance.

(CarEntry(ind42), P ickUp(ind42)) is the pair with the minimum distance. The importance value of the
new query is calculated as follows:
Iv = 1

(1+0.203)× 1
2×2

= 0.83. The second disambiguation query is as follows:

CarEntry(ind42) XOR PickUp(ind42) 0.83

4 Summary and Remarks

The query mechanism of CASAM can be seen as companion technology in the context of multimedia an-
notation. The RMI component of CASAM is able to provide queries as a prerequisite for communication
with users. The objective of this communication is to disambiguate interpretation alternatives. The three
challenges posed in the introduction are handled as follows:

Generation of Queries. An enhanced version of the MI Agent, originally introduced in [3], is presented. It
is shown how disambiguation queries are generated. We have defined two different query types, namely OR
and XOR queries.

Computation of Importance Values for Queries. The general idea behind this score is to prefer queries in
which there is a pair of disjuncts where the probabilities of the corresponding Aboxes are most similar. The
score is also based on the computation of a taxonomical distance.

Processing of Query Answers. Responses of users to queries have the objective to disambiguate different
interpretation possibilities. It is explained which influence the answers have on the agenda of the MI Agent.

Media Interpretation and Companion Feedback for Multimedia Annotation 11

References

1. Webb, N., Benyon, D., Hansen, P., Mival, O.: Evaluating human-machine conversation for appropriateness. In:
Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10), Valletta,
Malta, European Language Resources Association (ELRA) (2010)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge University Press (2003)

3. Gries, O., Möller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., Wessel, M.: A probabilistic abduction engine for
media interpretation. In Alferes, J., Hitzler, P., Lukasiewicz, T., eds.: Proc. of the 4th International Conference
on Web Reasoning and Rule Systems. (2010)

4. Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In Getoor,
L., Taskar, B., eds.: Introduction to Statistical Relational Learning, pp. 339–371. Cambridge, MA: MIT Press
(2007)

5. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: Proc. of
AAAI. (1992)

6. Wolter, K., Smialek, M., Hotz, L., Knab, S., Bojarski, J., Nowakowski, W.: Mapping MOF-based requirements
representations to ontologies for software reuse. In: Proc of the 2nd International Workshop on Transformation
and weaving ontologies in model driven engineering. (2009)

