
ISLANDS AND QUERY ANSWERING FOR
ALCHI-ONTOLOGIES

Sebastian Wandelt and Ralf Möller

Hamburg University of Technology, Institute for Software Systems,
Schwarzenbergstr. 95, 21073 Hamburg, Germany

wandelt@tuhh.de,r.f.moeller@tuhh.de

http://www.sts.tu-harburg.de

Abstract. The vision of the Semantic Web fostered the interest in rea-
soning over ever larger sets of assertional statements in ontologies. Today,
real-world ontologies do not fit into main memory anymore and therefore
tableaux-based reasoning systems cannot handle these large ontologies
any longer.
We propose strategies to overcome this problem by performing query
answering for an ontology over (usually small) relevant subsets of as-
sertional axioms, called islands. These islands are computed based on a
partitioning-criteria. We propose a way to preserve the partitions while
updating an ontology and thus enable stream like reasoning for descrip-
tion logic ontologies. Furthermore, we explain how islands can be used
to answer grounded conjunctive queries for description logic ontologies.
We think that our proposal can support description logic systems to deal
with the upcoming large amounts of fluctuant assertional data.

Key words: Description Logics, Reasoning, Scalability, Partitioning

1 Introduction

As the Semantic Web evolves, scalability of inference techniques becomes increas-
ingly important. Even for basic description logic-based inference techniques, e.g.
instance checking, it is only recently understood on how to perform reasoning
on large ABoxes in an efficient way. This is not yet the case for problems that
are too large to fit into main memory.

In this paper we present an approach to execute efficient retrieval tests on on-
tologies, which do not fit into main memory. Existing tableau-based description
logic reasoning systems, e.g. Racer [HM01], do not perform well in such sce-
narios since the implementation of tableau-algorithms is usually built based on
efficient in-memory structures. Our contribution is concerned with the following
main objective: we want to partition the assertional part of an ALCHI-ontology
to more efficiently answer queries over partitions, instead of the complete ABox.
The idea is to split up redundant/unimportant role assertions and then partition
the ABox based on individual connectedness.

Moreover, we focus on the problem of updating ontologies. The idea is that
a partitioning does not need to be computed from the scratch whenever the

2 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

Fig. 1. Guiding Example: ABox AEX for ontology OEX

underlying ontology is changed. To solve that, we propose partitioning-preserving
transformations for each possible syntactic update of an ontology (terminological
and assertional updates). We are convinced that such an incremental approach
is crucial to enable stream-like processing of ontologies.

We propose was to handle common kinds of queries over description logic
ontologies, i.e. instance checking, instance retrieval and grounded conjunctive
queries.

The remaining parts of the paper are structured as follows. Section 2 intro-
duces necessary formal notions and gives an overview over Related Work. In
Section 3 we introduce the underlying partitioning algorithm, and propose our
partitioning-preserving transformations in Section 4 (assertional updates) and in
Section 5 (terminological updates). We present our preliminary implementation
and evaluation in Section 6. In Section ??, we give insights on query answering
over partitionings. The paper is concluded in Section 8.

2 Foundations

2.1 Description Logic ALCHI

We briefly recall syntax and semantics of the description logic ALCHI. For the
details, please refer to [BCM+07]. We assume a collection of disjoint sets: a set
of concept names NCN , a set of role names NRN and a set of individual names
NI . The set of roles NR is NRN ∪ {R−|R ∈ NRN}. The set of ALCHI-concept
descriptions is given by the following grammar:

C,D ::=>|⊥|A|¬C|C uD|C tD|∀R.C|∃R.C

where A ∈ NCN and R ∈ NR. With NC we denote all atomic concepts, i.e.
concept descriptions which are concept names. For the semantics please refer to
[BCM+07].

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 3

A TBox is a set of so-called generalized concept inclusions(GCIs) C v D.
A RBox is a set of so-called role inclusions R v S. An ABox is a set of so-
called concept and role assertions a : C and R(a, b). A ontology O consists of a
3-tuple 〈T ,R,A〉, where T is a TBox, R is a RBox and A is a ABox. We restrict
the concept assertions in A in such a way that each concept description is an
atomic concept or a negated atomic concept. This is a common assumption, e.g.
in [GH06], when dealing with large assertional datasets in ontologies.

In the following we define an example ontology, which is used throughout
the remaining part of the paper. The ontology is inspired by LUBM [GPH05],
a benchmark-ontology in the setting of universities. Although this is a synthetic
benchmark, several (if not most) papers on scalability of ontological reasoning
consider it as a base reference. We take a particular snapshot from the LUBM-
ontology (TBox, RBox and ABox) and adapt it for presentation purposes. Please
note that we do not claim that our snapshot is representative for LUBM.

Example 21 Let OEX = 〈TEX ,REX ,AEX〉, s.t.

TEX ={
Chair ≡ ∃headOf.Department u Person, Professor v Faculty,

Book v Publication,

GraduateStudent v Student, Student ≡ Person u ∃takesCourse.Course,

> v ∀teacherOf.Course, ∃teacherOf.> v Faculty, Faculty v Person,

> v ∀publicationAuthor
−

.(Book t ConferencePaper)

}

REX ={headOf v worksFor, worksFor v memberOf, memberOf
.
= member

−}
AEX =see Figure 1

2.2 Related Work

Referring to Example 21, different kinds of partitionings can be, informally,
summarized as follows:

– Naive partitioning: This partitioning is done in existing reasoning systems.
The idea is that individuals end up in the same partition, if there is a path of
role assertions connecting them. Usually many individuals are connected to
most other individuals in an ontology. This basic partitioning strategy is of-
ten not enough. In our LUBM-example there is only one partition, since each
named individual is connected via a path to each other named individual.

– Extension in [GH06]: Since suborganizationOf and teachingAssistentOf
are the only roles, which are not bound in a ∀-constraint in TEX (please note
that takesCourse occurs indirectly in a ∀-constraint when the definition of
student is split up into two inclusions), there are three partitions:
1. one partition containing university u1,
2. one partition containing graduate student g1 and
3. one partition containing all remaining individuals

4 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

– Our proposal: a more fine-grained partitioning (details see below). For exam-
ple, the only sub-concepts, which can be propagated over the role teacherOf
are ⊥ and Course. Now, since for role assertion teacherOf(p1, c1), c1 is an
explicit instance of Course, i.e. the propagation is redundant, we can in-
formally speaking “split up” the assertion to further increase granularity of
connectedness-based partitioning.

There exists further related work on scalable reasoning. In [FKM+06], the au-
thors suggest a scalable way to check consistency of ABoxes. The idea is to merge
edges in an ABox whenever consistency is preserved. Their approach is query
dependent and, informally speaking, orthogonal to partitioning approaches.

Several papers discuss the transformation of an ontology into datalog, e.g.
[MOS+02], or the use of novel less-deterministic hypertableau algorithms[MSH07],
to perform scalable reasoning. Furthermore, [SK04] suggests to partition the ter-
minological part of an ontology, while we focus on the assertional part.

After all, we think that our work can be seen as complementary to other work,
since it can be easily incorporated into existing algorithms. Furthermore we are
unique in focusing on updating partitions to support stream-like processing.

3 Ontology Partitioning

We have initially proposed a method for role assertion separability checking
in [WM08]. For completeness we start with one definition from [WM08]. The
definition of O-separability is used to determine the importance of role assertions
in a given ABox. Informally speaking, the idea is that O-separable assertions will
never be used to propagate “complex and new information” (see below) via role
assertions.

Definition 1. Given an ontology O = 〈T ,R,A〉, a role assertion R(a, b) is
called O-separable, if we have O is inconsistent ⇐⇒ 〈T ,R,A2}〉 is inconsis-
tent, where

A2 = A \ {R(a, b)} ∪ {R(a, i1), R(i2, b)}∪
{i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A},

s.t. i1 and i2 are fresh individual names.

Now, we further extend our proposal by partitioning-preserving update trans-
formations. To do so, we define a notion of ABox and Ontology partitioning,
which will be used in our update transformations below.

Definition 2. Given an ontology O = 〈T ,R,A〉, an ABox Partition for A is a
tuple AP = 〈IN, S〉 such that

– IN ⊆ Inds(A) and
– S = {a : C|a ∈M ∧ a : C ∈ A}∪ {R(a, b)|(a ∈ IN ∨ b ∈ IN)∧R(a, b) ∈ A},

where M = {a|b ∈ IN ∧ (R(a, b) ∈ A ∨R(b, a) ∈ A)} ∪ IN

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 5

We define two projection functions to obtain the first and the second element in
a partition-pair: let πIN (AP) = IN , and πS(AP) = S. Informally speaking, an
ABox Partition is composed of two components. The individual set IN , which
contains the core individuals of the partition, and the assertion set S containing
all the assertions needed in the partition. If a is an individual in IN , then S
contains all the assertions involving a and all the concept assertions involving
all direct neighbours of a.

Definition 3. Given an ontology O = 〈T ,R,A〉, an ABox Individual Partition-
ing for A is a set P = {ap1, .., apn}, such that each api is an ABox Partition
for A and

1. For each api, apj, (i 6= j) we have πIN (api) ∩ πIN (apj) = ∅
2. Ind(A) =

⋃
i=1..n πIN (api)

3. A =
⋃

i=1..n πS(api)

The definition states that all the partitions have distinct core individual
sets, the union of all the core individual sets of all the partitions is exactly the
individual set of A, and the union of all the assertion sets of all the partitions is
the assertion set of A.
Since each individual is assigned to only one ABox partition as a core individual,
we define a function φP : Ind(A) → P that returns the partition for a given
individual a. If a /∈ Ind(A), then φP (a) = ∅. Next we will define the partitioning
for the ontology.

Definition 4. Given a consistent ontology O = 〈T ,R,A〉, an Ontology Parti-
tioning for O is a structure OPO = 〈T ,R, P 〉, where P is an ABox Partitioning
for A such that for each individual a ∈ Ind(A) and each atomic concept C we
have O � a : C iff 〈T ,R, πS(φP (a))〉 � a : C.

We use the O-separability, see [WM08], of role assertions to determine the par-
titioning of A. From the previous section, it holds that with the partitioning
an ABox based on the O-separability of role assertions, the instance checking
problem can be solved with only one partition.

4 Updating the ABox

In this section, we will introduce means to preserve a partitioning of an ontology
under Syntactic ABox Updates[HwPS06]. With syntactic updates, there is no
consistency checking when adding a new assertion, and neither an enforcement of
non-entailment when removing. However, syntactic updates are computationally
easier to handle.

The general scenario for updating an ABox is as follows: We assume to start
with an empty ontology (which has no assertions in the ABox), and its corre-
sponding partitioning. Then we build up step by step the partitioned ontology
by use of our update transformations.

6 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

For an empty ontology O = 〈T ,R, {}〉, the corresponding partitioning is
OPO = 〈T ,R, P 〉 where P = {〈{}, {}〉}. In the following we will use two update
functions, merge and reduce, to implement our update transformations:

Definition 5. The result of the merge operation on a set of ABox Partitions
for A, Merge({ap1, .., apn}), is defined as the ABox Partition ap for A, s.t.

ap = 〈
⋃

i≤n πIN (api),
⋃

i≤n πS(api)〉

Definition 6. The result of the reduce operation on an ABox Partition for A,
Reduce(pa), is defined as a set of ABox Partition {ap1, .., apn} built as follows:

1. For each R(a, b) ∈ πS(ap) do: if R(a, b) is O-separable, then replace R(a, b)
with {R(a, b∗), R(a∗, b)}∪{a∗ : C|a : C ∈ πS(ap)}∪{b∗ : C|b : C ∈ πS(ap)},
where a∗ and b∗ are fresh individual names for a and b.

2. Let {ap1, .., apn} be the disconnected partitions in ap.
3. Replace each a∗ in each api by a.
4. Replace each b∗ in each api by b.

The merge operation simply merges all the core individual sets and the asser-
tion sets of all the partitions. The reduce operation, in the other hand, divides an
ABox Partition into smaller partitions based on O-separability of role assertions.

The algorithm for updating ABoxes is illustrated in Figure 2. It can be in-
formally summarized as follows:
Adding a role assertion R(a, b): first we ensure that partitions exist for both a
and b (if not, create a new partition). If a and b are in the same partition, then
the role assertion is just simply added to the partition. If a and b are in two
distinct partitions, and R(a, b) is not O-separable, then the two partitions are
merged.
Removing a role assertion R(a, b): if a and b are in different partitions, then the
role assertion is just simply removed from both partitions. If a and b are in the
same partition, then after removing the role assertion the partition needs to be
rechecked to see if the removal of the role assertion causes the partition to be
reduce-able.
Adding a concept assertion C(a): first we ensure that partition exists for indi-
vidual a. Then we add concept assertion C(a) to the partition of a (φP (a)),
and all the partitions that contain any role assertion for a, to maintain the data
consistency between partitions.
Removing a concept assertion C(a): remove the concept assertion from all the
partitions containing it. After that, all the role assertion involving a need to be
O-separability checked. If any of the role assertions becomes O-inseparable due
to the removal, then the corresponding partitions need to be merged.

5 Updating the TBox

In the following, we give a rough sketch of the update transformations. For
details please refer to our technical report [Ngu09]. We extend the definition of

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 7

Fig. 2. Updating ABox

the ∀-info structure from [WM08], by introducing a reduced ∀-info structure and
an extended ∀-info structure.

Definition 7. A reduced ∀-info structure for ontology O is a function e∀O which
is extend from ∀-info structure f∀O such that for every role R:

e∀O(R) = f∀O(R)\{Ck|∃C ∈ f∀O : C @ Ck}

Definition 8. An extended ∀-info structure for ontology O is a function g∀O
which is extended from reduced ∀-info structure e∀O as following:

– If e∀O(R) = ∗ then g∀O(R) = {〈∗, ∗〉}
– Else If e∀O(R) = ∅ then g∀O(R) = {〈∅, ∅〉}
– Else g∀O(R) = {〈Ci, Sub(Ci)〉}, with Ci ∈ e∀O(R), and Sub(Ci) is the set of

all the concepts that Ci subsumes in the simple concept hierarchy HS.

We also denote πC(g∀O(R)) ≡ {Ci}, the set of all Ci appears in {〈Ci, Sub(Ci)〉}
(which is e∀O(R)); and πSub,Ci

(g∀O(R)) ≡ Sub(Ci).

Informally speaking, the reduced ∀-info structure contains only the bottom-
most concepts of the concept hierarchy branches that appears in f∀O, w.r.t. the
simple concept hierarchy. On the other hand, an entry in the extended ∀-info
structure is a set, each element of which is a tuples of a concept in e∀O and the
set of all the children of that concept, w.r.t. the concept hierarchy.

8 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

Updating ABox assertions can lead to the merging/reducing involving one
or two specific partitions identified by the individuals in the updated assertions,
while updating in TBox and RBox rather causes the merging/reducing in many
pairs of partitions involving a certain set of role names. More formally speaking,
updating w.r.t TBox and RBox can affects a set of role UR, such that for each
R ∈ UR, and all individual pairs {a, b}, s.t.R(a, b) ∈ A, the status of the role
assertion R(a, b) might be changed (O-separable to O-inseparable or vice versa).
We call this role set UR the changeable role set, and each R ∈ UR changeable
role.

We have derived the following algorithm for updating a TBox and a RBox:

– For each role R in new terminology T ∗, calculate g∀O(R) before updating
and g∀O∗(R) after updating.
• If(g∀O(R) 6= g∀O ∗ (R)) then UR = UR ∪R

– For each R ∈ UR, and for each R(a, b):
• IfR(a, b) isO-separable but notO∗-separable then P = P\{φP (a), φP (b)}∪
Merge(φP (a), φP (b))

• If R(a, b) is not O-separable but O∗-separable then P = P\φP (a) ∪
Reduce(φP (a))

(*) O∗-separable is denoted for separable with respect to the new ontology (after update), while

O-separable is denoted for separable with respect to the old ontology.

In the following, we will consider specific cases of updating TBox, and the
effects they make to the extended ∀-info structure, and by this, compute the
changeable role set. Then, in case of a terminological update, we have to check
all role assertions, whose role is an element of the changeable role set, for O-
separability.

5.1 Updating TBox - concept inclusions

Updating TBox by adding/removing a concept inclusion might causes changes
to g∀O because

– if the concept inclusion adds A v B to the Concept Hierarchy HS , and since
the extended ∀-info structure g∀O is built based on HS , there probably have
changes in g∀O.

– if the SNF, see [WM08] for details, of the added concept inclusion contains
one or more ∀-bound for a role R that did not exist in the old terminology (or
does not exist in updated terminology in case of removing concept inclusion),
then there is changes in the ∀-info structure of the terminology, which also
probably causes changes in the extended ∀-info structure.

Thus, instead of recalculating the extend ∀-info structure, if we know that the
update is of a concept inclusion, then we just need to extract the information
from the added/removed concept inclusion itself to check if it will cause changes

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 9

Fig. 3. Assertion distribution among partitions in node 1 (3 nodes)

in the g∀O.
Before go into details how to decide the update role set from the added/ removed
concept inclusion, we introduce some useful definitions.

Definition 9. A ∀-info structure for a concept inclusion C v D w.r.t O, written
as f∀CvD,O, is a function that assigns to each role name R in SNF (C v D) one
of the following entries:

– ∅ if we know that there is no ∀ constraint for R in SNF (C v D).
– a set S of atomic concept or negation atomic concept, s.t. there is no other

than those in S that occurs ∀-bound on R in SNF (C v D).
– ∗, if there are arbitrary complex ∀ constraints on role R in SNF (C v D).

This definition is literally similar to the definition of the ∀-info structure stated
before, but for only one axiom. From this, we also define the reduced ∀-info
structure for a concept inclusion w.r.t. ontology O and extended ∀-info structure
for a concept inclusion w.r.t. ontology O in the same manner

Definition 10. A reduced ∀-info structure for a concept inclusion C v D w.r.t.
ontology O is a function e∀CvD,O which is extend from ∀-info structure f∀CvD,O
such that for every role R:

e∀CvD,O(R) = f∀CvD,O(R)\{Ck|∃C ∈ f∀CvD,O : C @ Ck}

Definition 11. An extended ∀-info structure for a concept inclusion C v D
w.r.t. ontology O is a function g∀CvD,O which is extended from reduced ∀-info
structure e∀CvD,O as following:

– If e∀CvD,O(R) = ∗ then g∀CvD,O(R) = {〈∗, ∗〉}
– Else If e∀CvD,O(R) = ∅ then g∀CvD,O(R) = {〈∅, ∅〉}

10 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

Node Total Partitions Total Assertions Assertions/partition min max

1 518 6089 11.7548 3 72

2 518 6822 13.1699 3 1596

3 518 5702 11.0077 3 77
Table 1. Partitions and assertions distribution among 3 nodes

– Else g∀CvD,O(R) = {〈Ci, Sub(Ci)〉}, with Ci ∈ e∀CvD,O(R), and Sub(Ci) is
the set of all the concepts that Ci subsumes in the simple concept hierarchy
HS.

And we have the following detailed algorithm for calculating the update role
set in case of adding/removing a concept inclusion:

– Adding a concept inclusion C v D
• For each A v B that is added to the concept hierarchy:
∗ for any role R that B ∈ g∀O(R), UR = UR ∪R

• For each R s.t. g∀CvD,O∗(R) 6= ∅ ∧ g∀CvD,O∗(R) * g∀O(R), UR = UR ∪R
– Removing a concept inclusion C v D
• For each A v B that is removed to the concept hierarchy:
∗ for any role R that B ∈ g∀O(R), UR = UR ∪R

• For each R s.t. g∀CvD,O∗(R) 6= ∅ ∧ g∀CvD,O∗(R) * g∀O∗(R), UR = UR ∪R

Here, we denote with O the ontology before updating and with O∗ the ontology
after updating.

5.2 Updating RBox - role inclusions

Adding/removing a role inclusion has a quite obvious effect: it might change the
role hierarchy. Since the ∀-info structure of the ontology is calculated using role
taxonomy, this will change the ∀-info structure, and also the extended ∀-info
structure. In the following, we present a way to determine the update role set

– Adding a role inclusion R v S
• if g∀O(S) * g∀O(R) then for all sub role V of R (V v R), UR = UR ∪ V

– Removing a role inclusion R v S
• if g∀O(S) * g∀O∗(R) then for all sub role V of R (V v R), UR = UR ∪ V

5.3 Updating RBox - role inverses

Adding/removing a role inverse, on the other hand, might change the ∀-bound
for both roles involving the inverse role. This causes the changes for the ∀-info
structure of both roles, which also alters their extend ∀-info structure, thus we
have following algorithm for calculating update role set:

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 11

Node Total Partition Total Assertion Assertion/partition min max

1 260 2989 11.4962 3 70

2 259 4129 15.9421 3 1596

3 259 2864 11.0579 3 77

4 258 3100 12.0155 3 72

5 259 2693 10.3977 3 76

6 259 2838 10.9575 3 74
Table 2. Partitions and assertions distribution among 6 nodes

– Adding a role inverse pair R = Inv(S)
• for all role V v R, UR = UR ∪ V
• for all role W v S, UR = UR ∪W

– Removing a role inverse pair R = Inv(S)
• for all role V v R, UR = UR ∪ V
• for all role W v S, UR = UR ∪W

6 Distributed Storage System and Preliminary
Evaluation

We have implemented the above algorithms in a Java program and performed
initial tests on LUBM. The first test is composed of a server and 3 nodes. For
the system performance, our test program was able to load 400-500 LUBM-
ABox/TBox assertions per second. This is just an average value. From our ex-
perience, ABox assertions turn out to be loaded much faster, while TBox asser-
tions slow the system down. The reasons for that behaviour have already been
indicated above.

Besides system performance, another factor we want to evaluate is the distri-
bution of the data among nodes. The data collected using three nodes is shown
in Table 5.2. It is easy to see that the number of partitions in the 3 nodes are
somehow equally distributed.

Figure 3 illustrates the distribution of the assertions in the partitions on the
first node. As shown in the figure, the number of assertions is quite different
between partitions. These differences actually illustrate the structure of the test
data.

We also ran the testing with four, five and six nodes to collect distribution
data. The distribution is somehow similar to the case of 3 nodes. Table 5.2 listed
the data collected for six nodes. The data distribution in our test is somehow
nice, with the equally distribution of the partitions among nodes. However, this
is the result of some synthetic benchmark data, which does not introduce many
merging between partitions. Running our algorithm on more complex data, the
partition allocation policy can be a critical factor deciding the system perfor-
mance.

12 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

7 Query Answering

In the following section we investigate the problem of query answering over
ontologies and in how far our proposal of island partitionings can help to solve
problems locally. Solving the problem of instance checking, finding out whether
O � a : C, is immediate from our proposal of island partitionings. Since we have

O � a : C ⇐⇒ 〈T ,R, πS(φP (a))〉 � a : C,

we run a tableaux algorithm on the ontology 〈T ,R, πS(φP (a)) ∪ {a : ¬C}〉 and
check, whether it is consistent. If the ontology is inconsistent, then we proved
that O � a : C, and non-entailment otherwise. Thus, instance checking can be
performed locally on one node.

To solve the problem of relation checking for ALCHI, i.e. find out whether
O � R(a, b), we can look at ontology 〈T ,R, πS(φP (a))〉 and see, whether there
exists a R2(a, b) ∈ πS(φP (a) (or a R3(b, a) ∈ πS(φP (a)), such that R2 is a subrole
of R (or R3 is a subrole of R−). Thus, relation checking can be performed locally
on one node again.

An extended decision problem is instance retrieval for a concept C, i.e. we
want to find all named individuals a, such that O � a : C. The idea is that
we determine first local solutions on each node, and then use a chosen mas-
ter node to combine the results. More formally, given nodes node1, ..., noden

let {api,1, ..., api,m} denote the ABox partitions associated to node i. We set
localresultsi = {a | ∃j.api,j ∈ nodei ∧ 〈T ,R, πS(φP (a))〉 � a : C}. Then the re-
sult of instance retrieval is the union of all the local results, i.e.

⋃
1≤i≤n localresultsi.

Relation retrieval, i.e. finding all pairs of individuals connected by a role R can
be handled in a similar fashion.

Last, we want to look into answering grounded conjunctive queries, without
giving a formal definition. We rather want to provide the intuition and leave
concrete results for future work. For ALCHI grounded conjunctive queries can
be answered in the following way:

1. Retrieve the results for all concept query atoms in the query by instance
retrieval

2. Retrieve the results for all role query atoms in the query by relation retrieval
3. Combine results from 1) and 2) to answer the grounded conjunctive query

We have provided modular solutions for instance retrieval and and relations
retrieval above. For the combination of the results, we propose to use a central-
ized relational database system, such that we have

– one table for each concept query atom (one column corresponding to the
individuals which match) and

– one table for each role query atom (two columns corresponding to the pairs
of individuals which match) in the conjunctive query.

The idea is that the nodes fill the tables with their local information obtained
from local instance and relation retrieval. Then, in the centralized system, the

ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES 13

grounded conjunctive query is translated to a SQL query and executed. The
result is then a table with individual tuples representing solutions for the con-
junctive query. An example is given in Example 71.

Example 71 Let q = Student(X)∧ takesCourse(X,Y)∧GraduateCourse(X)
be a grounded conjunctive query. In the centralized database system we would
create the three relations Student(X : TEXT), takesCourse(X : TEXT, Y :
TEXT) and GraduateCourse(Y : TEXT). The distributed partitioning systems
will fill all three tables with their locally obtained results. After all local results are
added, the following SQL-query is used to determine all results for the grounded
conjunctive query:

SELECT X,Y
FROM Student c1, takesCourse r1, GraduateStudent c2
WHERE
c1.X=r1.X AND
c2.Y=r1.Y AND

Please note that this approach can be further improved. For instance, if we
use a stream based relational database system, then we don’t have to wait until
all local results are available in the centralized database, but we can evaluate
the SQL-query incrementally, and thus, decrease intial query answering latency.

8 Conclusions

We have introduced means to reason over ALCHI-ontologies, which have large
amounts of assertional information. Our updatable partitioning approach allows
state-of-the-art description logic reasoner to load only relevant subsets of the
ABox to perform sound and complete reasoning. In particular, we have proposed
a set of partitioning-preserving update transformations, which can be run on
demand. Our techniques can be incorporated into the description logic reasoner
RACER[HM01], to enable more scalable reasoning in the future.

In future work, we will investigate the applicability of our proposal to more
expressive description logics, e.g. SHIQ. The extension for transitive roles is
straightforward. The incorporation of min/max-cardinality constraints in a naive
way can be done as well. However, it has to be investigated, whether the aver-
age partition size with these naive extensions is still small enough to be feasible
in practice. Furthermore, we intend to perform more evaluation on real-world
ontologies to provide detailed timing statistics. Especially the case of boot strap-
ping the assertional part of an ontology needs further investigation.

References

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook. Cambridge
University Press, New York, NY, USA, 2007.

14 ISLANDS AND QUERY ANSWERING FOR ALCHI-ONTOLOGIES

[FKM+06] Achille Fokoue, Aaron Kershenbaum, Li Ma, Chintan Patel, Edith Schon-
berg, and Kavitha Srinivas. Using Abstract Evaluation in ABox Reasoning.
In SSWS 2006, pages 61–74, Athens, GA, USA, November 2006.

[GH06] Yuanbo Guo and Jeff Heflin. A Scalable Approach for Partitioning OWL
Knowledge Bases. In SSWS 2006, Athens, GA, USA, November 2006.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl
knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[HM01] V. Haarslev and R. Möller. Description of the racer system and its ap-
plications. In Proceedings International Workshop on Description Logics
(DL-2001), Stanford, USA, 1.-3. August, pages 131–141, 2001.

[HwPS06] Christian Halashek-wiener, Bijan Parsia, and Evren Sirin. Description logics
reasoning with syntactic updates. In In Proc. of the 5th Int. Conf. on On-
tologies, Databases, and Applications of Semantics (ODBASE 2006. Sringer
Verlag, 2006.

[MOS+02] Boris Motik, Daniel Oberle, Steffen Staab, Rudi Studer, and Raphael
Volz. Kaon server architecture. WonderWeb Deliverable D5, 2002.
http://wonderweb.semanticweb.org.

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in de-
scription logics using hypertableaux. In Frank Pfenning, editor, CADE,
volume 4603 of Lecture Notes in Computer Science, pages 67–83. Springer,
2007.

[Ngu09] Anh Ngoc Nguyen. Distributed storage system for description logic knowl-
edge bases. In Technical Report, 2009. http://www.sts.tu-harburg.de/

~wandelt/research/NgocThesis.pdf.
[SK04] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large class

hierarchies. In International Semantic Web Conference, 2004.
[WM08] Sebastian Wandelt and Ralf Moeller. Island reasoning for alchi ontologies.

In Carola Eschenbach and Michael Grninger, editors, FOIS, volume 183
of Frontiers in Artificial Intelligence and Applications, pages 164–177. IOS
Press, 2008.

