
Sound and Complete SHI Instance Retrieval for
1 Billion ABox Assertions

No Author Given

No Institute Given

Abstract. In the last years, reasoning over very large ontologies became
more and more important. In our contribution, we propose a reasoning in-
frastructure, which can perform instance checking and instance retrieval
over ontologies with semi-expressive terminological knowledge and large
assertional parts.
The key idea is to 1) use modularizations of the assertional part, 2) use
some kind of intermediate structure to find similarities between individ-
ual modules, and 3) store information efficiently on external memory.
For evaluation purposes, experiments on benchmark and real world on-
tologies were carried out. We show that our reasoning infrastructure can
handle up to 1 billion ABox assertions. To the best of our knowledge
this is the first system to provide sound and complete reasoning over
SHI ontologies with such a huge number of assertions.

1 Introduction

The Semantic Web is intended to bring structure to the meaningful content of
web pages and to create an accessible environment for software agents. Ontolo-
gies are one way of representing the knowledge of these agents. The idea to
represent datasets on the Internet with ontologies was first widely made public
in [BLHL01]. Since then the Semantic Web became a widely used buzzword.

There is increased interest in the development of Semantic Web applications,
e.g. digital libraries, community management, and health-care systems. As the
Semantic Web evolves, the amount of data available in these applications is grow-
ing with an incredible speed. Since the size of the Semantic Web is expected to
further grow in the coming years, scalability and performance of Semantic Web
systems become increasingly important. Usually, such systems deal with infor-
mation described in description-logic based ontology languages such as OWL
[HKP+09], and provide services for storing, querying, and updating large num-
bers of facts.

Decidability results for many expressive description logics and for query answer-
ing over these description logics have been shown. However, early tableau-based

description logic reasoning systems, e.g. Racer [HMW04] and Pellet [SPG+07],
do not perform well with large ontologies since the implementation of tableau
algorithms is built based on efficient main memory data structures.

There exists a lot of research to identify tractable description logics. For example
the descriptions logic EL and extensions up to EL++, introduced in [BBL08],
admit reasoning in polynomial time for classification and instance checking. An-
other lightweight description logic (family) is DL-LITE [CDGL+05]. DL-LITE
allows the use of relational database management systems for query answering.
Another tractable fragment is the rule-based language OWL-R, introduced in
[HKP+09]. All tractable fragments have in common that the set of constructors
in the ontology language is restricted in order to obtain efficient reasoning algo-
rithms for query answering. However, in practical applications, users often need
more expressive languages.

The increasing growth of Semantic Web applications also led to the develop-
ment of a new class of external memory-based retrieval systems, so called triple
stores. Originally motivated to store RDF schema information, see [Bec04], a
general architecture to store triples was proposed in [BKvH03]. In the recent
years, the amount of these stores substantially increased, see for instance Franz
AllegroGraph [Fra11] or OWLIM [Kir06]. Although the creators of triple stores
continuously come up with more impressive performance evaluation results, there
are two basic problems with these statistics. First, in general, it is not clear what
kind of reasoning takes place inside the triple store during retrieval - it can be
anything from pure lookup to complex description logic reasoning. Second, the
hardware test configurations used by triple stores creators seem to be a little
over the line. For instance, if one uses four computers with 48 GB of main mem-
ory each, then it is not a big surprise that the system is able to handle datasets
in the order of several GB. This scenario seems to be at odds with the original
intention of triple stores - managing data in external memory.

Another approach to overcome the problem of reasoning over large ontologies is
to approximate the ontology by a more compact representation or in a weaker
description logic. In [PTZ09], the authors propose to reuse the idea of knowl-
edge compilation to approximate ontologies in a weaker ontology language. For
the ontology language of their choice, i.e. DL-LITE , efficient query answering
algorithms with polynomial data complexity exist. Reasoning on the approxi-
mated ontology allows to include/reject potential answers with respect to the
original ontology. A similar direction was taken in [RPZ10], where the termi-
nology part of an ontology is approximated to the description logic EL++. The
results from the approximated ontology are used for more efficient classification
over the original ontology. The classification results can then be used for more
efficient retrieval as well.

Another approach focusing on reasoning over instances in large ontologies is
presented in [TRKH08]. The algorithms in [TRKH08] are based on KAON2
[Mot08] algorithms, which transform the terminological part of an ontology into

Datalog [MW88]. Depending on the transformation strategy, the obtained Dat-
alog program can be used for sound or complete reasoning over instances in the
source ontology. The preceding approximation approaches rely on expressivity
reduction of the ontology language.

A different approach is proposed in [DFK+07], based on summarization and re-
finement. First, a summarization of the assertional part is created by aggregating
individuals. This is part of a setup step that can be performed offline, i.e. before
query answering takes place. Queries are then executed over the summarization.
During the summarization process, one has to take care of inconsistencies. If the
summarization leads to inconsistencies, previously merged individuals have to
be broken up again.

In our work, we propose a system which can handle (i.e. perform sound and
complete instance retrieval) more than 1 billion ABox assertions. For the syntax
and semantics of the description logic SHI please refer to [Baa99]

2 Ingredients for Efficient Instance Retrieval

2.1 ABox Modularization

In [WM08], a method is proposed to identify the relevant information (assertions)
to reason about an individual. The main motivation is to enable in-memory
reasoning over large ontologies, i.e. ontologies with a large ABox, for traditional
tableau-based reasoning systems.

Inspired by graph partitioning approaches, we developed techniques to break
down an ABox into smaller chunks (modules), such that decision problems can
be solved by considering these smaller parts only.

Naive modularization techniques (based on connectedness of individuals) are
usually not sufficient enough for ABox modularizations, since most individuals
are somehow connected to each other. We extend the naive modularization tech-
nique by introducing so-called ABox splits. Informally speaking, an ABox split
breaks up a role assertion in an ABox, while preserving the semantics (this is
formalized below). The idea is depicted in Figure 1. The clouds in Figure 1 in-
dicate a set of ABox assertions. We split up the role assertion teaches(ann, c1),
create two new individuals (ann∗ and c1∗), and keep the concept assertions for
each fresh individual copy. After applying all possible ABox splits to an ABox
of an ontology, a graph-based ABox modularization becomes more fine-grained,
i.e. one obtains more (and smaller) modules.

Fig. 1 Intuition of an ABox split

ABox

ABox

ann

c1

teaches ABox split

ABox

ABox

ann

c1

ann*
c1*

teaches

teaches

Definition 1 (SHI-splittability of Role Assertions). Given a SHI-ontology
O = 〈T,R,A〉 and a role assertion R(a1, a2), we say that R(a1, a2) is SHI-
splittable with respect to O if

1. there exists no transitive role R2 with respect to R, such that R � R v R2,
2. for each C ∈ extinfo∀T,R(R)

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v
C or

– there exists a concept description C2, such that C2(b) ∈ A and T �
C u C2 v ⊥

and
3. for each C ∈ extinfo∀T,R(R−)

– C = ⊥ or

– there exists a concept description C2, such that C2(a) ∈ A and T � C2 v
C or

– there exists a concept description C2, such that C2(a) ∈ A and T �
C u C2 v ⊥.

It can be shown that ABox splits are consistency preserving, if the role assertion
is SHI-splittable. The idea is that each tableau proof which makes use of prop-
agated concept descriptions (via a ∀-tableau rule application) can be rewritten
into a tableau proof without using the ∀-tableau rule application.

An individual island can be computed following the approach in [WM08]: given
a start (root) individual, one can perform a graph search following all SHI-
unsplittable role assertions. This individual island is then sound and complete
for instance checking w.r.t. the root individual.

2.2 One-Step nodes

We introduce a specialization of individual islands next. The basic idea is to
define a notion of so-called pseudo node neighbors, which represent the directly
asserted successors of a named individual in an ABox. Then, for each individual
in the ABox, the information about all pseudo node successors plus the infor-
mation about the original individual is combined, to obtain so-called one-step
nodes. In addition to similarity detection, these one-step nodes can be used to
answer instance checking and instance retrieval queries directly (always sound,
and possible in a complete manner).

First, in Definition 2, we formally define a pseudo node successor for an individual
with respect to an ABox.

Definition 2 (Pseudo Node Successor). Given an ABox A, a pseudo node
successor of an individual a ∈ NInd(A) is a pair pnsa,A = 〈rs, cs〉, such that
∃a2 ∈ Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),
2. ∀C ∈ cs.C(a2) ∈ A, and
3. rs and cs are maximal.

Next, we combine all pseudo node successors of a named individual a in an ABox
A, the reflexive role assertions for a, and the directly asserted concepts of a, in
order to create a summarization representative, called one-step node.

Definition 3 (One-Step Node). Given an ontology O = 〈T,R,A〉 and an
individual a ∈ NInd(A), the one-step node of a for A, denoted osna,A , is a tuple
osna,A = 〈rootconset, reflset,pnsset〉, such that rootconset = {C|C(a) ∈
A}, reflset = {R|R(a, a) ∈ A ∨ R−(a, a) ∈ A}, and pnsset is the set of all
pseudo node successors of individual a. The set of all possible one-step nodes is
denoted OSN.

Definition 4 (One-Step Node Similarity). Two individuals a1 and a2 are
called one-step node similar for an ABox A if osna1,A = osna2,A .

Every one-step node can be used for sound instance checking, since it repre-
sents a subset of the ABox assertions from the input ABox. It is clear that not

every one-step node is complete for instance checking. However, in case the one-
step node coincides with the individual island, then we can show that instance
checking over the one-step node is even complete. For this, we define so-called
splittable one-step nodes, for which each role assertion to a direct neighbor is
SHI-splittable.

Definition 5 (Splittable One-Step Node). Given an ontology O = 〈T,R,A〉,
an individual a ∈ NInd(A), and a one-step node osna,A = 〈rootconset, reflset,pnsset〉,
we say that osna,A is splittable if for each 〈rs, cs〉 ∈ pnsset, a fresh individ-
ual a2 /∈ Ind(A), and for each R ∈ rs, the role assertion axiom R(a, a2) is
SHI-splittable with respect to ontology O2 =〈T,R,A2〉 with

A2 ={C(a) | C ∈ rootconset} ∪ {C(a2) | C ∈ cs} ∪ {R(a, a2)}.

It is easy to see, that splittable one-step nodes can be directly used for sound and
complete instance checking. Furthermore, two similar one-step nodes only need
to be checked one time during instance retrieval. An example is shown below.

3 Example

In the following, we look at an example to discuss the optimization of instance
checking and instance retrieval by the techniques introduced above.

Example 1 (Example Ontology for Island Reasoning). The example ontology
OEx1 = 〈TEx1,REx1,AEx1〉 is defined as follows

TEx1 = {
Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,

GraduateStudent v ∀takes.GraduateCourse,

UndergraduateCourse u Chair v ⊥, GraduateCourse u Chair v ⊥,
UndergraduateCourse v Course,GraduateCourse v Course,

Student u Chair v ⊥,> v ∀takes.Course

}
REx1 = {headOf v memberOf, teaches ≡ isTaughtBy−}

Fig. 2 Individual relationships and splittability for Example 1

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf
headOf

memberOf

c4 c5

teaches
teaches teaches

takes takes takes takes takes

AEx1 = {
Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

The relationships among individuals of AEx1 are depicted in Figure 2. Please
note that only role assertions are used to build the graph, since we only want
to emphasize the relationship between the ABox individuals. SHI-splittable
role assertions are indicated with a dashed line. For instance, the role assertion
takes(ani, c1) is not SHI-splittable because the concept description GraduateCourse
can be propagated via role description takes. Please note that all these role asser-
tions would be SHI-splittable if we had a disjointness axiom for GraduateCourse
and UndergraduateCourse. However, to show the behavior of reasoning in case
of SHI-unsplittability, we omitted the disjointness axiom here.

3.1 Instance Checking

For instance checking, we are given an ontology O = 〈T,R,A〉, an atomic
concept description C, and an individual a ∈ NInd(A), and we would like
to find out, whether O � C(a). The process of instance checking is done in
two steps. First, we take the one-step node osna,A of individual a and check,
whether osna,A � C(a). If yes, then we are done, since we know that one-step
nodes are sound for instance checking with respect to the input ontology O. If
osna,A 2 C(a), then we distinguish two cases. First, if osna,A is splittable, then
we know that we have O 2 C(a). Otherwise, if osna,A is not splittable, then we
load the individual island ISLa for individual a and perform instance checking
over ISLa .

As an example for instance checking, we would like to check, whether the in-
dividual ann is an instance of concept description Chair with respect to the
ontology OEx1. The one-step node osnann,AEx1 is defined as follows:

osnann,AEx1 =〈{Professor}, ∅, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉.

One possible one-step node realization of osnann,AEx1 is

ABox(osnann,AEx1) = {Professor(ann), headOf(ann, a1), teaches(ann, a2)}.

It is easy to see that we have 〈T,R, ABox(osnann,AEx1)〉 � Chair(ann), and
thus we have ABox(osnann,AEx1) �TEx1,REx1

Chair(ann) and by soundness of
one-step node reasoning OEx1 � Chair(ann).

As a second example for instance checking, we would like to check, whether the
individual c1 is an instance of concept description Chair with respect to the
ontology OEx1. The one-step node osnc1,AEx1 is as follows:

osnc1,AEx1 =〈{UndergraduateCourse}, ∅, {〈{teaches−}, {Professor}〉,
〈{takes−}, {Student}〉}〉.

One possible one-step node realization of osnc1,AEx1 is

ABox(osnc1,AEx1) = {UndergraduateCourse(c1), teaches(a1, c1,), takes(a2, c1)}.

It is easy to see that we have 〈T,R, ABox(osnc1,AEx1)〉 2 Chair(c1). In this
case, the one-step node does not indicate entailment, and since osnc1,AEx1 is not
a splittable one-step node, we should refer to the individual island of individual
c1. However, another simple instance check can help us to avoid using the indi-
vidual island here. It is easy to see that we have 〈T,R, ABox(osnc1,AEx1)〉 �
¬Chair(c1), by disjointness of UndergraduateCourse and Chair. And this

means that we have OEx1 � ¬Chair(c1). Thus, in some cases, the ”‘negated
instance check”’ for one-step nodes can also help us to avoid performing reason-
ing on (more complex) individual islands. However, if the negated instance check
fails, and the one-step node is unsplittable, then we really have to use sound and
complete individual islands.

3.2 Instance Retrieval

In the following, we discuss instance retrieval optimization over ontologies. This
is a direct extension of instance checking, by using one-step node similarity in
addition. The first naive approach would be to apply instance checking tech-
niques to each named individual in the ABox. For ontology OEx1, we would
have to perform 17 instance checks in that case. However, we have introduced
the notion of one-step node similarity. The idea is that similar one-step nodes
entail the same set of concept descriptions for the named root individual. Given
the set of all one-step nodes for an input ontology, we can reduce the number of
instance checks.

For example, assume that we would like to perform instance retrieval for the
concept description Chair with respect to ontology OEx1. First, we retrieve the
one-step node for each named individual in AEx1. The resulting one-step nodes
are shown below:

osnani,AEx1 = osnsam,AEx1 = osnsue,AEx1 = osnzoe,AEx1 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉}〉

osnean,AEx1 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉, 〈{takes}, {GraduateCourse}〉}〉

osneva,AEx1 = osnnoa,AEx1 = 〈{Student}, ∅,
{〈{takes}, {GraduateCourse}〉}〉

osnc1,AEx1 = osnc4,AEx1 = osnc5,AEx1 = 〈{UndergraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnc2,AEx1 = osnc3,AEx1 = 〈{GraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnann,AEx1 = osnmae,AEx1 = 〈{Professor}, ∅,
{〈{headOf}, {Department}〉, 〈{teaches−}, {UndergraduateCourse}〉}〉

osneve,AEx1 = 〈{Professor}, ∅,
{〈{memberOf}, {Department}〉, 〈{teaches−}, {GraduateCourse}〉}〉

osncs,AEx1 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉, 〈{memberOf−}, {Professor}〉}〉

osnee,AEx1 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉}〉.

Instead of 17 instance checks for 17 named individuals, we are left with 9 instance
checks over 9 similar one-step nodes. For ontologies with a larger assertional part,
similarity of one-step nodes reduces the number of instance checks usually by
orders of magnitudes.

By performing instance checks for concept description Chair over the 9 one-step
nodes, we can conclude that individual ann and individual mae are instances
of Chair. Additional instance checks for concept description ¬Chair yields that
c1, c2, c3, c4, c5, ani, ean, eva, noa, sam, sue and zoe are instances of concept
description ¬Chair, and therefore are not instances of concept description Chair
if the input ontology is consistent. After one-step node retrieval, we are left to
check three individuals for being an instance of concept description Chair, or
not: cs, ee and eve. Usually, one would have to perform instance checks over
the three individual islands. However, since the corresponding one-step nodes for
these three individuals are splittable, we do not need to do any further checks,
since the one-step nodes are already sound and complete for reasoning in OEx1.

4 Implementation and Evaluation

In the following, we provide a general overview over the prototype. We have
implemented the algorithms for reasoning over SHI-ontologies using the pro-
gramming language Java. We used the description logic reasoner Racer [HMW04]
for our evaluation.

While TBox and RBox are kept in main memory, the ABox is serialized to a
database. In our prototypical implementation, we used the relational database
management system MySQL, see [WA02]. Apart from the assertional data, we
also serialize the identifiers of one-step nodes for each individual and information
about splittability of role assertions. For each serialized data structure, we have
implemented caching algorithms, in order to avoid working on external memory
directly for each update. During our experiments, a segmented least recently
used cache, see for instance [KLW94], turned out to be most efficient.

We have used two benchmark ontologies for evaluation of our modularization
techniques: one synthetic benchmark introduced in [GPH05] and a real world

Fig. 3 Load time and IR time for LUBM (up to 10000 universities)

multimedia annotation ontology used in the CASAM project and introduced in
[GMN+09]. The results for both ontologies are outlined below.

4.1 LUBM

The Lehigh University Benchmark, short LUBM, is a synthetic ontology de-
veloped to benchmark knowledge base systems with respect to large OWL ap-
plications. The ontology is situated in the university domain. The background
knowledge, i.e. the terminology, is described in a schema called Univ-Bench, see
[GPH05] for an overview over the history, different versions and the predecessor
Univ 1.0.

While the terminological part of LUBM is static, the assertional part is dy-
namic in size and can be generated as big as necessary/desired. The dataset we
have used for our experiments was generated by the Univ-Bench artificial data
generator.

We determined the number of ABox modules for different LUBM datasets. It
turned out that most of the role assertions in LUBM can be broken up and the
average module size (number of root individuals in the module) is 1.01.

Our next evaluation measure is load time, shown in Figure 3 on the left. The
load time covers loading data from external memory (here: OWL files), applying
the update algorithms and serializing the data to a database representation. We
process the terminological part first and afterwards the assertional part is loaded.
Please note that for 10000 universities the system has to deal with 1.380.000.000
ABox assertions.

In Figure 3, on the right-hand side, we show the instance retrieval time for the
concept description Chair and different numbers of universities. It can be seen
that the instance retrieval time is almost linear - even for more than 170 million
individuals in LUBM(10000). Furthermore, we would like to emphasize that

most of the instance retrieval time is spent by the database system to lookup
the solution names on different pages in the data file. The actual description
logic reasoning in our system is roughly constant for the number of universities.
We conjecture that, if one finds a more sophisticated way to store the mapping
between one-step nodes and individuals, instance retrieval times can be further
reduced.

4.2 CASAM Multimedia Content Ontology

We performed additional test with a real world ontology from the CASAM
project. The project is focused on computer-aided semantic annotation of multi-
media content. The novelty is the aggregation of human and machine knowledge.
For a detailed discussion of the research objectives, see [GMN+10], [PTP10],
and [CLHB10]. Within the CASAM project, there is a need to define an ex-
pressive annotation language which allows for typical-case reasoning systems.
The proposed annotation language is defined by the so-called Multimedia Con-
tent Ontology, short MCO, introduced in [GMN+09]. Inspired by the MPEG-7
standard, see [IF02], strictly necessary elements describing the structure of mul-
timedia documents are extracted. The intention is to exploit quantitative and
qualitative time information in order to relate co-occurring observations about
events in videos. Co-occurrences are detected either within the same or between
different modalities, i.e. text, audio and speech, regarding the video shots.

Our tests show that all role assertions in the CASAM test ontology can be split
up and therefore reasoning can be reduced to one-step nodes only. We do not
provide diagrams for this ontology, since it is too small (only few thousand ABox
assertions) and the time for reasoning can hardly be measured correctly.

5 Conclusions

The main goal of our work was to address the problem of instance retrieval
over large ABoxes. We focused on the semi-expressive description logic SHI,
which can be seen as a first step towards more expressive description logics.
We solve the given problem by applying ABox modularization techniques and
using a compact representation of individual islands (modules). These compact
representations can be used to group similar individuals together and handle
them in one step during instance retrieval.

Our evaluation showed that we can handle more than one billion ABox assertions
and perform sound and complete instance retrieval for SHI-ontologies.

In the following, we would like to discuss interesting directions for future work.

An extension from the semi-expressive description logic SHI to SHIQ should
be possible. We think that a syntactical analysis of the TBox and RBox can be
used to identify a set of SHIQ-unsplittable role assertions. Our homomorphism-
based similarity criteria for individuals cannot be directly applied in the presence
of cardinality restrictions. Further extensions, for instance to SHOIQ, might
be possible, but will surely require a lot of work and sophisticated analysis
techniques.

Another direction for future work is the focus on more expressive query lan-
guages. While we focus on instance checking and instance retrieval, the next
natural step is conjunctive query answering [GHLS07]. We think that query
answering with respect to the class of grounded conjunctive queries, is straight-
forward. One would have to combine the results from sound (and complete rea-
soning) in order to identify possible variable bindings. The extension to standard
conjunctive queries is without doubt much harder.

Since rules over ontologies have become more important recently, it would be
interesting to implement a rule-based query answering engine on top of our
ABox modularizations. We already performed first tests. By syntactical analysis
of rule bodies we decided which individual islands have to be extended/merged.
The first results are quite encouraging.

Finally, more comprehensive experimental studies are required. Recently pub-
lished work [SCH10] on new data generation algorithms for synthetic test on-
tologies might be a good place to start from. In general, we believe that our
results carry over to other ontologies. However there exist scenarios, especially
extensive use of transitive roles, which make it much harder to find fine-grained
ABox modularizations.

References

[Baa99] Franz Baader. Logic-Based Knowledge Representation. In Artificial Intel-
ligence Today, pages 13–41. Springer-Verlag, 1999.

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope further. In Kendall Clark and Peter F. Patel-Schneider, editors, In
Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and
Directions, 2008.

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised).
www.w3.org/TR/REC-rdf-syntax/, 2004.

[BKvH03] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An
Architecture for Storing and Querying RDF Data and Schema Informa-
tion. In Dieter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang
Wahlster, editors, Spinning the Semantic Web, pages 197–222. MIT Press,
2003.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34–43, 2001.

[CDGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics for
ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI
2005), pages 602–607, 2005.

[CLHB10] Chris Creed, Peter Lonsdale, Robert Hendley, and Russell Beale. Syner-
gistic annotation of multimedia content. In Proceedings of the 2010 Third
International Conference on Advances in Computer-Human Interactions,
ACHI ’10, pages 205–208, Washington, DC, USA, 2010. IEEE Computer
Society.

[DFK+07] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum,
Edith Schonberg, Kavitha Srinivas, and Li Ma. Scalable semantic retrieval
through summarization and refinement. In AAAI’07: Proceedings of the
22nd national conference on Artificial intelligence, pages 299–304. AAAI
Press, 2007.

[Fra11] Franz Inc. Allegrograph. http://www.franz.com/agraph/, 2011.
[GHLS07] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive

Query Answering in the Description Logic SHIQ. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007),
2007.

[GMN+09] O. Gries, R. Möller, A. Nafissi, K. Sokolski, and M. Rosenfeld. CASAM
Domain Ontology. Technical report, Hamburg University of Technology,
2009.

[GMN+10] Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil
Sokolski, and Michael Wessel. A Probabilistic Abduction Engine for Me-
dia Interpretation Based on Ontologies. In Pascal Hitzler and Thomas
Lukasiewicz, editors, RR, volume 6333 of Lecture Notes in Computer Sci-
ence, pages 182–194. Springer, 2010.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[HKP+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider,
and Sebastian Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, World Wide Web Consortium, October 2009.

[HMW04] V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with
Racer + nRQL. In Proceedings of the KI-2004 International Workshop on
Applications of Description Logics (ADL’04), Ulm, Germany, September
24, 2004.

[IF02] ISO/IEC15938-5FCD. Multimedia Content Description Interface (MPEG-
7). http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm, 2002.

[Kir06] Atanas Kiryakov. OWLIM: Balancing between scalable repository and
light-weight reasoner. In Proc. of WWW2006, Edinburgh, Scotland, 2006.

[KLW94] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching
strategies to improve disk system performance. Computer, 27(3):38–46,
1994.

[Mot08] Boris Motik. KAON2 - Scalable Reasoning over Ontologies with Large
Data Sets. ERCIM News, 2008(72), 2008.

[MW88] David Maier and David Scott Warren. Computing with Logic: Logic Pro-
gramming with Prolog. Benjamin/Cummings, 1988.

[PTP10] Katerina Papantoniou, George Tsatsaronis, and Georgios Paliouras.
KDTA: Automated Knowledge-Driven Text Annotation. In José L.
Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors,

ECML/PKDD (3), volume 6323 of Lecture Notes in Computer Science,
pages 611–614. Springer, 2010.

[PTZ09] Jeff Z. Pan, Edward Thomas, and Yuting Zhao. Completeness Guaran-
teed Approximations for OWL-DL Query Answering. In Bernardo Cuenca
Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Description
Logics, volume 477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approxi-
mation for TBox Reasoning. In Maria Fox and David Poole, editors, AAAI.
AAAI Press, 2010.

[SCH10] Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks. How Incom-
plete is your Semantic Web Reasoner? In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 10), pages 1431–1436. AAAI Publications,
2010.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–
53, 2007.

[TRKH08] Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krötzsch, and Pascal
Hitzler. Approximate OWL-reasoning with Screech. In Diego Calvanese
and Georg Lausen, editors, RR, volume 5341 of Lecture Notes in Computer
Science, pages 165–180. Springer, 2008.

[WA02] Michael Widenius and Davis Axmark. MySQL Reference Manual. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[WM08] Sebastian Wandelt and Ralf Möller. Island reasoning for ALCHI ontolo-
gies. In Proceedings of the 2008 conference on Formal Ontology in Infor-
mation Systems, pages 164–177, Amsterdam, The Netherlands, 2008. IOS
Press.

