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Abstract

Providing reasoning in GIS domains is a demanding task due to the size of the
data that are stored in secondary memory. This is also the case for query answering
over spatio-thematic ontologies which act as an interface to the GIS data and filter
unintended models. Solving this problem by compiling the ontology into an SQL
query works only in those cases in which such a compilation, first-order logic (FOL)
rewritability, is theoretically possible. Combining lightweight description logics like
DL-Lite that are tailored towards FOL-rewritability with spatial calculi like the region
connection calculus in a näıve way can prohibit FOL-rewritability. But if assumption
on the completeness and the consistency of the spatial data are made and the combi-
nation is done in a controlled way combinations of DL-Lite and the region connection
calculus result that are sufficiently expressive to model GIS data and at the same time
allow for computationally feasible query answering.

1 Introduction

There is a need for reasoning over geographical data in almost any area in which geograph-
ical information systems (GIS systems for short) are used, e.g., damage classification for
flooding scenarios, development of eco systems in forestry, or analysis of sociological and
demoscopic aspects in urban areas—to mention just a few. But providing reasoning ser-
vices over geographical data is a demanding task because of at least two reasons which
we are going to explain on the basis of the TIGER/Line R� GIS data of the US Census
Bureau1, a well known free set of geographic data.

The first main problem is to specify the concepts and relations of the geographical
domain over which one wants to reason; the intended meanings are not given in a formal

∗
The presented work resulted from the DFG funded project “Optimierungstechniken für beschrei-

bungslogische Schlussfolgerungssysteme im Bereich der Geo-Daten (GeoDL) ”
1http://www.census.gov/geo/www/tiger/
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logical language with a precise semantics but in most cases with some feature codes and
explanations of the codes in natural language. This holds also for the TIGER/Line R� GIS
data which specify features like parks, rivers, hospitals with the MAF/TIGER Feature
Class Code and describe the intended meanings in the manual (Johnson et al., 2009).
Only basic subsumption relations, e.g. “All parks are governmental area” are directly
modelled in the data. If one wanted to provide a consistency test that checks whether the
intended semantics of the feature codes are indeed in accordance with the data, one would
have to do the hard of work translating the natural language specifications in some formal
language and then apply a theorem or tableau prover over the resulting set of axioms.

But even if one had success in translating the natural language descriptions into some
formal language, it would not be guaranteed that the formal language—which would have
to be expressive enough in order to capture the natural language descriptions2—is compu-
tationally feasible. And here enters the second main problem for reasoning over GIS-data:
the huge amount of geographical data which are usually stored persistently in secondary
memory and maintained with sophisticated indexing mechanisms restricts the possibilities
for expressive declarative knowledge representation and reasoning. It is common sense
knowledge that higher representation capabilities lead to more complex reasoning services
over the representation in terms of time and space resources—and this is more than true
for geographical data which already consume space resources before any reasoning has
started; for example, loading the TIGER/Line R� shapefiles for the state New York in
the relational database management system like SQLServer 2008 results in a database of
roughly 7 GB.

Nonetheless, we will argue in this paper that for some reasoning scenarios over GIS
data sufficiently expressive logics can be defined that are computationally feasible. The
idea of providing a conceptualization over the data is to filter unintended models of the
data. The more expressive the logic is the more unintended models can be filtered. But
for some GIS scenarios it is not necessary to give such a complete conceptualization, it
suffices to filter out some smaller set of the unintended models. And so the idea is to
make the logic for representing the knowledge only as much expressible as is necessary
to exclude this smaller set. For example, think of a city planning bureau that wants to
use the TIGER/Line R� data to plan additional parks in New York and so adds some fea-
tures like ParkContainingLakeAtTheBorder (ParkWithLake for short) and ParkContain-
ingPlayingAreaAtTheBorder (ParkPlaying for short) and states some necessary conditions
for ParkWithLake and ParkPlaying, e.g. in case of the concept ParkWithLake: If x is a
ParkWithLake, then x is a Park and x contains a Lake such that the Lake touches the Park
from within. Now, a user wants to find out whether—with respect to the knowledge base
of the city planning bureau—there are parks with a playing area that does not reside as an
island in some lake of the park. Then, a complete reasoning service would also have to take
into account all parks that are instances of the newly introduced concepts ParkWithLake
and ParkPlaying, because such a park would contain a playing area that is not an island in

2
For example take the explanation of Lake/Pond in the manual (Johnson et al., 2009, Appendix, F-7)

that reads “A standing body of water that is surrounded by land”
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the park. This reasoning step can be realized without a more complete conceptualization
of the concepts ParkWithLake or ParkPlaying that also provides sufficient conditions.

The reasoning services over GIS data do not only involve pure geographical concepts
(area, region etc.) and geographical relations (contains, touches etc.) but also thematic
concepts and relations that can be combined with the geographical concepts and rela-
tions to build mixed concepts. The combination of thematic concepts with geographical
concepts calls for a representation in a combined logic with a thematic component and
a spatial component. In this paper, we will investigate combinations of lightweight de-
scriptions logics (DL-Lite) that are well suited for reasoning over large databases with the
region connection calculus which can model topological relations like that of containment.
As we will show, the representation capabilities of the combined logic that are needed
to adequately model mixed concepts like voting district containing a hospital or a park
containing a lake may lead to reasoning mechanisms that can not be captured by simple
SQL queries. On the other hand it is possible to give combinations that allow for feasible
reasoning mechanisms; besides being feasible, these reasoning mechanisms are sufficient
to allow for complete answering services that can be used in scenarios like the one of the
city planning bureau mentioned above.

2 Logical Preliminaries

In this section, we introduce the two components of the combined logics that we are going
to investigate.

2.1 RCC8-calculus

The Region Connection Calculus (RCC) (Randell et al., 1992) is the most widely known
member of qualitative spatial reasoning calculi that take regions and not points as the
basic entities for representing and reasoning over spatial knowledge. In the axiomatic
representation of Randell et al. (1992) a primitive binary relation C is intended to model
the connectedness relation between regions, and is therefore axiomatically restricted to be
reflexive and symmetric. The connectedness relation is used to define different relations
between regions that are termed base relations. One family of base relations, denoted
BRCC8 = {dc, ec, eq, po, ntpp, tpp, ntppi, tppi} henceforth, constitutes the calculus RCC8.
Further calculi of the region connection calculus can be defined by considering other sets
of base relations, but we will focus on RCC8 as its base relations are quite natural3

and sufficiently expressive to model many spatial configurations. The base relation dc is
intended to model the disjointness relation and is defined by the axiom

dc(x, y) iff ¬C(x, y)

The other base relations are defined similarly. We omit the definitions but give the intended
meanings of the base relations in Figure 1. The axioms imply that the base relations

3
The claim that BRCC8 is a natural set of base relations can be justified by the fact that another

qualitative spatial model, the 9-intersection model of Egenhofer (1991), results in the same set of eight

base relations if it is constrained to regularly closed regions.
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a :

b :

dc(a, b)
disjointness

ec(a, b)
externally
connected

po(a, b)
partial overlap

eq(a, b)
equal

tppi(b, a)
covers

tpp(a, b)
tangential
proper part

ntppi(b, a)
contains

ntpp(a, b)
non-tangential
proper part

Figure 1: Base relations of RCC8 and their intended meanings

have the JEPD-property, i.e., the eight base relations are jointly exhaustive and pairwise
exclusive.

With the help of the base relations real-world spatial configurations can be represented
in the form of networks which can be processed by constraint satisfaction procedures. A
network consists of a set of sentences that have the form r1(a, b) ∨ · · · ∨ rk(a, b) where
a, b are constants and r1, . . . , rk are base relations from BRCC8. These sentences are
presented in the more succinct algebraic notation as {r1, . . . , rk}(a, b). The set of all
possible disjunctions of base relations Pot(BRCC8) is denoted RelRCC8. For example, the
network {ec(a, b), dc(b, c), dc(a, c)} represents a spatial constellation of regions a, b, c where
a and b are touching each other and are disjoint from c, respectively. With disjunctions
of base relations indefinite knowledge on the spatial relations of regions can be expressed.
These networks can be represented with labelled graphs in which the vertices are the
constants of the network and in which an edge labelled {r1, . . . , rk} is drawn between
(a, b) iff {r1, . . . , rk}(a, b) is contained in the network.

A practically relevant question is whether a network is satisfiable with respect to the
RCC8-axioms. For example, {tpp(a, b), tpp(b, c), tpp(a, c)} is satisfiable while the network
{tpp(a, b), ntpp(b, c), tpp(a, c)} is not satisfiable. Testing the satisfiability of networks can
be carried out by path consistency algorithms (Mackworth, 1977). These algorithms are
based on composition tables for the base relations which contain for every pair of base
relations r1, r2 its composition r1 ◦ r2. The composition ◦ of two relations r1 and r2 is
defined as r1 ◦ r2 = {(x, y) | ∃z.r1(x, z) ∧ r2(z, y)}.

The composition table for RCC84 is in fact a table of weak compositions. For two
relations r1, r2 the weak composition r1; r2 is the minimal disjunction of base relations that
cover their composition r1 ◦ r2, i.e., r1 ◦ r2 ⊆ r1; r2.5 For example the weak composition
table entry for the pair (ec, ntpp) is ec; ntpp = {po, tpp, ntpp}. This composition table
entry can be described by the following FOL-sentence:

∀x∀y∀z.(ec(x, y) ∧ ntpp(y, z) → (po(x, z) ∨ ntpp(x, z) ∨ tpp(x, z))

4
Compare (Renz, 2002, p. 45)

5
The set r1; r2 is an approximation of r1 ◦ r2 from above, in other words, r1; r2 is implied by r1 ◦ r2.

Therefore the operator ; is termed weak composition.
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The (weak) composition relation ; is defined for non-base relations r1 = {r11, . . . r
k
1} and

r2 = {r12, . . . , r
l
2} in the usual way by pairwise composing the contained base-relations:

r1; r2 =
�

1≤i≤k;1≤j≤l r
i
1; r

j
2.

By a translation into the modal logic S4 it can be shown that the satisfiability test
for RCC8-networks is in NP (Bennett, 1996). By showing that the decidability problem
3SAT—i.e. the problem of deciding whether a propositional formula in CNF with clauses
that contain at most 3 literals—is reducible to the satisfiability of RCC8-networks, the
NP-hardness follows (Renz and Nebel, 1999). Consequently, testing the satisfiability of
arbitrary RCC8-networks is NP-complete and therefore a computationally intensive task.
Tractability of the satisfiability of RCC8-networks can be gained by restricting the labels to
a specific subclass of all RCC8-relations RelRCC8. A maximally tractable subset of RCC8-
relations in the sense that the satisfiability test is polynomial in time complexity is defined
by Renz and Nebel (1999). If one constrains the RCC8-networks to so-called conjunctive
RCC8-networks (Grigni et al., 1995), i.e. networks that contain only a base relation from
BRCC8 or the whole set BRCC8 as label, then the complexity of the satisfiability test can
be more specifically described as lying in NC (Nebel, 1995). Intuitively, NC (Nick’s Class)
is the class of problems that are decidable in polylogarithmic time on a parallel computer
with a polynomial number of processors.6 This can be made precise by boolean circuit
complexity. NC is the class of all problems that can be decided by a uniform system of
Boolean circuits with a polylogarithmic depth and polynomial size (polynomial number of
gates.) If one restricts in this definition the depth to a constant, the complexity class AC0,
which will be used in the propositions below, is obtained. AC0 is the class of problems that
can be decided instantly (in constant time) with the help of polynomially many processors.

2.2 DL-Lite + UNA

DL-Lite denotes a family of light weight description logics that are tailored towards rea-
soning over ontologies with large ABoxes. We will focus on the member of the DL-Lite
family allowing functional roles, role hierarchies and role inverses. The syntax is given in
Figure 2.7 The semantics of the logic is defined in the usual Tarskian style with the addi-
tional constraint of the unique name assumption (UNA): Different constants are mapped
to different elements in the domain of the interpretations.8

Logics of the DL-Lite family have the remarkable property that checking the satisfi-
ability of ontologies as well as answering queries issued to ontologies can be reduced to
model checking. As in the logical perspective a relational database is nothing else than a
finite interpretation (model), DL-Lite thus offers in particular the possibility to keep the
ABox data in a relational database and reduce consistency checks and query answering to
SQL queries w.r.t. the database. These properties of DL-Lite are formally described by

6
Though it is known that NC ⊆ P , it is not known whether NC � P .

7
Note that we excluded qualified existential restrictions on the right hand side of the TBox axioms.

This is no essential restriction on the expressibility as an axiom of the form B � ∃R.C can be formulated

equisatisfiably by {A � ∃Rnew, ∃R−
new � C,Rnew � R} (Calvanese et al., 2009, S.286)

8
The UNA is needed for FOL-rewritablity (Calvanese et al., 2009, Theorem 6.6).
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Let RN be the set of role symbols and P ∈ RN , CN be a set of concept symbols and
A ∈ CN , Const be a set of individual constants and a, b ∈ Const .

R −→ P | P−

B −→ A | ∃R

C −→ B | ¬B

TBox : B � C, (funct R), R1 � R2

ABox : A(a), R(a, b)

In order to keep the complexity low, the interplay of functionality assertions and inclusion
axioms is restricted in the following way: If R occurs in a functionality assertion, then R
and its inverse do not occur on the right hand side of a role inclusion axiom.

Figure 2: DL-Lite

the term first order logic rewritability or FOL-rewritability for short. In order to give the
definitions, we have to introduce some further concepts.

An FOL-query Q = ψ(�x) is an FOL-formula ψ(�x) whose free variables are the ones
in the n-ary vector of variables �x; the variables in �x are called distinguished variables. If
�x is empty, the FOL-query is called boolean. For an ontology O let Sign(O) denote the
signature of O, i.e., the set of concept symbols, role symbols and constants in Sig(O). If
�a is a vector of constants, we write �a ∈ Sig(O) to denote the fact that all components
of �a appear in some axiom of O. The semantics of n-ary FOL-queries with respect to an
interpretation I is given by the set QI of n-ary tuples �d over the domain ∆I such that
I[�x�→�d] |= ψ(�x). The semantics of FOL-queries w.r.t. an ontology T ∪A is given by the set

of certain answers cert(Q, T ∪A). This set consists of n-ary tuples of constants �a ∈ Sig(O)
such that ψ[�x/�a] (i.e. the formula resulting from ψ(�x) by applying the substitution [�x/�a])
follows from the ontology.

cert(ψ(�x), T ∪ A) = {�a | T ∪ A |= ψ[�x/�a]}

Two well investigated subclasses of FOL-queries are conjunctive queries (CQ) and
unions of conjunctive queries (UCQ). A conjunctive query is a FOL-query in which ψ(�x)
is an existentially quantified conjunction of atomic formulas atj , ψ(�x) = ∃�y

�
i ati(�x, �y).

The more general UCQs allow disjunctions of conjunctive queries, i.e. ψ(�x) can have the
form

ψ(�x) = ∃�y1
�

i

at1i (�x, �y1) ∨ ∃�y2
�

i

at2i (�x, �y2) ∨ · · · ∨ ∃ �yn
�

i

atni (�x, �y2)

The existential quantifiers in UCQs are interpreted in the same way as for FOL-formulas
(natural domain semantics) and not with respect to a given set of constants or individuals
of a specific domain (active domain semantics). This fact has some implausible conse-
quences with respect to the interpretation of the outcomes of queries. Consider an ABox

6
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states the affiliation relation of professors and universities:

A = {

α1� �� �
profAt(franz, tud),

α2� �� �
profAt(ralf, tuhh)}

The TBox states that if someone is in profAt-relation to something, then it is a professor.
Moreover, the TBox contains an axiom according to which all professors have a ranking.

T = {

τ1� �� �
∃profAt � Professor,

τ2� �� �
Professor � ∃hasRanking}

As there are no ranking data in the ABox, we get a conflict between the second axiom of
the TBox τ2 and the ABox that leads to unexpected answers of the following two queries:

Q1 = ∃y.hasRanking(x, y)

Q2 = hasRanking(x, y)

The set of answers of Q1 is just the set of all professors mentioned in the ABox, formally
cert(Q1, T ∪ A) = {franz, ralf}, the reason lying in the existence of the second TBox
axiom. But the set of answers to Q2 is the empty set, cert(Q2, T ∪ A) = ∅, the reason
being the fact that there are no rankings mentioned in the ABox for the professors. This
implausible divergence between Q1 and Q2 could be overcome by providing for Q2 some
kind of pinpointing or explanation which produces a new constant indexed with the axioms
needed to prove the existence of variable bindings, e.g.,

certexpl(Q2, T ∪ A) = {(ralf, rankτ1,τ2,α2), (franz, rankτ1,τ2,α1)}

Though this approach to cope with the implausibilities can be developed in an intuitive
query semantics, here, we will proceed in a different direction and consider a weaker query
language GCQ+ (see Definition 4 below) which allows for existential quantifiers inter-
preted in natural domain semantics only if, informally speaking, they are embedded in a
tree like structure.

With the technical notions introduced so far we are in a position to give the definition
for FOL-rewritability. In the following, let the canonical model of an ABox A, denoted
DB(A), be the minimal Herbrand model of A. Checking the satisfiability of ontologies is
FOL-rewritable iff for all TBoxes T there is a boolean FOL-query QT such that for all
ABoxes A it is the case that the ontology T ∪ A is satisfiable just in case the query QT

evaluates to false in the model DB(A).
Answering queries from a subclass C of FOL-queries w.r.t. to ontologies is FOL-

rewritable iff for all TBoxes T and queries Q = ψ(�x) in C there is a FOL-query QT

such that for all ABoxes A it is the case that cert(Q, T ∪ A) = QDB(A)
T

.
For DL-Lite, it can be shown that the satisfiability check is FOL-rewritable. If, e.g.,

T = {A � ¬B} and A = {A(a), B(a)}, then the satisfiability test would be carried out by
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querying QT = ∃x.A(x) ∧ B(x) w.r.t. DB(A), resulting in the answer yes and indicating
that T ∪ A is unsatisfiable. Moreover, answering UCQs in DL-Lite can be shown to be
FOL-rewritable. FOL-rewritability of satisfiability is a prerequisite for answering queries
because in case the ontology is not satisfiable the set of certain answers is identical to all
tuples of constants in Sig(O).

The main technical tool for proving the rewritability results is the chase construction
known from database theory. The idea of the chase construction is to repair the ABox
with respect to the constraints formulated in the TBox. If, e.g., the TBox contains the
axiom A1 � A2 and the ABox contains A1(a) but not A2(a), then it is enriched by the
atom A2(a). This procedure is applied stepwise to yield a sequence of ABoxes Si starting
with the original ABox as S0. The resulting set of ABox axioms

�
Si may be infinite but

induces a canonical model can(O) for the ABox and the axioms of the TBox that are used
in the chasing process (see below). We will summarize the chase construction for DL-Lite
as we will use it in our proofs.

Let T be a DL-Lite TBox, let Tp denote the subset of positive inclusion axioms (no
negation symbol allowed) in T and let A be an ABox and O = T ∪ A. Chasing will be
carried out with respect to positive inclusion axioms only. Let S0 = A. Let Si be the set
of ABox axioms constructed so far and α be a positive inclusion axiom in Tp. Let α be
of the form A1 � A2 and let β ∈ Si an ABox axiom. The positive inclusion axiom α is
called applicable to β if β is of the form A1(a) and there is no ABox axiom A2(a) in Si.
The applicability of positive inclusion axioms of the other forms are defined similarly.9

As there may be many possible applications of positive inclusion axioms to atoms10, one
has to impose an order on the TBox axioms and the assertions in the ABox. So we assume
that all strings over the signature Sig(O) of the ontology and some countably infinite set
of new constants Constchase are well ordered. Such a well ordering exists and has the
order type of the natural numbers N because the set of strings w.r.t. Sig(O)∪Constchase
is countable.11 If there is a positive inclusion axiom α applicable to an atom β in Si, one
takes the minimal pair (α, β) with respect to the ordering and produces the next level
Si+1 = Si ∪ {βnew}; here βnew is the atom that results from applying the chase rule for
(α, β) as listed in Figure 3. The primed constants in the figure are the chasing constants
from Constchase.

The chase is defined as the union of all the ABox axioms, chase(O) = chase(Tp∪A) =�
i∈N Si. The canonical model can(O) is the minimal Herbrand model of chase(O).
The essential property of the canonical model can(O) is that it is a universal model of

Tp∪A with respect to homomorphisms, i.e., can(O) |= Tp∪A and can(O) can be mapped
homomorphically to all models of Tp ∪ A. As existentially quantified positive sentences
are invariant under homomorphisms, this property has the consequence that every UCQ
Q issued to Tp ∪ A can be answered by computing Qcan(O).

9
For the whole definition see (Calvanese et al., 2009, Definition 4.1, p. 287).

10
More than one positive inclusion axiom may be applicable to the same ABox axiom, and the same

positive inclusion axiom may be applicable to more than one ABox axiom.
11
This ordering is different from the one of Calvanese et al. (2009) but has the advantage that it can be

used also for infinite ABoxes.
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If α = A1 � A2 and β = A1(a) then βnew = A2(a)

If α = A1 � ∃R and β = A1(a) then βnew = R(a, a�)

If α = ∃R � A and β = R(a, b) then βnew = A(a)

If α = ∃R1 � ∃R1 and β = R1(a, b) then βnew = R2(a, a�)

If α = R1 � R2 and β = R1(a, b) then βnew = R(a, b)

Figure 3: Chasing rules for DL-Lite

The chasing is carried out with respect to the positive axioms in the TBox T , and this
is indeed sufficient as Calvanese et al. (2009) have shown. More concretely, (some finite
closure of) the negative inclusions axioms and the functionality axioms are only relevant
for checking the satisfiability of the ontology. With induction on the stepwise construction
of the chase they can show that can(O) is a model of the whole ontology O iff the negative
inclusion axioms and functionality axioms are in accordance with the original ABox—and
this can be tested by a simple FOL-query.

The idea of introducing the concept of FOL-rewritability is motivated by the demand
to enable computationally feasible reasoning services over large ABoxes. Because the
size of the TBox (and the queries) is small with respect to the size of the ABoxes, the
computational feasibility is measured with respect to the size of the ABox alone, thereby
fixing all other parameters (TBox, query resp.). The resulting type of complexity is called
data complexity. Aiming at FOL-rewritability is indeed a successful venture with respect
to computational feasibility. This is due to the fact that the data complexity of answering
FOL-queries is in the low boolean circuits complexity class AC0. This fact can be used
contrapositively to deduce that a given reasoning service (satisfiability check or query
rewriting) is not FOL-rewritable if its data complexity is not in AC0.

3 Combinations of lightweight DLs with RCC8 that are not

FOL-rewritable

The NP-completeness of consistency tests for RCC8-constraint networks poses a severe
problem when trying to define tractable or—even stronger—FOL-rewritable spatio-thema-
tic description logics that use the RCC8-calculus as the spatial domain. The main chal-
lenge in constructing a computationally tractable logic is to restrict the way the concrete
domain can be accessed from within the logic; one has—so to speak—to control the flow
of information from the spatial domain to the abstract thematic domain of the underlying
lightweight logic. As will be shown in this section, a näıve combination of ω-admissible
domains with any simple FOL-rewritable logic already results in logics that inherit the
high complexity of the concrete domain. This fact is formalized in the propositions below
which demonstrate that arbitrary complex network structures can be generated by the
TBox-axioms in the näıvely combined logic.

9
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We intend to construct spatial-thematic description logics in which the combinations
between the thematic abstract domain and the spatial domain are maintained by con-
structors available in the logic ALC(RCC8) of Lutz and Miličić (2007). Our approach
diverges from the one of Lutz and Miličić (2007) in the point that we do not presuppose
an ω-admissible domain but some finite set of FOL-sentences that has the corresponding
properties of ω-admissible domains. So we explicitly represent the axioms of the domain
rather than making calls to an oracle. The main reason for this shift from a concrete
domain to a theory is the fact that it is simpler to use known techniques for query an-
swering (e.g. the chase construction) with respect to some axioms than with respect to
a concrete domain. Formally, let Rel be a finite set of binary relation symbols, Const
be a set of constants and Tω be a finite set of sentences with respect to a signature con-
taining Rel and Const . A network N is a set of sentences over Rel ∪ Const of the form
r1(a∗, b∗) ∨ · · · ∨ rk(a∗, b∗) for r1, . . . , rk ∈ Rel and a∗, b∗ ∈ Const . The network N is
called complete if it contains only atomic sentences r(a∗, b∗) and for all constants a∗, b∗

in N there is a r ∈ Rel such that r(a∗, b∗) ∈ N . For two complete finite networks N ,M
let IN ,M denote the atoms r(a∗, b∗) ∈ N such that a∗, b∗ occur in both N and M. The
restriction NConst � of a network to the set of constants Const � is the subset of N restricted
to those sentences containing only constants from Const �.

Tω is an ω-admissible theory iff it fulfills the following conditions:

1. Satisfiability: Tω is satisfiable.

2. JEPD-Property: Tω implies the JEPD-property for the relations in Rel.

3. Decidability: Testing whether a finite complete syntactic network N is satisfiable
with respect to Tω, i.e., testing whether Tω ∪N is satisfiable, is decidable.

4. Patchwork Property: If N ,M are finite complete networks that are satisfiable rela-
tive to Tω, respectively, and if IN ,M = IM,N , then N ∪M is satisfiable relative to
Tω, too.

5. Compactness: A complete network N is satisfiable relative to Tω iff for every finite
set of constants X occurring in N the restriction NX is satisfiable relative to Tω.
(This property is trivially fulfilled by all FOL-theories because FOL has the com-
pactness property.)

We will especially look at the ω-admissible theory of the Region Connection Calculus
(Randell et al., 1992). A problematic axiom within the Region Connection Calculus is the
axiom of non-atomicity ∀x∃yntpp(y, x) which says that all objects have a non-tangential
proper part and which therefore implies that there are no atomic regions. This axiom
enforces all models of RCC to be infinite. This axiom does not follow from the other
axioms or the definition of C but is explicitly stated.12 Rather than using the original
axioms (Randell et al., 1992) which are based on a reflexive symmetric connectedness-
relation C, we use the axioms that directly state that the eight base relations BRCC8 have

12
Perhaps it is possible to integrate the non-atomicity axiom in the following considerations. We decided

to skip it in order to simplify the proofs.
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the JEPD-property together with the axioms corresponding to the composition table and
the axiom ∀xeq(x, x). This theory is named AxRCC8 and is shown in Figure 4; it is weaker
than the theory of sentences over the signature BRCC8 that follow from the original set of
axioms but it can be better integrated into the chasing process.

{∀x, y.
�

r∈BRCC8
r(x, y)} (joint exhaustivity)

∪ {∀x, y.
�

r1,r2∈BRCC8,r1 �=r2
r1(x, y) → ¬r2(x, y)} (pairwise disjointness)

∪ ∀x, y, z.r1(x, y) ∧ r2(y, z) → r13(x, z) ∨ · · · ∨ rkr (x, z) | r; s = {r13, . . . , r
k
3}}

(weak composition axioms)

∪ {∀x.eq(x, x)} (reflexivity of eq)

Figure 4: Axiom set AxRCC8

All ABoxes that we will consider here can contain axioms of the form A(a) for some
concept symbol A or R(a, b) for some role symbol R or r(a∗, b∗) for a relation symbol r
from Tω or loc(a, a∗); a, b are individual constants intended to denote abstract thematic
objects; a∗, b∗ are constants intended to denote objects in the theory Tω. Let NA denote
the constraint network encoded in A, i.e., NA = {r(a∗, b∗) | r(a∗, b∗) ∈ A, r ∈ BRCC8}.

As testing the satisfiability of arbitrary13 RCC8 constraint networks is not FOL-re-
writable, the envisioned combination of some lightweight DL with the RCC8-domain can-
not be expected to be FOL-rewritable in the standard sense of FOL-rewritability. If
we can presume that the ABox is complete and consistent with respect to the RCC8-
knowledge, we have a chance to test the satisfiability of ontologies in the envisioned
combined logic with some FOL-query posed to the ABox. Consider, e.g., the simple
boolean query Q = ntpp(a, b) which asks whether regions a, b in the database are related
such that a is a non-tangential proper part of b. The composition axiom for the pair
(ntpp, ntpp) states that ntpp is a transitive relation; but the transitiveness condition can
not be compiled into a finite FOL-query. Intuitively, at least one would have to take
into account all ntpp-paths from a, b, i.e., one would have to query the database with
queries Q�

n = ∃x1 . . . ∃xn.ntpp(a, x1)∧ntpp(x1, x2)∧· · ·∧ntpp(xn−1, xn), ntpp(xn, b) for all
n ∈ N, because the database may be of the form {ntpp(a, c1), ntpp(c1, b)} or of the form
{ntpp(a, c1), ntpp(c1, c2), ntpp(c2, b)} etc. Therefore we define the following completeness
and consistency condition for ABoxes and weaken the notion of FOL-rewritability of sat-
isfiability to FOL-rewritability of satisfiability with respect to these ABoxes. An ABox A

is called spatially complete iff NA is a complete and satisfiable constraint network. We
hope that presuming ABoxes to be complete in this sense may allow for FOL-rewritability
of satisfiability checks and query answering.

Though the spatial completeness of ABoxes reduces the set of inconsistencies with re-
spect to a TBox, a näıve combination with simple description logics may lead to ontologies
that still do not allow for FOL-rewritable satisfiability checks.

13
Clearly, if the RCC8 network contains only base relations and is complete, then the satisfiability check

comprises nothing more than looking up the entries in the composition table.
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Proposition 1. Consider the following simple description logic, called L0
F
(RCC8): Let

Ui denote paths of maximal length 2 which may contain abstract features, i.e. Ui = loc or
Ui = R◦ loc. L0

F
(RCC8) allows for atomic concepts on the left-hand side of TBox axioms,

and it allows for ∃U1, U2.r constructs14 on the right-hand side.

U −→ R | R ◦ loc

Cl −→ A

Cr −→ ∃U1, U2.r for r ∈ RelRCC8

TBox : Cl � Cr, (funct R), (funct loc)

Tω = AxRCC8

The data complexity for checking satisfiability of L0
F
(RCC8) ontologies with respect

to spatially complete ABoxes is in NP, and therefore satisfiability checking is not FOL-
rewritable.

Proof. We construct a generic TBox that allows one to encode any RCC8 constraint
network so that checking the consistency of RCC8-constraint networks is reducible to a
satisfiability check of this TBox and a spatially complete ABox. Because the consistency
check for general RCC8-networks is NP-complete, the data complexity of checking satis-
fiability of ontologies in the DL L0

F
(RCC8) must also be in NP.

Let RelRCC8 be the set of all 28 RCC8-relations and let, for every r ∈ RelRCC8, be
given role symbols R1

r , R
2
r . The generic TBox Tg has for every r ∈ RelRCC8 a concept

symbol Ar and a corresponding axiom with the content that all instances of Ar have
paths over the abstract features R1 resp. R2 to regions that are r-related.

Tg = {Ar � ∃(R1
r ◦ loc), (R

2
r ◦ loc).r, (funct loc, R1

r , R
2
r) | r ∈ RelRCC8}

Now, let N be an arbitrary RCC8 constraint network which has to be tested for relational
consistency. We define an ABox AN such that for every r(a, b) in N three new constants
are introduced: xab, xa, xb. The constants xa, xb are intended to denote abstract pendants
of a and b and xab is an abstract object that instantiates Ar—thereby forcing the relation
r between a and b.

AN = {Ar(xab), R
1
r(xab, xa), R

2
r(xab, xb) | r(a, b) ∈ N}

The size of the ABox AN is linear in the size of N , and AN can be constructed from N

using only logarithmic space. The construction immediately implies the following fact:

Tg ∪ AN ∪AxRCC8 is satisfiable iff N ∪AxRCC8 is satisfiable

If the data complexity of the satisfiability check for L0
F
(RCC8)-ontologies were in AC0,

then the consistency of constraint networks could be tested in AC0, too. Note that Tg is

14
The semantics of ∃U1, U2.r under an interpretation I is defined according to the semantics described

by Lutz and Miličić (2007). According to this semantics, for example, (∃(R ◦ loc), (loc).r)I is the set

{d ∈ ∆
I | there exist e, d�, e� ∈ ∆

I
s.t. (d, e) ∈ RI , (e, e�) ∈ locI , (d, d�) ∈ locI and (e�, d�) ∈ rI}.

12
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a fixed TBox. But checking the consistency of RCC8 constraint networks is NP-hard. As
NLogSpace ⊆ NP, every NP-hard problem is NLogSpace-hard, too. But because AC0

� NLogSpace, we get a contradiction.

The reason for this negative result is the fact that abstract features make it possible
to identify the regions of the abstract objects, and therefore arbitrary constraint networks
can be constructed. One can circumvent this problem by defining a combined logic that
forbids abstract features; but if, on the other hand, one allows for the use of ∀U1, U2.r-
constructs on the right hand side of TBox axioms as well as inverse roles, one can use almost
the same construction to get a similar negative result on FOL-rewriting of satisfiability.
Hereby, ∀U1, U2.r denotes in an interpretation I all elements which have only paths along
U1 resp. U2 to objects that are related by the RCC8-relation r.

Proposition 2. Consider the following simple description logic, called L1
F
(RCC8) which

allows only atomic concepts on the left-hand side but allows for ∀U1, U2.r constructs with
paths Ui of maximal length 2 on the right-hand side:

U −→ R | R ◦ loc

Cl −→ A|∃R | ∃R−1
| ∃loc

Cr −→ ∀U1, U2.r for r ∈ RelRCC8

TBox : Cl � Cr, (funct loc)

Tω = AxRCC8

The data complexity for checking satisfiability of L1
F
(RCC8) ontologies with respect to

spatially complete ABoxes is in NP, and therefore satisfiability checking is not FOL-
rewritable.

Proof. The generic TBox Tg contains for every r ∈ RelRCC8 an atomic concept Ar and
a corresponding axiom saying that all instances of Ar can only have paths over Rr

1 resp.
Rr

2 to regions that are r-related. Furthermore, the TBox has axioms which allow only for
fillers of R1

r resp. R2
r that have locations.

Tg = {Ar � ∀(R1
r ◦ loc), (R

2
r ◦ loc).r, (funct loc) | r ∈ RelRCC8}

∪ {∃(R1
r)

−1
� ∃loc, ∃(R2

r)
−1

� ∃loc | r ∈ RelRCC8}

The proof continues in the same way as the proof for Proposition 1.

As the formula B � ∀U1, U2.r for r can be (modulo AxRCC8) equivalently written
as ∃U1, U2.(B \ r) � ¬B, the proposition implies, that the ∃-constructs on the left-hand
side of axioms can lead to non-FOL-rewritability. This fact has also consequences for
the scenario of the city planning bureau from the introduction. If the planning bureau
wants to have necessary and sufficient definitions for parks with lakes that touch the park
from within, then a resulting TBox could have the form as in Fig. 5.15 Even such simple
definitions of concepts like parks with lakes over the TIGER/Line R� database may prohibit
FOL-rewritability.

15
Please note that the concept ParkWithLake can be defined by the even simpler axioms ParkWithLake �

∃parkHasLake and ParkWithLake � ∃parkHasLake if the TBox contains the additional axioms Lake � ∃loc
and Park � ∃loc.
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ParkWithLake � ∃(parkHasLake loc)(loc).tpp

ParkWithLake � ∃(parkHasLake loc)(loc).tpp

∃parkHasLake � Park

∃parkHasLake−1
� Lake

Park � ∀(parkHasLake loc)(loc).tpp

Figure 5: A definition of parks with lakes in ALC(RCC8)

How can we react to such non-rewritability results (Propositions 1, 2) that seem to show
that combinations of lightweight description logics with the RCC8 calculus are probably to
yield logics that do not allow for FOL-rewritable satisfiability checks and more generally
for FOL-rewritable query answering? There are at least four perspectives in this context
whose modification could make the tractable combination a more successful venture.

• First of all, one can try to use different descriptions logics that further restrict the
interaction of the thematic and the spatial domain. The resulting logics will of
course be very weak with respect to the spatial-thematic concepts and the models
that can be expressed.16 We will show that extending DL-Lite-logics with ∃U1, U2.r-
constructs on the right side where U1 and U2 may be loc or R◦loc for some role R (not
abstract feature) allows for FOL-rewritable satisfiability checks and FOL-rewritable
query answering for spatially complete ABoxes and restricted GCQ+-queries.

• The second perspective concerns the additional knowledge of the special properties
of the ABox that one has in advance, i.e., before the reformulation. We already
did some modifications concerning this perspective by restricting the ABoxes to be
spatially complete, and will look in future work at further stronger completeness
conditions which can be fulfilled by some real-world database (or more correctly
the virtual ABox induced by the database and the underlying mappings). E.g.,
the constructions in the propositions above do not work for ABoxes A which are
complete in the sense that all individual constants appearing in A have locations
and the induced network AN is a complete and consistent constraint network. This
perspective is intended to be more general than exemplified with our completeness
notions as it also should incorporate, among others, the notion of combined rewriting
(Lutz et al., 2009). In the case of combined rewriting one may use the ABox to merge
it with the TBox into some interpretation that can be used as a universal model;
this interpretation is then used as the database to which the rewritten queries are
issued. That means that in case of the combined rewriting method, one has total
knowledge on the ABox before the rewriting step.

The use of integrity constraints for mappings developed in the thesis of Rodŕıguez-
Muro (2010) is another way to convey information from the ABox.

16
In this context, one may also try to answer the question whether there is some spatial calculus which

by itself has a complexity as low as AC0
, e.g., the very weak logic RCC3. The combination of such a

spatial calculus with DL-Lite is a potential logic which has data complexity AC0
itself.
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• The third perspective is only relevant for query answering and concerns the expres-
siveness of the query language in which the query is issued. We argued above that
the reformulation idea combined with general (ungrounded) conjunctive queries and
undistinguished variables within these type of queries has some unintuitive conse-
quences. We will therefore consider reformulation aspects for querying answers in a
fragment of conjunctive queries.

• The fourth perspective concerns the expressiveness of the query language in which
the rewritten queries have to be formulated. Using, e.g., Datalog instead of FOL
enhances the compilation capabilities.

4 Combinations of lightweight DLs with RCC8 allowing for

FOL-rewritability

We consider the following very weak extension DL-Lite(RCC8) of DL-Lite in which con-
cepts of the form ∃U1, U2.r may appear on the right-hand side of TBox axioms and in
which only the concrete attribute loc is allowed to be functional.

R −→ P | P−

U −→ R | R ◦ loc

B −→ A | ∃R | ∃loc

C −→ B | ¬B | ∃U1, U2.r for r ∈ RelRCC8

and not simultaneously U1 = U2 = loc and eq /∈ r

TBox : B � C, (funct loc), R1 � R2

Tω = AxRCC8

Figure 6: The combined logic DL-Lite(RCC8)

The restriction for concepts of the form ∃U1, U2.r in Fig. 6 assures that we do not get
empty concepts from the beginning (without any interesting deduction over the TBox);
clearly, ∃loc, loc.r denotes an empty concept with respect to AxRCC8 if r does not contain
the relation eq. We could also handle empty concepts in the rewriting algorithms, but
deciding to exclude empty concepts facilitates the rewriting process.

Excluding the special case that U1 = U2 = loc, one can see that concepts of the
form ∃U1, U2.r on the right side of TBoxes are not relevant for satisfiability checks; the
reason is that at least one of U1 or U2 will contain a role symbol that leads to totally new
regions which cannot be identified by regions already taken into consideration. In short,
DL-Lite(RCC8) does not essentially generate new potential inconsistencies with ABoxes
in comparison with the potential inconsistencies of the pure DL-Lite-part because DL-
Lite(RCC8) offers only a weak means for restricting the models of the ABox. Therefore
it is possible to use the satisfiability check of pure DL-Lite ontologies by calculating the
DL-Lite concepts subsuming ∃U1, U2.r; e.g., if B � ∃R ◦ loc, loc.r ∈ T , then one has
to take into account that T |= B � ∃R. The resulting proposition which states that
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Chasing Rule (R)
If B(x) ∈ Si and there are no y, y∗, x∗ such that {R1(x, y), loc(y, y∗), loc(x, x∗), r1(y∗, x∗)}
is contained in Si, then let Si+1 be the superset of Si that results by adding the elements
in {R1(x, y), loc(y, y∗), loc(x, x∗), r1(y∗, x∗)} with individual constants y, y∗, x∗. The indi-
vidual constants y, y∗ are completely new constants not appearing in Si. The constant x∗

is the old x∗ if already in Si, otherwise it is also a completely new constant symbol.

Figure 7: Additional chasing rule that accounts for ∃U1, U2.r-concepts

checking the satisfiability of DL-Lite(RCC8)-ontologies with spatially complete ABoxes is
FOL-rewritable is a corollary of (Calvanese et al., 2009, Theorem 4.14).

Proposition 3. Checking the satisfiability of DL-Lite(RCC8)-ontologies whose ABox is
spatially complete is FOL-rewritable.

Proof. Let T ∪ A ∪ AxRCC8 be an ontology with a spatially complete ABox A and
the ω-admissible background theory AxRCC8. We built a simple closure T � of the pure
DL-Lite part of T in the following way. Every DL-Lite axiom of T is in T �. For every
B � ∃R1 ◦ loc, R2 ◦ loc.r ∈ T let {B � ∃R1, B � ∃R1, B � ∃loc} ⊆ T � and similarly for
the other axioms of the form B � ∃U1, U2.r. We claim that

T ∪ A ∪AxRCC8 is satisfiable iff the DL-Lite ontology T � ∪ (A \ NA) is satisfiable.

The difficult direction is the one from right to left which we will prove in the following.
Let T � ∪ (A\NA) be satisfiable by some model I which can w.l.o.g. be assumed to be the
canonical model for the chase chase(T �

p∪(A\NA)). Here, T �
p denotes the positive inclusion

axioms in T . As A is spatially complete, there exists a model I � |= NA ∪AxRCC8. We let
X = chase(T �

p ∪ A) which is satisfiable by an interpretation J built as a merge of I and
I �. Now, we will extend X by further chasing steps in the following way. We will use the
restricted chase construction of Calvanese et al. (2009) as explained in Section 2 on logical
preliminaries. Different from the chase construction of Calvanese et al. (2009), we start
with the set X which may already be infinite. This fact poses no problems as we chose an
ordering over set of all possible strings over the signature of the ontology and the chasing
constants.

In addition to the chasing rules listed in Figure 3, we will use the additional chasing
rule for axioms of the form B � ∃R1 ◦ loc, loc.(r1 ∨ · · · ∨ rk) ∈ T and the other axioms of
the form B � ∃U1, U2.R ∈ T (Figure 4). Let Si denote the sets created during the chasing
process.

Note that we do not take into account the disjunction of the relations r1, . . . , rk but just
take the first basic RCC8-relation r1 of the disjunction. Note further that the functionality
of loc is directly encoded into the chasing rule. Directly after this chasing rule a completion
step is applied in order to make the generated constraint network have a unique model
modulo isomorphism. For every node n∗ appearing in Si an atom rn∗(n∗, y∗) with rn∗ ∈

BRCC8 being some basic relation is added. We may have infinite many localities already in
S0 but these are not constrained in anyway. We can assume that these nodes are pairwise
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related by the disjointness relation dc. So, in every chasing step there can be defined
two disjoint sets of localities V dc

i and V fin
i with the following properties: For all pairwise

distinct nodes in V dc
i it is the case that dc(a∗, b∗) ∈ Si and for all nodes a∗ ∈ V dc

i and

nodes b∗ ∈ V fin
i it is the case that dc(a∗, b∗) ∈ Si and both networks are complete and

relationally consistent. Now, the complete constraint network induced by V fin
i is finite

and is consistent with r1(y∗, x∗). This fact follows, e.g., from the patch-work property
of ω-admissible theories. We use a path-consistency algorithm or some other appropriate
algorithm to find a complete and consistent set induced by V fin

i ∪ {y∗} that extends the

networks induced by V fin
i and y∗, resp. The new node y∗ is related to the nodes in V dc

i by
dc-edges. This step does not disturb the consistency of the whole network because every
composition of some basic relation with dc results in a disjunction which again contains dc.
Proceeding in this way, we can finally define the union

�
∞

i=0 Si which induces a canonical
model of T ∪ A ∪AxRCC8.

Now we can use the satisfiability test for DL-Lite defined by Calvanese et al. (2009).

Proposition 3 provides a prerequisite for rewriting queries with respect to ontologies in
DL-Lite(RCC8). The query language for which the rewriting is going to be implemented is
derived from grounded conjunctive queries and will be denoted by GCQ+. We chose this
query mainly due to two reasons. The first reason relies in the implausible consequences
of the semantics of conjunctive queries that we have discussed at the end of the section
on DL-Lite. The second reason is the computational unfeasibility of answering CQs that
contain base relations of RCC8—even if the ABox is assumed to be complete.

Definition 4. A GCQ+-atom w.r.t. DL-Lite(RCC8) is a formula of one of the following
forms:

• C(x), where C is a DL-Lite(RCC8) concept without the negation symbol and x is a
variable or a constant.

• ∃R1 . . . Rn.C for role symbols or inverses of role symbols Ri, a DL-Lite(RCC8) con-
cept without the negation symbol C and a variable or a constant x17

• R(x, y) for a role symbol or an inverse of a role symbol R

• loc(x, y∗), where x is a variable or constant and y∗ is a variable or constant intended
to denote elements of the ω-admissible domain Tω

• r(x∗, y∗), where r ∈ RelRCC8 and x∗, y∗ are variables or constants intended to denote
elements of Tω

17
Note that we allow qualified existential restrictions in the GCQ+

-atom. This the reason why we do not

just use a conjunction of predicate logical atoms as is done for grounded conjunctive queries. A grounded

conjunctive query can model GCQ+
-queries for other logics in which there is no distinction concerning

the left-hand side and right-hand side in the following way: If C(x) is GCQ+
-atom, then one can define

the grounded atomic query A(x) and extend the TBox with C � A. This is not possible for DL-Lite, as

DL-Lite prohibits qualified existential restrictions on the left-hand side of TBox axioms.

17



A GCQ+-query w.r.t. DL-Lite(RCC8) is a query of the form ∃̃�y�z∗
�
Ci(�x, �w∗, �y, �z∗) where

all Ci(�x, �w∗, �y, �z∗) are GCQ+-atoms and ∃̃�y�z∗ = ∃̃y1 . . . ∃̃yn∃̃z∗1 . . . ∃̃z
∗
m is a sequence of

existential quantifiers that have to be interpreted w.r.t. the active domain semantics.

We want to adapt the algorithm PerfectRef (Calvanese et al., 2009, Fig. 13) for refor-
mulating UCQs w.r.t. DL-Lite ontologies to our setting in which GCQ+-queries are issued
to DL-Lite(RCC8) ontologies. So, the first step for the adaption is to translate GCQ+-
queries into CQs which can be done in the following way. Let Q = ∃̃�y �z∗

�
Ci(�x, �w∗, �y, �z∗)

be a GCQ+. As the ∃̃,-quantifiers in GCQ+-queries have to be bounded to constants in
the ontology we can equivalently write Q by introducing a new concept symbol D intended
to denote all individuals in the active domain. All individual constants a in the ABox are
supposed to be postulated in the ABox as instances of D, and the query Q is rewritten as

Q� = ∃�y�z∗
�

Ci(�x, �w
∗, �y, �z∗) ∧D(y1) ∧ · · · ∧D(yn) ∧D(z∗1) ∧ · · · ∧D(z∗k)

Note that the existential quantifiers are now classical existential quantifiers with natural
domain semantics. The GCQ+-atoms Ci(�x, �w∗, �y, �z∗) can be transformed into a union
of existentially quantified conjunctions of predicate logical atoms. Here we assume, that
r(x∗, y∗) for r ∈ RelRCC8 is understood as a predicate logical atom. By pushing the exis-
tential quantifiers to the front of the query body (and if necessary renaming the variables
beforehand) the queries can be transformed into a classical UCQ so that the rewriting
algorithm for DL-Lite ontologies can in principle be used for the logic DL-Lite(RCC8),
too. Let τ1(Q) be the result of the transformation to a UCQ. Using this transformation,
we can explain formally the semantics of answering a GCQ+-query with respect to an
ontology O in the following manner.

cert(O, Q) = cert(O, τ1(Q))

For the second step of the adaptation of the PerfectRef algorithm we consider a par-
tial type of transformation τ2(·, ·) with two arguments which transforms only the atom
occurrences given as second argument to classical predicate logical atoms. For example,
let Q = ∃R.A(x) ∧ ∃R1 ◦ loc, loc.tpp(y). Then

τ2(Q, {∃R1 ◦ loc, loc.tpp(y)}) = ∃z, z∗, x∗.∃R.A(x) ∧R(y, z) ∧ loc(z, z∗) ∧

loc(x, x∗) ∧ tpp(z∗, x∗)

The resulting query τ2(Q) is a hybrid union of conjunctive queries whose conjuncts are
either classical predicate logical atoms or GCQ+-atoms. The transformation τ2(·) with
one argument is the same as the transformation τ1 except that it does not transform
the non-DL-Lite-atoms of the form ∃U1, U2.r(x), i.e., the transformation τ2(·) with one
argument can be defined by the binary transformation function τ2(·, ·) in the following
way:

τ2(Q) = τ2(Q, {at | at is a GCQ+-atom in Q not of the form ∃U1, U2.r(x)})

The resulting query τ2(Q) is a union of of hybrid conjunctive queries whose conjuncts are
either classical predicate logical atoms or atoms of the form ∃U1, U2.r(x).



input : a hybrid query τ1(Q) ∪ τ2(Q), DL-Lite(RCC8) TBox T

output: a UCQ pr
1 pr := τ1(Q) ∪ τ2(Q);
2 repeat
3 pr� := pr;
4 foreach query q� ∈ pr� do
5 foreach atom g in q� do
6 if g is a FOL-atom then // Case like in original PerfectRef

7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr ∪ {q�[g/gr(g, α)]};

10 end

11 end

12 else // Case to capture the GCQ+-queries

13 if g is of the form ∃R1 ◦ loc, R2 ◦ loc.r3(x) and r1; r2 ⊆ r3 for
r1, r2, r3 ∈ RelRCC8 then

14 X := q�[g/(∃R1 ◦ loc, loc.r1(x) ∧ ∃loc, R2 ◦ loc.r2(x))];
15 pr :=

pr ∪ {X} ∪ {τ2
�
X, {∃R1 ◦ loc, loc.r1(x), ∃loc, R2 ◦ loc.r2(x)}

�
}

16 end
17 if g is of the form ∃U1, U2.r1(x) and B � ∃U1, U2.r2(x) ∈ T for

r2 ⊆ r1 then
18 pr := pr ∪ {q�[g/B(x)]};
19 end
20 if g is of the form ∃U1, U2.r1(x) and B � ∃U1, U2.r2(x) ∈ T for

r−1
2 ⊆ r1 then

21 pr := pr ∪ {q�[g/B(x)]};
22 end
23 if g is of the form ∃R1 ◦ loc, U1.r(x) (resp. ∃U1, R1 ◦ loc.r(x)) and

(R2 � R1 ∈ T or R−1
2 � R−1

1 ∈ T ) then
24 X := q�[g/(g[R1/R2])];
25 pr := pr ∪ {X} ∪ {τ2

�
X, {g[R1/R2]}

�
};

26 end

27 end

28 end
29 foreach pair of FOL-atoms g1, g2 in q� do
30 if g1 and g2 unify then
31 pr := pr ∪ {anon(reduce(q�, g1, g2))};
32 end

33 end

34 end

35 until pr� = pr;
36 return drop(pr) // see Algorithm 2

Algorithm 1: Adapted PerfectRef
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The original algorithm PerfectRef operates on the positive inclusion axioms of a DL-
Lite ontology by using them as rewriting aids for the atomic formulas in the UCQ. Lines
5–12 and 28–34 of our adapted algorithm (Algorithm 1) make up the original PerfectRef.
Roughly, the PerfectRef algorithm acts in the inverse direction with respect to the chasing
process. For example, if the TBox contains the positive inclusion axiom A1 � A2, and
the UCQ contains the atom A2(x) in a CQ, then the new rewritten UCQ query contains
a CQ in which A2(x) is substituted by A1(x). The applicability of a positive inclusion
axiom to an atom is restricted in those cases where the variables of an atom are either
distinguished variables or also appear in another atom of the CQ at hand. To handle
these cases, PerfectRef— as well as also our adapted version—uses anonymous variables
to denote all non-distinguished variables in an atom that do not occur in other atoms of
the same CQ. The function anon (line 31 in Algorithm 1) implements the anonymization.
The application conditions for positive inclusion axioms α and atoms are as follows:

• α is applicable to A(x) if A occurs on the right-hand side.

• α is applicable to R(x1, x2), if x2 = and the right-hand side of α is ∃R; or x1 = and
the right-hand side of α is ∃R−; or α is a role inclusion assertion and its right-hand
side is either R or R−.

The outcome gr(g, α) of applying an applicable positive inclusion axiom α to an atom g
corresponds to the outcome of resolving α with g. For example, if α is A � ∃R and the
atom g is P (x, ), then the result of the application is gr(g, α) = A(x). We leave out the
details here.18 In the algorithm PerfectRef, atoms in a CQ are rewritten with the positive
inclusion axioms (lines 6–11) and if possible merged by the function reduce (line 31) which
unifies the atoms with the most general unifier (lines 28–34).

The modification of PerfectRef (which is realized in lines 12–26 of Algorithm 1) con-
cerns the handling of GCQ+-atoms of the form ∃U1, U2.r(x). These atoms may have
additional implications that have to be accounted for. At the end of the adapted algo-
rithm PerfectRef (Algorithm 1, line 35) these atoms are deleted by calling the function
drop (Algorithm 2), so that in the end a classical UCQ results.

The only interesting implications of GCQ+-atoms of the form ∃U1, U2.r(x) that we
have to account for are the following:

• The conjunction of ∃R1◦loc, loc.r1 and ∃loc, R2◦loc.r2 is a subconcept of the formula
∃R1 ◦ loc, R2 ◦ loc.r3 where r3 ∈ RelRCC8 results as the union of composition table
entries ri1; r

j
2 for ri1 ∈ r1 as left and rj2 ∈ r2 as right argument (or r3 is a superset of

the composition). I.e., if the formula ∃R1 ◦ loc, R2 ◦ loc.r3(x) occurs as a conjunct
during the rewriting of the original query, then it can be replaced by a conjunct
of ∃R1 ◦ loc, loc.r1(x) and ∃loc, R2 ◦ loc.r2(x) for all r1, r2 ∈ RelRCC8 such that
r1; r2 ⊆ r3.

• If ∃U1, U2.r1(x) occurs as conjunct in the query and B � ∃U1, U2.r2(x) with r2 ⊆ r1
is in the TBox, then create a new query in which ∃U1, U2.r1(x) is substituted by
B(x).

18
The complete list is given in Fig. 12 in the paper of Calvanese et al. (2009).
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input : a hybrid UCQ pr
output: a classical UCQ pr

1 repeat
2 pr� := pr;
3 foreach query q� ∈ pr do
4 if q� is not a CQ then
5 pr := pr \ {q�}
6 end

7 end

8 until pr� = pr;
9 return pr

Algorithm 2: Algorithm for dropping GCQ+-atoms

• If ∃U1, U2.r1(x) occurs as conjunct in the query and B � ∃U2, U1.r2(x) with r−1
2 ⊆ r1

is in the TBox, then create a new query in which ∃U1, U2.r1(x) is substituted by B(x).

• If ∃R1 ◦ loc, U1.r(x) occurs as a conjunct in the query and R2 � R1 is in the TBox,
then create a new query by substituting ∃R1 ◦ loc, U1.r(x) with ∃R2 ◦ loc, U1.r(x).

These cases are handled in lines 12–26 of the algorithm.
As our algorithm is a slight modification of the PerfectRef algorithm, the following

proposition concerning the FOL-rewritability can be proved with ideas similar to the ones
that are used for the proof of Theorem 5.15 by Calvanese et al. (2009).

Proposition 5. Answering GCQ+-queries with respect to DL-Lite(RCC8)-ontologies whose
ABox is spatially complete is FOL-rewritable.

Proof.
Calvanese et al. (2009) make heavily use of the chase construction which we have to

adapt in order to account for the disjunctions in the general RCC8-relations r ∈ RelRCC8.
The main observation is that the disjunctions in the ∃U1, U2.r constructs can be nearly
handled as if they were atomic predicate symbols.

Let Q be a n-ary GCQ+-query. If the ontology O = T ∪ A is not satisfiable, the set
of answers cert(Q,O) has to be the set of all n-ary tuples of constants of the ontology O.
But as we have shown in Proposition 3, satisfiability is FOL-rewritable and therefore it
can be tested by a SQL-query. So we can assume, that O is satisfiable.

Let pr be the UCQ resulting from applying the adapted PerfectRef-algorithm to Q
and O. We have to show that cert(Q,O) = (pr)DB(A). In order to prove this equation, we
proceed in two main steps. First, we construct a chase-like set chase∗(O), declare what
it means to answer Q with respect to chase∗(O), resulting in the set ans(Q, chase∗(O)),
and then show that ans(Q, chase∗(O)) is nothing else than the certain answers of Q with
respect to O, i.e. ans(Q, chase∗(O)) = cert(Q,O). In the second step, we show that
the answers of the UCQ pr with respect to the minimal model DB(A) is the same as
ans(Q, chase∗(O)), i.e. ans(Q, chase∗(O)) = (pr)DB(A).
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First Step

We construct a chase-like set chase∗(O) that will be the basis for proving the correctness
and completeness of our algorithm. We use the chase rules of Figure 3 and the special
rule (R) of Figure 4 for the new constructors to build chase∗(O) in the following way.
Every time (R) is applied to yield a new ABox Si, the resulting constraint network in Si is
saturated by calculating the minimal labels between the new added region constants and
the other region constants. Note that the application of (R) does not constrain the RCC8-
relations between the old regions and even stronger: Let (R) be applied to a TBox axiom
of the form A � ∃Rloc, loc.r and A(a) ∈ Si resulting in the addition of the assertions
R(a, b), loc(b, b∗) and r(b∗, a∗). Then it is enough to consider all c∗ ∈ Si and all relations
rc∗,a∗ such that rc∗,a∗(c∗, a∗) ∈ Si. In the composition table one looks up the outcome
rc∗,a∗ ; r = r�c∗,b∗ and adds r�c∗,b∗(c

∗, b∗) to Si. In the following, this step will be called the
step of triangle completion. After the triangle completion step one closes the assertions up
with respect to the subset relation between RCC8-relations and with respect to symmetry.
I.e., if r1(x∗, y∗) is added to Si, then one also adds r2(x∗, y∗) for all r2 such that r1 ⊆ r2
and r−1

2 (y∗, x∗). For different c∗1, c
∗
2, assertions of the form rc∗1,b∗(c

∗
1, b

∗) and rc∗2,b∗(c
∗
2, b

∗)
do not constrain each other—as can be shown by using the patch work property. As the
number of regions is finite and we excluded the non-atomicity axiom, the saturation leads
to a finite set Si+k (for some k ∈ N) that is a superset of Si. Let chase∗(O) =

�
Si be

the union of all ABoxes constructed in this way (starting again with S0 = A). The set
chase∗(O) does not induce a single canonical model. But we claim that it is universal in
the following sense:

(*) For every model I of O one can get a model Ic out of chase∗(O) by taking a
(consistent) configuration of the contained RCC8-network and taking the minimal
model of this configuration and the thematic part of chase∗(O). Then Ic maps
homomorphically to I.

The claim (*) holds because ∃U1, U2.r-constructs do not appear on the left-hand side of
the positive inclusion axioms in the TBox T , and therefore new information on the RCC8-
network side cannot be used during the chasing process to produce new information on
the thematic part.

We explain what it means to answer a GCQ+-query with respect to chase∗(O). We
transform Q into a CQ τ1(Q) where the the general relations r ∈ RelRCC8 are considered
as atomic predicate symbols. E.g., let Q∃R.A(x) ∧ ∃R1 ◦ loc, loc.(tpp ∨ ntpp)(y). Then

τ1(Q, {∃R1 ◦ loc, loc.tpp(y)}) = ∃z, z∗, x∗.∃R.A(x) ∧R(x, z) ∧ loc(z, z∗) ∧

loc(x, x∗) ∧ (tpp ∨ ntpp)(z∗, x∗)

The set of answers ans(chase∗(O), Q) is defined by homomorphisms of the atoms of τ1(Q)
into chase∗(O). Let (x1, . . . , xn) be the n-ary tuple of distinguished variables of Q =
ψ(�x). (a1, . . . , an) ∈ ans(chase∗(O), Q) iff there is a homomorphism h from τ1(Q) into
chase∗(O) with h(xi) = ai (for i ∈ {1, . . . , n}). The homomorphic image of ψ(�x) of in
chase∗(O) is called a witness of ψ w.r.t. �a in chase∗(O). Clearly, if I |= chase∗(O) and
�a ∈ ans(chase∗(O), Q), then I |= ψ[�x/�a].

22



Technical Report – GeoDL

We prove that ans(Q, chase∗(O)) = cert(Q,O) by proving both subset relations sep-
arately.

⊆-direction: Let �a ∈ ans(Q, chase∗(O)). We have to show O |= ψ[�x/�a]. Let I |= O

and Ic be the model according to claim (*). We have to show Ic |= ψ[�x/�a]. Because
Ic |= ψ[�x/�a], it follows that I |= ψ[�x/�a].

⊇-direction: Let �a ∈ cert(Q,O). For every I |= O consider Ic. All these models Ic

differ at most on the interpretations of the RCC8-Relations which are assigned to regions
x∗, y∗. Consider for all x∗, y∗ the assertion r(x∗, y∗), r ∈ RelRCC8 where ri ∈ r iff there is
Ic such that ri(x∗, y∗) is true in Ic. Then r(x∗, y∗) is in chase∗(Q,O). Therefore we will
find a homomorphism h from ψ(�x) onto chase(Q,O) with h(�x) = �a.

Second Step

Let pr be the outcome of the adapted PerfectRef-Algorithm applied to Q. We prove
prDB(A) = ans(chase∗(O), Q) by proving the subset relations separately.

⊆-direction: Let q ∈ pr be a conjunctive n-ary query. We have to show qDB(A) ⊆

ans(chase∗(O), Q). This can be done by induction over the number of steps that are
needed in order to construct q in the PerfectRef algorithm. In the base case q ∈ τ1(Q). The
assertion follows directly from the fact that DB(A) is contained in chase∗(O). Inductive
step. Let q = qi+1 and qi+1 be the outcome of applying one of the steps in the algorithm
to qi. If the steps are those contained in the original PerfectRef-algorithm we can argue in
the same line as in the proof of Lemma 5.13 of Calvanese et al. (2009). In the other cases
the induction steps are provable because of the correctness of the implicit deductions.

⊇-direction: This is the direction showing the completeness of the algorithm. Let
�a ∈ ans(Q, chase∗(O)). So there is a witness of �a w.r.t. τ1(Q) in chase∗(O). This witness
lies in some Sk of the chase chase∗(O) and shall be denoted Gk. We have to find a q ∈ pr
such that it has a witness in the ABox A. This can be proved by considering the pre-
witness of �a with respect to Q in all Si for i ≤ k. The pre-witness of �a with respect to Q
in Si is defined by the following equation:

Gi =
�

β�∈Gk

{β ∈ Si | β is an ancestor of β� in Sk and there exists no

successor of β in Si that is an ancestor of β� in Sk}

By induction on i (for i ∈ {0, . . . , k}) one can find a q ∈ pr such that the pre-witness
of �a with respect to Q in Sk−i is a witness for q. By induction assumption there is q� ∈ pr
such that Gk−i+1 is a witness of �a w.r.t. q� in Sk−i+1. If Sk−i+1 results from Sk−i by
application of one of the chase rules in Figure 3, then the argument proceeds in the same
manner as in the proof of Lemma 5.13 of Calvanese et al. (2009). Otherwise, Sk−i+1

is constructed by applying rule (R) or one of the saturation steps (triangle completion,
upward closure, symmetry closure, resp.) following the application of rule (R). But all
these steps have a corresponding case in the algorithm.

As query answering in DL-Lite(RCC8) is FOL-rewritable, queries like those from the
scenario of city planning can be answered correctly and completely by transforming them
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into SQL-queries and getting the answers from the underlying database. The TBox of
the city planning bureau may contain the following axioms which formalize the necessary
conditions for parks with lakes and playing areas, resp., within DL-Lite(RCC8).

ParkWithLake � Park

ParkPlaying � Park

ParkWithLake � ∃hasLake ◦ loc, loc.tpp

ParkPlaying � ∃hasPlayingArea ◦ loc, loc.tpp

The ABox A is derived from GIS-data in a database and additionally contains assertions
w.r.t. to an object a; the object a is still not localized with respect to the data in the
database but is specified to be a park containing a lake (touching the park from within)
and a playing area, i.e., {ParkWithLake(a),ParkPlaying(a)} ⊆ A.

The query asking for all parks that have lakes not containing a playing area as island
can be expressed as the following GCQ+:

Q = Park(x) ∧ ∃hasLake ◦ loc, hasPlayingArea ◦ loc.BRCC8 \ {ntpp}(x)

Our adapted reformulation algorithm (Algorithm 1, especially lines following line 12)
would produce a UCQ that contains, among others, the following CQ

Q� = ParkWithLake(x) ∧ ParkPlaying(x)

This query would correctly capture the object a.

5 Conclusion and Outlook

As a resume of this paper we may state that combining lightweight logics with spatial
calculi like RCC8 is a non-trivial task that may easily lead to logics that are not appropriate
to handle large GIS-data bases. This is even the case when additional assumptions on the
completeness of the database resp. the (virtual) ABox are made (Propositions 1 and 2).

Weakening the interaction between the thematic and spatial domain may lead to logics
like the one we termed DL-Lite(RCC8) in this paper that allow FOL-rewritability of
satisfiability tests and of query answering (Propositions 3 and Proposition 5). This logic
can be used to answer queries over ontologies in which mainly necessary conditions on
spatio-thematic concepts are formulated.

DL-Lite(RCC8) is not expressive enough to realize more sophisticated reasoning ser-
vices with a fine-grained modeling of the domain; we have seen that it is not expressive
enough in order to define some simple concepts like the concept of a park containing a
lake. Nonetheless, DL-Lite(RCC8) or a slight extension of it called DL-Lite�(RCC8) may
be used as a logic for approximating ontologies in more expressive description logics in the
same way as done by Kaplunova et al. (2010).

More concretely, we define DL-Lite�(RCC8) as an extension of DL-Lite(RCC8) that
allows for conjunctions on the left-hand side and the ∃U1, U2.r-construct on the left-hand
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side restricted to the case r = BRCC8, i.e., the following rules are added to the grammar
of DL-Lite(RCC8):

B1 �B2 → C

∃U1, U2.BRCC8 → C

Slight modifications of the proof for the rewritability of query answering with respect to
DL-Lite(RCC8) ontologies show that query answering w.r.t. to ontologies in the logic
DL-Lite�(RCC8) is rewritable, too. Now, let be given an expressive combined logic
Lexpr (RCC8) (e.g., ALC(RCC8)) that can express an ontology over the TIGER/Line R�

data like the one defined in Fig. 5, and let T ∪ A be some ontology in Lexpr (RCC8). An-
swering GCQ+-queries with respect to the ontologies in Lexpr (RCC8) may not be FOL-
rewritable and so the idea is to approximate T with a TBox T � in DL-Lite�(RCC8) that
is stronger than T , i.e., T � |= T . In particular, the approximation implies that all answers
to the original query q with respect to T ∪ A is a subset of the answers with respect
to T � ∪ A. Answering queries with respect to ontologies in the expressive description
logic Lexpr (RCC8) has thus been reduced to query answering with respect to ontologies in
DL-Lite�(RCC8) which we has been shown to be FOL-rewritable. As the approximation
results in a complete but not necessarily correct query answering methodology, the set of
answers cert(Q, T �∪A) has to be verified in a post processing phase with a tableau prover
that can process ontologies in Lexpr(RCC8). Using DL-Lite�(RCC8) instead of DL-Lite
(as realized by Kaplunova et al. (2010)) may result in better approximations in the sense
that it may refine pure DL-Lite approximations T �� of T , because the following subset
relations hold cert(Q, T ∪ A) ⊆ cert(Q, T � ∪ A) ⊆ cert(Q, T �� ∪ A) and the last subset
relation may be proper.19
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