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Abstract. An artificial intelligence system that processes geo-
thematic data would profit from a (semi-)formal or controlled natural
language interface that incorporates concepts for nearness. Though
there already exists logical-engineering approaches giving sufficient
conditions for nearness relations, we show within a logical analy-
sis that these suffer from some deficiencies. Non-engineering ap-
proaches to nearness such as the abstract mathematical approach
based on proximity spaces do not deal with the implementation as-
pects but axiomatically formalize intuitions on nearness relations and
provide insights on their nature. Combining the ideas of the engineer-
ing approach with the mathematical approach of proximity spaces,
we define and analyze new nearness relations that provide a good
compromise between implementation needs and the need for an ap-
propriate approximation of the natural nearness concept.

1 Introduction
In many use cases the interaction with an AI system for processing
geo-thematic data (e.g., robotics, geographical information systems)
is conducted by querying it through a specific query language. Most
of these systems either do not have a query language that deserves the
name as it lacks a specification with a precise logical semantics for
spatial terms; or the query language is so complex that it can be used
only by experts. The (old) appealing idea of interacting through a nat-
ural language still lacks a satisfying realization due to the hard prob-
lems involved in natural language processing. So the idea of combin-
ing the flexibility and affinity of natural language for human users
with the precise semantics of formal languages in a semi-formal or
controlled natural language (CNL) seems to be a good compromise
for an adequate interface to systems that process geo-thematic data.

The work of Grütter and colleagues [7, 6] can be understood as a
first step towards a CNL that has the capacities to represent and pro-
cess spatial queries. They focus on a qualitative model of a nearness
(closeness) relation which they base on administrative and functional
regions. The investigated nearness relation is defined in the logico-
formal framework of the region connection calculus [10] equipped
with a hierarchical structure of partitions, and is intended to approx-
imate the natural nearness concept used by humans.

As the nearness relation (as any other concept of a CNL) can only
be an approximation of the corresponding natural concept, one has to
inform the user of the CNL about the properties of the defined con-
cepts. In particular, the user should get a clear picture of the prop-
erties the nearness relation of the CNL has. Experimental investiga-
tions as those conducted in the articles [7, 6] are a first step towards
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understanding the nearness relations; but these alone do not give a
complete picture needed to justify the specific models of nearness
and the CNL in which they are (going to be) embedded.

In this paper, we fill the gap by providing a logical analysis of the
nearness relations of [7, 6]. We show that the nearness relation in the
original definition of [7, 6] has some desirable properties which a
user would expect to be owned by a nearness relation, e.g., it should
be reflexive. But it has also some properties that a user would not
expect to be shared by nearness relations; e.g., for an intuitive near-
ness relation one expects that it interacts with the touch relation EC
of the region connection calculus (RCC) [10] such that two touch-
ing regions are near each other. Some of the deficiencies of the old
nearness definitions can be overcome—and we will do so by giving
new definitions. But some of the properties of the nearness relations
are inherently associated with the hierarchical approach—and make
it essentially different from the usual nearness concepts. In particu-
lar, the new nearness relations will not guarantee that if a region A is
near a region B, then A is near some proper (regional) part of B.

This difference is demonstrated within the well investigated math-
ematical framework of proximity spaces; these formally axiomatize
nearness relations [8]—but are not constructed w.r.t. to the imple-
mentation aspects. The result of the proximity-spaces oriented anal-
ysis is that nearness relations do not fulfill the axioms for proxim-
ity spaces because the nearness relations are not only inherently not
symmetric but also depend on the hierarchical context given by the
second argument. But we can show that the (extended) nearness rela-
tions fulfill some weakening of the proximity axioms. This result has
the consequence that there are more general structures than proxim-
ity spaces which are worth to be investigated mathematically because
they are exemplified by the nearness relations defined in this paper.

The main contribution of this paper is that we logically analyze
(variants) of the nearness relations of [7, 6] and then—based on the
analysis—define a new nearness relation which combines the ideas
of the (construction oriented) engineering approach, that is based on
scaling context determining partitions, and the (abstract, axiomatic)
mathematical approach of proximity spaces, that axiomatically spec-
ifies the properties of nearness relations. Thereby we provide a can-
didate component for a (semi)-formal language or a CNL that can be
used as an interface for AI systems processing geo-thematic data.

The paper is structured as follows. Section 2 gathers the concepts
of RCC [10] needed to define the nearness relations. Section 3 reca-
pitulates the definitions of the nearness relations of [7, 6]. In Sections
4 and 5 we analyze the logical properties of the nearness relations—
incorporating the general axioms of proximity spaces. Resulting
from the analysis of these sections, in the section before the conclu-
sion (Sect. 6) we extend and modify the nearness relations in order to
cope with some deficiencies of the old definitions. All proofs of the
results can be found in an extended version of this paper available at
the URL http://www.sts.tu-harburg.de/tech-reports/papers.html.



2 Preliminaries
The nearness rules of [7, 6] are defined among others with the help
of binary relations of the region connection calculus (RCC) [10]—
thereby extending RCC with a concept of nearness that is different
from the mereotopological nearness concept associated with the con-
nectedness relation. RCC is a family of calculi for qualitative spatial
reasoning which is built on regions and not points as basic entities.
Starting with a binary reflexive and symmetric connectedness rela-
tion C, different binary relations are defined. The RCC axiomatiza-
tion of [10] is based on the following axiom stating the symmetry
and reflexivity of C:

∀x.C(x, x) ∧ ∀x, y[C(x, y)→ C(y, x)] (1)

The family of calculi RCCi (for i ∈ {1, 2, 3, 5, 8}) are characterized
by setsBRCCi of i base relationsBRCCi = {r1, . . . , ri}which have
the JEPD-property: they are jointly exhaustive and mutually disjoint,
i.e., for all x, y does ri(x, y) hold exactly for one ri. More general re-
lations are constructed by disjunctions of the base relations. We will
work here mainly with the relations of the most expressive calculus
RCC8 which rests on the set of base relations BRCC8 = {DC (dis-
connected), EC (externally connected), EQ (equal), PO (partial over-
lap), NTPP (non-tangential proper part), TPP (tangential proper
part), NTPPi (inverse of NTPP), TPPi (inverse of TPP) }. The def-
initions of the relations of BRCC8 as well as other relations we will
be using in the following are given as predicate logical sentences in
the following list (see, e.g., [11, p. 42]).

DC(x, y) ↔ ¬C(x, y) (2)

P(x, y) ↔ ∀z(C(z, x)→ C(z, y))(part of) (3)

PP(x, y) ↔ P(x, y) ∧ ¬P(y, x)(proper part of) (4)

EQ(x, y) ↔ P(x, y) ∧ P(y, x) (5)

O(x, y) ↔ ∃z(P(z, x) ∧ P(z, y))(overlap) (6)

PO(x, y) ↔ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (7)

DR(x, y) ↔ ¬O(x, y)(discrete) (8)

EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (9)

TPP(x, y) ↔ PP(x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y)) (10)

NTPP(x, y) ↔ PP(x, y) ∧ ¬∃z(EC(z, x) ∧ EC(z, y))(11)

TPPi(x, y) ↔ TPP(y, x)(inverse of TPP) (12)

NTPPi(x, y) ↔ NTPP(y, x)(inverse of NTPP). (13)

Note that for two regions x, y, EQ(x, y) means that x, y cover the
same area in space. RCC8 allows for models in which EQ(x, y) may
hold even if x 6= y, that is even if x, y denote different objects. This
distinction is also useful for a detailed representation of administra-
tive regions as referenced in the framework of [6] which we adopt in
this paper. For example, a community is strictly speaking not just a
spatially extended object but some “abstract” entity with specific po-
litical obligations, functions etc. But in this paper we will not differ-
entiate between objects and their local extensions as on the one hand
we want to keep the logical framework for which we want to give a
logical analysis as simple as possible; and on the other hand we will
not deal with further thematic axiomatizations in form of complex
ontologies for which a distinction between objects and their local ex-
tensions would even be necessary. Hence, though we will continue
to use the symbol EQ we will assume that it can be substituted by
the identity =. Using a term of the RCC literature we will consider
only strict models of RCC8 [13]. But we want to stress that all results
(with slight adaptations) also hold for non-strict models of RCC8.

Beside the definitions of the base relations the axiom system of
Randell and colleagues [10] contains the axiom of non-atomicity;
it states that every region has a non-tangential proper part—which
immediately leads to an infinite set of regions.

∀x∃y.NTPP(y, x) (14)

This axiom is used in a proof as a technical aid. Though non-
atomicity leads to infinite models, the numbers of partitions and level
determining regions constituting the partitions (see below) are finite.
Randell and colleagues [10] also define binary functions for regions;
one of these is the sum function for regions x, y which results in the
union z of x, y. It is defined by the following axiom:

∀x, y, z[sum(x, y) = z ↔ ∀w(C(w, z)↔ (C(w, x) ∨ C(w, y)))]
(15)

That means, z is the sum of x and y if and only if any region w
connects to the sum iff it connects to one of the summands. Instead of
sum(x, y) we also use the set theoretic notation x∪y and we assume
that the sum function is extended to any finite number of arguments
(using the associativity of sum) so that also

⋃
i∈I xi for any finite

index set I is defined. The other boolean functions are complement
(denoted compl), intersection (denoted prod or set theoretically ∩)
and difference (denoted diff or set theoretically \). See the extended
version of this paper or [10] for the definitions.

We call the set AxBRCC consisting exactly of the axioms in (1)–
(15) plus the definitions of compl, prod and diff the axiom set for
the boolean region connection calculus and denote it by BRCC. A
model of BRCC is given by interpreting regions as regular closed
subset of R2 equipped with the usual topology. In this model, regular
closed sets x, y are connected iff they share a point, i.e., C(x, y) iff
x ∩ y 6= ∅.

3 A-priori and General Nearness
Let be given a region X . A partition (ai)i∈I over X is a family of
sets ai such that

⋃
i∈I ai = X and the ai are pairwise discrete, i.e.,

if i 6= j then ai{DC,EC}aj . The partition is called finite if the index
set I is finite. Note that this is not exactly the same notion of partition
as in set theory, as we de not have ai ∩ aj = ∅. This is due to the
fact that we want to use RCC8 and think of the ai as regularly closed
subsets of R2 which have borderlines. In all of our examples we will
think of X and the ai as regular closed subsets of R2.

Given X we consider not one finite partition over X but a finite
number of partitions; these are totally ordered whereby a partition is
smaller than another partition if and only if the former is finer than
the latter. This can be formalized by the relation≤ between partitions
(ai)i∈I and (bi)i∈I′ as follows: (ai)i∈I ≤ (bi)i∈I′ iff every bi is
the union of some aj . Now we fix a finite set J = {1, . . . , n} for
the n partitions over X . A partition (aji )i∈Ij of these finite number
of partitions has a superscript j ∈ J for the position it has in the
total ordering of the partitions w.r.t.≤. The finite index set Ij has the
cardinality of the number of cells constituting the partition (aji )i∈Ij .
We also say that the partition and all the cells in it are of level j. So
the fixed set of totally ordered partitions is given as:

(a1i )i∈I1 ≤ (a2i )i∈I2 ≤ · · · ≤ (ani )i∈In (16)

We assume that the last partition (ani )i∈In in the order consists of
just one set, namely the set X . (Moreover, as we work here with
strict RCC models, we assume that no region occurs in two different
partitions. This assumption can be dropped for non-strict models.)



For every partition (aji )i∈Ij with j < n there is the partition
(aj+1

i )i∈Ij+1 directly following it in the total ordering ≤; we call
it the partition of the next (upper) level. As in some cases the ex-
act instances of the index sets and superscripts are not relevant, we
sometimes neglect them and, e.g., just write (a) for (aji )i∈Ij . Then
the partition following (a) is denoted conveniently by (a)↑. We call
all the regions occurring as a cell in one of the partitions a level-
determining set/region, ld set/ld region for short. In the work of [7]
the administrative regions have the role of level determining regions.

An example for a total order of (nested) partitions is given in
Fig. 1. In this example we have three partitions (n = 3); the par-
tition of the “highest” level which is the coarsest level is denoted
by (X). Using the full indexed notation from above we would de-
note (X) by (a3i )i∈{1}. The next lower level is given by the partition
(b) = (bi)i∈{1,2,3}; using the full index notation it would be written
as (b) = (a2i )i∈{1,2,3}. We have (b)↑ = (X); and the last partition
(the finest one) is given by (c) = (ci)i∈{1,2,3,4,5,6} written in the full
indexed version as (c) = (a1i )i∈{1,2,3,4,5,6}. We have (c)↑ = (b).
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Figure 1. A total order of three partitions:
(ci)i∈{1,2,3,4,5,6} ≤ (bi)i∈{1,2,3} ≤ (X)

In all of the following definitions let (a) = (ai)i∈I denote a finite
partition of the fixed (finite) total order of partitions. The nearness re-
lation of [6] is based on a notion of a-priori nearness between admin-
istrative regions which are given in a total ordering. Their notion of
a-priori nearness also incorporates a reference to functional regions
which is justified by the observation that the nearness perception by
cognitive agents is influenced by the borders of functional regions.
In the following considerations we will drop this condition incorpo-
rating functional regions, hence use the following simpler rule for
a-priori nearness NRap between ld regions of the same level:

∀xa ∈ (a)∀ya ∈ (a)∀b ∈ (a)↑[(xa{P}b ∧ ya{P,EC}b)→ (17)

NRap(ya, xa)]

Moreover, we set NRap(X,X), so that reflexivity holds for NRap.

NRap(X,X) (18)

So, according to the definition, an ld region ya is a-priori near xa if
ya touches or is contained in the next upper level cell b of which the
ld region xa is a part. Hence, the second argument xa determines the
scaling context for the nearness comparison.

The more general nearness relation NR may hold between regions
of different partitions. Furthermore, in the rule below the variable z
may denote any region—not necessarily an ld region.

∀xa ∈ (a)∀ya ∈ (a)∀z[(z{P,PO}ya ∧ NRap(ya, xa))→ (19)

NR(z, xa)]

In order to investigate the properties of these nearness relations we
will assume that the fixed totally ordered partition is represented by
a finite setA of predicate logical axioms. If for example, an ordering
is given as in Fig. 1, then A would consist of the following axioms,
where X, a1, . . . , a6, b1, b2, b3 denote constants and ld is a unary
predicate symbol intended to denote ld regions.

X = b1 ∪ b2 ∪ b3 ∧ b1{EC}b2 ∧ b1{DC}b3 ∧ b2{EC}b3 (20)

b1 = c1 ∪ c2 ∧ b2 = c3 ∪ c4 ∧ b3 = c4 ∪ c5 (21)

c1{EC}c2 ∧ c1{EC}c4 ∧ c3{EC}c4 ∧ c3{EC}c6 ∧ c6{EC}c5 (22)

c2{DC}c3 ∧ c2{DC}c4 ∧ c2{DC}c5 (23)

c2{DC}c6 ∧ c1{DC}c3 ∧ c1{DC}c5 (24)

c1{DC}c6 ∧ c4{DC}c5 ∧ c4{DC}c6 ∧ c3{DC}c5 (25)

∀x[ld(x)↔ (x = X ∨ x = b1 ∨ x = b2 ∨ x = b3 (26)

∨x = c1 ∨ · · · ∨ x = c6)]

Moreover, we assume that an axiomatization AxBRCC8 of BRCC8
is given as defined in the preliminaries. Now, let KB = A ∪
AxBRCC8 ∪ {(17), (18), (19)} be a knowledge base consisting of
the closed-world axioms for the total order of partitions plus the ax-
ioms for the boolean region connection calculus plus the rules for
a-priori nearness (17), (18) and the rule (19) for (general) nearness.
The investigations of the logical properties of the nearness relations
are done with respect to this knowledge base KB.

4 Properties of the Nearness Relations
We start our analysis with some simple observations concerning the
a-priori nearness relation NRap, its relation to NR and move on to the
analysis of the properties of NR.

A-priori nearness can hold only between ld regions of the same
level. That means, if two (different) regions are derived to be near a
priori, then they are either disjoint (DC) or touch each other (EC).
Concerning the converse of this fact we can observe that two touch-
ing regions of the same partition are a-priori near. Clearly, this is a
desirable feature of a-priori nearness as it shows that a-priori near-
ness is compatible with the mereotopological nearness relation of
two touching regions.

Proposition 1. If ya and xa are regions of the same partition (a)
and KB |= xa{EC}ya, then KB |= NRap(xa, ya) and KB |=
NRap(ya, xa).

Another desired feature of a-priori nearness NRap is reflexivity
because a region should count near itself—it can be even thought of
as being one of the regions that are nearest itself. Indeed, reflexivity
(restricted to ld regions) holds for NRap.

Proposition 2. For all xa ∈ (ai)i∈I : KB |= NRap(xa, xa).

Clearly NRap is not symmetric w.r.t. to KB. By this we mean
that the following symmetry condition does not hold: If KB |=
NRap(x, y), then KB |= NRap(y, x). And clearly NRap is not tran-
sitive w.r.t. KB, i.e., the following transitivity condition does not
hold: If we have KB |= NRap(x, y) and KB |= NRap(y, z), then
KB |= NRap(x, z). These facts are demonstrated with the example
given in Fig. 1. It holds that NRap(c6, c4) as verified by the region
b2 for which we have c4{P}b2 and c6{EC}b2. But the symmetric re-
lation NRap(c4, c6) does not hold, because not c4{EC}b3. Similarly
one can see that NRap(c4, c2); but NRap(c6, c2) does not hold which
shows that transitivity is not given.



The general nearness relation extends the a-priori nearness relation
in a conservative manner. That is, any two regions which are a-priori
near are near as well. Moreover, if the regions are ld regions of the
same level, then the converse holds as well.

Proposition 3. For all ya, xa ∈ (a): KB implies NRap(ya, xa) iff it
implies NR(ya, xa).

Reflexivity does not hold in case of NR, as NR allows only for ld
regions as second arguments. This is an unwanted feature for near-
ness relations which we will deal with in one of the following sec-
tions (page 6) by extending the nearness relation to a new nearness
relation. For this extension we use the simple fact, that if z is an ld re-
gion, then reflexivity holds. (This is a direct consequence of Prop. 3.)

Proposition 4. For all ld regions xa: KB |= NR(xa, xa).

As in the case of a-priori nearness we can immediately see that
NR is not symmetric and not transitive. These facts can be explained
again by the fact that it is the second argument which determines the
comparison context.

For a-priori nearness NRap we answered the question which base
RCC8 relations r are sufficient for nearness, i.e., for which r ∈
BRCC8 does r(z, x) imply NRap(z, x). Lifting this question to gen-
eral nearness becomes more interesting as there are more possible
RCC8 relations between a region z and an ld region xa. Unfortu-
nately, for r = EC the entailment r(z, xa) |= NR(z, xa) does not
hold. Take a region z that touches xa but is neither contained nor
overlaps an a-priori near region ya of the same partition as xa; e.g., if
(ai)i∈I is the partition of xa consider the region z = (

⋃
i∈I ai)\xa.

(Note that we use here the boolean operator of difference \).
Similarly one can show that z{TPPi,NTPPi}xa does not entail

NR(z, xa). This seems to be an implausible property of the NR-
definition. One may argue that this consequence is due to the scaling
dependence of NR on the second argument: The second argument
of NR defines the context, the granularity or the scale with respect
to which nearness is considered; if z{TPPi,NTPPi}xa, then—one
might argue that—z is “too big” for the scaling context given by the
second argument xa; hence one may conclude that considering the
nearness between z and xa is not even justified from the beginning.
But similarly one could argue that the second argument xa deter-
mines the scaling in the sense that more regions will be detected as
near xa than will w.r.t. to region ya↑ of an upper partition. Hence,
we will later on (Sect. 6) look at a more general notion of nearness
that also allows for “big” regions z being near a region xa.

Excluding the above cases for r results in the following set of
possible instances for r: {TPP,NTPP,EQ,PO}. As the following
proposition shows, if regions z, xa stand in one of these base rela-
tions, then nearness is guaranteed.

Proposition 5. For all z, xa: IfKB |= z{TPP,NTPP,EQ,PO}xa,
then KB |= NR(z, xa).

As a corollary of this proposition and the definition of NR we note
that all ld regions are in NR-relation to ld regions (of upper levels) of
which they are a part.

As a last observation, we note that NR(z, xa) is independent of all
base relations of RCC8 in the following sense: one can find for any
r ∈ BRCC8 regions z and xa such thatKB |= NR(z, xa)∧r(z, xa).
Hence, if one knows that z is near to xa one cannot infer anything
about the RCC8 base relation holding between them.

5 Nearness Relations and Proximity Spaces
As the relation NR is intended to model qualitative nearness rela-
tions we have to compare them with other formal models of qualita-
tive nearness. A prominent qualitative nearness relation results from
the neighborhood concept of topological spaces. A more fine-grained
mathematical approach to nearness is provided by proximity spaces.
These date back to ideas of Riesz presented in a congress talk in 1908
[12] and were rediscovered in the fifties by the mathematician Efre-
movič [4, 5]. He gave the axiomatic definition of a proximity space
to become the basis for all following work on proximity spaces. We
will not delve into the further development of research on proximity
spaces but note that these also became an important topic in the area
of qualitative spatial reasoning [14, 1, 2, 3]. For a historical overview
(until 1970) the reader may have a look at the introductory chapter
of the classic monograph by Naimpally and Warrack [8].

In the following, we will not give the definition of proximity
spaces according to Efremovič (see [8, p.7–8]) but rather use the
weaker notion of a minimal proximity relation given in [3]. The rea-
son is that the nearness relation considered in this paper is inherently
not symmetrical and the total order of partitions is finite, hence in-
duces a discrete approach to nearness which is in the same spirit as
the approach of [3].

Definition 1. A minimal proximity space (X, δ) [3, p. 7] is a struc-
ture with a binary relation δ over a set X such that the following
conditions are fulfilled:

1. For all A,B ⊆ X: If Aδ B, then A and B are nonempty.
(That means, only for non-empty regions does proximity hold).

2. For all A,B,C ⊆ X:

(a) Aδ(B ∪ C) iff Aδ B or Aδ C (right distribution);
(A is near a union of regions iff it is near one of the regions.)

(b) (A ∪B) δ C iff Aδ C or B δ C (left distribution).
(A union of regions is near C iff one of the regions is near C.)

Proximity spaces are structures that have strong connections to
topological spaces. In fact, for a proximity space (X, δ) a canonical
topological space (X, τ(δ)) can be defined by

τ(δ) = {A ⊆ X | A is closed according to (28)} (27)

A ⊆ X is closed under δ iff for all x ∈ X: If x δ A, then x ∈ A.
(28)

Indeed, (X, τ(δ)) is a topology in the sense that the following condi-
tions are fulfilled: {X, ∅} ⊆ τ(δ); if A,B ∈ τ(δ), then A ∪B ∈ τ ;
if (Ai)i∈I is a (possibly infinite) family of sets in τ(δ), Ai ∈ τ(δ),
then

⋂
i∈I Ai ∈ τ(δ). But, as said before, proximity spaces are finer

structures than topological spaces in so far as two different proximi-
ties δ1, δ2 may induce the same topology τ(δ1) = τ(δ2).

We will investigate the question whether the nearness operator NR
can be considered as a proximity relation. Clearly, the first condition
holds trivially for NR as we excluded the empty set as a region. The
other conditions cannot be applied to NR directly because the ld re-
gions are not closed with respect to unions. Nonetheless, the follow-
ing special case of condition (2a), in which we consider unions of
regions of a partition level whose union makes up a region of the next
partition level, may hold. Let be given an ld partition (a) = (ai)i∈I .
So allB ∈ (a)↑ can be represented as a unionB = b1∪· · ·∪bn with
bj ∈ (a) for j ∈ {1, . . . , n}. Now we may ask whether NR(A, b1)
or . . . or NR(A, bn) iff NR(A,B). Of this equivalence only the left-
to-right direction holds, as shown by the following proposition.



Proposition 6. Let (a) = (ai)i∈I be a partition with ld regions. For
all regionsA ⊆ X and allB ∈ (a)↑ withB = b1∪· · ·∪bn for bj ∈
(a) and j ∈ {1, . . . , n} the following entailment holds: if KB |=
NR(A, b1) or . . . or KB |= NR(A, bn), then KB |= NR(A,B).

A simple example (Fig. 2) shows that the other direction of the
condition in Prop. 6 does not hold. In Fig. 2 the smallest rectangles
represent the finest (ld) partition. The regions B and y are regions
of the next upper partition whose regions are represented with grey
border lined rectangles. The region b (dotted border line) is the only
region of the partition above B (and y) that is represented in the
figure, and A is an arbitrary region not aligned with the partitions.
As one can see, A is near B, i.e., NR(A,B), but A is not near any
of the six cells that make up B. The reason is that B gives a coarser

!"

#"

$"

%"

Figure 2. Counterexample for left-to-right direction in prox. cond. (2a)

scaling for nearness than all of its parts bi. Hence, while something
may be near w.r.t. a coarser scaling, if it is near with respect to a finer
scaling, the converse does not hold.

If we look at condition (2b), then there is a chance that both direc-
tions may hold, because on both sides of the biimplication the same
C occurs as the second (level determining) position of NR. But here
again, we can show only one direction, the direction which is oppo-
site to the previous one.

Proposition 7. For allA,B,C ⊆ X: IfKB |= NR(A∪B,C), then
KB |= NR(A,C) or KB |= NR(B,C).

The proposition above justifies the definition and investigation
of structures which we call weak right-scaled proximity spaces. So
Propositions 6 and 7 say that (X,NR) (for X being a region in
BRCC) is (almost) a weak proximity space.

Definition 2. The structure (X, δ) is a weak right-scaled proxim-
ity space iff δ is a binary relation over X such that the following
conditions are fulfilled.

1. For all A,B ⊆ X: If Aδ B, then A and B are nonempty.
2. For all A,B,C ⊆ X:

(a) If Aδ B or Aδ C, then Aδ(B ∪ C);

(b) if (A ∪B) δ C, then Aδ C or B δ C.

Similarly one can define the dual notion of left scaled proximity
spaces by switching the directions in the condition (2a) and (2b).

The other direction of the implication in Prop. 7 does not hold,
because A ∪ B may become too big. Take for example an A such
that NR(A,C), and assume C is not X; hence there is a y such that

A{P,PO}y and NRap(y, C) and let B = X . Then A∪B = X and
for all ld regions y′ other than X it holds that y′{TPP,NTPP}X .
So in particular, there is no y′ for which NRap(y

′, C) and A ∪ B =
X{P,PO}y′. Even if one restricts the left argument to unions of
ld regions that make up an ld partition of the next higher level, a
counterexample can be constructed.

6 Extensions and Modifications
An unwanted feature of the nearness rule (19) is that it allows only
ld regions as second arguments. Therefore, we define a new near-
ness relation ÑR that allows for arbitrary regions in both argument
positions—though still the second argument will determine the scal-
ing context for nearness. Region z is considered to be near region x
iff z is NR-near the ld region of smallest level containing x, formally:

ÑR(z, x) iff NR(z, x̃), where x̃ is the (29)

P-smallest ld region s.t. x{P}x̃.

We say that a region x is of level j iff x̃ is an ld region of the partition
level j. As the following proposition shows, the shift from NR to the
extended ÑR is conservative in the sense that the properties of NR

are preserved by ÑR.

Proposition 8. The extended nearness relation ÑR has the following
properties:

1. For all ld regions ya, xa: If KB |= NRap(ya, xa), then KB |=
ÑR(ya, xa).

2. For all z and ld xa: If KB |= NR(z, xa), then KB |= ÑR(z, xa).
3. ÑR is reflexive: Fo all z: KB |= ÑR(z, z).
4. (X, ÑR) is a weak right-scaled proximity space.

We will now look at a further modification of the nearness rela-
tion that is guided by additional axioms investigated in the context of
proximity relations. The following axiom of an (Efremovič) proxim-
ity relation δ (see [8, p.7–8]) asserts that a nonempty intersection of
sets is sufficient for them to count as near.

If A ∩B 6= ∅, then Aδ B (and B δ A). (30)

As we have seen above, this property does not hold for NR (and
so not for ÑR), as there may be regularly closed regions A and B
such that A{EC}B but not NR(A,B). But at least we can show the
following weaker entailment:

Proposition 9. For regionsA,B which touch each other (A{EC}B)
at least one of ÑR(A,B) or ÑR(B,A) holds.

But clearly we can define a new nearness relation N̂R that extends
NR and fulfills the axiom in (30) the following way:

N̂R(z, x) iff either C(z, x) or ÑR(z, x). (31)

Clearly ÑR ⊆ N̂R, N̂R fulfills the axiom (30) and one can easily
show that all properties of ÑR mentioned in Prop. 8 also hold for
N̂R. Moreover, this nearness relation fulfills even the equivalence in
condition (2b) of the definition for proximity spaces. Hence, we have
a model of a structure we call a right-scaled proximity space.

Definition 3. A right-scaled proximity space (X, δ) is a weak right-
scaled proximity fulfilling the stronger condition (A ∪ B) δ C iff
Aδ C or B δ C and the condition (30).



Now, the main facts concerning N̂R can be restated by saying that
it is a right-scaled proximity relation.

Proposition 10. Let X be a region (in BRCC). Then (X, N̂R) is a
right-scaled proximity space.

The conditions stated in a right-scaled proximity space are not
strong enough to define a canonical topological space as is done for
proximity spaces (see above). But nonetheless the nearness relation
can be seen as an interleaving of level-fixed nearness relations. This
will be explicated in the following. Let be given a total ordering of
partitions (aji )i∈Ij overX , 1 ≤ j ≤ n. For every partition level j we

define nearness relations N̂R
j

between arbitrary regions z1, z2 ⊆ X .

N̂R
j
(z1, z2) iff there is a y of level j s.t. N̂R(z1, y) and N̂R(z2, y).

(32)
These nearness relations are symmetric and are ordered with respect
to inclusion and fulfill the conditions of a minimal proximity space.

Proposition 11. The level-fixed nearness relations NRj fulfill the
following conditions:

1. Every N̂R
j

is a (symmetric) proximity relation.

2. If i ≤ j, then N̂R
i
⊆ N̂R

j
.

3. If N̂R(z1, z2) and z2 is of level j, then N̂R
j
(z1, z2).

As a résumé we may state that though the nearness relation N̂R is
not a (minimal) proximity relation each of its levels induces a prox-

imity relation N̂R
j

extending N̂R.

7 Conclusion
The analysis of the nearness relations NR and NRap which are sim-
pler versions of the nearness relations of [7, 6] has revealed some
properties which they share with natural nearness concepts but also
some properties which distinguish them from nearness relations for-
malized by proximity spaces. The limited applicability of NR to ld
regions could be overcome by extending it to ÑR. The relation ÑR
could be shown to fulfill some subset of the axioms for minimal
proximity spaces which resulted in the definition of structures we
termed weak right-scaled proximity spaces. Lessening the difference
to proximity relations even further, we defined a new relation N̂R
which fulfills the axioms of what we have termed a right-scaled prox-
imity space. The relation N̂R is a good candidate as an element of a
CNL interface to geographical data because it provides a good ap-
proximation of the nearness as modelled by proximity spaces.

The (weak) right-scaled structures have still to be investigated
mathematically. We have discussed the proximity spaces indepen-
dently of the RCC background theory. An equivalent representation
of RCC by boolean contact algebras [13] provides the basis for the
investigation of structures that are boolean contact algebras equipped
with proximity relations. Motivated by our nearness relations we plan
to investigate combinations of boolean contact algebras with right-
scaled proximity relations. These structures will provide the logi-
cal framework in which one can properly formulate and answer the
question whether the nearness relation N̂R is a canonical model for
right-scaled proximity relations. That is, if there is a relation δ in a
boolean contact algebra that fulfills the axioms of right-scaled prox-
imity spaces, can it be represented equivalently as the relation N̂R?

Further future work concerns the reincorporation of functional re-
gions as used in the original nearness definitions of [7, 6]. These more

complex relations share the scaling dependence with the relation N̂R
but may show different behavior depending on how the functional
regions are embedded within the ld regions. This latter point leads
to another task that deals with the robustness of the nearness rela-
tions; one should investigate the effects a change of the partitions (or
the functional regions) has on the nearness relation: in particular one
should investigate conditions under which two total orders of parti-
tions induce the same nearness relation.

A last future work package concerns the implementation aspect
and the computational feasibility aspect of answering queries that
contain nearness relations. If the nearness relation is given only by
rules stating sufficient conditions and if there is no other background
terminology in which the nearness relation may be used as well, then
query answering is reducible to a macro expansion of the relations
(see the implemented algorithm in [6]) and hence query answer-
ing becomes feasible. Otherwise query answering may become quite
harder and one has to deal with the question whether the queries can
be rewritten to semantically equivalent first order logic queries—in
the same spirit as that of [9].
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