
Dynamics of a Nearness Relation—First Results
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Abstract. The system of administrative units for a state like
Switzerland can be formally described by a totally ordered set of
nested partitions where, e.g., the municipalities make up a finer par-
tition than the partition induced by districts. Based on these partitions
one can define binary non-symmetric nearness relations between re-
gions in which the second argument determines the granularity (or
the scaling level) w.r.t. which the first-argument region is to be con-
sidered near or not. The logical properties of such nearness rela-
tions, especially w.r.t. their relation to proximity relations, have been
worked out in the authors’ contribution to ECAI 2012. Referring to
these properties, in this paper we extend the investigation to the dy-
namics of the nearness relation. In particular, we investigate how a
change within the total order of partitions (e.g., two municipalities
are merged) affects the induced nearness relation.

1 INTRODUCTION
The nearness relation whose dynamics we are going to discuss is
defined on the basis of a hierarchy of nested regions which make up
a total order of partitions [3], [7], [8]. Typical examples of such total
orders of nested partitions are made up of administrative units where
the administrative units in a rougher granularity are the sums (unions)
of administrative units of the lower level. As an example think of
two partitions of Switzerland, where the first partition consists of
municipalities and where the second consists of districts. All districts
are municipalities or are unions of two or more municipalities.

Every partition provides a granularity or scale w.r.t. which the
nearness of two regions are declared; the main idea is to consider one
of the arguments (we took the second one) to determine the scaling
context that is the level on the ground of which two regions are de-
fined to be near or not. There are different ways to exploit the nested
partitions pc (which mathematically is a totally ordered set of par-
titions and hence termed partition chain) for defining nearness rela-
tions. We will fix a specific type of nearness relation NRpc induced
by a partition chain pc which has some desirable properties.

Having constructed such a nearness relation one can consider its
properties in a mathematically abstract way by declaratively speci-
fying properties of a binary relation δ in a formal language like first
order logic. In previous work, we described the properties that every
right-scaled proximity nearness relation NRpc induced by a partition
chain pc has [7], [8]. In this paper, we add some further properties
of this type and extend the investigations in two ways: we describe
the local dynamics of nearness relations, that is we describe how a
change from one region to another (in the second argument) affects
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the set of regions considered to be near. For this purpose, we de-
scribe properties that directly refer to the given (unchanged) parti-
tion chain. Second we investigate the question how the change of the
partition chain affects the nearness relation, i.e., we investigate the
global dynamics of nearness. More concretely, assume a partition
chain pc1 is changed to a new partition chain pc2; what can we say
about the change from the induced nearness relation NRpc1 to the in-
duced nearness relation NRpc2? In particular, one can ask what kind
of change transitions pc1 ; pc2 do not change the nearness rela-
tion, NRpc1 = NRpc2 , or between what regions (on what level) does
a change of the total orderings affect the nearness in between them.
Similar problems have been tackled by [4] and especially [11], which
considers the global dynamics of tree-like spatial configurations.

The change transition ; between total orders are not allowed to
be arbitrary transitions but some intuitive changes which have corre-
sponding real world counterparts. In particular, the kind of changes
that are worth being investigated are the merger of regions, the switch
of levels, the additions of partitions etc.

Investigations into this kind of relation are necessary for a formal
theory of dynamics of nearness. In particular such a theory provides
a formal grounding for optimizations within a cognitive agent that
bases its nearness relation on partition chains; rather than recalculat-
ing the nearness relation between all regions in case the agent moves
around (local change) or a partition chain is updated (global change)
it directly uses the knowledge on regions between which the near-
ness relation is expected to have changed. In this work, we lay the
foundations for such a theory; thereby we give preliminary results on
the local dynamics and the global dynamics of the nearness relation.
Concerning the latter we focus on the effects on the nearness relation
resulting from merging two regions in the same partition level.

The paper is structured as follows. In Section 2 we describe the
main structure for our nearness relations, the partition chain. A spe-
cific nearness relation is defined and illustrated in Sect. 3. The fol-
lowing two sections 4 and 5 describe properties of the nearness re-
lation, the former more abstractly by referring only to properties de-
scribable by an abstract binary relation, the latter referring also to the
underlying partition chain, thereby providing insights into the local
dynamics of the nearness relation. The last section before the conclu-
sion starts the preliminary investigation into dynamic aspects of the
nearness relation.

2 NORMAL PARTITION CHAINS

In this section we recapitulate the notion of a partition chain under-
lying the formal framework of a nearness relation as developed in
[8], and specify the special class of normal partition chains, which
is the main structure for the nearness relation. Different from [8], in
this paper, we abstract from the region connection calculus [9], and
hence define partition chains and nearness relations only on the basis



of the usual set theoretical notions.
As we want to allow more cells to be on different levels, we have to

type the sets. This is needed for modelling situations in the real world
where the same spatial region may have two different administrative
functions.4 Hence we define the following notion of partition:

Definition 1 (partition). Under a partition of a set X on level i ∈ N
we understand a family of pairs (i, aj)j∈J such that (aj)j∈J is a
(set) partition of X , i.e., X =

⊎
j∈J aj where ] indicates a union of

disjoint sets and J is a finite index set. A pair c = (i, aj) is called a
cell of level i. Its level i is denoted l(c) and its underlying set aj (the
second argument) is denoted us(c). The usual mathematical notion
of a partition will be called set partition.

Now we look at n + 1 different partitions of X that are nested or
more formally: totally ordered from 0 to n. This is concretised in the
following definition.

Definition 2 (partition chain). Let be given n+1 different partitions
of X where all partitions have only finitely many cells. We call this
set of partitions a partition chain pc iff

1. all cells (i + 1, aj) of level i + 1 (for i ∈ {0, . . . , n − 1}) are
unions of i-level cells, i.e., there exist (i, bk), k ∈ K, such that
aj =

⊎
k∈K bk;5

2. and the last partition (level n) is made up by (X).

According to this assumption, every cell has a unique upper cell. For
a cell (i, aj) (with 1 ≤ i ≤ n − 1) let (i, aj)↑,pc = (i + 1, ak) be
the unique cell of the upper level in this partition chain pc such that
aj ⊆ ak. For the cell of level n set (n,X)↑,pc = (n,X). We call
(i, aj)

↑,pc the upper cell of (i, aj). If the partition chain is clear from
the context, we write (i, aj)

↑ for (i, aj)↑,pc.
Between cells (i, a) and (j, b) (perhaps of different partition

chains) we define an order ≤ by setting (i, a) ≤ (j, b) iff i ≤ j
and a ⊆ b.

This definition is too general in order to be used for an interest-
ing nearness notion as it also allows for a configuration where all
underlying sets of cells in a partition re-occur in the partition of the
next upper level. An example for such an unusual partition is given
as follows: let X = a1 ] a2 and let for i ∈ {0, 1, 2, 3} be given
the partition ai of level i by ((i, a1), (i, a2)); the partition of level
3 shall be (3, X). We exclude such partition chains by defining the
notion of a normal partition chain, in which it is allowed that a set
is the underlying sets of two different levels i, i + 1, but only if the
underlying set partitions on level i and i+ 1 are different.

Definition 3 (normal partition chain). A partition chain is normal iff
all set partitions underlying the partitions are pairwise distinct.

In practical real-world applications the induced partition can pretty
safely assumed to be normal as otherwise a distinction between the
administrative units would not even be introduced. But, as in the case
of normal partition chains, it may be the case that the same region has
two different administrative functions.

4 Note that in case of the region connection calculus, this typification can be
handled directly by allowing non-strict models [10], that is models in which
two objects may stand in EQ-relation (same spatial extension) without be-
ing identical.

5 Perhaps in future work we have to reverse the ordering so that we can also
consider infinite ordering of partitions: then we may have at level 0 the
roughest partition X and at higher levels more fine-grained partitions ad
infinitum.

Due to the fact that the total order is finite and that all partitions are
finite one can easily describe all possible normal partition chains. For
illustration of the notion of a normal partition chain, we will describe
the normal partition chains induced by a given set partition (a) with
n cells for different n up to n = 3.

Example 1. In this example we write i : (a) as shorthand for parti-
tions (i, aj)j∈J .

• If n = 1, then the partition (a) is the partition (X) and we do
have only the order of partitions containing (X).

• Let n = 2, i.e. let X = a1 ] a2. We can only have the order of
partitions 0 : (a) ≤ 1 : (X) and 0 : (X).

• Let n = 3, X = a1 ] a2 ] a3. We may have

– 0 : (a) ≤ 1 : (X)

– 0 : (a1, a2 ∪ a3) ≤ 1 : (X)

– 0 : (a1 ∪ a2, a3) ≤ 1 : (X)

– 0 : (a1 ∪ a3, a2) ≤ 1 : (X)

– 0 : (a) ≤ 1 : (a1, a2 ∪ a3) ≤ 2 : (X)

– 0 : (a) ≤ 1 : (a1 ∪ a2, a3) ≤ 2 : (X)

– 0 : (a) ≤ 1 : (a1 ∪ a3, a2) ≤ 2 : (X)

3 NEARNESS BASED ON PARTITION CHAINS

Having defined the main structure for a hierarchical nearness rela-
tion, we are now in a position to define the notions of apriori nearness
and (general) nearness w.r.t. a partition chain as follows:

Definition 4 ((apriori) nearness NR). Let be given a partition chain
pc. Cell c1 = (i, a1) is apriori near c2 = (i, a2) , NRap

pc(c1, c2) for
short, iff there is a cell (i+ 1, b) of level i+ 1 such that, a1, a2 ⊆ b,
i.e., iff the upper cells of c1, c2 are the same. An arbitrary set a is
near a cell c1 = (i, a1) of level i, NRpc(a, c1) for short, iff there is
a cell c2 = (i, a2) of the same level of c1 such that NRap

pc(c1, c2)
and a ∩ a2 6= ∅.

For an arbitrary set b 6= ∅ let b̃pc denote the cell (i, aj) such that
b ⊆ aj and i is minimal. The integer i = lpc(b) is called the level of
b in pc. For arbitrary sets a, b we define nearness by:

NRpc(a, b) iff NRpc(a, b̃
pc)

If the partition chain pc is unique in the used context, then we do not
mention it in the subscripts.

As a shorthand for (b̃pc)↑,pc we write b⇑,pc or even shorter b⇑.

Note that we excluded the empty set as a second argument b, as
we cannot define ∅̃. For the empty set as left-hand argument we get
that not NR(∅, b) for all b ⊆ X .

The apriori nearness relation underlying the nearness relation of
[8] is different from the one defined here. We chose to work with
this definition as it has a very simple equivalent form which does not
need the detour with apriori nearness. An arbitrary set a is near a cell
(i, a1) if the intersection with the underlying set of the upper cell of
(i, a1) is non-empty.

Proposition 1. The nearness relation NR can be equivalently de-
scribed as follows:

NR(a, b) iff a ∩ us(b⇑) 6= ∅ (1)



Proof. If a∩us(b̃↑) 6= ∅, then there is a cell c1 = (i, b1) in the same
level as b̃ such that a∩b1 6= ∅, because a has a nonempty intersection
with the upper cell of b̃ and this upper cell is a union of cells of the
level of b̃. But by definition NRap(c1, b̃). So NR(a, b). The argument
for the other direction works similarly.

The corresponding equivalent definition for NR within the frame-
work of RCC (or more general: a region-based framework with a
connectedness relation C) would be:

NR(a, b) iff C(a, us(b⇑)) (2)

The following example illustrates the nearness relations.

Example 2. We define a partition chain with four levels as illustrated
in Figure 1. Let X = {1, . . . , 6}, ai = {i} for 1 ≤ i ≤ 4 and
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Figure 1. Illustration of configuration in Example 2

a5 = {5, 6}. All ai are sets underlying cells of level 0. The set d = 6
is an arbitrary set (region) which does not underly any of these cells.
The partitions on the levels 0 to 3 are defined by:

• {(0, a1), (0, a2), . . . , (0, a5)}
• {(1, b1), (1, b2), (1, a5)} where b1 = a1 ∪ a2 and b2 = a3 ∪ a4.
• {(2, c), (2, a5)} where c = b1 ∪ b2
• {(3, X)}.

It can be easily seen that NR(d, c), because c̃ = (2, c), and
c⇑ = (3, X) and d ∩ X 6= ∅. Similarly NR(d, (a1 ∪ a4)) holds
as ã1 ∪ a2 = (2, c). It is not NR(d, a1) as ã1 = (0, a1) and
a⇑1 = (1, b1) but d ∩ b1 = ∅. Similarly one can see that not
NR(d, a4).

4 PROXIMITIES AND NEARNESS
With proofs similar to the ones of [8] one can show that NR fulfills
the properties of a right-scaled proximity relation. This is detailed
out in the following proposition.

Proposition 2. Let X be a set, pc be a partition chain over X and
NRpc = NR be a nearness relation as defined by (1). The relation
NR fulfills the properties of a right-scale scaled proximity, that is:

1. for all a, b ⊆ X: if NR(a, b), then a and b are nonempty;
2. for all a, b, c ⊆ X:

(a) if NR(a, b) or NR(a, c), then NR(a, b ∪ c);
(if a is near one of b or c, then it is near the union of b and c.)

(b) NR(a, c) or NR(b, c) if and only if NR(a ∪ b, c);
(the union of a and b is near c iff one of the sets of the union a
or b is near c.)

3. if a ∩ b 6= ∅, then NR(a, b).
(a and b have one element in common, then a is near b (and so
also b is near a).)

The main difference of right-scaled proximities to minimal prox-
imity structures in the meaning explicated by [1] is the fact that for
right-scaled proximities the other direction in condition 2.(a) is, in
general, not fulfilled, i.e., there may be sets a, b, c, such that a is near
the union of b and c, formally: NR(a, (b ∪ c)), but neither is a near
b nor is a near c. (Compare Ex. 2, where NR(d, a1 ∪ a4) but neither
NR(d, a1) nor NR(d, a4).) This is due to the fact that the union of
b and c may belong to a higher level than b and c. So, putting two
sets (in the second) argument together may have positive emergent
effects—more concretely, the positive emergent effect of switching
the level (or scale) from a lower to a higher one.

Note, that this kind of positive emergent effect is also handled by
super-additive measures in general measure theory [12]. Classical
measures µ have to be additive, i.e., must fulfill the condition that
for disjoint events a, b we must have µ(a ] b) = µ(a) + µ(b). In
generalized measure theory one considers measures that weaken this
condition in both directions. µ is called super-additive iff µ(a] b) ≥
µ(a)+µ(b). It is called sub-additive iff µ(a]b) ≤ µ(a)+µ(b) [12,
p.67]. Super-additivity means that the union has synergetic positive
effects, sub-additivity means that the union has prohibiting effects.

It is possible to further characterise the case where a region is near
a union of regions but not near one of them. Let δ denote a right-
scaled proximity relation. Let a, b, c such b ∩ c = ∅ and we have
δ(a, (b∪c)) but not δ(a, b) and not δ(a, c). We call (b, c) an irregular
split of b ∪ c w.r.t. a.

Definition 5 (Regularity). A weak right-scaled proximity δ over X
is called regular iff for every set a ⊆ X there is at most one irregular
split of a set b ∪ c w.r.t. a.

Now we can show that NR is a right-scaled proximity that fulfills
the regularity condition.

Proposition 3. NR is a regular right-scaled proximity relation.

Proof. Assume NR(a, b] c) and not NR(a, b) and not NR(a, c). As
us(b⇑) ∩ a = ∅ and us((c⇑) ∩ a = ∅, we have us(b⇑) ∪ us(c⇑) (
us((b ] c)⇑). We must have us((b⇑) 6= us(c⇑). Now, let b ] c =
b′ ] c′ where b′ 6= b and c 6= c′. One of b′, c′ must have elements of
both b and c. W.l.o.g let us assume it is b′. That means that b̃′ = b̃ ∪ c
and hence NR(a, b′).

Please note, that this property also holds for a model of the near-
ness relation NR which is defined in the RCC framework [9] accord-
ing to (2). In this canonical model regions are defined to be regularly
closed sets in the 2-dimension real plane. The crucial point is that the
underlying sets b and c of cells that touch each other make up an ir-
regular splitting of b∪ c w.r.t. some region a—where b∪ c stands for
the sum operation of regions according to [9]. Now, one could move
border points of b to c (or vice versa) in order to get a different irreg-
ular splitting b′ ∪ c′ of b ∪ c w.r.t. a; but b′ and c′ will not be regions
anymore. Hence, the uniqueness of irregular splits is conserved, as
long as b and c are constrained to be regions.

Another additional feature of the nearness relations NRpc based
on normal partition chains pc is that it fulfills the connecting property
(cf. [1]), i.e., every region is near its complement or vice versa.



Proposition 4. Let be given a normal partition chain pc and a near-
ness relation NR = NRpc according to the equivalent definition in
(1). Then for all a ⊆ X it holds that NR(a,X \ a) or NR(X \ a, a).

Proof. Let a ⊆ X be an arbitrary non-empty set. We have to show
NR(a,X \ a) or NR(X \ a, a). First assume that a or X \ a are not
underlying sets of cells, e.g., w.l.o.g. assume a is not an underlying
set of a cell. Then us(ã) overlaps with X \ a and we have NR(X \
a, a). Now assume that both a and X \ a are (underlying sets of)
cells. But, because the order is normal, either a ( us(a⇑) orX \a (
us((X \ a)⇑), hence either NR(X \ a, a) or NR(a,X \ a).

Note, that the proposition does not hold for arbitrary (i.e. non-
normal) partitions chains as shown by the following example.

Example 3. Assume a 6= ∅. We can construct a non-normal partition
chain pc, such that in the first three levels one has the same two sub-
sets a1, a2 as cells. That is, let X = a1 ]a2 and let for i ∈ {0, 1, 2}
be given the partition ai of level i by ((i, a1), (i, a2)) the partition of
level 3 shall be (3, X). Let NR = NRpc be the nearness relation de-
fined by this non-normal partition chain. Then we have a1 = X \ a2
and a2 = X \ a1 but not NR(a1, a2) and not NR(a2, a1).

In general, the nearness relations NRpc for normal partion chains
pc will not fulfill the so called strong axiom (3) for proximity rela-
tions δ (cf. [6]).

If not δ(a, b), there is an e ⊆ X s.t.:

not δ(a, e) and not δ((X \ e), b) (3)

This axiom says that if a is not near b, there is a set e which separates
a and b. In particular, if also for all sets a′, b′ with a′∩b′ 6= ∅ it holds
that δ(a′, b′), then the fact that not δ(X \e, b) entails b ⊆ e (because
it must be the case that (X \ e) ∩ b = ∅).

We give a simple counterexample to the strong axiom.

Example 4. TakeX = {1, 2, 3, 4, 5, 6}. Consider the following nor-
mal chain as illustrated in Fig. 2:

0 :

a1︷ ︸︸ ︷
{1, 2}∪

a2︷ ︸︸ ︷
{3, 4}∪

a3︷ ︸︸ ︷
{5, 6} ≤ 1 :

b1︷ ︸︸ ︷
{1, 2}∪

b2︷ ︸︸ ︷
{3, 4, 5, 6} ≤ 2 : X

Take a = {1}, b = a2 = {3, 4}. Then not NR(a, b). But there is no
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Figure 2. Illustration of configuration in Ex. 4

e ⊇ b such that not NR(a, e) and not NR(X \ e, b). The reason is:
If e = b, then NR(X \ b, b) as (X \ b) ∩ us(b⇑) 6= ∅. Similarly, if
b ( e, then us(e⇑) = X and hence NR(a, e).

5 CELL PROPERTIES AND LOCAL
DYNAMICS OF NEARNESS

In the subsections before we gave properties of the nearness relation
NR that do refer only to NR but not to the underlying partition chain.
As we will consider the effects of changing the arguments in NR and
the effects of changing the partition chain on the induced nearness,
we investigate in this section properties referring also to the parti-
tion chains. Concerning the first point of change, these properties are
relevant to what we call the local dynamics of nearness. The inves-
tigation of local dynamics means—among other things—answering
the following question: How does a change of the right argument of
NR affect the set of sets considered near it? In particular, for which
two regions (or more concretely: sets underlying cells b1 and b2) does
the change from b1 to b2 conserve the nearness relations?

In order to answer (if only partly) this question, we introduce the
following equivalence relations on the basis of a relation δ (which
will be instantiated by NR) over a set X .

a• = {b ⊆ X | δ(a, b)} (4)
•a = {b ⊆ X | δ(b, a)} (5)

a ∼• b iff a• = b• (6)

a •∼ b iff •a = •b (7)

a ∼ b iff a ∼• b and a •∼ b (8)

As the identity = is an equivalence relation (i.e., it is reflexive, sym-
metric, and transitive), the definitions immediately entail the fact that
∼•, •∼,∼ are equivalence relations, too. Now, if we look at cells
(i, a) and (i, b) that are contained in the same upper cell, then these
are left-equivalent.

Proposition 5. Let a, b ⊆ X such that ã = (i, a), b̃ = (i, b) and
a⇑ = b⇑. Then a •∼ b.

Proof. Let c ⊆ X be an arbitrary set. Then, by assumption NR(c, a)
iff NR(c, b).

Concerning the main question of the local dynamic of nearness
this proposition has the following consequence: Changing the per-
spective from a cell to another cell of the same level with the same
upper level does not change the perspective on what regions (as the
first argument) are considered to be near. For illustration, consider
again Fig. 1 in Example 2. Think of an agent that stays at cell a1 and
has calculated the regions near a1. Then the agent moves to cell a2,
which has the same upper cell b1. Then according to Prop. 5 he does
not have update the regions near it as the regions near a2 are exactly
those near a1. The situation is different if the agent moves from a1
to a4 which has a different upper cell than a1.

A dual assertion with respect to this lemma is the observation that
two disjoint cells are near each other in both directions iff they are
cells on the same level with the same upper level cell.

Proposition 6. For all sets a, b with ã = (i, a) and b̃ = (j, b) and
a 6= b the following equivalence holds: NR(a, b) and NR(b, a) iff
i = j and a⇑ = b⇑.

Proof. The direction from right to left follows from Prop. 5. For the
other direction assume NR(a, b) and NR(b, a). Then by definition of
NR, the first argument of the conjunct implies a ∩ us(b⇑) 6= ∅. But
this means, as a is the underlying set of a cell, that a ⊆ us(b⇑). As
a∩b = ∅, we can exclude the case that a = us(b⇑); hence, it follows
that us(a⇑) ⊆ us(b⇑) and i ≤ j. Symmetrically, we can deduce
us(b⇑) ⊆ us(a⇑) and j ≤ i. In the sum we get b⇑ = a⇑.



Moreover, if a, b are cells of the lowest level and are contained in
the same upper level, then they are equivalent.

Proposition 7. Let a, b ⊆ X be such that ã = (0, a), b̃ = (0, b) and
a⇑ = b⇑. Then a ∼ b.

Proof. Because of Prop. 5 we are done with the proof if we can show
that a ∼• b. Let c ⊆ X be an arbitrary set. NR(a, c) iff (by defini-
tion) a ∩ us(c⇑) 6= ∅ iff (as different cells are either disjoint or
comparable with respect to ⊆, and the level of c̃ is greater than or
equal to the level of ã) us(a⇑) ⊆ us(c⇑) iff us(b⇑) ⊆ us(c⇑) iff
NR(b, c).

Again, concerning the main question of the local dynamic of near-
ness this proposition has the following consequence: Changing the
perspective from a cell to another cell on the lowest level, where both
have the same upper level, does not change the set of regions that are
considered to be near—and this holds in both cases of changing the
first argument or of changing the second argument.

6 MERGING AND GLOBAL DYNAMICS OF
NEARNESS

In their study of regional changes of municipalities in Finland, Kaup-
pinen and colleagues [5] found seven kinds of type changes which
are as follows:

1. a region is established
2. two or more regions are merged into one
3. a region is split into two or more regions
4. a region’s name is changed
5. a region is annexed to a different country
6. a region is annexed from a different country
7. a region is moved to another city or municipality

We are interested in changes that concern changes of cells for parti-
tions in a given partition chain. Hence we adapt a subset of the types
of changes to our setting by explicitly formalizing the type of change.

Clearly the most interesting changes are that of merging two re-
gions to a new region and its counterpart, the split of regions into
two regions. These types of changes are low frequent-changes (in
contrast to the local dynamics case where an agent updates the near-
ness relations when moving around); e.g., Kauppinen and colleagues
[5] recognized 144 merges and 94 splits of municipalities in Finland
between 1865 and 2007. But nonetheless, the effects of merges and
splits on the nearness relation are worth to be investigated.

Here, we restrict our attention to different forms of merging. We
have to explain what it means that two cells (of a partition) are
merged, and whether such a merge is possible such that the result
is again a (normal) partition chain.

So let pc be a normal partition chain over X having levels 0 to
n. We will look at merging two cells on the same level into a new
cell; in order to get a first rough picture on the effects of merging,
we look at the special case where the cells are members of the next-
to-last level n− 1. In this case, both cells to be merged have always
the same upper cell, namelyX . For illustration of the possible merge
operations have a look at the partition chain in Fig. 3, which we have
arranged such that one can see the tree structure of the the partition
chain, withX being its root. The cells labelled with the letter cmake
up the cells of the next-to-last level 2. The different forms of changes
within a partition chain can be seen as different forms of updating a
tree.
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Figure 3. Illustration of example configuration for merge

Merging the cells (2, c2) and (2, c3) into a new cell means that
the underlying set of the merging result has to have the union of c2
and c3 as the underlying set. But there are in principle two ways to
conduct this merge that depend on specifying the level of the merge
result.

The first option is to modify the next-to-last level, so that the
whole number of levels is untouched. In case of the example illus-
trated in Fig. 3 this would mean that the partition of c-cells is substi-
tuted by the new partition of c-cells that consists of the cells (2, c1),
(2, c2 ∪ c3) and (2, c4) (see Fig.4). We term this type of merge level
modifying merge—lm merge for short. If a normal partition chain pc2
results from another normal partition chain pc1 by an lm merge, then
we write pc1 ;lm pc2.
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Figure 4. Illustration of merge by modifying

The other option is to make the union of the sets to be part of a new
level. Hence, in addition to the original partition made up by (2, c1),
(2, c2), (2, c3) and (2, c4), one adds the partition (3, c1), (3, c2∪c3)
and (3, c4) and raises the level of X by one to (4, X) (see Fig. 5).
We term this type of change level adding merge—la merge for short.
If a normal partition chain pc2 results from another normal partition
chain pc1 by a la merge, then we write pc1 ;la pc2.

In some cases, either form of merge may not be possible with-
out violating the normality condition. For example, if the next-to-last
level consists only of two cells (n− 1, x1) and (n− 1, x2), then the
union of x1 and x2 is the whole domain X; so the merge results in
the same set partition (X) on two different levels, which violates the
normality condition.

What can we say about the change of the nearness relation induced
by level modifying merges on the next-to-last level? First we note
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Figure 5. Illustration of merge by adding

that the level of a set in pc1 is identical to the level in pc2 if the
former is below or equal to n − 1. If its level in pc1 is n, then its
level in pc2 may be n or n− 1.

The change of pc1 into pc2 affects only the next-to-last partition,
e.g., by merging cells (n−1, c1) and (n−1, c2); hence, the nearness
relation is affected only locally. So, if the second argument b has level
at most n − 3, then one can say that a is near b in pc2 if and only if
it is near in pc1.

Proposition 8. Let pc1, pc2 be two normal partition chains over X
such that pc1 ;lm pc2 w.r.t. cells (n− 1, c1) and (n− 1, c2) on the
next-to-last level n− 1. Then the following assertions hold:

1. For all sets a ⊆ X and all sets b ⊆ X with level lpc2(b) ≤ n− 3
one has : NRpc1(a, b) iff NRpc2(a, b).

2. For all sets a, b ⊆ X: If NRpc1(a, b), then NRpc2(a, b).

Proof. The assertions can be proved as follows:

1. This assertion follows from the fact, that for all b ⊆ X with level
at most n − 3 (in pc2) the upward cells in both pc1 and pc2 are
identical, b⇑,pc1 = b⇑,pc2 . Hence, by definition of nearness it im-
mediately follows that NRpc1(a, b) iff NRpc2(a, b).

2. In order to proof this assertion suppose NRpc1(a, b), i.e., a ∩
us(b⇑,pc1) 6= ∅. We distinguish different cases depending on the
level lpc1(b) of b in pc1.
Assume lpc1(b) = n−2, then b⇑,pc1 = (n−1, c) for some set c on
the level n−1. If c = c1 or c = c2, then b⇑,pc2 = (n−1, c1∪c2).
So from a∩us(b⇑,pc1) 6= ∅ one deduces a∩us(b⇑,pc2) 6= ∅, i.e.
NRpc2(a, b). If c is an underlying set of another cell on level n−1,
then we have us(b⇑,pc2) = (n−1, c) and hence also NRpc2(a, b).
Now assume that lpc1(b) = n − 1. Then b̃pc1 = (n − 1, c) for
some set c on the partition level n− 1. Then we will have b̃pc2 =
(n−1, c′) for c ⊆ c′. Hence, b⇑,pc2 = (n,X) and so NRpc2(a, b).
Last assume that lpc1(b) = n − 1. In this case, the level of b in
pc2 may be n− 1 or n. But in any case, one has b⇑,pc2 = (n,X),
and therefore NRpc2(a, b).

The consequence of this proposition for a cognitive agent using
NR as a nearness notion is that it has to update his NR graph only
locally when the partition chain is updated by a level modifying
change.

Due to the level addition, the situation for la merges is a little bit
different. For example, considering our example partition chain illus-
trated in Fig. 3 one can have a ⊆ X such that NRpc1(a, c2) but not

NRpc2(a, c2) because, the upper level cell of (n − 1, c2) in pc1 is
the biggest cell (n,X), but in pc2 the upper cell is (n− 1, c2 ∪ c3).
So, choosing, e.g., a = a1 and b = c2 one has NRpc1(a, b) but
not NRpc2(a, b). But still we can show as above that sets with level
below n− 3 have the same nearness relations.

Proposition 9. Let pc1, pc2 be two normal partition chains over X
such that pc1 ;la pc2 w.r.t. cells (n− 1, c1) and (n− 1, c2) on the
next-to-last level n− 1. Then for all sets a ⊆ X and all sets b ⊆ X
with level lpc2(b) ≤ n− 3 one has : NRpc1(a, b) iff NRpc2(a, b).

7 CONCLUSION

Cognitive agents using a hierarchical nearness relation based on a
partition chain have to deal with two aspects of dynamics of nearness,
the local dynamics (the cognitive agent changes his position and so
has to update the nearness relations) and a global dynamics (the par-
tition chain may change, and hence the induced nearness relation has
to be changed.) We have shown that under some circumstances both
a local change and a global change affect the nearness relation only
w.r.t. a small set of regions; hence, under these circumstances, the
nearness relations between few regions have to be updated.

We gave preliminary results on the local dynamics and on the
global dynamics of the partition-chain based nearness relation. The
results on global dynamics have to be completed by investigations
on merges for levels below the next-to-last level. In this case one
will have to differentiate between merging regions with the same up-
per level cells vs. merging regions with different upper level cells.
Additionally one has to define how to propagate the merge effect to
the higher levels (as the merger on level i may affect also cells on
levels above i + 1.) Moreover we plan to define adaptations of the
other changes mentioned by [5] to the partition-chain framework and
investigate their effects on the change of the nearness relation.

The presented approach considers only partition chains, i.e. a to-
tally ordered set of nested partitions. For more realistic approaches
we are going to formally investigate the more general scenario where
partitions may not be nested/aligned. This is, e.g., the case when one
considers micro functional regions [2] in addition to administrative
units.
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