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In the last years, the vision of the Semantic Web fostered the interest in reasoning over large and very large sets of assertional
statements in knowledge bases. Traditional tableau-based reasoning systems perform bad answering queries over large data sets,
because these reasoning systems are based on efficient use of main memory data structures. Increasing expressivity and worst-
case complexity further tighten the memory burden. The purpose of our work is to investigate how to release the main memory
burden from tableau-based reasoning systems and perform efficient instance checking over SHI-knowledge bases.

The key idea is to reduce instance checking for an individual in a knowledge base to smaller subsets of relevant axioms.
Modularization techniques are introduced and further refined in order to increase the granularity of modules.

For evaluation purposes, experiments on benchmark and real world knowledge bases are carried out. The principal conclusion
is that the main memory burden for instance checking can be released from tableau-based reasoning systems for semi-expressive
Description Logics, by using modularization techniques.
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1. Introduction

The Semantic Web is intended to bring structure to the meaningful content of web pages and to create an
accessible environment for software agents. There is an increased interest in the development of Semantic
Web applications, e.g. digital libraries [KKS09, GFW08], community management [BM07, MP06], and
health-care systems [DS05, CdK08]. As the Semantic Web evolves, the amount of data available in these
knowledge bases and related formats is growing with an incredible speed. Since the size of the Semantic
Web is expected to further grow in the coming years, scalability and performance of Semantic Web systems
become increasingly important. Usually, such systems deal with information described in Description
Logic-based ontology languages such as OWL [HKP+09], and provide services for storing, querying, and
updating large numbers of facts.
Decidability results for many expressive Description Logics and for query answering over these Descrip-
tion Logics have been shown, e.g., for SHIQ in [GHLS07], SHOQ in [GHS08], and ALCHIOQb
in [GR09]. However, existing tableau-based Description Logic reasoning systems, e.g. Racer [HMW04],
Pellet [SPC+07], and FaCT++ [FS06], do not perform well with large knowledge bases, since the imple-
mentation of tableau algorithms is usually based on efficient main memory data structures. As long as a
tableau representation for an ontology fits into main memory, these systems are quite successfully used in
practice.
However, if the tableau representation does not fit into main memory, these systems are doomed to fail
because of out of memory errors or extensive paging activities of the operating system. Until now, to
the best of our knowledge, there is no successful implementation of tableau algorithms for expressive
Description Logics directly over external memory as, e.g. relational database systems. To sum up, many
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Fig. 1. Intuition of an ABox split
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traditional reasoning algorithms raise serious scalability concerns, because these systems do support on
secondary storage and appropriate indexing techniques.
The main goal of our research is to investigate optimizations and heuristics for instance checking with
tableau-based reasoning systems. In detail, we focus on a class of Description Logics which we call semi-
expressive. These semi-expressive Description Logics lie between tractable Description Logics, such as
EL++ or DL-LITE, and inherently intractable logics, such as SHOIQ and SROIQ. Our focus is on
the Description Logic SHI. For more expressive Description Logics, especially including cardinality
restrictions or nominals, efficient modularization becomes immediately harder.
We would like to release the main memory burden from Description Logic reasoning systems for semi-
expressive ontologies. It should be possible to perform instance checks on large knowledge bases effi-
ciently in the average case.
Inspired by graph partitioning approaches, in Section 3, we introduce techniques to break down an ABox
into smaller chunks (modules), such that instance checking/retrieval can be solved by considering these
smaller parts only. We formally define these ABox modularizations and present an initial ABox modular-
ization algorithm.
While the initial modularization technique is quite naive, since it is basically inspired by graph compo-
nents, it forms the basis of further ABox modularization techniques. We extend the naive modularizations
by introducing so-called ABox splits. Informally speaking, an ABox split breaks up a role assertion in
an ABox, while preserving the semantics (this is formalized below). The idea is depicted in Fig. 1. The
clouds in Fig. 1 indicate a set of ABox assertions. We split up the role assertion teaches(ann, c1), create
two new individuals (ann∗ and c1∗), and keep the concept assertions for each fresh individual copy. After
applying all possible ABox splits to an ABox of a knowledge base, a graph-based ABox modularization
becomes more fine-grained, i.e. one obtains more (and smaller) modules.
In order to decide whether role assertions can be broken up (split), we take into account the terminological
part of the knowledge base. We extend this modularization technique step-wise from ALC to the semi-
expressive Description Logic SHI.
In Section 4, we show how to use ABox modularizations to solve the basic decision problem of instance
checking over ontologies. We evaluate our modularization techniques with respect to benchmark and real
world ontologies in Section 5. We conclude our work with directions for future work in Section 6.
Please note that in the following we will use the term ontology often as a synonym for the word knowledge
base. Although in many research communities the term ontology only refers to the terminological part of
a kowledge base, we usually mean the whole set of axioms (including the assertional part).
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There exist several proposals in the research community for optimized reasoning over Description Logics.
These results can be summarized as follows: There exists a lot of research to identify tractable Descrip-
tion Logics. For example the descriptions logic EL and extensions up to EL++, introduced in [BBL08],
admit sound and complete reasoning in polynomial time for classification and instance checking. Another
lightweight Description Logic (family) is DL-LITE. For an extensive overview see [ACKZ09]. DL-LITE
enables the use of relational database management systems for query answering. Another tractable frag-
ment is the rule-based language OWL-R, introduced in [HKP+09]. All tractable fragments have in com-
mon that the set of constructors in the ontology language is restricted in order to obtain efficient reasoning
algorithms. However, in practical applications, users often need more expressive languages.
Another approach to overcome the problem of reasoning over large ontologies is to approximate the ontol-
ogy by a more compact representation or in a weaker Description Logic. In [PTZ09], the authors propose
to reuse the idea of knowledge compilation to approximate ontologies in a weaker ontology language. For
the ontology language of their choice, i.e. DL-LITE, efficient algorithms with polynomial complexity are
known. Reasoning on the approximated ontology allows to include/reject potential answers with respect
to the original ontology. A similar direction was taken in [RPZ10], where the terminology part of an on-
tology is approximated to the Description Logic EL++. The results from the approximated ontology are
used for more efficient classification over the original ontology. The classification results can then be used
for more efficient retrieval as well.
Another approach is presented in [TRKH08]. The algorithms in [TRKH08] are based on KAON2 [Mot08]
algorithms, which transform the terminological part of an ontology into Datalog [MW88]. Depending
on the transformation strategy, the obtained Datalog program can be used for sound or complete reason-
ing over instances in the source ontology. The preceding approximation approaches rely on expressivity
reduction of the ontology language.
A different approach is proposed in [FKM+06], [DFK+07], and [DFK+09], based on summarization
and refinement. First, a summarization of the assertional part is created by aggregating individuals. This
is part of a setup step that can be performed offline, i.e. before query answering takes place. During
the summarization process, one has to take care of inconsistencies. Queries are then executed over the
summarization. If the summarization leads to inconsistencies, because the individuals are not equivalent
with respect to the input query, then a refinement step is executed. During the refinement step, previously
merged individuals are broken up stepwise, until the result is consistent.
While approximation techniques usually rely, informally speaking, on reduction of the input or expressiv-
ity, there exist modularization techniques which try to extract independent modules with respect to a given
reasoning problem. Most of the modularization techniques focus on TBox modularization. In [CPSK06],
the notion of a module for the terminological part of an ontology is introduced and an algorithm for com-
puting modules is presented. Initial research results for ABox partitioning have been shown in [GH06].
However, their presentation leaves many question open, since the authors have implemented several non-
published optimizations, which contribute to their evaluation (but are not formally presented anywhere).
Usually, modularization of terminologies has not only the intention to extract modules, but to also com-
bine modules from different source ontologies into one importing ontology. This is in detail discussed in
[BS03], where so-called distributed Description Logics are proposed. The idea is to create rules between
parts of terminologies, so-called bridge rules, to propagate information between source ontologies.

2. Preliminaries

2.1. Description Logics

2.1.1. Description Logics
Description logics are a family of languages for knowledge representation. Historically, Description Log-
ics are descendants of semantic nets [Qui68] and frame systems [Min74]. In Artificial Intelligence, De-
scription Logics are used for formal reasoning about application domains. The most prominent application
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of Description Logics might be the use as a formalism for the Semantic Web and ontologies [BHS05]. For
further information on the historical background of Description Logics, we refer to [BCM+07]. A general
review on logic-based knowledge representation with Description Logics and other logics as well, such as
modal logics, is given in [Baa99].
In the following, we recapitulate syntax and semantics of the Description Logic SHI. We assume a
number of disjoint non-emptybase sets as follows: CN is a set of concept names, RN is a set of role
names, NIN is a set of named individuals, and AIN is a set of anonymous individuals. Anonymous
individuals can only be used later by a tableau algorithm (existential rule), but not directly in an ABox.
The expression R is a role description if and only if

– R = S and S ∈ RN (R is called a role name) or

– R = R−2 and R2 is a role description (R is called an inverse role of R2). If R2 is a role name,
then R is called an inverse role name. The set of all role descriptions is denoted with Rol. A role
description R is called an atomic role if R is a role name or R is a inverse role name.

The set of all role descriptions is denoted with Rol. A role description R is called an atomic role if R is
a role name or R is a inverse role name.
The set of individuals is IN = NIN ∪ AIN. The set of SHI -concept descriptions is given by the
following grammar:

C1, C2 ::=>|⊥|A|¬C1|C1 u C2|C1 t C2|∀R.C1|∃R.C1

where A ∈ CN and R ∈ Rol. With AtCon we denote all atomic concepts, i.e. concept descriptions
which are concept names or negated concept names. For the semantics of concept descriptions please refer
to [BCM+07].
A TBox T is a set of so-called generalized concept inclusion axioms C1 v C2. A RBox R is a set of
so-called role inclusion axioms R1 v R2 and role transitivity axioms Trans(R). An ABox A is a set
of so-called concept and role assertion axioms C(a) and R(a1, a2). An ontology O consists of a 3-tuple
〈T,R,A〉. We restrict the concept assertion axioms in A in such a way that each concept description is
an atomic concept or a negated atomic concept. This is without loss of generality, since each non-atomic
concept description can be given a name in the TBox. The set of TBoxes (RBoxes, ABoxes, ontologies)
is denoted with ST (SR, SA, SO).
Since we refer to less expressive Description Logics below, we summarize them as follows: The Descrip-
tion Logic ALCHI is SHI without transitive roles, the Description Logic ALCH is ALCHI without
inverse roles, and the Description Logic ALC is ALCH without role subsumptions.
We denote with clos (C) the closure of a concept description C, i.e. the set of all subconcepts. We assume
that a concept descriptionC is usually in negation normal form, i.e. for all ¬C1 ∈ clos (C),C1 is a concept
name. Using De Morgan laws, every concept description can be transformed into a concept description in
negation normal form. The negation normal form of a concept description C is denoted nnf(C). Given
a TBox T, the concept closure of T, denoted clos (T), is defined as clos (T) =

⋃
C1vC2∈T(clos (¬C1) ∪

clos (C2)).
Given an ABox A, the set of ABox individuals in A is denoted withInd(A). We denote the set of named
ABox individuals in A with NInd(A). The set of anonymous ABox individuals in A is denoted with
AInd(A).

2.1.2. Decision Problems for Ontologies
Our notation for general decision problems is as follows (with the usual semantics via interpretations):

– Subsumption of concept descriptions: O � C1 v C2

– Subsumption of role description: O � R1 v R2

– Transitivity of role descriptions: O � Trans(R1)
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An ontology O is consistent if and only if there exists an interpretation I, such that we have I � O.
An ontology which is not consistent is called inconsistent. In general, we assume that an ontology is
consistent. A named individual a ∈ NInd(A) is an instance of concept description C with respect
to an ontology O = 〈T,R,A〉, denoted O � C(a), if and only if for all interpretations I, we have
I � O =⇒ aI ∈ CI . The problem of instance checking can be easily reduced to consistency checking.

2.2. Running Example

In the following, we introduce an example ontology which is used throughout the remaining part of our
work. The example ontology is situated in the university domain and inspired by the Lehigh University
Benchmark, introduced in [GPH05]. Sometimes we only use subsets of the example ontology.
Example 1 (Running Example):
The example ontology OEx1 = 〈TEx1,REx1,AEx1〉 is defined as follows

TEx1 = {

Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,

GraduateStudent ≡ ∃takes.GraduateCourse, Student v Person,

Professor v Person, UndergraduateCourse v Course,GraduateCourse v Course,

GraduateCourse u UndergraduateCourse v ⊥,> v ∀teaches.Course,

> v ∀takes.Course,> v ∀memberOf−.P erson,> v ∀isTaughtBy.Professor,

∃memberOf.> v Person, Student v ∃takes.Course

}

REx1 = {headOf v memberOf, teaches ≡ isTaughtBy−}

AEx1 = {

Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.
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Fig. 2. Individual relationships for Example 1

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf
headOf

memberOf

c4 c5

teaches teaches teaches

takes takes takes

takes
takes

In TEx1, we define, for instance, the concept description Chair as someone who is the head of a
Department. Since the definition is sufficient, we use an concept equivalence axiom. In a similar style,
we define the concept descriptions Student and GraduateStudent. We introduce a GraduateCourse
and an UndergraduateCourse, and enforce that both concept descriptions are disjoint. In addition, we
define domain and range restrictions on roles descriptions used in OEx1.
We define two role subsumptions in REx1. The role description headOf is subsumed by role descrip-
tion memberOf. Furthermore, we state that the role description teaches is the inverse role of the role
description isTaughtBy.
The relationships between individuals in AEx1 are depicted in Fig. 2. Please note that only role assertions
are shown in the graph, since we only intend to emphasize the relationship between the individuals.
It is easy to see that individual ann is an instance of concept description Chair with respect to the
ontology OEx1. In order to prove the entailment of the concept assertion Chair(ann), not the whole
ABox is necessary. The two ABox assertions headOf(ann, cs) and Department (cs) already suffice to
derive the fact that ann is a Chair. This small example already suggests that modularization techniques
can be valuable in reasoning over ontologies. We define different kinds of modularization techniques
below.

3. Modularization

Reasoning over Description Logic ontologies, such as the task of instance retrieval, is difficult. The worst-
case time complexity even for solving the basic decision problem of instance checking is known to be
double-exponential for SHI. Furthermore, the sheer amount of data, supported by today’s advanced stor-
age and dissemination technologies, and the users willingness to use these technologies, makes achieving
efficiency in information retrieval increasingly difficult.
We think that modularization techniques can be used in order to release the main memory burden from
reasoning systems and to speed up instance checking/retrieval. Recent advances in distributed and parallel
computing, such as multicore-systems and Cloud computing, give further support, since it might be pos-
sible to distribute modules over multiple cores or computers. We focus on the modularization of ABoxes
here, since the size of the assertional part often exceeds the size of the terminological part by orders of
magnitude, especially in database-motivated scenarios.
During the remaining part of our work we make two assumptions with respect to the input ontology
O = 〈T,R,A〉:

– We assume that O is initially consistent. Despite recent research trends on reasoning over inconsis-
tent (web-)ontologies, e.g. see [HVHT05] and [HH08], we focus on standard decision problems.
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– We assume that all concept assertions inA (and in instance checking/retrieval queries) only contain
atomic concept descriptions.

In this chapter, we introduce techniques to break down an ABox into smaller chunks (modules), such
that decision problems can be solved by considering the smaller parts only. In Subsection 3.1, we for-
mally define ABox modularizations and technical preliminaries. In Subsection 3.2, we present an initial
ABox modularization algorithm. While the initial partitioning technique is quite naive, since it is basically
inspired by graph components, the technique builds the basis of further modularization techniques. We
extend the naive partitioning for the Description Logic ALC in Subsection 3.3, by taking into account
terminological information. This extension usually offers a more fine grained partitioning/modularization.
We further extend the technique to the semi-expressive Description Logic SHI.

3.1. Modularization Preliminaries

3.1.1. ABox Modularizations
We define the (very general) notion of an ABox modularization in Definition 1. While our criterion for
ABox modularizations seems quite lax, we would like to keep the definition of ABox modularizations
as open as possible. For instance, we will define modularization techniques, such that the modules are
not necessarily subsets of the original ABox. The intuition for these kinds of modules will become clear
below. Please note that whenever we use the term modularization we usually refer to the result of the
modularization process.
Definition 1 (ABox Modularization):
An ABox modularizationM is defined as a set of ABoxes {A1, ...,An}. EachAi is called an ABox module.
Given a TBox T, a RBox R, and an ABox modularization M, we say that M entails a concept assertion
C(a) w.r.t. T and R, denoted 〈T,R,M〉 � C(a), if ∃Ai ∈ M.〈T,R,Ai〉 � C(a). We say that M entails
a role assertion R(a1, a2) w.r.t. T and R, denoted 〈T,R,M〉 � R(a1, a2), if ∃Ai ∈ M.〈T,R,Ai〉 �
R(a1, a2).
Given an ontology O = 〈T,R,A〉 and an ABox modularization M = {A1, ...,An}, we say that M is
sound for instance retrieval in ontology O if for all atomic concept descriptions C ∈ AtCon and all
individuals a ∈ NInd(A), 〈T,R,M〉 � C(a) =⇒ 〈T,R,A〉 � C(a). The ABox modularization M is
complete for instance retrieval in ontology O if for all atomic concept descriptions C ∈ AtCon and all
individuals a ∈ NInd(A), 〈T,R,A〉 � C(a) =⇒ 〈T,R,M〉 � C(a).
Informally speaking, we have chosen to base soundness and completeness of modularizations on entail-
ment of atomic concept descriptions for all named individuals. This assumption makes the definition and
implementation of our techniques easier. However, please note that the restriction to atomic query con-
cepts is without losing generality, since we can assign fresh concept names to non-atomic query concepts
in the TBox and execute a query for the (atomic) concept names. Again, remember that we would like to
obtain modularizations which preserve entailment of atomic concept assertions for all named individuals
in the input ontology.
We present examples for further explanation in Example 3 and Example 4. First, we introduce one example
ontology in Example 2.
Example 2 (Example Ontology for ABox Modularization):
The ontology OEx2 = 〈TEx2,REx2,AEx2〉 is defined as follows

TEx2 = {Chair ≡ ∃headOf.Department}

REx2 = {headOf v memberOf}
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AEx2 = {

Department(ee), P rofessor(mae), UndergraduateCourse(c4),

UndergraduateCourse(c5), Student(sam), Student(sue), Student(zoe),

headOf(mae, ee), teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

Example 3 (First Example for an ABox Modularization):
One possible ABox modularization for ontology OEx2 is MEx3 = {AEx3,1,AEx3,2}, such that

AEx3,1 = {Department(ee), headOf(mae, ee), P rofessor(mae)}

AEx3,2 = {

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

It is easy to see that with respect to the original ontology OEx2, we have that mae is an instance of
the concept description Chair, since she has a headOf-relationship to a Department called ee. The
ABox modularization in Example 3 entails that individual mae is an instance of the concept description
Chair, since all necessary axioms are being kept in one ABox module. Moreover, it can be shown that
the modularization in Example 3 is sound and complete for reasoning over ontology OEx2.
Another example modularization is given in Example 4.
Example 4 (Second Example for an ABox Modularization):
Another possible ABox modularization for Ontology OEx2 is MEx4 = {AEx4,1,AEx4,2}, such that

AEx4,1 = {Department(ee), UndergraduateCourse(c4), UndergraduateCourse(c5)}

AEx4,2 = {

Professor(mae), Student(sam), Student(sue), Student(zoe),

headOf(mae, ee), teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

The ABox modularization in Example 4 is chosen quite arbitrarily and it can be seen that neither of the
two modules entails that mae is an instance of the concept description Chair. This happens because
the necessary information for entailment was split up into different ABoxes. In [BS03], this problem is
solved by so called bridge rules, which communicate useful temporary reasoning results from one module
to another module. However, we would like to keep relevant information together, in order to avoid the
communication overhead.
The ABox modularizations from Example 3 and 4 show that the choice of ABox modularization is critical
for use and quality during reasoning. In the remaining part of the paper, we discuss in detail how to obtain
sound and complete ABox modularizations (one might even have to add new - yet redundant - assertions).
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3.1.2. Reasoning Procedures
The purpose of a tableau algorithm is to check consistency of a given ontology O. As pointed out before,
(in-)consistency is one of the basic decision problems. Many other decision problems can be reduced to
inconsistency checking. Given an input ontologyO, a tableau algorithm tries to generate a finite represen-
tation for a model of O. If the algorithm succeeds, the algorithm returns a compact model representation
and shows that the ontology is consistent. If the algorithm fails, then the output is false, i.e. there cannot
exists a model for O. In each step, a tableau algorithm applies one tableau rule to an intermediate ontol-
ogy. For details and formal definition of a tableau algorithm for the Description Logic SHI please refer
to [HS99].
There are different representations used as a basis for tableau algorithms, e.g. graph-based and ABox-
based. Here, we focus on ABox-based views of tableau algorithms as for instance chosen in [BS01]. Each
path in a tableau (as a tree) is called a tableau run. It is easy to see that a tableau proof is successful, if
there exists at least one tableau run. Furthermore, please note that the composition of successful tableau
runs of two individual disjoint ontologies O1 = 〈T,R,A1〉 and O2 = 〈T,R,A2〉 can be composed into a
successful tableau run for ontology O3 = 〈T,R,A1 ∪ A2〉.
We use well known notions on tableau proofs and trees, which are derived from either structure, e.g.
inner nodes, leaves, and root nodes. Furthermore, we call a tableau run satisfying if it does not contain a
clash (directly contradicting assertions in the leaf ABox of the tableau run). An ABox in a tableau run is
complete if no tableau rule is applicable.
In the remaining part of this section, we focus on how to find ‘interesting’ ABox modularizations, i.e.
ABox modularizations which guarantee soundness and completeness for different classes of Description
Logics.

3.2. Component-based Modularization

With component-based modularization we refer to modularization techniques which only consider the
assertional part of an ontology O = 〈T,R,A〉 in order to decide how to break up an ABox into an ABox
modularization. For this purpose, we look at ABoxes as graphs. The intuition is as follows: each individual
in the ABox is mapped to a node in the graph. Node labels are concept assertions from the ABox and the
edges of the graph are derived from the role assertions. We introduce a formal notion in order to define
algorithms and proofs. Given an ABox A, we define the corresponding ABox-graph in Definition 2.
Definition 2:
Given an ABox A, the ABox-graph GA = 〈N,E, φ, σ〉 for A is a directed labeled graph such that

– N = Ind(A),
– edges = Ind(A)× Ind(A),
– the domain of φ and σ are N and E, respectively,

– the codomain of φ is ℘(Con),

– the codomain of σ is ℘(Rol),

– for all n ∈ N, we have C ∈ φ(n) if and only if C(n) ∈ A, and

– for all pairs of nodes (n1, n2) ∈ N ×N, we have R ∈ σ(n1, n2) if and only if R(n1, n2) ∈ A.

Please note that the construction of the ABox-graph for a given ABoxA is deterministic and there is an ob-
vious one-to-one correspondence between ABoxes and their graphs. This means that given a ABox-graph
GA , we can reconstruct the corresponding ABoxA. Given this relationship, we often change between the
usual ABox-view and the ABox-graph-view whenever it is convenient.
Since the ABox A of an ontology O can be seen as a graph, it seems natural to apply standard
connectedness-based graph partitioning techniques to determine ABox modules: if two individuals a1 and
a2 are connected in the ABox-graph, then these two individuals end up in the same ABox module.
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Definition 3 (Graph Component-based ABox Modularization for an ABox):
Given an ontologyO = 〈T,R,A〉, a graph component-based ABox modularization forA, denotedMCA ,
is an ABox Modularization MCA = {A1, ...,An} for A, such that Ai ∈ MCA ⇐⇒ GAi is a
component in GA .
The components of a graph can be obtained in linear time[HT73]. In the following, we often refer to the
term graph component-based with the term component-based.
Please note that the graph component-based ABox modularization for an ABox A is unique. An example
of a component-based ABox modularization is shown in Example 5.
Example 5 (Example for ABox Modularization by Graph Components):
Given the ontology OEx5 = 〈TEx5,REx5,AEx5〉, such that

TEx5 = {Chair ≡ ∃headOf.Department}

REx5 = {headOf v memberOf}

AEx5 = {Department(cs), P rofessor(ann), headOf(ann, cs),

Department(ee), P rofessor(mae), headOf(mae, ee)},

the graph component-based ABox modularization is MEx5 = {AEx5,1,AEx5,2}, such that

AEx5,1 ={Department(cs), P rofessor(ann), headOf(ann, cs)}

AEx5,2 ={Department(ee), P rofessor(mae), headOf(mae, ee)}.

It is easy to see that the component-based ABox modularization MCA = {A1, ...,An} for A is sound
for instance retrieval in O (by monotonicity).
Next, we show a proof for completeness with respect to SHI and give a negative result for the Description
Logic SHOQ.
Lemma 1 (SHI-Instance Retrieval over Component-based ABox Modularizations is Complete):
Given an ontology O = 〈T,R,A〉 and a component-based ABox modularization MCA = {A1, ...,An}
for A, the ABox modularization MCA is complete for instance retrieval in O.

Proof of Lemma 1. We have to show that for all atomic concept descriptions C ∈ AtCon and all
individuals a ∈ NInd(A), 〈T,R,A〉 � C(a) =⇒ 〈T,R,MCA〉 � C(a). By contraposition:
We have to show 〈T,R,MCA〉 2 C(a) =⇒ 〈T,R,A〉 2 C(a). Assume that 〈T,R,MCA〉 2
C(a). Thus, for all Ai ∈ MCA , 〈T,R,Ai ∪ {¬C(a)}〉 is consistent. Let Aj be the ABox mod-
ule, such that a ∈ Aj . There exists only one such module, by Definition 3. We can conclude that
〈T,R,A1∪A2∪ ...Aj−1∪(Aj∪{¬C(a)})∪Aj+1∪ ...∪An〉 is consistent as well. SinceA∪{¬C(a)} =
A1∪A2∪ ...Aj−1∪ (Aj ∪{¬C(a)})∪Aj+1∪ ...∪An, the ontology 〈T,R,A∪{¬C(a)}〉 is consistent,
and thus 〈T,R,A〉 2 C(a).

Theorem 1 (Instance Retrieval over Component-based ABox Modularizations is Sound and Complete for
SHI):
Instance Retrieval over component-based ABox modularizations is sound and complete for SHI-
ontologies.

Proof of Theorem 1. Soundness is immediate (subsets of the original ABox) and in Lemma 1 we show
completeness.
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Actually Theorem 1 is true for any standard Description Logic without nominals. Unfortunately, the com-
pleteness result does not hold for ontologies containing nominals, e.g. SHOQ-ontologies. It is not always
possible to ensure individual disjointness of tableau runs, because TBox axioms can introduce individuals
and these individuals cannot be renamed without changing the semantics and result of the tableau run.
While all modules of an ABox modularization are consistent, the complete ontology might be inconsistent.
Thus, graph component-based ABox modularization techniques cannot be applied directly to ontologies
containing nominals.
The effectiveness of component-based modularization techniques is usually quite low (e.g. only one big
module is obtained), since in most ontologies each individual is related to many other individuals, either
directly or indirectly.

3.3. Intensional-based Modularization

Component-based modularization alone can be too naive for the modularization of real world ontologies.
Usually, most individuals in an ABox are connected by paths of role assertions to many other individuals.
Thus, the number of modules obtained by component-based ABox modularizations can be quite small
and the average module size is usually quite big. In the following section, we discuss how to compute
smaller modules by splitting up role assertions whenever possible. After the splitting process is finished,
we can apply component-based modularization techniques on the result. Please note again that, during the
modularization process, we are interested in preserving entailment of atomic concept descriptions for each
named individual.
The idea is to analyze the terminological part of the ontology (hence called intensional-based modular-
ization) to find out in which ways role assertions are used in the ontology. It is important to note that
we only use a purely syntactical analysis of the TBox. Otherwise, for complex ontologies, a more so-
phisticated analysis could turn out to be too complex. In order to illustrate the idea of intensional-based
modularization in a more detailed way, an example ontology is given in Example 6.

Example 6 (Example Ontology):
Let OEx6 = 〈TEx6,REx6,AEx6〉 be as follows:

TEx6 ={> v ∀takes.Course}

REx6 ={}

AEx6 ={Course(c5), Student(zoe),

takes(zoe, c5), teaches(mae, c5)}.

Looking closer at the ontology defined in Example 6 reveals the following details about the role assertions
in AEx6:

– teaches(mae, c5): The role teaches is not used (mentioned) anywhere in the TBox or RBox of
the ontology OEx6. Thus, no information can be propagated in a tableau algorithm from mae to c5
and vice versa, and it might be safe to ignore/remove the role assertion to obtain more fine grained
ABox modularization in some cases.

– takes(zoe, c5): Although the role takes is mentioned in TEx6, we can see that it is only used to
propagate the concept descriptionCourse. Since individual c5 is already known to be an instance of
Course, because that fact is directly asserted in AEx6, we might further split up this role assertion
in some cases.
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3.3.1. Technical Preliminaries
In the following, we define necessary criteria for identifying concept descriptions which are propagated
over role descriptions in the worst-case during the application of a tableau algorithm. Since we only allow
atomic concept assertions in ABoxes, we can focus on the syntactical analysis of the TBox to obtain this
set of concept descriptions. First, we revisit normal forms of general concept inclusions and TBoxes. A
general concept inclusion axiom is in normal form if it has the shape > v C, such that C is a concept
description in negation normal form. Please note that every concept description can be transformed into
an equivalent concept description in negation normal form. A TBox T is in normal form (or normalized)
if all general concept inclusion axioms in T are in normal form.
In Definition 4, we formally define a structure which associates the worst-case set of propagated concept
descriptions with each role description. The idea is to extract subconcept descriptions of all ∀-concept
descriptions from the closure of the input TBox.
Definition 4 (∀-info structure):
A ∀-info structure for a TBox T in normal form is a function info∀T : Rol → ℘(Con), such that we have
C ∈ info∀T(R) if and only if ∀R.C ∈ clos (T).
Example 7 (Example for a ∀-info structure):
Let

TEx7 = {> v ∀takes.Course, ∃takes.Course v Student, ∃memberOf.> v Person,

GraduateStudent v Student, UndergraduateStudent v Student},

then one TBox in normal form is

TEx7norm = {> v ∀takes.Course,> v ∀takes.¬Course t Student,> v ∀memberOf.⊥ t Person,

> v ¬GraduateStudent t Student,> v ¬UndergraduateStudent t Student}

and the ∀-info structure for TEx7norm is:

info∀T(R) =


{Course,¬Course} if R = takes,

{⊥} if R = memberOf,

∅ otherwise.

The ∀-info structure helps us to check, which concept descriptions are (in the worst case) propagated over
role assertions during application of tableau rules in tableau proofs. First, we prove a general property of
concept descriptions in tableau runs.
Given the above results, we define an operation which splits up role assertions in such a way that we
can apply graph component-based modularization techniques over the outcome of the split (or a series of
splits). Then we show that under some conditions the operation retains soundness and completeness for
instance checking/retrieval.
Definition 5 (ABox Split):
Given

– a role description R,

– two distinct named individuals a and b,

– two distinct anonymous individuals c and d, and,

– an ABox A,
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an ABox split is a function ↓R(a,b)
c,d : SA → SA, defined as follows:

– If R(a, b) ∈ A and {c, d} * Ind(A), then

↓R(a,b)
c,d (A) =A \ {R(a, b)}∪

{R(a, d), R(c, b)} ∪ {C(c) | C(a) ∈ A} ∪ {C(d) | C(b) ∈ A}

– Else

↓R(a,b)
c,d (A) = A.

The intuition of Definition 5 is depicted in Fig. 1. We split up a role assertion and keep the concept
assertions for each fresh individual copy. The reason for keeping the asserted concept descriptions is
explained below. If the ABox does not contain the role assertion in question, then the split returns the
unchanged ABox.
In Definition 6, we define soundness and completeness of ABox splits. While soundness of ABox splits is
shown by simply applying Lemma 2, the proof of completeness is harder and depends on several criteria.
Definition 6 (Sound, Complete and Valid ABox Split):
Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , we say that

– ↓R(a,b)
c,d is sound with respect to O if for all individuals a1 ∈ NInd(A) and all atomic concept

descriptions C ∈ AtCon:

∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1) =⇒ 〈T,R,A〉 � C(a1),

– ↓R(a,b)
c,d is complete with respect to O if for all individuals a1 ∈ NInd(A) and all atomic concept

descriptions C ∈ AtCon:

〈T,R,A〉 � C(a1) =⇒ ∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1),

– ↓R(a,b)
c,d is valid with respect to O if ↓R(a,b)

c,d is sound and complete with respect to O.

Lemma 2 (Soundness of ABox Splits):
Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is sound with respect to O.

Proof of Lemma 2. We have to show that for all individuals a1 ∈ NInd(A) and all atomic con-

cept descriptions C ∈ AtCon: ∃Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1) =⇒ 〈T,R,A〉 �

C(a1). Assume that ∃Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1). Without loss of generality, let AX ∈

MC↓
R(a,b)
c,d (A) be the ABox module which makes 〈T,R,AX ∪ {¬C(a1)}〉 inconsistent. Furthermore,

let A∗ = AX ∪ {¬C(a1)}. It is easy to see that 〈T,R,A∗〉 is inconsistent and we have to show that
〈T,R,A ∪ {¬C(a1)}〉 is inconsistent. By contraposition: We show that if 〈T,R,A ∪ {¬C(a1)}〉 is con-
sistent, then 〈T,R,A∗〉 is consistent. Assuming that 〈T,R,A ∪ {¬C(a1)}〉 is consistent, there exists an
interpretation I, such that I � 〈T,R,A ∪ {¬C(a1)}〉. It is easy to see that for the interpretation Inew,
an extension of I by setting cInew = aI and dInew = bI , Inew � 〈T,R,A∗〉 and thus, 〈T,R,A∗〉 is
consistent.

The criteria for ensuring completeness of ABox splits are introduced below and proven step-wise for the
Description LogicALC and extensions up to SHI. We define a set of consistency-preserving ABox splits,
for which, informally speaking, the split-up role assertion can be added to the outcome of the ABox split
without changing consistency. This is formally defined in Definition 7.
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Definition 7 (Consistency-preserving ABox Split):
Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , we say that ↓R(a,b)
c,d is a consistency-

preserving ABox split for O if for all atomic concept descriptions C and all individuals e ∈ NInd(A),
〈T,R, ↓R(a,b)

c,d (A)∪ {¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d (A)∪ {¬C(e)} ∪ {R(a, b)}〉 is consis-

tent.
Lemma 3 (Completeness of Consistency-preserving ABox Splits):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is complete with respect to O

if ↓R(a,b)
c,d is a consistency-preserving ABox split for O.

Proof of Lemma 3. We have to show that for all named individuals a1 ∈ NInd(A) and all atomic concept
descriptions C ∈ AtCon:

〈T,R,A〉 � C(a1) =⇒ ∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1).

By contraposition: We have to show that ∀Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 2 C(a1) =⇒ 〈T,R,A〉 2

C(a1). Assume that all 〈T,R,Ai ∪ {¬C(a1)}〉 are consistent. Let Aj be the ABox module, such
that a1 ∈ NInd(Aj). There exists only one such module, by Definition 3. Let A∗ = A1 ∪ A2 ∪
...Aj−1 ∪ (Aj ∪ {¬C(a)}) ∪ Aj+1 ∪ ... ∪ An. We know that 〈T,R,A∗〉 is consistent. Since ↓R(a,b)

c,d is
a consistency-preserving ABox split for 〈T,R,A〉, we know that 〈T,R,A∗ ∪ {R(a, b)}〉 is consistent,
because A∗ =↓R(a,b)

c,d (A) ∪ {¬C(a1)}. Since A ∪ {¬C(a1)} ⊆ A∗ ∪ {R(a, b)}, we can conclude that
〈T,R,A ∪ {¬C(a1)}〉 is consistent as well, and thus 〈T,R,A〉 2 C(a1).

Lemma 3 and Definition 7 help us to identify complete ABox splits, by finding consistency-preserving
ABox splits. We identify classes of these consistency-preserving ABox splits below. Please note that
consistency-preserving ABox splits do not affect the blocking of individuals, i.e. adding the role assertions
does not change the blocking condition for any individual.
We distinguish the following three scenarios as candidate criteria for consistency-preserving ABox splits
↓R(a,b)
c,d :

1. No concept descriptions are propagated over R.
2. Only the concept description ⊥ is propagated over R.
3. Only atomic concept descriptions are propagated over R, such that each propagation, informally

speaking, either yields redundant information or an obvious clash.

Each scenario is discussed in detail for the Description Logic ALC below.

3.3.2. Consistency-preserving ABox Splits for ALC
Below, we discuss three cases for consistency-preserving ABox splits. First, in Lemma 4, we prove that an
ABox split is consistency-preserving, if no concept descriptions can be propagated over the role assertion
of the ABox split during the application of a tableau algorithm to the ontology.
Lemma 4 (Propagationless ABox Splits):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is a consistency-preserving

ABox split for O if info∀T(R) = ∅.

Proof of Lemma 4. We have to show that for all atomic concept descriptions C and all individuals e ∈
NInd(A), 〈T,R, ↓R(a,b)

c,d (A)∪{¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d (A)∪{¬C(e)}∪{R(a, b)}〉

is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)}〉 is consistent. Thus, there exists a satisfy-

ing tableau run RUN for 〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)}〉. It is easy to see that the new tableau run
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RUN +{R(a,b)} (obtained by adding R(a, b) to all the ABoxes in the original tableau run) is a tableau run
for 〈T,R, ↓R(a,b)

c,d (A)∪{¬C(e)∪{R(a, b)}〉. The only tableau rule which could become applicable due
to the role assertion addition is the ∀-tableau rule. But since we assume info∀T(R) = ∅, we can conclude
that the individual a cannot be labeled with a ∀-constraint on role R. Thus, the ∀-tableau rule is not appli-
cable either. The new role assertion yields no immediate clash. Thus, we have a satisfying tableau run and
〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

Next, we discuss consistency-preserving ABox splits with role assertions, such that only direct contradic-
tions are propagated, i.e. given an ↓R(a,b)

c,d , we have info∀T(R) = {⊥}.
Lemma 5 (Clash-Propagation ABox Splits):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is a consistency-preserving

ABox split for O if info∀T(R) = {⊥}.

Proof of Lemma 5. In the same style as the proof of Lemma 4. Please note that, if the ∀-tableau rule
becomes applicable for R(a, b), then it must have been already applicable in RUN for the role assertion
R(a, d). Since RUN is satisfying, d does not contain a direct clash, and thus the ∀-tableau rule was not
applicable to R(a, d) in RUN and it cannot be applicable to R(a, b) either.

In the following, we discuss completeness of ABox splits with role assertions, such that only chosen
atomic concepts are propagated. These atomic concepts are special in such a way that they will either only
propagate redundant information or yield a direct clash during the application of a tableau algorithm. First,
we discuss the propagation of redundant information. The terminological knowledge can be used to avoid
the worst-case propagation over the role assertion of concern.
Lemma 6 (Redundant Propagation ABox Splits):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is a consistency-preserving

ABox split for O if info∀T(R) = {C1} and there exists a concept description C2, with C2(b) ∈ A and
T � C2 v C1.

Proof of Lemma 6. In the same style as the proof of Lemma 4. Please note that the only tableau rule which
could become applicable due to the role assertion addition is the ∀-tableau rule. We have C1(b) ∈ Aleaf

(sinceAleaf is a complete ABox and T � C2 v C1), and thus the ∀-tableau rule cannot become applicable
for the new role assertion R(a, b) and concept description ∀R.C1.

We discuss the propagation of directly contradicting information next. If a propagation will only yield a
direct clash due to disjointness information, we can break up the role assertion as well.
Lemma 7 (Redundant Contradiction-Propagation ABox Splits):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is a consistency-preserving

ABox split forO if info∀T(R) = {C1} and there exists a concept description C2, such that C2(b) ∈ A and
T � C1 u C2 v ⊥.

Proof of Lemma 7. In the same style as the proof of Lemma 6. Since the leaf ABox Aleaf of RUN is
complete, the only tableau rule which could become applicable due to the ABox extension is the ∀-tableau
rule. However, if the ∀-tableau rule becomes applicable for R(a, b), then it must have been already appli-
cable in RUN for the role assertion R(a, d) and we must have C1(d) ∈ Aleaf . This must have yielded a
clash, since T � C1 u C2 v ⊥ and C2(d) ∈ Aleaf .
Since RUN is satisfying, d does not contain that clash, and thus the ∀-tableau rule was not applicable to
R(a, d) in RUN and it cannot be applicable to R(a, b) either. Thus the ∀-tableau rule is not applicable.

In Theorem 2, we summarize the above results about decision criteria for ABox splits over ALC-
ontologies.
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Theorem 2 (Decision Criteria for ABox Splits in ALC-ontologies):
Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is valid for O if for each

C ∈ info∀T(R)

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

– there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥.

Proof of Theorem 2. Direct consequence of Lemma 2 (soundness), Lemma 3, Lemma 4, Lemma 5,
Lemma 6 and Lemma 7.

3.3.3. Consistency-preserving ABox Splits for ALCH
In the following, we extend our results for valid ABox splits step-by-step from ALC-ontologies to SHI-
ontologies. First, we add role hierarchies to ALC.
In presence of role hierarchies, the ∀-info structure needs to be extended in order to handle role subsump-
tions, because propagations of concept descriptions can now occur over subsumed role descriptions.
Definition 8 (Extended ∀-info Structure):
Given a TBox T in normal form and a RBox R, an extended ∀-info structure for T and R is a function
extinfo∀T,R : Rol → ℘(Con), such that we have C ∈ extinfo∀T,R(R) if and only if there exists a role
R2 ∈ Rol, such thatR � R v R2 and ∀R2.C ∈ clos (T).
Example 8 (Example for an Extended ∀-info Structure):
Let

TEx8 = {Chair v ∀headOf.Department,∃memberOf.> v Person,GraduateStudent v Student}

andREx8 = {headOf v memberOf}, then the TBox in normal form is

TEx8norm = {

> v ¬Chair t ∀headOf.Department,> v ∀memberOf.⊥ t Person,

> v ¬GraduateStudent t Student

}

and the extended ∀-info structure for TEx8norm andREx8 is:

extinfo∀T,R(R) =


{Department,⊥} if R = headOf,

{⊥} if R = memberOf,

∅ otherwise.

The extended ∀-info structure allows us to check which concept descriptions are (worst-case) propagated
over role assertions in ALCH-ontologies. Please note that the definition of the extended ∀-info structure
corresponds to the definition of the usual ∀-tableau rule in presence of role hierarchies.
Theorem 3 (Decision Criteria for ABox Splits in ALCH-ontologies):
Given an ALCH-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is valid with respect to O if

for each C ∈ extinfo∀T,R(R)

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or
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– there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥.

Proof of Theorem 3. Since the tableau rules for ALCH do not change compared to ALC, but only the
definition of neighbor relationships, the proof is a direct consequence of the results forALC (Theorem 2).

3.3.4. Consistency-preserving ABox Splits for ALCHI
In presence of inverse roles, concept descriptions can be propagated in two directions over a role assertion
R(a1, a2). The extension of Theorem 3 to ALCHI-ontologies is shown in Theorem 4.
Theorem 4 (Decision Criteria for ABox Splits in ALCHI-ontologies):
Given an ALCHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is valid with respect to O

if

1. for each C ∈ extinfo∀T,R(R)

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

– there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥
and

2. for each C ∈ extinfo∀T,R(R
−)

– C = ⊥ or

– there exists a concept description C2, such that C2(a) ∈ A and T � C2 v C or

– there exists a concept description C2, such that C2(a) ∈ A and T � C u C2 v ⊥.

Proof of Theorem 4. Since the tableau rules for ALCHI do not change compared to ALCH, but only the
definition of neighbor relationships, the proof is a direct consequence of the results for ALCH (Theo-
rem 3).

3.3.5. Consistency-preserving ABox Splits for SHI
We discuss the extension to transitive roles next. Please note that the additional ∀+-tableau rule can only
become applicable for role assertions with transitive roles. We formally define a class of SHI-splittable
role assertions, and prove that each ABox split for these role assertions is valid in SHI-ontologies.
Definition 9 (SHI-splittability of Role Assertions):
Given a SHI-ontologyO = 〈T,R,A〉 and a role assertionR(a, b), we say thatR(a, b) is SHI-splittable
with respect to O if

1. there exists no transitive role R2 with respect toR, such thatR � R v R2,
2. for each C ∈ extinfo∀T,R(R)

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

– there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥
and

3. for each C ∈ extinfo∀T,R(R
−)

– C = ⊥ or

– there exists a concept description C2, such that C2(a) ∈ A and T � C2 v C or

– there exists a concept description C2, such that C2(a) ∈ A and T � C u C2 v ⊥.
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Please note that, although we have defined SHI-splittability based on TBox-reasoning (for subsumption
and disjointness tests), these structures do not have to be complete. Thus, only sound TBox-reasoning
(e.g. syntactical analysis with some closure) is requeired in order to compute modularizations. Informally,
the more complete the actual TBox analysis is, the more role assertions can possibly split up. In our
experiments so far, most role assertions can be already split up based on simple analysis of direct (told)
subsumptions in the TBox.

Lemma 8 (Consistency-preserving SHI-ABox Splits):
Given a SHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is a consistency-preserving

ABox split for O if R(a, b) is SHI-splittable with respect to O.

Proof of Lemma 8. In the same style as the proof of Lemma 6. We know that the only rule which could
become applicable due to the role assertion addition is the ∀+-tableau rule. However, since we assume that
R does not have a transitive subsuming role (SHI-splittability ofR), we can conclude that the ∀+-tableau
rule is not applicable either. The same argumentation as before (ALCHI) is true for non-applicability of
the ∀-tableau rule.

Theorem 5 is the extension of Theorem 4 from ALCHI to SHI-ontologies.

Theorem 5 (Decision Criteria for ABox Splits in SHI-ontologies):
Given a SHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)

c,d , ↓R(a,b)
c,d is valid with respect to O if

R(a, b) is SHI-splittable with respect to O.

Proof of Theorem 4. By Lemma 2 we have soundness and by Lemma 8 we have completeness.

In Example 9, we define an example ontology and then derive one intensional-based ABox modularization
step by step.

Example 9 (Example Ontology for Intensional Modularization):
The example ontology OEx9 = 〈TEx9,REx9,AEx9〉 is defined as follows

TEx9 = {

Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,

UndergraduateCourse v Course,

Course u Chair v ⊥,> v ∀takes.Course,

> v ∀teaches.Course,∃memberOf.> v Professor

}

REx9 = {headOf v memberOf, teaches ≡ isTaughtBy−, T rans(suborgOf)}
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AEx9 = {

Department(cs), Department(ee), P rofessor(ann), P rofessor(eve),

P rofessor(mae), UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5), GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

suborgOf(r, cs), suborgOf(cs, u1), suborgOf(ee, u1),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

Please note that absence of the concept inclusion axiom GraduateCourse v Course in TEx9. Absence
and presence of that axiom makes the impact of TBox modeling for SHI-splittability clear. We add the
axiom later again.
The extended ∀-info structure for TEx9 andREx9 is:

extinfo∀TEx9,REx9
(R) =



{¬Department,⊥} if R = headOf,

{Course} if R = isTaughtBy−,

{⊥} if R = memberOf,

{¬Course, Course} if R = takes,

{Course} if R = teaches,

∅ otherwise.

We have for instance ⊥ ∈ extinfo∀TEx9,REx9
(headOf), because of the subsumption relationship between

headOf andmemberOf in the RBoxREx9. Given the extended ∀-info structure forOEx9, we can decide
SHI-splittability for each role assertion in AEx9. For instance, the role assertion memberOf(eve, cs) is
SHI-splittable because of

– extinfo∀TEx9,REx9
(memberOf) = {⊥} and

– extinfo∀TEx9,REx9
(memberOf−) = {}.

The role assertion takes(noa, c3) is not SHI-splittable because of

– extinfo∀TEx9,REx9
(takes) = {¬Course, Course} and

– extinfo∀TEx9,REx9
(takes−) = {}.

The problem is that the concept description ¬Course can be propagated via role description takes. Since
we only know that individual c3 is an instance of the concept description GraduateCourse, we cannot
find an obvious propagation and neither a direct clash. Please note that this role assertion would be SHI-
splittable, if we had a subsumption axiom between GraduateCourse and Course, because then the
propagation of ¬Course will be identified as a direct clash. Furthermore, all transitive suborgOf-role
assertions are not SHI-splittable.
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In Fig. 3, we show all role assertions in AEx9 and their SHI-splittability. All SHI-splittable role asser-
tions are shown with dashed lines and all SHI-unsplittable role assertions are shown with normal lines.

Fig. 3. SHI-splittability for Example 9
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In Fig. 4, we show all role assertions in AEx9 and their SHI-splittability, if the concept inclusion axiom
GraduateCourse v Course was present. With the axiom included, all role assertions without transitive
role descriptions inAEx9 become SHI-splittable. This simple example shows, how important the correct
modeling of (maybe obvious) information can be for intensional modularization. Our experiments below
show similar results for real world ontologies.
Without providing a formal proof, a more detailed look at ontology OEx9 shows that the suborgOf-role
assertions have only an influence on relation checking and retrieval, since there is no ∀-propagation over
suborgOf possible. Thus, for instance checking and retrieval, even transitive role assertions could be split
up here. We discuss this special case in below again.

Fig. 4. SHI-splittability for Example 9 with subsumption
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We have shown until here that for reasoning over individuals in an ontology, only small modules might
suffice. In the next section, we show how to use ABox modularization techniques in order to define algo-
rithms for efficient instance checking over SHI-ontologies.

4. Individual Islands

So far, we have introduced approaches to modularization of the assertional part of an ontology. In the
following, we use these modularization techniques to define structures for efficient reasoning over ontolo-
gies.
We formally define a subset of assertions, called an individual island, which is worst-case necessary, i.e.
possibly contains more assertions than really necessary, in order to have sound and complete instance
checking. Informally speaking, we take the graph view of an ABox and, starting from a given individual,
follow all role assertions in the graph until we reach a SHI-splittable role assertion. We show that this
strategy is sufficient for entailment of atomic concepts.
Usually, instance checking over ontologies is performed on the whole TBox, RBox, and ABox. Our goal
is to formally identify a subset of assertions, called individual island, which is worst-case sufficient to
perform sound and complete instance checking for a given individual. The formal foundations for these
subsets of assertions have been set up before, where we show that, under some conditions, role assertions
can be broken up while preserving soundness and completeness of instance checking algorithms. First, in
Definition 10, we formally define an individual island candidate with an arbitrary subset of the original
ABox. The concrete computation of the subset is then further defined below.
Definition 10 (Individual Island Candidate):
Given an ontology O = 〈T,R,A〉 and a named individual a ∈ Ind(A), an individual island candidate,
is a tuple ISLa = 〈T,R,Aisl, a〉, such that Aisl ⊆ A. Given an individual island candidate ISLa =
〈T,R,Aisl, a〉 and an interpretation I, we say that I is a model of ISLa , denoted I � ISLa , if I �
〈T,R,Aisl〉. Given an individual island candidate ISLa = 〈T,R,Aisl, a〉, we say that ISLa entails a
concept assertion C(a), denoted 〈T,R,Aisl, a〉 � C(a), if for all interpretations I, we have I � ISLa

=⇒ I � C(a). We say that ISLa entails a role assertionR(a1, a2), denoted 〈T,R,Aisl, a〉 � R(a1, a2),
if for all interpretations I, we have I � ISLa =⇒ I � R(a1, a2).
Please note that entailment of concept and role assertions can be directly reformulated as a decision prob-
lem over ontologies, i.e. we have 〈T,R,Aisl, a〉 � C(a) ⇐⇒ 〈T,R,Aisl〉 � C(a). In order to evaluate
the quality of an individual island candidate, we define soundness and completeness criteria for individual
island candidates.
Definition 11 (Soundness and Completeness for Island Candidates):
Given an ontologyO = 〈T,R,A〉 and an individual island candidate ISLa = 〈T,R,Aisl, a〉, we say that
ISLa is sound for instance checking in ontology O if for all atomic concept descriptions C ∈ AtCon,
ISLa � C(a) =⇒ 〈T,R,A〉 � C(a). ISLa is complete for instance checking in ontology O if for all
atomic concept descriptions C ∈ AtCon, 〈T,R,A〉 � C(a) =⇒ ISLa � C(a).
We say that ISLa is sound for relation checking in ontology O if for all role descriptions R ∈ Rol and
all individuals a2 ∈ NInd(A)

– ISLa � R(a, a2) =⇒ 〈T,R,A〉 � R(a, a2) and

– ISLa � R(a2, a) =⇒ 〈T,R,A〉 � R(a2, a).

ISLa is complete for relation checking in ontologyO if for all role descriptions R ∈ Rol and all individ-
uals a2 ∈ NInd(A)

– 〈T,R,A〉 � R(a, a2) =⇒ ISLa � R(a, a2) and

– 〈T,R,A〉 � R(a2, a) =⇒ ISLa � R(a2, a).
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We say that ISLa is sound for reasoning in ontologyO if ISLa is sound for instance and relation checking
in O. We say that ISLa is complete for reasoning in ontology O if ISLa is complete for instance and
relation checking in O.
Definition 12 (Individual Island):
Given an individual island candidate ISLa = 〈T,R,Aisl, a〉 for an ontology O = 〈T,R,A〉, ISLa is
called individual island for O if ISLa is sound and complete for reasoning in O.
An individual island candidate becomes an individual island if it can be used for sound and complete
reasoning. It is easy to see that each individual island candidate is sound for reasoning since it contains a
subset of the original ABox assertions.
In Fig. 5, we define an algorithm which computes an individual island starting from a given named indi-
vidual a. The set agenda manages the individuals which have to be visited. The set seen collects al-
ready visited individuals. Individuals are visited if they are connected by a chain of SHI-unsplittable role
assertions to a. We add the role assertions of all visited individuals and all concept assertions for visited
individuals and their direct neighbors.

Fig. 5. Naive algorithm for computation of an individual island
Input: Ontology O = 〈T,R,A〉, individual a ∈ NInd(A)
Output: Individual island ISLa = 〈T,R,Aisl, a〉
Algorithm:

Let agenda = a
Let seen = ∅
Let Aisl = ∅
While agenda 6= ∅ do

Remove a1 from agenda
Add a1 to seen
Let Aisl = Aisl ∪ {C(a1) | C(a1) ∈ A}
For each R(a1, a2) ∈ A
Aisl = Aisl ∪ {R(a1, a2) ∈ A}
If R(a1, a2) ∈ A is SHI-splittable with respect to O then
Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}

else agenda = agenda ∪ ({a2} \ seen)
For each R(a2, a1) ∈ A
Aisl = Aisl ∪ {R(a2, a1) ∈ A}
If R(a2, a1) ∈ A is SHI-splittable with respect to O then
Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}

else agenda = agenda ∪ ({a2} \ seen)

In Lemma 9, we show that the individual island of an individual suffices to decide entailment of atomic
concept assertions for an individual.
Lemma 9 (Individual Island Dependencies):
Given an ontology O = 〈T,R,A〉, for all named individuals a ∈ NInd(A) and atomic concept
descriptions C, if ISLa is an individual island and ISLa 2 C(a) then there exists no individual
diff ∈ NInd(A), such that ISLdiff � C(a).

Proof of Lemma 9. By contradiction: Assume that ISLa 2 C(a) and there exists an individual island
ISLdiff = 〈T,R,Adiff , diff〉, such that ISLdiff � C(a). It is easy to see that diff 6= a and
ISLdiff 6= ISLa (ABox is not structurally equivalent). We know that all role assertions for individual
a in ISLdiff are SHI-splittable. Therefore, the role assertions for individual a can only be used to de-



Sebastian Wandelt and Ralf Möller / Towards ABox Modularization of semi-expressive Description Logics 23

rive/propagate obvious concept descriptions. Since all the individual islands are consistent initially, we
must have ISLdiff � C(a) only because of the presence of role assertions for individual a, concept as-
sertions for a and its direct neighbors, and TBox axioms. Since all these axioms occur in ISLa , we must
have ISLa � C(a) as well. Contradiction.

Below, we show in Theorem 6 that the computed set of assertions is indeed sufficient for complete rea-
soning.
Theorem 6 (Island Computation yields Individual Island for Ontologies):
Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A), the algorithm in Fig. 5 computes an
individual island ISLa = 〈T,R,Aisl, a〉 for a.

Proof of Theorem 6. The proof is done in four steps, following Definition 11:

– ISLa is sound for instance checking in O: We have to show that we have for all atomic concept
descriptions C ∈ AtCon that ISLa � C(a) =⇒ 〈T,R,A〉 � C(a). Assuming ISLa � C(a),
it follows that 〈T,R,Aisl〉 � C(a), and thus 〈T,R,Aisl ∪ {¬C(a)}〉 is inconsistent. We know that
Aisl ∪ {¬C(a)} ⊆ A ∪ {¬C(a)}. We can conclude that 〈T,R,A ∪ {¬C(a)}〉 is inconsistent, and
thus 〈T,R,A〉 � C(a).

– ISLa is sound for relation checking in O: We have to show that we have for all role descriptions
R ∈ Rol and all individuals a2 ∈ NInd(A) that

∗ ISLa � R(a, a2) =⇒ 〈T,R,A〉 � R(a, a2): By contraposition: We obtain 〈T,R,A〉 2
R(a, a2) =⇒ ISLa 2 R(a, a2). Assuming 〈T,R,A〉 2 R(a, a2), we know that there exists
an interpretation I, such that I � 〈T,R,A〉, but I 2 R(a, a2). We know that Aisl ⊆ A, and
thus I � 〈T,R,Aisl〉. By I 2 R(a, a2) we can then conclude that ISLa 2 R(a, a2).

∗ ISLa � R(a2, a) =⇒ 〈T,R,A〉 � R(a2, a): By contraposition: We obtain 〈T,R,A〉 2
R(a2, a) =⇒ ISLa 2 R(a2, a). Assuming 〈T,R,A〉 2 R(a2, a), we know that there exists
an interpretation I, such that I � 〈T,R,A〉, but I 2 R(a2, a). We know that Aisl ⊆ A, and
thus I � 〈T,R,Aisl〉. By I 2 R(a2, a) we can then conclude that ISLa 2 R(a2, a).

– ISLa is complete for instance checking in O: We have to show that for all atomic concept descrip-
tions C ∈ AtCon and all individuals a ∈ NInd(A) that 〈T,R,A〉 � C(a) =⇒ ISLa � C(a).
By contraposition: We have to show that ISLa 2 C(a) =⇒ 〈T,R,A〉 2 C(a). Assume that
ISLa 2 C(a). By Lemma 9, we know that no other individual island entails C(a). Please note that
the set of all individual islands can be rewritten to a component-based ABox modularization. Thus,
by Definition 6 and Theorem 5, we know that 〈T,R,A〉 2 C(a).

– ISLa is complete for relation checking inO: We have to show that for all role descriptionsR ∈ Rol
and all individuals a2 ∈ NInd(A) that

∗ 〈T,R,A〉 � R(a, a2) =⇒ ISLa � R(a, a2): There are three (combinations of) reasons for
entailment of a role assertion R(a, a2) in a SHI-ontology:
∗ R2(a, a2) ∈ A andO � R2 v R: It is easy to see that all potentially useful role assertions
R2(a, a2) are inAisl, since, by the computation of islands in Fig. 5, all role assertions for
a are added to Aisl.

∗ R2(a2, a) ∈ A and O � R−2 v R: It is easy to see that all potentially useful role
assertions R2(a2, a) are in Aisl, since, by the computation of islands in Fig. 5, all role
assertions for a are added to Aisl.

∗ a and a2 are connected by a chain of (subroles of) transitive roles: By the definition of
valid ABox splits and SHI-splittability, each role assertion with a transitive superrole
connected to an individual is not SHI-splittable, and thus will end up in the Aisl com-
puted by the algorithm in Fig. 5.

∗ 〈T,R,A〉 � R(a2, a) =⇒ ISLa � R(a2, a): symmetric to the previous case.
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In Fig. 6, we show two example individual islands for individual mae and individual c5 from Example 9.

Fig. 6. Example individual island for mae and c5 in Example 9
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To summarize, we have shown that an individual island can be used for sound and complete instance
checks. In the average case, the size of the individual island (with respect to the number of assertion in
its ABox) is considerably smaller than the original ABox. In our experiments the size is usually orders of
magnitudes smaller. For qualitative and quantitative results, see below. Please note that these modulariza-
tion techniques allow traditional Description Logic reasoning systems to deal with ontologies which they
cannot handle without modulariztions (because the data or the computed model abstraction does not fit
into main memory).

5. Preliminary Evaluation

We have used two benchmark ontologies for evaluation of our modularization techniques: one synthetic
benchmark introduced in [GPH05] and a real world multimedia annotation ontology used in the CASAM
project and introduced in [GMN+09]. The results for both ontologies are outlined below.

5.1. LUBM

The Lehigh University Benchmark, in short LUBM, is a synthetic ontology developed to benchmark
knowledge base systems with respect to large OWL applications. The ontology is situated in the university
domain. The background knowledge, i.e. the terminology, is described in a schema called Univ-Bench,
see [GPH05] for an overview. The expressivity of the ontology is chosen to be in OWL Lite, which
corresponds to the Description Logic SHIF . However, the de facto expressivity is lower. For instance,
the ontology does not introduce any functionality expressions on roles.
The terminology defines 43 classes and 32 properties (including 25 object properties and 7 datatype prop-
erties). The datatype properties are ignored in our experiments. According to [TV03], this ontology can
be categorized as a Description Logic-style ontology which has a moderate number of classes but several
restrictions and properties per class. The terminology of LUBM is rather simple.
While the terminological part of LUBM is static, the assertional part is dynamic in size and can be gen-
erated as big as necessary/desired. There exists a small tool written in Java, called Univ-Bench Artificial
Data Generator. Given a number n as input, the tool generates n different universities, containing informa-
tion about individuals, e.g. students, professors, publications and courses. The basic unit of a University is
a Department. The number of departments varies by university. To make data creation more random, one
can manually set a seed number as input to the data generator.
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Fig. 7. Number of individuals in LUBM
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In Fig. 7, we show the number of individuals in the dataset, for different numbers of universities. It can be
seen that the number of individuals increases almost linearly with the number of universities. For details
about the data distribution, see [GPH05].
In Fig. 8, the number of ABox assertions is shown. Most of the role assertions in the ontology cover the
enrollment into a course (around 45 percent of the role assertions), being a publication author (around
22 percent of the role assertions) or being a member of an organization (around 15 percent of the role
assertions). The remaining role assertions cover facts like, for instance, teaching a course or having a
master degree from a university.

Fig. 8. Number of ABox assertions in LUBM
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In the following, we investigate the efficiency of the ABox modularization techniques. The most important
measure for efficiency seems to be the amount of SHI-splittable role assertions, i.e. how many of the
role assertions can be broken up. First of all, please note that component-based modularization of the
assertional LUBM dataset yields one big module, i.e. each individual is connected to each other individual
by a chain of role assertions. This is true for any number of universities. The connection between different
universities is mainly because of degree-relationships between people and universities. Since only one
ABox module is obtained, we do not provide any further statistics for component-based modularization.
The results for SHI-splittability (from Definition 9) with respect to LUBM are shown in Fig. 9 with the
label std. The dataset for LUBM 1, i.e. only one university, contains 49,336 role assertions, out of which
49,082 are SHI-splittable. This means that only 0.5 percent of the role assertions are SHI-unsplittable.
This ratio does not change with a growing number of universities. Almost all SHI-unsplittable role as-
sertions have transitive roles, e.g. the role suborganizationOf. In addition, role assertions with the role



26 Sebastian Wandelt and Ralf Möller / Towards ABox Modularization of semi-expressive Description Logics

Fig. 9. Percentage of unsplittable role assertions in LUBM
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headOf are also SHI-unsplittable, since, for instance, the not obvious concept description Chair can be
propagated.
We have investigated an extended SHI-splittability criteria, such that role assertions with transitive roles
are splittable if all propagated concept descriptions are enforced by simple domain- or range-restrictions.
In this case, without further proof, role assertions over transitive roles can be split up as well. The result
for this extended splittability criterion are shown in Fig. 9 with the label ext. For the extended criterion and
one university, only 15 role assertions (out of 49,336, 0.03 percent) turn out to be unsplittable. All these
15 role assertions contain the role headOf. For more universities, the ratio of unsplittable role assertions
remains the same, since each department introduces exactly one head of the department.
Given the set of splittable role assertions, we can determine the number of ABox modules for different
LUBM datasets. The results are shown in Fig. 10.

Fig. 10. Number of modules in LUBM
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For component-based modularization, one big module is obtained, since each individual is related to each
other individual by a chain of role assertions. With respect to SHI-splittability, we obtain 16,920 modules
for one university and 37,748 modules for two universities. With the extended criterion for splittability, i.e.
improved handling of transitive roles, the number of modules can be further increased, as expected. For
instance, for one university we obtain 17159 modules, instead of 16,920. Please remember that the number
of individuals in one university is 17,174. Each ABox module contains in average 1.01 individuals.
In order to further evaluate the quality of ABox modules, we show the average size (measured in number
of ABox assertions) of the modules in Fig. 11. For component-based modularization, the module is as big
as the whole ABox (not shown). With respect to SHI-splittability, the average size is between three and
four ABox assertions per ABox module.
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Fig. 11. Average size of modules in LUBM
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Fig. 12. Excerpt of the MCO concept classification
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5.2. CASAM Multimedia Content Ontology

The CASAM project is focused on computer-aided semantic annotation of multimedia content. The nov-
elty is the aggregation of human and machine knowledge. For a detailed discussion of the research objec-
tives, see [GMN+10], [PTP10], and [CLHB10]. Within the CASAM project, there is a need to define an
expressive annotation language which allows for typical-case reasoning systems. The proposed annotation
language is defined by the so-called Multimedia Content Ontology, short MCO, introduced in [GMN+09].
Inspired by the MPEG-7 standard, see [IF02], strictly necessary elements describing the structure of mul-
timedia documents are extracted. The intention is to exploit quantitative and qualitative time information
in order to relate co-occurring observations about events in videos. Co-occurrences are detected either
within the same or between different modalities, i.e. text, audio and speech, regarding the video shots.
In the following, we present small excerpts of MCO as far as relevant for understanding our evaluation
results. A part of the concept classification is shown in Fig. 12.
An excerpt of the role classification is shown in Fig. 13. The role descriptions are used to relate multimedia
objects with each other. Please note that role description correlatesWith and its subroles are used to
represent quantitative information as qualitative information. The roles d, m, and o are derived from the
Allen-relations [All83], and represent disjoint, meets, and overlapping relations, respectively. The role
descriptions depicts and hasInterpretation map individuals of the MCO to observations/elements of an
analysis module. Different interpretations are related for instance by the role description associatedWith.
For more details about MCO please refer to [GMN+09].
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Fig. 13. Excerpt of the MCO role classification
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Fig. 14. MCO ABox example
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An excerpt of a multimedia document described with MCO is depicted in Fig. 14. The ABox excerpt
contains the description of a multimedia document m1, which has video and audio content. The video
content, named vc1, has a video segment vs1. The audio content, named ac1, is decomposed into several
audio segments, such as as1 and as2. Each segment is associated with a locator and the locators are
related by qualitative spatial/temporal relations.
For our evaluation with respect to MCO, we have a number of multimedia documents from the CASAM
project. The source ontologies can be found in [CAS]. The set of test ontologies contains documents with
identifiers ranging from 1 to 14. Each document is decomposed into several so-called delta files. Each
delta represents additional information about the document of concern. We evaluated our modularization
techniques with respect to all documents. Here we only show the results for Document 1, since for all
other documents we obtained very similar statistics.
In Fig. 15, we show the number of individuals in the dataset, with an increasing delta. It can be seen that
most individuals are introduced in the first delta files. The remaining delta files only introduce additional
ABox assertions about already known individuals. The number of ABox assertions for different delta is
also shown in Fig. 15. Please note that the number of individuals, as well as the number of ABox asser-
tions is not linear in the number of delta. Thus, a MCO document cannot be directly used for evaluation
purposes. At least one would have to consider the number of individuals up to the delta to read off more
clear scalability results.
In the following, we investigate the efficiency of ABox modularization techniques. First of all, please note
that component-based modularization of Document 1 yields one big module. This is true for all the other
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Fig. 15. Number of individuals and ABox assertions in Document 1
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documents as well. Since only one ABox module is obtained, we do not provide any further statistics for
the component-based modularization.
The results for SHI-splittability (from Definition 9) with respect to MCO Document 1 are shown in
Fig. 16 with the label std. The dataset for delta 1-5 contains 524 role assertions, out of which 504 are
SHI-splittable. This means that only 3 percent of the role assertions are SHI-unsplittable. This ratio
decreases with a growing number of deltas, because only SHI-splittable role assertions are added. All
SHI-unsplittable role assertions have the transitive role nextTextContent. In addition, no other kinds
of role assertions are SHI-unsplittable.

Fig. 16. Percentage of unsplittable role assertions in Document 1
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Again, we have investigated an extended SHI-splittability criteria, such that role assertions with transi-
tive roles are splittable if all propagated concept descriptions are enforced by simple domain- or range-
restrictions. The result for the extended splittability criterion are shown in Fig. 16 with the label ext. For
the extended criterion and any delta, no more role assertion is unsplittable, i.e. all role assertions in the
ontology can be split up.
Given the set of splittable role assertions, we can determine the number of ABox modules for different
delta. The results are shown in Fig. 17. For component-based modularization, one big module is obtained,
since each individual is related to each other individual by a chain of role assertions. With respect to SHI-
splittability, we obtain 326 modules for five delta and 545 modules for 20 delta. With the extended criterion
for splittability, i.e. improved handling of transitive roles, the number of modules can be further increased,
as expected. For instance, for five delta we obtain 346 modules, instead of 326. Please remember that the
number of individuals with five delta is 346. Each ABox module contains in average one individual.
In order to further evaluate the quality of ABox modules, we show the average size (measured in number
of ABox assertions) of the modules in Fig. 18. For component-based modularization, the module is as big
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Fig. 17. Number of modules in Document 1
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as the whole ABox (not shown). With respect to SHI-splittability, the average size is between two and
three ABox assertions per ABox module.

Fig. 18. Average size of modules in Document 1
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6. Conclusions and Future Work

The main goal of this research was to introduce modularization techniques for ABoxes. We focused on
the semi-expressive Description Logic SHI, which can be seen as a first step towards more expressive
Description Logics. We have derived criteria, called SHI-splittability, for modularizing the ABox of an
input ontology. The main technique used for modularization of ABoxes are ABox-splits, which break up
role assertions in an ABox if particular conditions are satisfied. Role assertions can be broken up if, for
instance, only obvious information is propagated. A graph component-based modularization can be used
to extract a set of modules out of the ABox after breaking up all SHI-splittable role assertions. Traditional
Description Logic algorithms can then be used to reason over these ABox modules.
An interesting side effect is that our modularization techniques show that additional axioms in the TBox
can help to reduce the average size of ABox modules, and thus, can improve instance checking times. One
might think that additional axioms in an ontology always makes reasoning harder.
Based on modularization techniques, we have introduced the notion of individual islands for individuals in
ABoxes. These individual islands can be used for sound and complete instance checking. Our evaluation
shows that these individual islands are usually quite small and fit easily into main memory.
In [LW10], the authors investigate inseparability of ontologies with respect to a given signature. This
technique, for the lightweight Description Logic EL, can possibly be used in order to extract modules from
ontologies and also in order to define similarity of modules with respect to a signature. In [KLPW10],
the authors apply similar techniques in order to define decompositions of ontologies. It is shown that the
decomposition is tractable for the Description Logic EL and not more complex than concept subsumption
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for more expressive Description Logics. The main difference to our results is that we focused on ABox
modularization directly for semi-expressive ontologies and use pure syntactical analysis in order to define
modules (or decompositions). This focus makes the implementation of incremental algorithms (under
syntactical ontology updates) more easy. Our first tests are already quite encouraging.
In [TL10], the authors propose an index data structure for RDF data. The intention is to find similarities
over instances in the RDF dataset by using bisimulations, i.e. something quite similar to our approach
based on graph homomorphisms. The authors group bisimilar graph substructures, in order to reduce the
complexity of query answering. The main difference to our modularization techniques is that we take
the terminology into account for modularizing ABoxes. Individual islands can be potentially used to find
similarities among ABox individuals as well.
In the following, we would like to discuss interesting directions for future work. The effectiveness of
our modularization techniques can be further improved. For instance, TBox modularization techniques
can contribute to smaller ABox modularizations. If we are able to split up the TBox into different mod-
ules, we could create one ABox modularization for each TBox module. Since each TBox module only
contains a subset of assertions from the original TBox, it is clear that additional role assertions become
SHI-splittable. However, it needs to be shown, whether the overhead of several ABox modularizations
in parallel, one for each TBox module, pays off. In addition, we think that further optimizations of our
modularization techniques are possible. So far, we ensure entailment of all atomic concept descriptions.
The number of SHI-splittable role assertions might increase if the vocabulary is known and restricted
beforehand.
An extension from the semi-expressive Description Logic SHI to SHIQ should be possible. Although
our proof techniques are not directly applicable, we think that a syntactical analysis of the TBox and RBox
can be used to identify a set of SHIQ-unsplittable role assertions. Our homomorphism-based similarity
criteria for individuals cannot be directly applied in the presence of cardinality restrictions. Further exten-
sions, for instance to SHOIQ, might be possible, but will surely require a lot of work and sophisticated
analysis techniques. Furthermore, extensions to more expressive queries should be investigated (instance
retrieval and grounded conjunctive queries). For grounded conjunctive queries, one can use cardinalities
of the variable bindings (which can be obtained from our approach) in order to compute a preferred join
plan over the role query atoms in the query.
Finally, more comprehensive experimental studies are required. Recently published work [SCH10] on
new data generation algorithms for synthetic test ontologies might be one good place to start from. In
general, we believe that our results carry over to other ontologies. However there exist scenarios, especially
extensive use of transitive roles, which make it more hard to find fine-grained ABox modularizations.
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