
 1

Implementation of Resource Adapter for SAP R/3 and
generation of java-proxy class of BAPIs

Project Work

Submitted by:
Aravind Kumar Alagia Nambi

Master of Science in Information and Media Technologies
aravind.alagia@tu-harburg.de

Matriculation Number:
23307

Supervised by:

Prof. Dr. J. W. Schmidt
STS - TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany
2004-04-22

 2

 3

Abstract

With the introduction of every new technology to the ever-growing Internet Technology, it
becomes imperative for a Corporate to be updated to stay in business. Updating comes at a cost.
Either train the existing personnel or hire experts. This requires both money and time. One such
scenario is where a Corporate wants to use SAP as their Enterprise Information System.

Integrating the EIS with the existing Application Server will be the first step before using the EIS
for the business application development. A generic way of integration with java-based
application server can be achieved with the Java 2 Connector Architecture (JCA). A Resource
Adapter can be developed, independent of the specifics of different java-based application
servers like JBoss, BEA Weblogic, IBM Websphere, etc. The EIS specific details could also be
hidden from the application developer to speed up the process of application development. Hence
the needs to develop an Object-Oriented approach in accessing the data from the EIS. For the
SAP system, java-proxy class of BAPIs can be generated to access the data from SAP R/3. My
project work is concerned with developing a Resource Adapter for SAP system and generating
java proxy class of BAPIs.

 4

 5

Acknowledgements

My special thanks go to Prof. Dr. Joachim W. Schmidt, research assistant MSc.Miguel Garcia at
Software Systems Department of the Technical University of Hamburg-Harburg and
Dip-Ing.Krisztiàn Szitàs of CORYX Software GmbH for providing the opportunity to work on
this student project, for their essential and kind advice, encouragement and guidance throughout
this student project work.

 6

 7

Content

1 INTRODUCTION .. 9
2 JAVA CONNECTOR ARCHITECTURE .. 10

2.1 RESOURCE ADAPTER OVERVIEW .. 11
2.2 SYSTEM-LEVEL INTERFACE... 12

2.2.1 Connection Management ... 13
2.2.2 Transaction Management... 13
2.2.3 Security Management... 14
2.2.4 Lifecycle Management .. 14
2.2.5 Work Management .. 14
2.2.6 Message Inflow Management.. 14
2.2.7 Transaction Inflow Management .. 15

2.3. APPLICATION INTERFACE.. 15
2.4 COMMON CLIENT INTERFACE (CCI) ... 15

3 IMPLEMENTATION OF RESOURCE ADAPTER ... 17
3.1 CONNECTIONFACTORY ... 18
3.2 CONNECTION .. 18
3.3 CONNECTIONREQUESTINFO .. 18
3.4 MANAGEDCONNECTIONFACTORY .. 18
3.5 MANAGEDCONNECTION.. 19

3.5.1 Transaction Management Interfaces... 20
3.5.1.1 XAResource.. 21
3.5.1.2 LocalTransaction ... 21

3.6 MANAGEDCONNECTIONMETADATA ... 21
3.7 EXPLANATION AT THE CODE LEVEL... 22

3.7.1 System-level interface - Connection contract.. 22
3.7.2 System-level interface - Transaction contract... 22
3.7.3 System-level interface - Security contract ... 23

3.8 IMPLEMENTATION FOR NON-MANAGED ENVIRONMENT .. 24
4 RESOURCE ADAPTER FOR SAP R/3 SYSTEM.. 25

4.1 WEB SERVICES VS RESOURCE ADAPTER FOR SAP.. 25
4.2 ARCHITECTURE OF SAP JCO ... 25
4.3 RESOURCE ADAPTER AND JCO .. 26

4.3.1 Connecting to SAP .. 27
4.3.2 Connection pooling ... 27
4.3.3 Transaction ... 28
4.3.4 Transaction in Non-managed environment ... 28

4.4 BUSINESS APPLICATION PROGRAMMING INTERFACE (BAPI) .. 29
4.4.1 BAPIS and JCo.. 29

4.5 HANDLING OUTBOUND CALL FROM SAP.. 30
5 GENERATION OF JAVA PROXY CLASSES OF BAPIS.. 32

5.1 VELOCITY .. 32
5.2 STRUCTURE OF THE GENERATED CLASSES ... 33
5.3 USER INTERFACE ... 35

6 CONCLUSION ... 36
BIBLIOGRAPHY.. 37

 8

Figures

Figure 1: Integration between java-based application servers and EISs10
Figure 2 : Integration of Resource adapter with Application server, EIS and Application

componenet ..11
Figure 3: Resource adapter and contracts ..12
Figure 4: Connection management Interfaces ...17
Figure 5: Transaction contract between Adapter and the Application Server20
Figure 6: Non-managed scenario ...24
Figure 7: SAP Java Connector Architecture..26
Figure 8: User Interface – BAPI Explorer ...35

Acronyms

J2EE Java 2 Enterprise Edition
JCA Java Connector Architecture
RA Resource Adapter
EIS Enterprise Information System
EAI Enterprise Application Integration
JCo Java Connector
CCI Common Client Interface
BO Business Object
API Application Programming Interface
BAPI Business Application Programming Interface
JAAS Java Authentication and Authorization Service
JTA Java Transaction API
RFC Remote Function Call
RFM RFC-enabled Function Module

 9

1 Introduction

1.1 Motivation

With more Enterprise businesses becoming internet driven, it becomes necessary to integrate the
existing Enterprise Information System (EIS) with other systems. Enterprise Application
Integration (EAI) eases the integration of disparate Enterprise Information Systems. Each EAI
vendor created a proprietary resource adapter interface for its own EAI product, requiring a
resource adapter to be developed for each EAI vendor and EIS combination. To make the process
easier, it’s necessary to have a standardized resource adapter that fits into all the EAI vendors or
the application server that interacts with the EIS. As a required element of the Java 2 Enterprise
Edition (J2EE), the Java Connector Architecture (JCA) provides a standardized means to
integrate with Enterprise Information Systems (EIS). SAP R/3 system is one such EIS which
requires a generic resource adapter that will plug-in to any J2EE based application server.

Though some java-based application servers like Web AS 6.4, BEA Weblogic, IBM Websphere,
etc have their own resource adapter for SAP system, other java-based application servers like
Jboss, JDMK, JOnAS, etc need a resource adapter to be plugged in to access SAP system.

Interaction with SAP system is achieved through the Business Application Programming
Interfaces (BAPIs). But handling BAPIs is quite difficult and complex. Hence the objective of
the studienarbeit is to develop a resource adapter for SAP R/3 system and to generate BAPIs as
an object-oriented classes. This gives an object-oriented view of the BAPIs, hiding its intricate
details and also the underlying SAP system.

 10

2 Java Connector Architecture

Java Connector Architecture (JCA) provides standard connector architecture for connecting
application servers and Enterprise Information Systems (EIS) such as

• Enterprise Resource Planning Systems - SAP, PeopleSoft, Baan
• Transaction Monitors - CICS, Tuxedo
• Database Management Systems - Oracle, Sybase
• Flat File System

With the J2EE Connector Architecture, the scope of integration of Java-based enterprise
applications with EIS problem has been greatly reduced because the architecture defines a
uniform way to integrate J2EE application servers with enterprise information systems. Under
the connector architecture, EIS vendors no longer have to customize their product for interaction
with each compliant J2EE application server. Similarly, application server vendors do not have to
make modifications whenever they need connectivity to yet another EIS. Instead, application
server vendors implement the connector architecture framework only once and EIS vendors
develop one standard resource adapter based on this architecture. Under these circumstances, a
compliant EIS can plug into any application server that supports the connector architecture. An
application server, which conforms to this standard, can connect to any EIS that provides a
standard resource adapter.

Figure 1: Integration between java-based application servers and EISs

There are two parts to this architecture: an EIS vendor-provided resource adapter and an
application server that allows this resource adapter to be plugged in. This architecture defines a
set of contracts that a resource adapter has to support to plug in to an application server. These
contracts support bi-directional communication (outbound and inbound) between an application

EIS 1

EIS 2

EIS 3

RA1

RA2

RA3

Applica-
tion
server

Applica-
tion
server 1

Applica-
tion
server 2

RA EIS

 11

server and an EIS via a resource adapter. That is, the application server may use the resource
adapter for outbound communication to the EIS, and it may also use the resource adapter for
inbound communication from the EIS.

2.1 Resource Adapter Overview

The resource adapter plays a central role in the integration and connectivity between an EIS and
an application server. It serves as the point of contact between application components,
application servers and enterprise information systems. In a sense, a resource adaptor is similar to
a JDBC driver for interfacing with a relational database. The difference is that a resource adaptor
may connect to an EIS rather than a database. A resource adapter, along with the other
components, must communicate with one another based on well-defined contracts that are
specified by the J2EE Connector Architecture. The different components and their interactions
are depicted in figure 2.

Figure 2 : Integration of Resource adapter with Application server, EIS and Application componenet

 12

Programmatically, a resource adaptor must provide three sets of interfaces so that an application
server or an adaptor client can interact with it:

• System-level Interface - The interface between the application server and resource
adaptor.

• Application Interface - The interface for other applications on the application server (e.g.,

Web Applications, EJB components) to interact with the resource adaptor.

• Common Client Interface (CCI) - An general-purpose Application Interface defined in

 the JCA specification for interaction with the resource adaptor. It is defined for general
 data transfer, rather than for invoking specific functions in an EIS.

System contracts can be extended with the implemention of ManagedConnection and
LocalTransaction or XATransaction interfaces. The application and CC interfaces are the handle
for the application component to interact with EIS.

2.2 System-level Interface

The Java Connector Architecture defines the system-level interface that allows interactions
between a J2EE application server and the resource adaptor. Application server provides system-
level services to resource adaptors via the interface.

Figure 3: Resource adapter and contracts

Apart from the three basic system-level contracts, as shown in the figure 3, that come with JCA
1.0 version, the JCA 1.5 has Work, Lifecycle, Message inflow and Transaction inflow contracts.

 13

2.2.1 Connection Management

The connection management contract specifies an architected contract between an application
server and a resource adapter. The goal of the connector architecture is to enable efficient,
scalable, and extensible connection pooling mechanisms, not to specify a mechanism or
implementation for connection pooling. The goal is accomplished by defining a standard contract
for connection management with the providers of connections—that is, resource adapters. An
application server should use the connection management contract to implement a connection
pooling mechanism in its own implementation-specific way.

The connection management contract has been designed with the following goals:

• To provide a consistent application programming model for connection acquisition for

both managed and non-managed (two-tier) applications.
• To enable a resource adapter to provide a connection factory and connection interfaces

based on the CCI specific to the type of resource adapter and EIS.
• To provide a generic mechanism by which an application server can provide different

services—transactions, security, advanced pooling, error tracing/logging—for its
configured set of resource adapters.

• To provide support for connection pooling.

The application component that initiates a connection to the underlying EIS through the resource
adapter could be managed or non-managed by the application server. In the managed scenario,
the application server manages the connection through the connection contract with the resource
adapter. In non-managed scenario, the application component uses the resource adapter directly.

2.2.2 Transaction Management

The transaction management contract controls transactions in two different ways.

First, the application server uses a transaction manager to support a transaction management
infrastructure that enables an application component to perform transactional access across
multiple EIS resource managers. The transaction manager manages transactions across multiple
resource managers and supports propagation of the transaction context across distributed
systems. The transaction manager supports a JTA XAResource-based transaction management
contract with a resource adapter and its underlying resource manager. The ERP system supports
JTA transactions by implementing a XAResource interface through its resource adapter. The TP
system also implements a XAResource interface. This interface enables the two resource
managers to participate in transactions that are coordinated by an external transaction manager.
The transaction manager uses the XAResource interface to manage transactions across the two
underlying resource managers.

Second, the transaction management contract can control transactions by creating local
transactions. Local transactions are local in the sense that they exist only on a particular EIS
resource. The transaction contract allows these transactions to be controlled, but they are related
to any transaction that exists on the application server where the JCA resource adapter is running.

 14

Also the resource adapter need not implement the transaction management contract. Making this
optional allows for resource adapters in non-transaction resources.

2.2.3 Security Management

The security contract enables the application server to connect to an EIS system using security
properties. The application server authenticates with the EIS system by using security properties
composed of a principal (a user id) and credentials (a password, a certificate, and so on). An
application server can employ container-managed sign-on method to authenticate to an EIS
system (via a resource adapter).

With container-managed sign-on, the security credentials configure when the resource adapter is
deployed on the application server. You can choose from several ways to configure security
properties when using container-managed sign-on. First, with Configured Identity, all resource
adapter connections use the same identity when connecting to the EIS system. Second, with
Principal Mapping, the principal used when connecting to the EIS system is based on a
combination of the current principal in the application server and the mapping which maps how
the principal in the application server will map to a principal in the EIS system. The third is
Caller Impersonation, where the principal used in the EIS system exactly matches the principal
in the application server. The fourth is Credentials Mapping, which is similar to Caller
Impersonation, except the type of credentials must be mapped from application server credentials
to EIS credentials.

2.2.4 Lifecycle Management

The lifecycle management contract provides a way for an application server to manage the
lifecycle of the resource adapter instance, through starting and stopping the instance. During
deployment of the resource adapter or during application server startup, the application server
starts the resource adapter by bootstrapping the adapter in its address space. Upon undeployment
or application server shutdown, the application server shuts down the resource adapter by
notifying it. This contract's functionality is provided through lifecycle management interfaces for
both the application server and the resource adapter.

2.2.5 Work Management

The work management contract allows the resource adapter to do work by submitting it to an
application server for execution. The resource adapter submits work to the application server,
which dispatches a thread to run the work. Although this is not a required contract, there are a
variety of reasons why it is advantageous for a resource adapter to allow the application server to
handle its work. An application server handles thread management efficiently, and can even
forbid a resource adapter from creating its own threads. Also, when the application server
handles thread management, the resource adapter becomes more portable.

2.2.6 Message Inflow Management

The Message Inflow contract specifies a standard contract between an application server and a
resource adapter; this allows the resource adapter to deliver messages to endpoints deployed

 15

within the application server, in a standardized way. The resource adapter delivers messages to
these endpoints, either synchronously or asynchronously, without caring about messaging style,
semantics, or infrastructure. The end result is that these endpoints, which are typically message-
driven bean applications, are no longer restricted to receiving only JMS messages. Instead,
through a Connector 1.5-compatible resource adapter, EIS vendors and messaging providers can
communicate with these endpoints using any type of message, which includes but is not limited
to their own proprietary brand.

2.2.7 Transaction Inflow Management

The Transaction Inflow Contract introduced in Connector 1.5 expands the support of transactions
within the standard. Prior to Connector 1.5, J2EE applications could propagate transactions to an
EIS, but an EIS could not pass transactions to the application server using a resource adapter.
With the latest version of this architecture, however, transactions can now flow both ways. Due
to this contract, a compliant resource adapter can now import transactions from an EIS and then
propagate them to an application server. In addition to providing this transaction flow
functionality, this contract also defines a mechanism for transaction completion and crash
recovery flows from the EIS. The contract also guarantees that all ACID properties of the
imported transaction are maintained. For a resource adapter within an n-tier environment to meet
the requirements of this contract, it must implement methods for the BootstrapContext and
XATerminator interfaces

2.3. Application Interface

Application interfaces of a resource adaptor is a set of interfaces for applications running on the
application server (e.g. Web Applications, EJB Components, or Enterprise Applications) to
access the resource adaptor. By using these interfaces, application can make function calls to the
underlying EIS, or retrieve information from the EIS. The application interface of a resource
adaptor is specific to the resource adaptor.

2.4 Common Client Interface (CCI)

The CCI defines a standard client API for application components. The CCI enables application
components and Enterprise Application Integration (EAI) frameworks to drive interactions
across heterogeneous EISs using a common client API. CCI is designed for general data-transfer,
instead of accessing specific functions from a particular EIS. A resource adaptor is free to
provide its own native application interfaces, or the Common Client Interface.

The CCI is set of low-level API. The API mainly defines a remote function-call interface that
focuses on executing functions on an EIS, and retrieving the result thereafter. The CCI is
designed to be independent of any EIS, but is capable of retrieving metadata about the EIS from
a repository. The CCI is designed with the following goals:

 16

• It defines a remote function-call interface that focuses on executing functions on an EIS
and retrieving the results. The CCI can form a base level API for EIS access on which
higher level functionality can be built.

• It is targeted primarily towards application development tools and EAI frameworks.
• Although it is simple, it has sufficient functionality and an extensible application

programming model.
• It provides an API that both leverages and is consistent with various facilities defined by

the J2SE and J2EE platforms.
• It is independent of a specific EIS. For example, it does not use data types specific to an

EIS. However, the CCI can be capable of being driven by EIS-specific metadata from a
repository.

The CCI APIs can be divided into four sections: First, the APIs related to establishing a
connection to an EIS, also referred to as the Connection Interfaces. The second area of the
CCI APIs covers command execution on an EIS, referred to as the Interaction Interfaces.
Third is the Record/ResultSet Interfaces, which encapsulate the query results to an EIS. The
fourth area, referred to as the Metadata Interfaces, allows EIS's metadata (the type of data) to
be queried.

 17

3 Implementation of Resource Adapter

The J2EE Connector Architecture specification defines interfaces, which implement the three
contracts summarized in the previous chapter. Most of these interfaces are mandatory, in that
they must be implemented by the adapter, while others do not need to be implemented. These
non-mandatory interfaces are provided for the developers so they can maintain a consistent
programming model if they choose. Vendors can define and implement their own interfaces, with
no effect, as long as methods, which are required by the architecture, are provided in an EIS-
specific manner. In the end, these vendor-defined interfaces will be very similar to the provided
interfaces. All of the interfaces deliver a useful and standard framework that an EIS vendor can
follow to develop a resource adapter. Descriptions of each interface, in relation to the contracts,
are included below to provide a foundation for the design and implementation of a specific
resource adapter within an n-tier environment.

Figure 4: Connection management Interfaces

Application
server

Application component

EIS

Resource adapter

ConnectionFactory Connection

ConnectionRequestInfo

ManagedConnectionFactory

ManagedConnection

ManagedConnectionMetadata

 18

3.1 ConnectionFactory

ConnectionFactory is an interface that allows an application component to get a connection to an
EIS instance. An application establishes a connection through the getConnection method. Then,
this method must ask the application server to allocate a connection through the server's
ConnectionManager.allocateConnection method. The resource adapter relinquishes this
responsibility to the application server since the server is in charge of pooling connections and
providing other services. Any of the resource adapter's specific request information must be
passed to the ConnectionManager.allocateConnection method through the
ConnectionRequestInfo parameter. The method getConnection can be overloaded if the EIS
requires additional functionality.

The ConnectionFactory interface does not need to be implemented. An EIS vendor can choose to
support the functionality of this interface in another way as long as the getConnection method is
provided by the resource adapter. The getConnection method is required because it is how an
application acquires a connection to the EIS.

3.2 Connection

The Connection interface provides an application with connectivity to an EIS. A close method
must be provided so the application component can terminate the connection to the EIS.

This interface is not required by the connector architecture. The resource adapter just has to
provide a Connection object with a corresponding close method to abide by this portion of the
contract. The Connection object is necessary because that is how an application represents a
connection to the EIS. A close method is also required because the application must have the
ability to terminate the connection with the EIS.

3.3 ConnectionRequestInfo
ConnectionRequestInfo represents a resource adapter's request-specific data. It is passed to the
application server's ConnectionManager.allocateConnection. The value null can be used if there
is no data to pass. If a resource adapter chooses to implement this interface, then it must provide
the equals and hashcode methods to aide the application server in connection pooling.

3.4 ManagedConnectionFactory

The interface ManagedConnectionFactory either matches an existing connection to the EIS with
the incoming request or creates a new physical connection to the EIS. When the application
server needs to allocate a connection to the EIS, it asks the resource adapter's
ManagedConnectionFactory instance to get either an existing or a new connection. The
configuration of the instance is facilitated by request-specific data. This interface, along with
ManagedConnection, supports connection pooling. A resource adapter must provide an
implementation of this interface. The code fragments below detail how this interface can be
implemented. The implementation of this interface should have the following methods:

 19

• createConnectionFactory (ConnectionManager connectionManager)

This method should create a ConnectionFactory instance based on the
ConnectionManager instance from the application server. This method should
return the ConnectionFactory instance.

• createManagedConnection (javax.security.auth.Subject subject, ConnectionRequestInfo
cxRequestInfo)

This method should create a new physical connection to the EIS in an EIS
specific way EIS using the security information in the parameter subject. The
resource adapter must decipher how the security information is passed from the
application server so that it can retrieve the necessary data. If the security
information is null, then the resource manager must find it elsewhere.
ConnectionRequestInfo object holds the request-specific data. The subject
parameter is related to the security contract.

• matchManagedConnections (java.util.Set connectionSet, javax.security.auth.Subject subject,

ConnecionRequestInfo cxRequestInfo)

This method determines if there is an existing connection, from the parameter
ConnectionSet, that can be used as the connection to the EIS. The check is based
on criteria that are specific to the EIS. The method should return null if no match
found. The subject parameter is related to the security contract.

3.5 ManagedConnection

The ManagedConnection interface provides an application-level connection handle from the EIS
to the resource adapter's ManagedConnection instance. Communication between the two occurs
through listeners and event notifications. Support for error logging and tracing must be present.
Metadata about this instance and the EIS can be retrieved by invoking getMetaData, which
returns information encapsulated in a ManagedConnectionMetaData instance. The interface also
provides methods, like cleanup, to reinitialize the instance and free resources after
communication ceases. The instance does not close the connection, however. This is handled by
the application server so connection pooling can be utilized. An implementation of this interface
is required by the specification. The implementation of this interface should have the following
methods:

• getConnection (javax.security.auth.Subject subject, ConnectionRequestInfo cxRequestInfo)

This method creates an application-level handle to EIS in an EIS specific way.
This method also reauthenticates the connection to EIS using the security
information provided.

• destroy()
This method destroys a physical connection to the underlying EIS. This method is
typically called by the application server.

 20

• addConnectionEventListener(ConnectionEventListener listener)

This method registers a connection event listener with the instance to get
connection-related event notifications. An application server uses these event
notifications to do its pool management, transaction management, and connection
cleanup.

• removeConnectionEventListener(ConnectionEventListener listener)

This method removes a connection event listener from the instance.

• cleanup()

This method reinitializes the handles created by the instance before the handle is
put back in the pool.

3.5.1 Transaction Management Interfaces

In addition to providing a connection handle to an EIS, a ManagedConnection instance gives
access to two interfaces: javax.transaction.xa.XAResource and
javax.resource.spi.LocalTransaction. The XAResource interface facilitates the transaction
between a transaction manager and a particular EIS. The LocalTransaction interface manages
local transactions.

Figure 5: Transaction contract between Adapter and the Application Server

Application

Server

Resource adapter

ManagedConnection

LocalTransaction

XAResource

EIS

 21

Transactions are setup before the getConnection method is invoked. Connection sharing is also
enabled through the associateConnection method. The transaction management components of
this interface must be implemented regardless of the level of transactional support provided by
the resource adapter. The implementation, however, should throw appropriate exceptions if the
type of transaction is not allowed by the resource adapter.

• getXAResource ()

This method returns the XAResource instance associated with the
ManagedConnection instance. If XA transactions are not supported, this method
should throw an exception. Implementation is specific to EIS.

• getLocalTransaction ()

This method returns the LocalTransaction instance associated with the
ManagedConnection instance. If local transactions are not supported, this method
should throw an exception. Implementation is specific to EIS.

3.5.1.1 XAResource

The XAResource interface is a Java mapping of the XA interface, which defines the contract
between any resource adapter and a transaction manager in a distributed transaction processing
environment. In reference to an enterprise information system's resource adapter, this interface
enables the resource manager to participate in distributed transactions that are controlled and
coordinated by an external transaction manager. The transaction manager uses the XAResource
instance to manage the transaction. The XAResource interface must be implemented if XA
transactions are supported by the resource adapter. In this case, certain requirements, like
maintaining a 1-1 relationship between the ManagedConnection and XAResource instances and
implementing one-phase commit, are mandated by the specification.

3.5.1.2 LocalTransaction

The LocalTransaction interface provides support for local transactions, which are managed and
performed by the EIS. Information regarding the transaction is achieved through listeners and
event notifications. If either local or both transactions are supported by the resource adapter, then
it must supply this interface.

3.6 ManagedConnectionMetaData

ManagedConnectionMetaData facilitates the retrieval of metadata about a ManagedConnection
instance and the particular EIS. The metadata must provide the enterprise information system's
product name and version, the maximum number of concurrent connections that it can support,

 22

and the username associated with the connection. To comply with the connector architecture, an
implementation of this interface must be included with the resource adapter.

3.7 Explanation at the Code level

3.7.1 System-level interface - Connection contract

The implementation of ManagedConnectionFactory interface should take care of the connection
contract between the application server and the resource adapter. The application server passes
the related set of connection in the pool to the resource adapter. If no relevant connection exists
in the pool, a new connection is initiated by the reource adapter. This can be demontrated by the
createManagedConnection and matchManagedConnection methods of
ManagedConnectionFactory interface.

 public ManagedConnection createManagedConnection (
 javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws javax.resource.ResourceException {

 // Creates a new physical connection to the EIS in an EIS specific way.
 }

 public ManagedConnection matchManagedConnections (
 java.util.Set connectionSet,
 javax.security.auth.Subject subject,
 ConnecionRequestInfo cxRequestInfo)
 throws javax.resource.ResourceException {

// Determines if there is an existing connection, from the parameter ConnectionSet, that can be used as the
//connection to the EIS. The check is based on criteria that is specific to the EIS.

 // Must return null if a match does not exist.
 }

3.7.2 System-level interface - Transaction contract

The implementation of ManagedConnection interface should take care of the transaction contract
between the application server and the resource adapter. The transaction can be distributed or
local. For distributed scenario, an instance of the implementation of the XAResource interface is
handed to the application server. For local scenario, an instance of the implementation of the
LocalInterface is handed to the application server.

public XAResource getXAResource ()
 throws javax.resource.ResourceException {

// Returns the XAResource instance associated with the ManagedConnection instance. If XA transactions are
//not supported, this method should throw an exception.

 // Implementation of XAResource is specific to the EIS.
 }

 23

 public LocalTransaction getLocalTransaction ()
 throws javax.resource.ResourceException {

// Returns the LocalTransaction instance associated with the ManagedConnection instance. If local
//transactions are not supported, this method should throw an exception.

 // Implementation is specific to the EIS.
 }

3.7.3 System-level interface - Security contract

The security contract is adhered to by incorporating the J2EE Java Authentication and
Authorization Service (JAAS) into the connection management interfaces. The three connection
interfaces that must be modified to implement the security contract are ConnectionFactory,
ManagedConnectionFactory and ManagedConnection.

• ConnectionFactory
Security services from the application server are enabled by the resource adapter when
the ConnectionFactory instance asks the application server to allocate a connection
through the ConnectionManager.allocateConnection method. Depending on whether the
application server or the application component manages the logon to the EIS, the
resource adapter calls this method differently.

o If the application server is in charge of logging on to the EIS, then the application
component does not pass any security information to the resource adapter in the
getConnection method. Since the resource adapter does not have this info, it does
not forward any security information to the server.

o If the application component is in charge of the logon to the EIS, however, it
provides the necessary security information to the resource adapter through the
getConnection method. Then, the resource adapter will handle the logon process
through the ManagedConnectionFactory instance.

• ManagedConnectionFactory

The ManagedConnectionFactory interface of the connection contract must be modified to
support the security contract via the createManagedConnection method. The necessary
modifications depend on whether the application server or the resource manager
facilitates the logon to the EIS.

o If the application server is in charge of this process, then it invokes
createManagedConnection with the appropriate security information. This
security data can be passed in a variety of ways established by JAAS. The
instance retrieves the security information and then uses it to logon to the EIS.

o If the resource adapter is in charge of the logon process, then the application
server passes a null security parameter to the createManagedConnection method.
In this case, the resource adapter looks for security information in the
ContextRequestInfo instance. If it finds what it is looking for, then this
information is used to connect to the EIS. Otherwise, the resource adapter uses the
default security of the ManagedConnectionFactory instance.

 24

3.8 Implementation for Non-managed Environment

The connection management contract enables a resource adapter to be used in a two-tier
application directly from an application client. In a non-managed application scenario, the
ConnectionManager implementation class may be provided either by a resource adapter as a
default ConnectionManager implementation or by application developers. A default
implementation of the ConnectionManager should be defined for a resource adapter only at
development time. The default ConnectionManager instance interposes on the connection
request and delegates the request to the ManagedConnectionFactory instance. The
ManagedConnectionFactory creates a physical connection represented by a ManagedConnection
instance to the underlying EIS. The ConnectionManager gets a connection handle from the
ManagedConnection and returns it to the connection factory. The connection factory returns the
connection handle to the application. A resource adapter supports interactions between its
internal objects in an implementation-specific way. For example, a resource adapter can use the
connection event listening mechanism as part of its ManagedConnection implementation for
connection management. However, the resource adapter is not required to use the connection
event mechanism to drive its internal interactions.

Figure 6: Non-managed scenario

Resource adapter

ConnectionFactory

ConnectionManager

ManagedConnectionFactory

Connection

ManagedConnection

EIS

Application component

 25

4 Resource Adapter for SAP R/3 System

SAP R/3 system, one of the Enterprise Information Systems, can be seamlessly integrated with
any J2EE based application servers through JCA Adapter. Adapter that adheres to the details that
are described in the previous chapters will be sufficient to interface with the SAP system with the
SAP's Java middleware, the SAP Java Connector (JCo). The other option of integrating could be
through web services.

4.1 Web services vs Resource adapter for SAP

Boiled down to the simplest level, JCA and Web services are about connecting systems together.
At that level, the two technologies can be seen as competing.

EISs such as SAP hold information that is critical to a business. Because of this, JCA needs to
provide support for security and transactions. Additionally, a lot of data goes into and out of
EISs, so performance is important. JCA is scalable to large numbers of EIS clients, and it
provides connection management, which makes it possible for large numbers of clients to
connect to the EIS efficiently.

Web services are about linking together arbitrary, heterogeneous systems that may be widely
dispersed over the Internet. So, the first big difference is that Web services aren’t targeted
specifically at EISs; any kind of software could be exposed as a Web service. Most services
aren't going to be transactional or require the kind of security that EISs do, so initial Web
services standards had no support for either security or transactions.

The second big difference between JCA and Web services is the desire for Web services to work
with heterogeneous systems. To make this possible, Web services are very independent of
technology. All that is required is HTTP over TCP/IP and XML. Thus, it doesn't matter what
language the service is written in, or what platform it runs on. So, theoretically, a Java Web
service running on UNIX will have no trouble working with a C# Web service on Windows
2003.

Considering the above pros and cons, JCA will be the right choice to make an EIS work with
J2EE application and Web services will be the right choice to deal with a simpler piece of
software out on the Internet.

4.2 Architecture of SAP JCo

SAP developed and released SAP Java Connector for enabling the java based applications to use
the functionality or extend the functionality of SAP system. The SAP Java Connector (SAP JCo)
is a toolkit that allows a Java application to communicate with any SAP System. JCo provides a
set of Application Programming Interface that hides SAP related intricacies, data type
conversion, connection pooling, etc and supports both inbound (Java to ABAP) and outbound
(ABAP to Java) calls.

 26

Figure 7: SAP Java Connector Architecture

The above figure shows the technical schema of data conversion in the SAP JCo. Starting from a
Java application, a Java method is forwarded via the JCo Java API and an additional Middleware
Interface to RFC Middleware, where it is converted to an RFC (ABAP) call using the JNI (Java
Native Interface) layer, and sent to the SAP system. Using the same method in the other
direction, an RFC Call is converted to Java and forwarded to the Java application:

The basis for all communication between SAP and external components (as well as for most
communication between SAP components) is the Remote Function Call (RFC) protocol. RFC
comes in three flavors. Most client programs want to use regular, Synchronous RFC (sRFC), but
SAP also supports Transactional RFC (tRFC) and Queued RFC (qRFC). tRFC is used mainly to
transfer ALE Intermediate Documents (IDocs). JCo supports all the three flavours of RFCs.

4.3 Resource Adapter and JCo

The resource adapter will communicate with the SAP system with the standard Java Connector
APIs. The connection to the SAP system should be made at the ManagedConnectionFactory.
The ManagedConnectionFactory is a singleton, only one object will be instantiated by the
application server in case of the managed scenario. The connection could be pooled at the
application server through the resource adapter.

JCO – Java API

Middleware Interface

RFC Middleware

JNI Layer

RFC Layer

SAP System

Java Application

SAP

JCO

 27

4.3.1 Connecting to SAP

 JCO.Client class provides methods to set up a communication channel with the SAP system.
The burden of placing the connection pooling could be placed at the application server through
the resource adapter or to the SAP System itself. The JCO.createClient static method makes a
connection to the SAP.

JCO.Client con = JCO.createClient("001", // SAP client
"<userid>", // userid
"****", // password
"EN", // language
"<hostname>", // application server host //name
"00"); // system number

The connection specific parameters can be specified at the resource adapter descriptor file. This
requires modification of the descriptor file for connections to different SAP and redeployment in
the application server. To overcome this situation, ConnectionRequestInfo object can be used to
get the user-specific information to make the connection to the SAP system. This object comes as
an argument for the createConnection method of the ManagedConnectionFactory. The
parameters could be retrieved from the ConnectionRequestInfo object.

 4.3.2 Connection pooling

The other way of connecting to the SAP system will be by getting a connection from the
connection pool maintained by the SAP. This moves the connection pooling responsibility from
the J2EE based application server to the SAP system.

JCO.addClientPool (“<POOL_NAME>”, // pool name
 5, // maximum number of connections

 logonProperties); // properties

 con = JCO.getClient (“<POOL_NAME>”);

Each pool which has the connections with the same userid have unique name assigned by the
user. The maximum number of connection in a pool could also be specified. Properties object of
Java holds the connection parameters.

There are some issues to be considered when using connection pooling, be it maintained at the
application server or the SAP system. Pooling is based on the userid of the connection parameter.
When an open connection in a pool is reused, the previous owner of that connection is unknown.
Some SAP functions maintain state. In order to isolate applications from one another, JCo calls
the reset function in R/3 starting with release 4.0. This reset is performed automatically by JCo
whenever a connection is returned to the pool. But R/3 3.1 does not have the reset function. So
when run against a 3.1 system, either the existing connection with its state have to be reused or
disconnect and reconnect again, which is more costly in terms of performance. JCo offers a
variant of the getClient() method with a boolean parameter that allows to specify whether to reset
(disconnect/reconnect for a 3.1 system) or not. The getClient() method that does not have any

 28

parameters will not disconnect/reconnect. This should only be used if no application using this
pool ever calls any function in SAP that maintains state.

The pooling of connections could also be implemented at the resource adapter which has the
connection contract with the application server. In effect, the application server pools the
connections. This can be achieved by the singleton ManagedConnectionFactory.
matchManagedConnection method gets set of connections pooled by the application. The set
holds the similar connections that are pooled by the application server. The connections in the set
could be checked against the userid and if it matches the connection could be returned, else a
new connection is made. Here also the same limitation discussed above holds.

The connection handle thus received can be passed on to the application component as such
through the ConnectionFactory object. In case of SAP, the Common Client Interface will not be
helpful. Hence the connection in this case will be EIS specific. There is another possibility of
defining the Connection interface other than just passing on the connection object. Replication of
the BAPI could be implemented which accepts the input parameters and returns the result. In this
case, the SAP system is completely hidden from the application.

4.3.3 Transaction

Having detailed about the connection, transaction is another issue that complements the
connection. Most RFMs, including most BAPIs, are stateless. SAP does not remember anything
between calls in the same session. Most updating BAPIs require an additional external commit
call to actually cause any change on the SAP database to happen. All multiple update BAPI calls
in the same session are combined into one Logical Unit of Work (LUW). A commit call at the
end of the session which had one or more updating BAPIS. The is done via a call to
BapiService.TransactionCommit, RFM name BAPI_TRANSACTION_COMMIT.

Till the recent release of SAP, two-phase commit is not supported. Hence the transaction can be
maintained by the LocalTransaction interface, provided by the JCA specification.
Implementation of the interface should hold the begin, commit and rollback methods. All the
methods must fire the connection handle event to provide connection related event notification to
the application server. The commit method should have the BAPI call
BAPI_TRANSACTION_COMMIT. The rollback method should have the BAPI call
BAPI_TRANSACTION_ROLLBACK. As the resource adapter maintains transaction contract
with the application server, the transaction requirements of the application component can be
extended by the application server and finally executed by the resource adapter.

4.3.4 Transaction in Non-managed environment

In this scenario, the application server is not involved. The connection pooling in this case should
be transferred to the SAP system. The LocalTransaction handle should be given to the
application which becomes fully responsible for maintaining the transactions. This is used by
applications like applet, servlet, etc.

 29

4.4 Business Application Programming Interface (BAPI)

BAPIs (Business Application Programming Interfaces) are the standardized methods that can be
used to access the SAP Business Objects. BAPIs can be used from different programming
environments and from all development platforms outside of the R/3 system. BAPIs are the
handles for the underlying SAP Business Objects.

ABAP Function Modules can only be called from an external client if they are marked as Remote
Function Call (RFC)-enabled. R/3 contains several thousands of such RFC-enabled Function
Modules (RFMs). Amongst them are the BAPIs. BAPIs are RFMs that follow additional rules
and are defined as object type methods in SAP's Business Object Repository (BOR).

4.4.1 BAPIS and JCo

The metadata of all RFMs must be available to JCo. This is accomplished by creating a
JCO.Repository object. The actual metadata for the BAPIs could be retrieved dynamically from
SAP at runtime.

JCO.Repository repo = new JCO.Repository("name", con);

The repository takes in two parameters: one being an arbitrary name and the other being a
connection or connection pool to the SAP system. The userid used for the repository has to have
sufficient authorizations in SAP for the metadata access to be possible.

IFunctionTemplate ft = repo.getFunctionTemplate(“BAPI_NAME”);
 Function fn = ft.getFunction();

Creating a JCO.Function object is a two-step process. First, a function template (interface
IFunctionTemplate) should be created. A function template contains all the metadata (parameters
and exceptions) for an RFM. JCo retrieves the metadata only once and caches it to optimize
performance. The getFunctionTemplate() method of JCO.Repository is used to create the
template. If null is returned, the RFM could not be found in SAP. From the template, a
JCO.Function object (method getFunction()) can be created. A function object not only has
metadata, but also the actual parameters for the execution of the RFM. The relationship between
a function template and a function in JCo is similar to the one between a class and an object in
Java. The code shown above encapsulates the creation of a function object. It is a good idea to
create a fresh function object for each individual execution. This way, it can be ensured that the
parameters do not contain any leftovers from the previous call, like table rows that should not be
really sent to SAP.

BAPI has IMPORT/EXPORT parameters. The parameters could be simple types, structures or
tables.

To access the import parameter list, getImportParameterList() can be used. The value of the
scalar parameter is set using the setValue() method, passing the value as the first, and the name as
the second argument. Many overloaded version of setValue() exist in JCo, in order to support all
the data types. Again, JCo will do its best to convert any value that is passed to the data type

 30

appropriate for the field, and an exception is thrown if the conversion fails. The setValue()
method is also available for JCO.Structure and JCO.Table so that the values of simple types,
structure fields and fields in a table row can be set.

For simple types:

fn.getImportParameterList().setValue(“BAPI_TYPE_NAME”, “VALUE”);

For structures:

Structure st = fn.getImportParameterList().getStructure(“BAPI_STRUCTURE_NAME”);
st.setValue(“BAPI_TYPE_NAME”, “VALUE”);

For tables:

Table table = fn.getTableParameterList().getTable(“TABLE_NAME”);
table.setValue(“BAPI_TYPE_NAME”, “VALUE”);

After setting the IMPORT parameters of the BAPI, the function should be executed.

fn.execute();

After the execution of the function, the EXPORT parameters can be retrieved by the calling the
method getExportParameterList() of the Function fn. The simple types, structures and tables can
be retrieved the same way as setting the IMPORT parameters with get instead of set in the
methods.

4.5 Handling outbound call from SAP

To allow the SAP system to issue remote function calls (RFCs) or BAPIs to the adapter, an RFC
destination on the SAP system must be created.

JCO.Server class of the JCo library encapsulates the basic JCO server functionality. Application
programmers will extend this class and override the handleRequest() method to implement a
specific server.

public Listener extends JCO.Server{

// Constructor takes gateway host, service, program ID, and repository
publicListener(String gwhost, String gwserv, String program_id, Irepository repos) {

super(gwhost, gwserv, program_id, repos);

//gwhost - the gateway host
//gwserv - the gateway service number
//program_id - the program id
//repos - the repository used by the server to lookup the definitions of an incoming function call

}
// Handles incoming requests
 protected void handleRequest(JCO.Function function) {
 try {
 // Application specific processing goes here

 31

 }catch(JCO.AbapException ex)
 throw new JCO.AbapException("SYSTEM_FAILURE", ex.getMessage());

 }

}

}

A server thread could be started with the JCO.Server.start() method which would listen for any
outbound call from the SAP. With respect to the Message Inflow contract of the resource adapter,
the ResourceAdapter interface supports the activation and deactivation of message endpoints that
reside within the application server. The endpointActivation method is called by the application
server to activate a message endpoint. This method accepts two parameters: a
MessageEndpointFactory instance and a configured ActivationSpec instance.

The MessageEndpointFactory instance is used by the resource adapter to create message
endpoint instances within the application server using the createEndpoint method, once the
adapter has a message to propagate. Once the endpoint instances are created, the resource adapter
can deliver messages to the instances, either serially or concurrently. Although the
MessageEndpointFactory instance could be used to create an unlimited number of endpoint
instances, the application server may restrict the number of endpoint creations.

In addition to a MessageEndpointFactory instance, a configured ActivationSpec instance is
passed to the resource adapter by the application server and is used for configuration during
endpoint activation. This instance stores crucial information regarding the type of endpoint
listener that the resource adapter will send messages to. The ActivationSpec instance is
configured by an endpoint deployer during endpoint deployment.

Once an endpoint is activated, it can receive messages from the message provider through the
resource adapter. When the message provider sends a message, the resource adapter determines
which message listener type the endpoint supports; it then forwards the appropriate message to
the endpoint.

 32

5 Generation of Java proxy classes of BAPIs

As seen in the preceding chapter, handling the BAPI calls are complicate. The complexity can be
listed as follows:

• Handling the IMPORT/EXPORT properties are complex.
• Need to convert the data types from SAP system to Java standard. Though JCo

helps in the conversion but need to map the data types.
• The structures could have nested structures which make the process further

complex.
• The exception handling.
• Hand typing all the parameters as seen in the SAP system is quite cumbersome.

All those listed above make the business application developer’s work more cumbersome. This
brings up the necessity to develop Object-Oriented view of the Business Objects and its BAPIs in
the SAP system to let the developer concentrate more on the business logic than on the
intricacies involved in calling BAPIs. The java proxy class generation is done with the help of
the Jakarte Velocity, a java-based template engine.

5.1 Velocity

Velocity is a Java-based template engine, a simple and powerful development tool that allows
one to easily create and render documents that format and present the data. In our case, the data is
the java proxy class. Velocity can be used either as a standalone utility for generating source
code and reports, or as an integrated component of other systems. The Velocity Template
Language (VTL) is used to define the structure of the proxy classes to be generated. Velocity
templates could reference objects in Java code and could make method calls to retrieve data and
eventually generate the classes.

The sequence of steps are as follows:

• Initialize Velocity.
• Create a Context object.
• Add the data objects to the Context.
• Choose a template.
• Merge the template and the data to produce the output.

 33

5.2 Structure of the generated classes

A class that holds the list of all the Business Objects that is generated. The connection to the SAP
system through the Resource Adapter is initiated from this class. The connections are expensive
and to prevent an application from making many connections, this class called the BapiRegistry
is made as singleton. The general structure of this class is as follows:

class BapiRegistry {
 public static BapiRegistry getInstance() {
 // provides the instance of this class

 }

public BO1name getBO1Name() {

 //create an instance of a Business Object (BO)
 return new BO1(this);
 }

public BO2name getBO2Name() {
 //create an instance of a Business Object (BO)
 return new BO2(this);
 }

 public SapConnection getConnection() {
 //gives an existing connection within the

//context of this object or create a new connection
//SapConnection is the client view of the connection
//instance from the SAP Resource Adapter
}

 }

The structure of the generated Business Object is as follows:

/**
 * Documentation of the Business Object as found in the SAP system
 */
Class BO {
 /**

 * Documentation of the BAPI as found in the SAP system
 */

 class BAPI {
private static final BAPI_NAME = „BAPI_NAME“; //Description with length restriction of the
//field and the optionality

 class Argument {
 private type SIMPLE_TYPES;
 ...
 ..
 //Linked list to hold the records of the table
 private LinkedList listTABLE_NAME;

 34

 // getter and setter method for the SIMPLE_TYPES
 public type getSIMPLE_TYPE() {
 return SIMPLE_TYPE;
 }

 public void setSIMPLE_TYPE(type SIMPLE_TYPE) {
 this.SIMPLE_TYPE = SIMPLE_TYPE;
 }

 class Structure {
 private type SIMPLE_TYPES;
 //getter and setter methods of the SIMPLE_TYPES;
 }
 class Table {
 private type SIMPLE_TYPES;
 }
 }

class Result {
 //same as Argument;

}
}

public BO(BapiRegistry br) {
// Constructor of the Business Object
}

public BO.BAPI.Result bAPI(BO.BAPI.Argument argument) {
//open a connection to SAP system with the instance of BapiRegistry

 //all the necessary SAP JCo calls;
 //fill Result inner class of the BAPI with the EXPORT parameters
 return result;

}
}

The generated Business Object has its BAPI as its inner classes. The BAPI inner class in turn has
Argument and Result as its inner classes. This gives a complete Object-Oriented view of the
Business Objects in the SAP system. The ease of use of these generated classes can be
demonstrated with an example as follows:

BapiRegistry br = new BapiRegistry();
Bank bk = br.getBank();
Bank.GetDetail.Argument arg = bk.newGetDetailArgument();
arg.setBankCtry("DE");
arg.setBankKey("12345678");
Bank.GetDetail.Result result = bk.getDetail(arg);

The above example makes “BAPI_BANK_GETDETAIL” call with “BANKCTRY” and
“BANKKEY” as its IMPORT parameter. The structure IMPORT also works the same by
creating an instance of the Arguments inner class Structure. The BAPI call is executed by
getDetail method which returns an instance of its inner class result. The parameters of the
EXPORT parameters can be retrieved from the Result instance.

 35

5.3 User Interface

A Swing based User Interface is created to allow the user to view all the BOs and BAPIs in the
SAP system. The user interface is simple and easy to use. The main purpose of this UI is for the
application developers who don’t have much knowledge about the SAP system. The UI gives the
documentation of the Business Objects and the BAPIs. It also lists the IMPORT/EXPORT
parameters and its corresponding java-proxy names.

Figure 8: User Interface – BAPI Explorer

 36

6 Conclusion

The integration of SAP R/3 system with java-based application server is achieved through the
Resource Adapter that complies with the Java 2 Connection Architecture (JCA) specification.
The Resource Adapter for the SAP R/3 system could be plugged into any java-based application
with no modification. The Resource Adapter maintains the transaction and security issues related
with the SAP system.

The resource adapter is the best choice when it comes to integration of SAP with J2EE
application server. Application servers like Web AS 6.4 of SAP, BEA Weblogic 8.1 and IBM
Websphere have their own resource adapter for SAP system. Resource adapters are to be written
for other application servers like JBoss, JDMK, JonAS, etc. The following scenario A
corporate’s enterprise application runs on Jboss and there is a necessity to integrate with a remote
SAP. The remote machine on which SAP runs has Web AS 6.4 that already has SAP integrated
with it through a resource adapter. Now the corporate has two options to interate its system with
SAP. One: extend the contract the contract of the resource adapter on Web AS to Jboss
(considering the corporate has the rights on Web AS) and Two: to implements its own resource
adapter. The latter will be the best option as the former requires another resource adapter that acts
as a link between WebAS and Jboss which is a performance overhead.

The generated Java proxy classes of the BAPI give an Object-Oriented view of the Business
Objects of the SAP system. The generated classes hide the details of the BAPIs, JCo and the
Resource Adapter. This allows the application developer to concentrate more on the business
logic than on the details of the SAP system.

 37

Bibliography

[JCA03] J2EE Connector Architecture Specification, Version 1.5, Sun

Microsystems, Inc., November 2003.

[J2EE03] Java 2 Platform Enterprise Edition Specification, Version 1.4, Sun

Microsystems, Inc., November 2003.

[JBOSS02] JBoss Administration and Development, Scott Stark, Marc Fleury, The

JBoss Group, Sams Publication, 2002.

[RA01] The J2EE Connector Architecture's Resource Adapter, Jennifer Rodoni,

Sun Microsystems, Inc., December 2001.

[RA03] What's New in the J2EE Connector Architecture 1.5, Jennifer Rodoni, Sun

Microsystems, Inc., March 2003.

[JCO02] Developing Applications with the SAP Java Connector (JCo), Thomas G.

Schuessler, Arasoft GmbH, 2002.

[SAP02] Enterprise Java for SAP, Austin Sincock, Apress Publications, 2002.

[JCA03] JCA – An Emerging Integration Technology, Vijay, Mark, Steven,

Avion, Inc., 2003.

[VELOCITY03] The Apache Jakarta Project: Velocity, Version 1.4,
 http://jakarta.apache.org/velocity/, October 2003.

[SAP03] Komponenten für SAP mit Java, Daniel Basler, Software and Support

Verlag GmbH, 2003.

[JAAS01] Java Security, Scott Oaks, O’Reilly and Associates, Inc., 2001.

[EAI01] Solutions for Enterprise Application Integration using Java and Web

Services, Rima Patel Sriganesh, Sun Microsystems Inc., 2002.

[PATTERN01] Core J2EE Patterns, Deepak Alur, John Crupi, Dan Malks, Sun

Microsystems press, A Prentice Hall Title, 2001.

 38

