

Monitoring and Managing Business Processes and
Resources in J2EE Platform

Master Thesis

Submitted by:
Aravind Kumar Alagia Nambi

Master of Science in Information and Media Technologies
aravind.alagia@tu-harburg.de

Matriculation Number:
23307

Supervised by:

Prof. Dr. J. W. Schmidt
STS - TUHH

Prof. Dr. Karl-Heinz Zimmermann
Technische Informatik VI - TUHH

M.Sc. Miguel GARCIA

STS - TUHH

Hamburg, Germany
2004-10-30

 2

Abstract

As J2EE adoption grows, the business use and importance of J2EE application deployments
are on the rise. Increasingly, mission-critical applications are being built and deployed on
J2EE infrastructures. This trend is driving the demand for better administration, monitoring,
and management of J2EE applications to foresee any breakdowns that may occur. The
software industry has widely recognized the importance of J2EE application management to
enterprise IT, and has been seeking ways to address this growing need. However, awareness
of enterprise J2EE deployment issues and how to best address this need are only now
emerging. My thesis concentrates on finding a better solution to monitor and manage the
business process.

 3

Acknowledgements

My special thanks go to Prof. Dr. Joachim W. Schmidt, research assistant MSc. Miguel
Garcia at Software Systems Department of the Technical University of Hamburg-Harburg and
Dipl-Inf. Krisztiàn Szitàs for providing the opportunity to work on this research topic, for
their support, encouragement and guidance throughout the thesis work.

 4

Content

1. INTRODUCTION .. 6
2 BUSINESS PROCESS MANAGEMENT .. 7

2.1 MANAGING J2EE APPLICATIONS ... 8
2.2 MANAGEMENT THROUGH EVENT PROCESSING.. 8
2.3 BUSINESS-ORIENTED MANAGEMENT... 9
2.4 EXTERNAL INSTRUMENTATION .. 10

2.4.1 Analysis of JMX Studio.. 11
2.5 INTERNAL INSTRUMENTATION ... 12

2.5.1 Features of Aspectwerkz.. 13
2.5.2 Analysis of Aspectwerkz... 14

2.6 BEST PRACTICES FOR BUSINESS PROCESS MANAGEMENT.. 15
3 BUSINESS PROCESS MANAGEMENT WITH JAVA MANAGEMENT EXTENSION (JMX)........... 16

3.1 JAVA MANAGEMENT EXTENSION (JMX) ... 16
3.2 THE INSTRUMENTATION LEVEL ... 17

3.2.1 Standard MBean .. 18
3.2.2 Dynamic MBean .. 18
3.2.3 Model MBean... 21
3.2.4 Open MBean .. 23

3.3 AGENT LEVEL ... 23
3.3.1 MBean Server .. 23

3.4 DISTRIBUTED SERVICES LEVEL... 24
3.5 NOTIFICATION MODEL ... 25

3.5.1 Notification Broadcaster ... 25
3.5.2 Notification .. 26
3.5.3 Notification Listener .. 27
3.5.4 Notification Filter .. 28

3.6 ARCHITECTURE OF THE MONITOR.. 28
3.6.1 Logging Service ... 29
3.6.2 StandardMBean interface.. 31
3.6.3 Notification Broadcaster ... 32
3.6.4 Notification Listener .. 32

4. BUSINESS PROCESS MANAGEMENT WITH JAVA MESSAGE SERVICE (JMS) 33
4.1 JAVA MESSAGE SERVICE (JMS)... 33

4.1.1 JMS API Architecture.. 34
4.2 MESSAGING DOMAINS.. 35

4.2.1 Point-to-Point Messaging Domain.. 35
4.2.2 Publish/Subscribe Messaging Domain ... 36

4.3 MESSAGE CONSUMPTION.. 36
4.4 JMS API MODEL... 37

4.4.1 Message selectors .. 40
4.5 ARCHITECTURE OF THE MONITOR.. 40

4.5.1 Logging service.. 41
4.5.2 JMS Topic .. 43
4.5.3 Filter... 43
4.5.4 Monitor .. 44

4.6 LOGGINGSERVICE INCORPORATED IN BUSINESS PROCESS .. 46
5 PERFORMANCE ANALYSIS .. 47

5.1 FILTER OPTIONS.. 47
5.1.1 Database .. 47
5.1.2 File system ... 47

 5

5.2 JMX IMPLEMENTATION OF FILTER OPTION .. 48
5.2.1 Filter repository... 48
5.2.2 Persistence of the filter repository .. 49
5.2.3 Manipulation of filter parameters through MBeans... 50

5.3 COMPARISON OF JMX AND JMS ARCHITECTURES... 52
5.3.1 Performance... 52
5.3.2 Server Cluster .. 52

6 SYSTEM-LEVEL MANAGEMENT .. 55
6.1 ARCHITECTURE OF JBOSS APPLICATION SERVER .. 55
6.2 J2EE SERVER MANAGEMENT WITH JSR 77 .. 56

6.2.1 Differences between JMX and JSR 77... 56
6.3 J2EE MANAGEMENT MODEL ... 57

6.3.1 Managed objects .. 57
6.3.2 Events ... 58
6.3.3 State Management ... 59
6.3.4 Performance Monitoring ... 59

6.4 J2EE MANAGEMENT EJB COMPONENT ... 59
7 MANAGEMENT OF TOMCAT... 63

7.1 JMX AND TOMCAT... 63
7.2 MODELER COMPONENT .. 63
7.3 CUSTOM SERVICE IN TOMCAT .. 64
7.4 MANAGING AND MONITORING TOMCAT.. 65

7.4.1 Java Specification Request 160... 66
7.4.2 Connectors ... 66
7.4.3 Connection Establishment ... 66

8 CONCLUSION .. 69
REFERENCES ... 70

 6

1. Introduction

The term "enterprise computing" is definitely one of today's busiest buzzwords. It is
computing that uses technology as a strategic tool for modeling a business process. The
computing could be mission-critical business computing or mundane applications. In today’s
world, most of the enterprise computing is based on Enterprise Java Bean (EJB) technology.

Any enterprise computing solution must focus on modeling business concepts without
imposing restrictions on business processes. Even if one sticks to this principle and develop a
business process, nothing is impregnable to the flaws that may arise at some point in time
during the production mode. The flaw could be due to performance bottlenecks at the EJB
level, flaw at the business logic level at overload state, etc. The business process can not
afford to have a flaw at any time. This requires a monitoring tool that can check the health and
performance of the business processes and can predict a potential breakdown. This can in turn
alert the Corporate to make the necessary changes to keep their business process running.

An effective strategy, that encompasses the technologies Java Messaging Service (JMS) and
Java Management Extension (JMX), is to be devised that monitors and manages the business
process without affecting the performance of the business process. Considering the vast pool
of Java 2 Enterprise Edition (J2EE) based application servers in the market, it becomes
necessary to develop a generic set of libraries for the tool that are independent of the specifics
of the J2EE based application servers.

 7

2 Business Process Management

The primary driver for business process management is business productivity and efficiency
goals. Enterprises deploying J2EE applications are often using these applications to drive their
business processes. Since the goal of these J2EE applications is often to enable efficient
business operations, managing these applications provides visibility into how the applications
are impacting operations and shows ways to improve productivity and efficiency.

The first step in managing applications is monitoring availability and performance. In order to
minimize downtime, and avoid disruption to business operations, there is a clear need to
monitor and measure the availability of applications. In addition, the performance of the
application as measured by key business methods or user transactions needs to be tracked.
This helps ensure the application performs to the service levels needed, and enables pro-active
and rapid response if the application is under-performing.

The business process could be Enterprise Java Beans (EJB), Servlet, etc. EJB poses big
challenge because the overall health and performance of such applications depends on a
variety of parameters associated with the various application components (or "Beans") and
how they interact with each other. It becomes necessary to provide the granularity of reporting
necessary to pinpoint potential or active performance bottlenecks at the Bean level. The
performance of these applications is critical for the companies that deploy them, because they
support critical eBusiness operations: including interactions and transactions with customers,
suppliers and other business partners. Hence the management tool must not just give
performance metrics, like the time taken for the execution of a set of statements, but also be
able to test the veracity of the business data and also the behaviour of the logic at varying
loads.

The business process management has effects both at the production phase and at the
development phase. At the development phase, management tool helps in checking/debugging
the logic. At the production phase, management tool exposes the business data and the logic
flow at varying load. This helps in predicting the failure of the business process and also helps
the Corporate come up with a solution before the business process breaks down.

The management of the business process is to be achieved in two levels

• At the business logic level (Business-level management)
• At the system resource level, which the business process accesses (System-level

management)

Both of them complement each other. Any effect in one will affect the other. Poor business
logic may use the system resource inefficiently and crash the whole system. At the business
level management, the business specific data should be checked for its veracity. And at the
system level management, the resources can be checked. The system resources are the system
infrastructure and the resources of the J2EE platform.

 8

2.1 Managing J2EE Applications

Enterprise adoption of J2EE has led to increasing deployment of applications built on J2EE in
mission-critical business applications. It is useful to understand the different dimensions of
management and the drivers for application management in these deployments. This will help
provide a better picture of enterprise requirements.

In the early stages of any technology, when deployments are few and small-scale, there is not
a lot of focus on ensuring that these applications are well managed. As the technology
matures, however, an increasing emphasis is placed on going beyond application features and
functionality. Enterprises then focus attention on ongoing operations, administration, and
maintenance. As business use matures and scales, managing availability, downtime, upgrades,
performance, sizing, security, integration, and other management aspects loom large in
enterprise software deployments. As J2EE application deployments are increasingly serving
mission-critical business functions, the importance of application management is rapidly
growing.

The systems infrastructure upon which J2EE applications are deployed needs to be monitored
and managed. This is to ensure that the CPU, memory, disk, network, and other resources
needed by the applications are available and reliable. As the scale of the infrastructure grows,
as well as the criticality of the applications to the business, it becomes more important to
proactively manage these elements to ensure availability and sound performance. Not all of
these aspects will need tight management in a given environment

In addition to the system infrastructure, the J2EE infrastructure — including thread and
connection pools, database, Web server and other software elements — needs to be monitored
and managed. Here, the deployment choices will dictate what needs to be managed closely. It
is quite useful for managers to be able to track the usage of various resources in the J2EE
infrastructure, and be confident it is operating in good condition. Administrators may need to
be notified by the management system when specific resources (e.g., connection pools) are
running at full capacity to enable prompt action.

Beyond that, the focus typically shifts to end-to-end application performance and identifying
performance issues in any part of the application transaction chain. Visibility into different
application transactions and the break-up of different elements of the transaction is useful in
isolating performance bottlenecks. This requires close monitoring of the business process, in
essence the business logic and the business-specific data.

2.2 Management through Event Processing

Complex Event Processing (CEP) is an emerging technology, invented by David Luckham
Professor Emeritus of Electrical Engineering, Stanford University, for building and managing
information systems. The goal of CEP is to enable the information contained in the events
flowing through all of the layers of the enterprise IT infrastructure to be discovered,
understood in terms of its impact on high level management goals and business processes, and
acted upon in real time.

The enterprise is operating in a complex environment of events happening on a global scale.
These are high-level business, logistics, and application-to-application events. They form the

 9

global event cloud in which the open enterprise is operating. The scale of the global event
cloud that each enterprise must interact with is continually increasing. The need for instant
insight into the operations of the electronic enterprise has become crucial. Insight into the
Global Event Cloud is also essential simply to control the enterprise’s business processes.
Electronic business processes are no longer sequential flows of activities related to document
processing. The new generation processes incorporate complex, parallel, asynchronous
decision-making. These processes work at web speed with far less human involvement than
before.

CEP is an event processing technology utilizing the concepts of

• Causal , timing and membership relations between events,
• Patterns of multiple events together with their relationships,
• Event-pattern triggered reactive rules,
• Event-pattern constraints,
• Event abstraction hierarchies.

CEP can be used to design business processes, simulate and test them, and monitor their
production operations.

Processes are event-driven. They receive and react to events, and create new events which are
sent to other processes. Each process is an independent entity (often called an agent)
executing in parallel with other processes. Coordination and synchronization is by means of
events communicated between the processes. A unique aspect of the CEP methodology is that
event pattern constraints expressing business requirements can be used to monitor simulator
output or the events from actual operations. The events could be transferred between application
to application in a local environment or distributed environment. Though CEP is an effective
method to manage and monitor the business process, it mandates the enterprise to adhere to the
CEP methodology. A methodology to be devised to suite all range of J2EE applications to enable
them monitored and managed effectively with minimum effort from the business process
developer.

2.3 Business-Oriented Management

Providing the ability to application developers and others to add manageability to an
application at any stage, a number of benefits arise. This ability to quickly and easily overlay
access to application management information and control is most valuable to business
managers. Once applications become mission critical and widely used, many ideas are
generated in the business to improve visibility or use the information in the application to
trigger proactive management. The ability to quickly add manageability will make it possible
for short-term projects to mine this information and provide proactive monitoring.

In today’s information economy, concepts such as business activity monitoring (BAM) and
real-time enterprise all capture a common need of enterprises to get rapid access to
information and respond quickly based on that information. BAM is a term defined by
Gartner for the concept of providing real-time access to critical business performance
indicators to improve the speed and effectiveness of business operations. And the real-time
enterprise is a similar idea, where the end-to-end business processes in the enterprise are
integrated in real-time, reducing lead-times and improving efficiency and responsiveness to
customer demands.

 10

In an enterprise J2EE deployment, application management could thus be used at multiple
levels. Once application availability and performance is being monitored, administered, and
managed, the IT operations problem can be considered under control. However, the
applications and infrastructure are typically being used for a business purpose and the
business manager’s desire visibility as well. As the business use evolves, the business
managers would like to monitor and act on specific business data being generated by these
applications. This helps drive business decisions and achieve efficiencies and other business
benefits.

Though various methodologies and technologies can be adopted to suit the business needs of
a Corporate, but there are two basic ways of implementing those technologies in the
management of business process:

• Instrumentation code can be made external to the business process.
• Business process and the instrumentation code can be interlaced

Before deciding on the management architecture for a J2EE platform, both the
instrumentation techniques have to be analysed.

2.4 External Instrumentation

External instrumentation of the business process makes the business logic developer come
clean with his work without worrying about the complex implementation of the
instrumentation. External instrumentation can be implemented with technology like Java
Management Extension (JMX). This requires a management tool that should be able to
automate the instrumentation code as dictated by the business process developer itself or the
administrator. The instrumentation code should be able to expose the data specific to the
business process and can check the consistency of the business data for varying loads.

The advantages of external instrumentation can be summarized as follows:

• Ability to add and change the management information and control being exposed
without touching or disrupting the application code itself.

• Existing business process can be made manageable without changing the code.
• Business logic stays clean.

AdventNet ManageEngine JMX Studio is one such tool where the business process is
externally instrumented. But the strategy differs for different components in the business
process. For EJBs, the instrumentation code is external and for servlet it is intrusive when it
comes to performance measurement. But in most cases, the instrumentation code is external to
the business process.

 11

2.4.1 Analysis of JMX Studio

• Performance measurement

ManageEngine JMX Studio can generate auto-instrumented MBeans for application
response measurement which exposes attributes such as 'Method Execution Count',
'Method Start Time', 'Method End Time', 'Method Execution Time', etc., for methods
in loaded EJB, servlet, or Java class. The EJB performance monitoring is non-
intrusive, that is the business logic methods will not be intruded. Instead the stubs
generated by the J2EE server vendor will be regenerated. To enable performance
measurement, the stub regenerated EJB jar in the original J2EE application has to be
redeployed. Servlets and Java class performance monitoring implementation is
intrusive. The loaded servlets and Java classes, which need performance statistics such
as method execution time and count for its methods, will be regenerated.

• Business process Management:

Similarly, any EJB, servlet, or Java class can be loaded into ManageEngine JMX
Studio such that it displays all the attributes and operations pertaining to the loaded
Java class. For a given business process, JMX Studio generates JMX agent with auto-
instrumented MBeans.

Figure 1: AdventNet ManageEngine JMX Studio

J2EE Application
(User Application

EAR)

ManageEngine
JMX Studio

Performance
MBeans

BP specific
MBeans

J2EE Application

EJB

Servlet

Generate

Configure
Performance

Parameters

Configure
Business
Data

 12

The figure 1 demonstrates the working of the JMX Studio. The MBeans are generated for the
configuration details set by the developer or the administrator. In both the cases, the
performance measurement and business management, a wrapper class is generated and the
wrapper class is instrumented keeping the original business process intact. This strategy even
allows to access business process related data.

JMX Studio can not be used if the actual working of the business logic is to be monitored. As
management is a key part in many cases, the information that comes from the management
tool should be very precise in locating the point of vulnerability. In JMX Studio, the inner
details are not furnished. In some situations, where a complex business process accesses two
or more data sources and involves nested transactions, the information that could be provided
will not be sufficient.

2.5 Internal Instrumentation

The business process can also be instrumented by implementing instrumentation code within
the business process. The tradition example is a simple System.out.println statement injected
at the critical points of the application to get the data at the run-time to trace the point of
breakdown. This is a simple and effective means of managing an application in a single Java
Virtual Machine (JVM) environment. In a distributed environment, there should be a
replacement of System.out.println statement with a light-weight instrumentation code. The
instrumentation code should be able to manage and expose the manageable parameters.

Advantages of internal instrumentation are:

• To get deeper into the business process to pinpoint the exact point of vulnerability.
• The business process developer has full control of the manageability of the business

logic.
• The business process related data can be exposed with ease.

Though the above mentioned advantages look promising, improper instrumentation can have
adverse effect over the stability of the business process itself. Hence a managing strategy has
to be developed that relieves the developer of the instrumentation technique. The other
alternative could be automating the instrumentation code injection.

Aspectwerkz, an open source framework, is a management tool that injects the
instrumentation code at the run time and makes the business process manageable without
changing a single line of the business process. The architecture is based on Aspect-Oriented
Programming (AOP) methodology. Aspect-oriented programming allows the programmer to
inject pieces of functionality into existing code. The architecture is analyzed based on the
article by Ramachandran Krishnamurthy in O’Reilly OnJava.com.

 13

2.5.1 Features of Aspectwerkz

• Agent-Server Architecture

To reduce the overhead on the application that is being profiled, agent-server
architecture is used. The aspects* incorporate lightweight code that captures the timing
information and then transmits this information to a server which is expected to run on
a different machine on the network. The server parses this information and stores this
information in a MySQL database. Since all of the profiling information is in a
database, SQL can be queried to view the profiling data from different angles.

• Capturing CPU Time

The CPU time is a more accurate measure of the execution time of a method. The
CPU time is captured using the JVM Profiler Interface* (JVMPI).

• Capturing SQL Execution Time

Most J2EE applications are data-centric and typically persist data in relational
databases. A critical aspect of performance analysis of a J2EE application would
therefore rely on the timing information of the SQLs fired from the J2EE application.
The SQL execution time is captured by utilizing the P6Log* driver. This piece of
software acts as a layer between the J2EE connection pool and the actual JDBC driver
and captures the timing information of the SQLs fired. Aspects are applied to this
software to retrieve that information.

• Capturing the Sequence of Method Execution

The flow of information is captured using ThreadLocal variables. The ThreadLocal
variable holds a unique ID for each request, along with a sequence number that runs in
the order of the method execution. The limitation in this implementation is that the
sequence can be captured meaningfully only when all of the components that are to be
profiled are executed in the same JVM; i.e., there are no remote calls.

 14

Fgure 2: Architecture of Aspectwerkz

The figure 2 demonstrates the architecture of the Aspectwerkz. The demonstration includes a
business process that has servlet and EJB which follows the Data Access Object* (DAO)
pattern. The InstrumentJava advice measures the performance metrics of servlet, EJB and
DAO. The InstrumentJSQL measures the performance metrics of the SQL queries.

2.5.2 Analysis of Aspectwerkz

The Aspectwerkz helps in getting the performance metrics of the business process without the
necessity of change in code. This is a huge advantage when the need is just to measure the
performance of the business process. The aspects are the pieces of instrumentation code that
are injected into the compiled java code of the business process. Though this can be termed as
internal instrumentation, but the actual implementation of the management part stays out of
the business process. The point of injection of the instrumentation code is decided by the
administrator.

The Aspectwerkz concentrates more on the performance metrics and does not provide a
solution to monitor/manage business process related data. This data is very much needed to
study the stability of the business process. The business process related data normally are a

P6LOG

J
D
B
C

D
R
I
V
E
R

Servlet EJB DAO

Client

Web filter

StartRequest
Advice

InstrumentJava
Advice

InstrumentJSQL
Advice

J2EE Container

Aspectwerkz

Instrumentation
Server MySQL DB DataBase

 15

result of some complex transaction or a complex logic that involves more than one data
source. In this scenario, it is hard to pinpoint the point of failure or predict the point of failure.
Though the execution time of the SQL queries give some picture of the point of break down
but it is absolutely necessary to get the exact point of breakdown.

2.6 Best practices for Business Process management

The basic elements of application management include administration and monitoring of the
application infrastructure, as well as administration and monitoring of the applications
themselves. Not all enterprise J2EE deployments demand sophisticated application
management. The extent of the demand for effective application management will be driven
by the scale, maturity, and importance of applications to the enterprise. And as J2EE
deployments grow in these dimensions, good solutions to address the administration and
monitoring of the J2EE applications and infrastructure deployed by enterprise IT are being
deemed a priority. And application deployments that integrate well with the J2EE
management architecture will be more likely to be successful.

Beyond basic application management, business use of the applications in mission-critical
processes drives the demand for management functionality to support the business process
and decisions. Application and business-specific data needs to be monitored to ensure proper
response to changing conditions and dependencies across systems. The business needs may be
specific to the business, but the value of being able to expose and act on application and
business data is widely appreciated by business and IT managers. This ability to expose
application and business data for management requires internal instrumentation as discussed
earlier.

The diversity of applications and application infrastructures has always made application
management a challenge. Despite the best efforts of management vendors and others, there
have been many hurdles in delivering effective application management to meet the needs of
enterprise IT. A variety of management standards, technologies, and products have made
small dents in the problem, but without widespread success. Meanwhile, the awareness of and
business need for application management have been growing. The emergence of J2EE and
other standardized application infrastructures with standard component models and “managed
code” is in response to the strong need of enterprise IT for better control of application
infrastructure. However, J2EE tools currently offered by the J2EE vendors address only a part
of the application management problem.

An emerging management standard from the Java community is showing promise in directing
us to a solution for both the core application management and business management needs.
Java Management Extensions (JMX) is a standard being adopted by the Java industry to meet
many of the application management challenges. The powerful model adopted by JMX for
simpler instrumentation and integration with existing management standards makes it a good
way to bring together the elements needed to address the management problem. Though JMX
meets most of the requirements of management, it fails in case of clustered environment. A
detailed analysis on this issue is made in a later chapter. Hence another strategy with Java
Message Service (JMS) technology is also adapted to enable business-oriented management.

 16

3 Business Process management with Java Management
Extension (JMX)

Java Management Extension (JMX) API and the ManagedBean (MBean) can be harnessed to
monitor the “inside” of the BPs at runtime.

3.1 Java Management Extension (JMX)

JMX is about providing a standard for managing and monitoring all varieties of software and
hardware components from Java. Further, JMX aims to provide integration with the large
number of existing management standards. The architecture of JMX has three levels.

The level closest to the application or the resource is called the instrumentation level. This
level consists of four approaches for instrumenting application and system resources to be
manageable, as well as a model for sending and receiving notifications. The middle level of
the JMX architecture is called the agent level. This level contains a registry for handling
manageable resources as well as several agent services. The third level is called the
distributed services level. This level contains the middleware that connects JMX agents to
applications that manage them. The architecture can be described as shown in the figure 3.
The overview of the JMX technology that follows is based on “JMX in action” by
Benjamin.G.Sullins.

Figure3: JMX Architecture

Application

MBeanServer

MBean MBean…….

RMI Adapter HTTP Adapter SNMP Adapter

Server

RMI Manager HTTP Manager SNMP Manager

Instrumentation

Level

Agent Level

Distributed

Service
Level

Remote
Manager

 17

3.2 The Instrumentation Level

The instrumentation level defines the requirements for implementing JMX manageable
resources. A JMX manageable resource can be virtually anything, including applications,
service components, devices, and so on. The manageable resource exposes a Java object or
wrapper that describes its manageable features, which makes the resource instrumented so
that it can be managed by JMX-compliant applications. The user provides the instrumentation
of a given resource using one or more managed beans or MBeans. There are four varieties of
MBean implementations: standard, dynamic, model and open.

Each resource that is to be managed must provide a management interface, which consists of
the attributes and operations it exposes so that it can be monitored and controlled by a
management application. An MBean is an application or system resource that has been
instrumented to be manageable through JMX. The management interface of an MBean is
composed of the four following items:

o Public constructors
MBeans can be dynamically loaded into JMX agents. Agents do this using any of
the public constructors exposed by the MBean. Constructors are included in the
definition of the management interface because a particular constructor could
define specific behavior over the life of the MBean object. For instance, one
constructor may tell the MBean to log all of its actions, and another may make it
silent. Any way of altering the behavior of an MBean is included as part of its
management interface.

o Attributes
Attributes are the vital part of the management interface of an MBean. The
attributes describe the manageable interface. A manageable resource is some
application or resource exposed for management by an MBean.

o Operations
Operations correspond to the actions that can be initiated on the manageable
resource. Operations are methods like any other; they can have multiple
parameters and optionally return a value.

o Notifications
Notifications allow MBeans to communicate with registered listeners. In order to
emit notifications, an MBean must implement the
javax.management.NotificationBroadcaster interface. This interface provides
methods for sending notifications, as well as methods for other objects to register
as listeners on the implementing MBean.

 18

3.2.1 Standard MBean

JMX provide a set of patterns to follow when instrumenting application resources as Standard
MBeans. Standard MBeans are the simplest type of MBean to code from scratch. There are
three patterns that are to be followed when instrumenting a resource as a Standard MBean:

• The management interface of the resource must have the same name as the resource’s java

class, followed by ‘MBean’; it must be defined as a Java interface; and it must be
implemented by the resource to be managed using the implements keyword.

• The implementing class must contain at least one public constructor.
• Getters and setters for attributes on the management interface must follow strict naming

conventions.

The metadata required of every MBean is created automatically by the JMX infrastructure for
standard MBeans. Before an MBean can be managed, it must be registered with a JMX agent.
When a standard MBean is registered, it is inspected and metadata placeholder classes are
created and maintained by the JMX agent on behalf of the MBean. The Java reflection API is
used to discover the constructor on the MBean class, as well as other features. The attribute
and operation metadata comes from the MBean interface and is verified by the JMX agent.

A simple StandardMBean:

Public interface SampleMBean {

 Public long getPrintTime();
 Public void setPrintTime(long time);

 Public void resetTime(long old, long new);

}

The above snippet of code demonstrates a simple StandardMBean with attribute PrintTime of
type long and an operation resetTime. The resource that is being instrumented in the sample
code above is a printer. The implementation of this interface actually instruments the
resource.

3.2.2 Dynamic MBean

Standard MBeans are well suited for management interfaces that are relatively static.
However, if a management interface must be defined for an existing resource, is likely to
evolve over time, or for some other reason needs to be exposed at runtime, JMX provides an
interface that allows doing just that. The main reason to use dynamic MBeans is to more
easily instrument existing code that is written in a manner that conflicts with the standard
MBean design pattern as discussed in the section 3.2.1. The dynamic MBean interface is
determined not through introspection, but rather through a method call on the dynamic
MBean itself. This method, called getMBeanInfo(), returns information about the management
interface and is defined on the DynamicMBean interface; it is the portal through which a
management application views what has been exposed on the management interface of a
resource that has been instrumented as a dynamic MBean. This is demonstrated in figure 4. If
there is a change in the resource from version 1 to version 2, there is no need to change the
management interface.

 19

Figure 4: Dynamic MBean insulating an evolving implementation

An MBean feature is an attribute, constructor, operation, parameter or notification of an
MBean. Description of these features can also be provided that are visible to the management
application. The feature description is a brief explanation of what a particular feature means
when viewed from a management application. The feature’s name usually indicates what it
means, but this is not always the case.

As the dynamic MBean interface is exposed at runtime, rather than at compile time, the
management interface is exposed through metadata classes. If the management interface is
likely to change over time, dynamic MBeans offer a more flexible way to instrument a
resource. The management interface is not statically bound to a dynamic MBean. Rather, the
management interface is exposed dynamically. As such, it is conceivable that a dynamic
MBean could expose a different interface from one instance to the next by reading which
attributes and operations to expose from a configuration file.

When the MBean server is asked to register a dynamic MBean, no introspection is performed.
Dynamic MBeans use metadata classes to expose their management interfaces. They make
that metadata available through their management interface called DynamicMBean, which
must be implemented by all dynamic MBeans. The DynamicMBean interface is as follows:

Instrument
layer

Dynamic
MBean

Agent Layer

Protocol
Adapter

getAttribute

setAttribute

getAttributes

setAttributes

invoke

Distributed
Layer

Resource
version 1

Resource
version 2

 20

public interface DynamicMBean {
 public Object getAttribute(String attribute);
 public void setAttribute(Atribute attribute);
 public AttributeList getAttributes(String[] attrs);
 public AttributeList setAttributes(AttributeList attrs);
 Public Object invoke(String actionName, Object params[], String
sig[]);
 public MBeanInfo getMBeanInfo();
}

Essentially, the DynamicMBean interface provides a way for a management interface to do
four things:

• Dynamically discover the management interface exposed by the MBean
(getMBeanInfo()).

• Retrieve the value of one or more attributes on the management interface
(getAttribute() and getAttributes() respectively).

• Set the value of one or more attributes on the management interface (setAttribute() and
setAttributes() respectively).

• Invoke an operation on the management interface (invoke()).

Dynamic MBeans tell the MBean server that they are dynamic MBeans by exposing the
DynamicMBean interface, but it is the use of the dynamic MBean metadata classes that ties it
all together. There are six significant metadata classes:

• MBeanInfo
The top-level container of metadata; each MBean requires only one instance of this
class to completely describe its management interface. This class is a standard JMX
class containing classes that describe individual parts of the overall management
interface. MBeanInfo contains a metadata object for each of the parts that are
described as follows.

• MBeanAttributeInfo

 Each instance of this class provides information about a single attribute.

• MBeanParameterInfo
 Each instance of this class provides information about a single parameter.

• MBeanConstructorInfo
 Each instance of this class provides information about a single constructor and may ^
 contain one or more MBeanParameterInfo instances.

• MBeanOperationInfo
Each instance of this class provides information about a single operation and may
contain one or more MBeanParameterInfo instances.

• MBeanNotificationInfo

Each instance of this class contains information about a group of notifications emitted
by this MBean.

 21

Thus dynamic MBeans provide their management interface at runtime. This ability equips
dynamic MBean to manage evolving resources over time. Developers can easily adapt
dynamic MBean as their resources change.

3.2.3 Model MBean

Model MBeans are generic MBeans that can be instantiated in the MBean server and
configured by a user to manage any resource. The Model MBean’s main difference from the
Standard and Dynamic MBeans is that MBean class need not be developed, which means that
without writing any MBean code, the resources can be instrumented using a management tool
interfacing with a JMX agent. Other than instrumenting the resources, Model MBeans also
provide the following features:

• MBean Persistence
Model MBean has the ability to persist itself. By using its persistence mechanism, a
Model MBean can survive the cycling of the JMX agent that contains it.

• Notification logging

Model MBean has the ability to log each notification it emits. Using this mechanism,
an accurate record of all the notifications that are sent by a particular MBean can be
maintained.

• Attribute value caching

Model MBeans can cache attribute values. This improves performance. For instance, a
Model MBean can be configured to locally store the value of an attribute after it is first
acquired. The subsequent requests for this attribute can be satisfied with the local
copy. How often the cache is updated is determined by the caching policy associated
with the specific attribute and configured by the user.

• Operation delegation
Model MBean can have operations in its management interface that are invoked on
objects other than its managed resource. When exposing a particular method for
management, optional Object reference can be included in which to invoke the
operation. The delegation helps in exposing operations that may interact with more
than just single manageable resource.

• Generic notification
Model MBean also provides methods to send out generic, purely informational
notifications. In the model MBean implementation, there is a method that accepts a
String argument to be sent out as notification.

Model MBeans are Dynamic MBeans and so use metadata to describe the features of the
MBean. The UML diagram in figure 5 illustrates this.

 22

Figure 5: UML diagram of the ModelMBean interface

The ModelMBean provides the following two methods that initialize the MBean for outside
use:

• setManagedResource(Object resource, String resourceType)
This method sets the MBean’s managed object. The object is the reference in which
the operations will be invoked and attributes accessed. The resourceType parameter
tells the MBean what type of Object reference is being passed in. It can have the value
ObjectReference, Handle, IOR, EJBHandle or RMIRefernce.

• setModelMBeanInfo(ModelMBeanInfo info)
The ModelMBeanInfo parameter is the metadata object collection that describes the
management interface of this ModelMBean.

By extending DynamicMBean interface, all ModelMBeans are really DynamicMBeans. That
being so, a ModelMBean defines its management interface at runtime like any other
DynamicMBean. However, where DynamicMBeans are user-developed classes that construct
their own MBeanInfo objects to define their management interface, ModelMBeans are
standard JMX classes and must have their MBeanInfo created and placed inside them using
the setModelMBeanInfo method.

However, there is one significant difference, Model MBeans offer the instrumentation
developer a metadata class called Descriptor, which a collection of name/value pairs in which
the name is a String and value is an Object. This allows for a much richer set of metadata to
be exchanged with the agent level, other MBeans and management applications. When a
resource’s attributes are accessed or changed, or when an operation is invoked, the
mechanism used by Model MBeans is callback. When the metadata for an MBean feature is
created, a reference to the instance of the resource is stored with the metadata, along with the
name of the attribute getter/setter or operation. When a management application manages the
MBean, it simply uses this information to call back into the resource.

+getMBeanInfo():MBeanInfo
+getAttribute(attribute:String):Object
+getAttributes(attributes:String[]):AttributeList
+setAttribute(attribute:Attribute):void
+setAttributes(attributes:AttributeList):AttributeList
+invoke(actionName:String,params:String[],signature:Stri
ng[]):Object

<<interface>>
DynamicMBean

+load():void
+store():void

<<interface>>
PersistentMBean

+setModelMBeanInfo(mbi:MBeanInfo):void
+setManagedResource(mr:Object,mrtype:String):void

<<interface>>
ModelMBean

 23

The resources that are instrumented using Model MBeans do not require any code changes.
This is a significant advantage when instrumenting existing application or third-party
resources that provide a well-defined API. Unlike Standard or Dynamic MBeans, the resource
itself does not have to implement anything to be perfectly compliant JMX resource. All that is
required is that somewhere in the code execution stream there must be a code that creates the
necessary Descriptor and other metadata classes to instrument the resource. A logical place
for this code is the resource itself, but JMX does not require this.

3.2.4 Open MBean

Open MBeans are used to instrument resources whose attributes are more complex than the
fundamental types and whose operations take complex parameters. The key to this more open
means to instrumentation lies in the set of data types defined by the JMX specification called
Open MBeans. By using Open MBeans, application resources of any type can be
instrumented and make the available to any agent or management application that does not
have access to the bytecode for either the resource, attribute or operation parameter. The agent
or management application can even be a non-java program.

3.3 Agent level

The main component of the agent layer is the MBean server. An MBean server is a java
object that acts as a registry for MBeans; it is the heart of a JMX agent. The agent layer
provides access to managed resources from the management application. A JMX agent can
run in a JVM embedded in the machine that hosts the resources, or it can be remotely located.
The agent does not require knowledge of the resources that it exposes or the manager
application that uses the exposed MBeans. It acts as a service for handling MBeans and
allows manipulation of MBeans through a collection of protocols exposed via connectors or
adapters. The core component of a JMX agent is the MBean server, a managed object server
in which MBeans are registered. A JMX agent also includes a set of services to manage
MBeans, and at least one communications adaptor or connector to allow access by a
management application.

3.3.1 MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed
through an instance of the javax.management.MbeanServer. An MBeanServer is a registry for
Mbeans that makes the MBean management interface available for use by management
application. The Mbean never directly exposes the MBean object itself; rather, its
management interface is exposed through metadata and operations available in the
MBeanServer interface. This provides a loose coupling between management applications and
the Mbeans they manage.

Mbeans can be instantiated and registered with the MbeanServer by the following:

• Another MBean.
• The agent itself.
• A remote management application.

 24

The javax.management.MBeanServerFactory interface implementation should create or give
an existing MBeanServer. MBeanServer implementation can be used to locate an MBean or
register a new MBean. When an MBean is registered, it must be given an unique
ObjectName. The ObjectName then becomes the unique handle by which management
applications identify the object to perform management operation. ObjectName represents the
object name of an MBean, or a pattern that can match the names of several MBeans. Instances
of this class are immutable. An ObjectName consists of two parts, the domain and the key
properties. The pattern will look like this:

domain: key1 = value1 , key2 = value2…

The operations available through the MBeanServer include the following:

• Discovering the management interface of MBeans
• Reading and writing attribute values
• Invoking operations defined by MBeans
• Registering for notification events
• Querying Mbeans based on their object name or their attribute values

The JMX agents support a query mechanism that can build and execute complex queries.
Queries are submitted to a JMX agent for the purpose if retrieving a set of ObjectInstance
objects. In essence, a query identifies all the Mbeans that conform to the rules of a given
query. The two methods, queryNames() and queryMBeans(), both accept an ObjectName
instance and a QueryExp instance. The ObjectName instance defines the scope of the query,
and the QueryExp instance defines the constructed query expression. The queryMBeans
method returns a set of ObjectInstance objects. The ObjectInstance class constains the
ObjectName of an MBean and the MBean’s defining class type. The queryNames method
only returns a set of ObjectNames of MBeans. Both the methods execute the query in the
same manner; only their return type differs.

3.4 Distributed services level

The general purpose of this level is to define the interfaces required for implementing JMX
management applications or managers. The following points highlight the intended
functionality of the distributed services level:

• Provides an interface for management applications to interact transparently with an
agent and its JMX manageable resources through a connector.

• Exposes a management view of a JMX agent and its MBeans by mapping their

semantic meaning into constructs of a data-rich protocol.

• Distributes management information from high-level management platforms to
numerous JMX agents

• Consolidates management information coming from numerous JMX agents into

logical views that are relavant to the end user’s business operations

• Provides security.

 25

It is intended that the distributed services level components will allow for cooperative
management of networks of agents and their resources. These components can be expanded to
provide a complete management application.

Protocol adaptors and connectors are the prime components of the distributed service level.
These components are required to access the MBeanServer from outside the agent’s JVM.
Each adaptor provides a view via its protocol of all Mbeans registered in the MBeanServer the
adaptor connects to. An example adaptor is an HTML adaptor that allows for the display of
MBeans using a web browser.

Protocol adapters and connectors are very similar in that they serve the same overall purpose:
to open a JMX agent to managing entities. The difference between them is how they go about
it. Protocol adapters generally must listen for incoming messages that are constructed in a
particular protocol like HTTP or SNMP. In this sense, protocol adapters are made up of only
one component that resides in the agent at all times. Connectors, on the other hand, are made
up of two components: one component resides in the JMX agent, and the other is used by
client-side applications. Clients use the client-side connector component to contact the server-
side component and communicate with a JMX agent. In this manner, connectors hide the
actual protocol being used to contact the agent; the entire process happens between the
connector’s two components.

3.5 Notification Model

A notification in the context of JMX is a unit of information sent by a broadcaster through the
JMX infrastructure to a listener, which interprets and processes the notification. A notification
contains, at a minimum, the notification type, that uniquely identifies the notification), an
Object reference to the notification broadcaster, and a sequence number, that uniquely
identifies a particular occurrence of a specific notification type. Other optional information
that can be sent in a notification includes a time stamp, a human-readable text message, and a
reference to an object that permits additional processing of the notification to occur. The type
of this object must be agreed upon by the listener and the implementation of the broadcaster.

The main components in the Notification model include

• Notification Broadcaster
• Notification
• Notification Listener
• Notification Filter

3.5.1 Notification Broadcaster

A notification broacaster is an Mbean that implements the
javax.management.NotificationBroadcaster interface. The interface contains methods for
adding and removing listeners. The methods allow objects to register as listeners for the
notifications an MBean can emit. Listeners provide a callback method that broadcasts invoke
in order to deliver a notification. The method addNotificationListener takes three arguments
namely: NotificationListener, NotificationFilter and an Object. The first two are discussed
later in this chapter. The last argument is an Object which is an handback. This value is sent

 26

back to the listener when a notification is delivered and should never be modified by the
broadcaster. The handback object can be used to provide a broadcast with a context for the
listener

The method getNotificationInfo returns an array of objects of type MbeanNotificationInfo.
MbeanNotificationInfo isa member of the set of metadata objects used to describe the
management interface of an MBean. It is used here separately to ensure that broadcasters
provide information about the types of notification they emit.

Figure 6: UML diagram of the NotificationListener

The other way to implement the notificationBroadcaster interface is to extend the
javax.management.NotificationBroadcasterSupport class. By extending this class, one can
inherit the implementation of the NotificationBroadcaster interface. In addition,
NotificationBroadcasterSupport class provides an extra method called sendNotification. The
method sendNotification provides mechanism for sending a Notification object to the
registered listener. This method attempts to send its notification arguments to each registered
listeners after first applying that listener’s filter object. If the filter indicates that the listener
should receive that notification, then it is sent.

3.5.2 Notification

JMX provides a standard notification class, javax.management.Notification. This class
extends java.util.EventObject and is used as a super class for other notification class. The
Notification class contains six member variables that are all accessible through getter
methods. This class has several different constructors, each providing a different set of
initialization arguments for these class members.

+addNotificationListener(
 listener:NotificationListener,
 filter:NotificationFilter
 handback:Object):void
+getNotificationInfo():MBeanNotificationInfo[]
+removeNotificationListener(
 listener:NotificationListener):void

<<interface>>
NotificationBroadcaster

java.lang.Object

 27

The class members of the Notification class are:

• Message
A String object representing a message.

• SequenceNumber
A number indicating the order in relation of events from the source. The source
populates thie field if it intends to give the listeners the ability to sort incoming
notifications. The notification model makes no guaranties that notifications will be
received in the order they were sent.

• TimeStamp
The timestamp of the notification, represented as a long value.

• Type
The dot-separated String value indicating the type of the notification.

• UserData
An object used to contain any data that a source wants to send to a notification
listener.

• Source
The source of the notification. This object contains an ObjectName or a reference to
the object that generated the notification.

3.5.3 Notification Listener

The objects that are interested in receiving notifications must implement the
javax.management.NotificationListener interface. The interface contains a single method:
handleNotification. It takes two arguments: an instance of Notification and an instance of
Object. Notification broadcasters invoke this method when they are ready to deliver a
notification to the listener. The instance of Notification is the notification being sent,and the
Object instance is the handback object registered by the listener. The method
handleNotification of the listeners will be called by the broadcasters to which it is registered
when a notification is emited.

 28

Figure 7: UML diagram of the NotificationListener interface

3.5.4 Notification Filter

The only component remaining is the notification filter. Because MBeans can emit an infinite
number of notification types, listeners can use a filter to ensure they receive only the specific
notification types in which they are interested. A notification filter give notification listeners a
way to sort through a potential barrage of notifications to receive only those notifications that
are important to them. To be more accurate, notification broadcasters use a registered
listener’s filter to determine whether to send a notification to a listener.

The NotificationFilter interface declares only one method: isNotificationEnabled. This
method accepts a Notification object that is about to be sent and returns a boolean value
indicating whether a listener associated with this filter wants to receive the notification.

3.6 Architecture of the Monitor

This architecture is based completely on JMX. The design goals of the architecture are

1. The logging part at the business process should be as simple as possible. This
should not make the business process development complicated.

2. The logging service that includes the strategy to publish information should be
hidden from the business process developer.

3. The logging service should not affect the performance of the business process.
4. The architecture should provide space for the administrator to stop the logging

service or set filter to the logging service at the business process level to stop it
from publishing the information.

5. The monitor should also have the provision to set filter and see in the information
that the administrator wants to see.

The messaging system is bases on the Notification model of the JMX. Figure 8 describes the
architecture.

+handleNotification(
 notification:Notification,
 handback:Object):void

<<interface>>
NotificationListener

java.lang.Object

 29

Figure 8: Architecture of the monitor based on JMX

3.6.1 Logging Service

Logging service abstracts the implementation details from the business process. First task of
the logging service is to obtain an instance of the MBeanBroadcaster. At the time of
deployment, the broadcaster MBean is registered to the MbeanServer. For a given application
server, there will be only one MbeanServer instance. MbeanServer is a singleton. The logging
service should get an instance of the MbeanServer from the local application server, that is,
the server in which the business process is deployed. Obtaining an instance of MBeanServer is
application server specific. For instance, in JBoss,

MBeanServer server = (MBeanServer)
org.jboss.mx.util.MBeanServerLocator.locateJBoss();

To make the architecture application server independent, Java 2 Platform, Enterprise Edition
Management Specification (JSR-77) is used. The goal of JSR77 is to abstract the fundamental
manageable aspects of the J2EE architecture to provide a well defined model for
implementing instrumentation and information access. In addition, this specification defines a
standardized API for interoperating with J2EE components that participate in the monitoring
and control of the platform’s resources. The details of JSR-77 are discussed in the later
chapter.

The J2EE Management EJB component (MEJB) provides interoperable access to the J2EE
Management Model from any J2EE component on all platforms that implement the J2EE
Management specification. The MEJB component incorporates the Java Management
Extensions (JMX) API, a standard framework for Java object instrumentation. The MEJB

BP (J2EE Component)

 Logging
Service

Notification
Broadcaster

Invoke log operation

Monitor

Filter

Notification
Listener

Send
Notification

ServerStandardMBean

 JMX
Implementation

NotificationFilter

 30

component exposes the managed objects on any J2EE platform as JMX manageable resources
as defined by the Java Management Extensions Instrumentation and Agent Specification
(JSR003). The MEJB component provides local and remote access of the platform’s
manageable resources through the EJB interoperability protocol.

The business process, an EJB or servlet component, creates an instance of the logging service.
For each bean, there should be only one instance of logging service. This insures that the bean
does not make multiple requests to get a home instance of the MEJB. Lazy initialization of the
logging service will make sure that there is only one instance of logging service, in particular
one instance of the MEJB. The following code snippet shows how the logging service should
be incorporated in an EJB:

protected LoggingService getLoggingService() throws Exception {
if (loggingService == null) {

loggingService = new
LoggingService(getServiceLocator(),”SERVICE_NAME”);

}
return loggingService;

}

The logging service adheres to the service locator pattern as described by Deepak Alur et al in
Core J2EE Patterns.

Service Locator object is created to abstract all JNDI usage and to hide the complexities of
initial context creation. Multiple clients can reuse the Service Locator object to reduce code
complexity, provide a single point of control and improve performance by providing a
caching facility. So this pattern provides a mechanism to abstract all dependencies and
network details into the Service Locator.

The main functionality of the Service Locator in this context is to make sure that for a given
LoggingService there is only one instance of the MBeanServer instance of an application
server instance. An MBeanServer instance can be obtained through a Remote Method
Connection (RMI) or through some proprietary connectors. All the management interfaces are
obtained through the MBeanServer that is got through the Service Locator. The service
locator pattern is described through Sequence diagram in the figure 9. In the figure the client
is the instance that gets an access to the MBeanServer. The client in the context of this
architecture is the LoggingService.

 31

Figure 9: Sequence diagram for Service Locator for JMX implementation

The logging service constructor will make the necessary JNDI lookups through the service
locator pattern to get the home interface of the MEJB.

public LoggingService (ServiceLocator sl, String serviceName) {
// necessary initialization
mHome
=(ManagementHome)serviceLocator.getRemoteHome("/ejb/mgmt/
MEJB", ManagementHome.class);
mejb = mHome.create();
name = new ObjectName(“ObjectNameOfTheBroadcaster”);

}

The log method implementation invokes a method in the MBean which in turn broadcasts the
information to the registered listeners. The log method packs all the arguments in a class and
sends as argument to the log method of the broadcaster MBean.

3.6.2 StandardMBean interface

The MBean is the heart of the business process management architecture. The MBean expose
the information that is passed on from the business process. The resource or the application
that the MBean instruments in this case is the business process itself. The main purpose of the
MBean is to notify all the log information from the business process to all the listeners that
are registered themselves to this MBean to receive all the notifications. The StandardMBean
interface looks as shown in the code snippet that follows:

Public interface LoggerMBean extends NotificationBroadcaster {
 public void log(Object obj);
}

 32

3.6.3 Notification Broadcaster

Notification broadcaster is basically a StandardMBean that implements the
NotificationBroadcaster interface. An instance of Notification class should be created based
on the log information from the BP.

Notification notif = new Notification(LogRecord.getClass().getName(),
this, -1);
notif.setUserData(record);

An instance of Notification is what basically broadcast to the listeners that are registered with
the broadcaster. The listeners could register with the broadcaster through the method
addNotificationListener which accepts two main parameters: NotificationListener and
NotificationFilter. The log method of the broadcaster will implement a method
sendNotification that sends the Notification instance to all its listeners.

Public void log(LogRecord record) {

 //create an instance of Notification - notif
 sendNotification(notif);
 }

The implementation of sendNotification should also check the NotificationFilter instance
before broadcasting the information to the registered listeners.

3.6.4 Notification Listener

The notification listener is close to the monitor. The listener should implement the
NotificationListener interface. The handleNotification is called each time broadcast is made.
The handleNotification recives the Notification instance which actually is a wrapper class of
the information that is to be logged. The handleNotication method implementation should
retrieve the necessary information from the Notification object. The information thus retrieved
is then produced on the management console.

 33

4. Business process management with Java Message
Service (JMS)

Enterprise Java Beans and Servlets are key parts of Java applications because they define the
business logic that manages each business process component. Managing a business process
will mean monitoring the EJBs or Servlets. This can be achieved by publishing the
information at each critical point. One way of achieving this is through Java Message Service
(JMS) developed by Sun Microsystems.

4.1 Java Message Service (JMS)

Messaging is a method of communication between software components or applications. A
messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that
provides facilities for creating, sending, receiving, and reading messages. The following
overview of the JMS technology is based on the tutorial from Sun Microsystems.

Messaging enables distributed communication that is loosely coupled. A component sends a
message to a destination, and the recipient can retrieve the message from the destination.
However, the sender and the receiver do not have to be available at the same time in order to
communicate. In fact, the sender does not need to know anything about the receiver; nor does
the receiver need to know anything about the sender. The sender and the receiver need to
know only what message format and what destination to use. In this respect, messaging
differs from tightly coupled technologies, such as Remote Method Invocation (RMI), which
require an application to know a remote application's methods.

Enterprise messaging products are becoming an essential component for integrating intra-
company operations. They allow separate business components to be combined into a reliable,
yet flexible, system. In addition to the traditional Message Oriented Middleware (MOM)
vendors, enterprise messaging products are also provided by several database vendors and a
number of internet related companies. Java language clients and Java language middle tier
services must be capable of using these messaging systems. JMS provides a common way for
Java language programs to access these systems. JMS is a set of interfaces and associated
semantics that define how a JMS client accesses the facilities of an enterprise messaging
product. It attempts to minimize the set of concepts a Java language programmer must learn to
use enterprise messaging products. It strives to maximize the portability of messaging
applications.

The JMS API enables communication that is not only loosely coupled but also

• Asynchronous: A JMS provider can deliver messages to a client as they arrive;
a client does not have to request messages in order to receive them.

• Reliable: The JMS API can ensure that a message is delivered once and only
once. Lower levels of reliability are available for applications that can afford to
miss messages or to receive duplicate messages.

 34

At the 1.2 release of the J2EE platform, a service provider based on J2EE technology was
required to provide the JMS API interfaces but was not required to implement them. Now,
with the 1.3 release of the J2EE platform, the JMS API is an integral part of the platform, and
application developers can use messaging with components using J2EE APIs.

The JMS API in the J2EE 1.3 platform has the following features.

• Application clients, Enterprise JavaBeans (EJB) components, and Web
components can send or synchronously receive a JMS message. Application
clients can in addition receive JMS messages asynchronously. (Applets,
however, are not required to support the JMS API.)

• A new kind of enterprise bean, the message-driven bean, enables the
asynchronous consumption of messages. A JMS provider may optionally
implement concurrent processing of messages by message-driven beans.

• Message sends and receives can participate in distributed transactions.

4.1.1 JMS API Architecture

A JMS application is composed of the following parts.

• A JMS provider is a messaging system that implements the JMS interfaces and
provides administrative and control features. An implementation of the J2EE
platform at release 1.3 includes a JMS provider.

• JMS clients are the programs or components, written in the Java programming
language, that produce and consume messages.

• Messages are the objects that communicate information between JMS clients.
• Administered objects are preconfigured JMS objects created by an

administrator for the use of clients.
• Native clients are programs that use a messaging product's native client API

instead of the JMS API. An application first created before the JMS API
became available and subsequently modified is likely to include both JMS and
native clients.

Administrative tools allow you to bind destinations and connection factories into a Java
Naming and Directory Interface (JNDI) API namespace. A JMS client can then look up the
administered objects in the namespace and then establish a logical connection to the same
objects through the JMS provider.

 35

Figure 10: JMS API architecture

4.2 Messaging Domains

4.2.1 Point-to-Point Messaging Domain

A point-to-point (PTP) product or application is built around the concept of message queues,
senders, and receivers. Each message is addressed to a specific queue, and receiving clients
extract messages from the queue(s) established to hold their messages. Queues retain all
messages sent to them until the messages are consumed or until the messages expire.

PTP messaging has the following characteristics

• Each message has only one consumer.
• A sender and a receiver of a message have no timing dependencies. The

receiver can fetch the message whether or not it was running when the client
sent the message.

• The receiver acknowledges the successful processing of a message.

Figure 11: Point-to-Point messaging

 36

4.2.2 Publish/Subscribe Messaging Domain

In a publish/subscribe product or application, clients address messages to a topic. Publishers
and subscribers are generally anonymous and may dynamically publish or subscribe to the
content hierarchy. The system takes care of distributing the messages arriving from a topic's
multiple publishers to its multiple subscribers. Topics retain messages only as long as it takes
to distribute them to current subscribers.

Pub/sub messaging has the following characteristics.

• Each message may have multiple consumers.
• Publishers and subscribers have a timing dependency. A client that subscribes

to a topic can consume only messages published after the client has created a
subscription, and the subscriber must continue to be active in order for it to
consume messages.

The JMS API relaxes this timing dependency to some extent by allowing clients to create
durable subscriptions. Durable subscriptions can receive messages sent while the subscribers
are not active. Durable subscriptions provide the flexibility and reliability of queues but still
allow clients to send messages to many recipients.

Figure 12: Publish/Subscribe Messaging Domain

4.3 Message consumption

Messaging products are inherently asynchronous in that no fundamental timing dependency
exists between the production and the consumption of a message. However, the JMS
Specification uses this term in a more precise sense. Messages can be consumed in either of
two ways:

 37

• Synchronously: A subscriber or a receiver explicitly fetches the message from
the destination by calling the receive method. The receive method can block
until a message arrives or can time out if a message does not arrive within a
specified time limit.

• Asynchronously: A client can register a message listener with a consumer. A
message listener is similar to an event listener. Whenever a message arrives at
the destination, the JMS provider delivers the message by calling the listener's
onMessage method, which acts on the contents of the message.

4.4 JMS API model
The basic building blocks of a JMS application consist of

• Administered objects
• Sessions
• Message producers
• Message consumers

• Administered objects

It is expected that JMS providers will differ significantly in their underlying
messaging technology. It is also expected there will be major differences in how a
provider’s system is installed and administered. If JMS clients are to be portable, they
must be isolated from these proprietary aspects of a provider. This is done by defining
JMS administered objects that are created and customized by a provider’s
administrator and later used by clients. The client uses them through JMS interfaces
that are portable. The administrator creates them using provider-specific facilities.

There are two types of JMS administered objects:

• ConnectionFactory - This is the object a client uses to create a connection with

a provider. This is denoted as CF in figure 1. The following code snippet
shows how the connection is created:

For pub/sub form:

TopicConnectionFactory topicConnectionFactory =
(TopicConnectionFactory) ctx.lookup("jndiName");

TopicConnection topicConnection =
topicConnectionFactory.createTopicConnection();

 For Point-To-Point form:

 QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) ctx.lookup("jndiName");

 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection();

 38

• Destination - This is the object a client uses to specify the destination of
messages it is sending and the source of messages it receives. This is denoted
as D in figure 1. In the PTP messaging domain, destinations are called queues.
In the pub/sub messaging domain, destinations are called topics. In addition to
looking up a connection factory, a destination should also be looked up.

For PTP form:

Queue myQueue = (Queue) ctx.lookup("jndiName");

For pub/sub form:

 Topic myTopic = (Topic) ctx.lookup("jndiName");

Administered objects are placed in a JNDI namespace by an administrator.

• Sessions

A session is a single-threaded context for producing and consuming messages.
Sessions can be used to create message producers, message consumers, and messages.
A session also provides a transactional context with which to group a set of sends and
receives into an atomic unit of work.

Sessions, like connections, come in two forms, implementing either the QueueSession
or the TopicSession interface. Following code snippets show how a Session is created:

For PTP form:

 QueueSession queueSession =
 queueConnection.createQueueSession(true, 0);

For pub/sub form:

TopicSession topicSession =
topicConnection.createTopicSession(false, 0);

The first argument denotes the transactional; the second denotes whether the message
should be acknowledged automatically or not and related issues.

• Message producers

A message producer is an object created by a session and is used for sending messages
to a destination. The Point-To-Point (PTP) form of a message producer implements the
QueueSender interface. The pub/sub form implements the TopicPublisher interface.
QueueSession is used to create a sender for the queue, and TopicSession is used to
create a publisher for the Topic:

 QueueSender queueSender = queueSession.createSender(myQueue);

TopicPublisher topicPublisher =
topicSession.createPublisher(myTopic);

 39

• Message

The ultimate purpose of a JMS application is to produce and to consume messages
that can then be used by other software applications. JMS messages have a basic
format that is simple but highly flexible, allowing you to create messages that
match formats used by non-JMS applications on heterogeneous platforms.

 A JMS message has three parts:

• Header - A JMS message header contains a number of predefined fields that
contain values that both clients and providers use to identify and to route
messages.

• Properties – Properties can be set for the message in addition to the content.
Properties can be used to provide compatibility with other messaging systems
and it can also be used as filter parameters.

• Body – The body is the payload or the content that should be communicated.

Once a message is created with the description, the message is to be sent through the
message producer which is shown as follows:

queueSender.send(message);

 topicPublisher.publish(message);

• Message consumer

A message consumer is an object created by a session and is used for receiving messages
sent to a destination. A message consumer allows a JMS client to register interest in a
destination with a JMS provider. The JMS provider manages the delivery of messages
from a destination to the registered consumers of the destination. The PTP form of
message consumer implements the QueueReceiver interface. The pub/sub form
implements the TopicSubscriber interface.

 QueueReceiver queueReceiver = queueSession.createReceiver(myQueue);

TopicSubscriber topicSubscriber =
topicSession.createSubscriber(myTopic);

 The message could be received synchronously or asynchronously.

o Synchronous
With either a QueueReceiver or a TopicSubscriber, receive method is used
to consume a message synchronously.

queueConnection.start();
Message m = queueReceiver.receive();

o Asynchronous
A message listener is an object that acts as an asynchronous event handler for
messages. This object implements the MessageListener interface, which contains
one method, onMessage. The message listener is registered with a specific
QueueReceiver or TopicSubscriber by using the setMessageListener method. The
following code demonstrates the registration of JmsListener class which implements
MessageListener:

 40

JmsListener jmsListener = new JmsListener();

topicSubscriber.setMessageListener(jmsListener);

And

 queueReceiver. setMessageListener(jmsListener);

Once message delivery begins, the message consumer automatically calls the
message listener's onMessage method whenever a message is delivered. The
onMessage method takes one argument of type Message. A message listener is not
specific to a particular destination type. The same listener can obtain messages from
either a queue or a topic, depending on whether the listener is set by a QueueReceiver
or a TopicSubscriber object. A message listener does, however, usually expect a
specific message type and format. Moreover, if it needs to reply to messages, a
message listener must either assume a particular destination type or obtain the
destination type of the message and create a producer for that destination type.

4.4.1 Message selectors

Message selectors allow a message consumer to specify the messages it is interested in.
Message selectors assign the work of filtering messages to the JMS provider rather than to the
application. A message selector is a String that contains an expression. The syntax of the
expression is based on a subset of the SQL92 conditional expression syntax. The
createReceiver, createSubscriber, and createDurableSubscriber methods each have a form
that allows specifying a message selector as an argument when a message consumer is
created. The message consumer then receives only messages whose headers and properties
match the selector. A message selector cannot select messages on the basis of the content of
the message body.

4.5 Architecture of the Monitor

The main design goal of the architecture should be to provide maximum information without
degrading the performance. The following points should be noted:

1. The logging part at the business process should be as simple as possible. This should
not make the business process development complicated.

2. The logging service that includes the strategy to publish information should be hidden
from the business process developer.

3. The logging service should not affect the performance of the business process.
4. The architecture should provide space for the administrator to stop the logging service

or set filter to the logging service at the business process level to stop it from
publishing the information.

5. The monitor should also have the provision to set filter and see in the information that
the administrator wants to see.

The following figure details the strategy to publish the information:

 41

Figure 13: Architecture of the monitor

4.5.1 Logging service

The logging service is the liaison between the business process and the JMS queue/topic or
any other means that may be used for publishing the information. The underlying technology
is hidden from the business process. The business process, in our case the EJB, creates an
instance of the logging service. For each bean, there should be only one instance of logging
service. This insures that the bean does not make multiple connections to the JMS
queue/topic. Establishing a connection to JMS is expensive and should be handled properly.
Lazy initialisation of the logging service will make sure that there is only one instance of
logging service, in particular one connection to the JMS queue/topic. The following code
snippet shows how the logging service should be incorporated in an EJB:

protected LoggingService getLoggingService() throws Exception {
if (loggingService == null) {

loggingService = new
LoggingService(getServiceLocator(),”SERVICE_NAME”);

}
return loggingService;

}

The logging service adheres to the service locator pattern as described by Deepak Alur et al in
Core J2EE Patterns.

BP (J2EE Component)

Logging
Service

JMS
Topic

Publish

Subscribe

Monitor

Filter

MessageListener

 JMX
Implementation

 JMS
implementataion

Server

 42

J2EE clients interact with service components, such as EJB and JMS components, which
provide business services and persistence capabilities. All J2EE application clients use JNDI
common facility to look up and create JMS components. For JMS applications, the
administered object can be a JMS ConnectionFactory for a Queue/Topic or a JMS Destination
which could be a Queue/Topic. Locating a JNDI-administered service object is common to all
clients that need to access that service object. That being the case, it is easy to see that many
types of clients repeatedly use the JNDI service, and the JNDI code appears multiple times
across these clients. This results in unnecessary duplication of code in the clients that need to
look up services. Moreover, creating a JNDI initial context object and performing a lookup on
a JMS ConnectionFactory/Destination object utilizes significant resources. If multiple clients
repeatedly require the same object, such duplication effort can negatively impact application
performance.

• Service Locator for JMS Topic

The service locator looks up the TopicConnectionFactory object using its JNDI name. The
TopicConnectionFactory is cached by the service locator for future use. This avoids repeated
JNDI calls to look it up when needed again. The client can then use it to create a
TopicConnection. The class diagram for this strategy is shown in figure 14.

Figure 14: Sequence diagram for Service Locator for JMS implementation

 43

The logging service constructor will make the necessary JNDI lookups through the service
locator pattern to get the TopicConnectionFactory and the Topic objects.

public LoggingService (ServiceLocator sl, String serviceName)
throws Exception {

// necessary initialization
topicConnectionFactory =
serviceLocator.getEnvTopicConnectionFactory(“NAME_TCF”);
topic = serviceLocator.getEnvTopic(“NAME_TOPIC”);

}

Now having got the instances that are necessary to initiate the connection and publish the
information, the EJB component can publish the information through log method of
LoggingService. The log method publishes the information on to the queue based on the filter
parameter set both at the monitor end and the server end.

4.5.2 JMS Topic

As the business processes are real time applications, they should be monitored as and when
there is a call to the business process. Topic is more suitable for this situation than a Queue.
The Queue will hold the information until the point when the monitor consumes the
information. This will be huge waste of resource considering the volume of clients that may
be accessing the EJB that publishes the information. There may also be more than one
monitor who might be interested in the functioning of the business process. Hence Topic will
be more appropriate for this strategy.

4.5.3 Filter

The filter has to be designed both at the server end and at the client (monitor) end.

• Server

This is discussed in detail in the later chapter. The basic idea to have the filter to is to improve
or not to hinder with the performance of the business process when the business process is not
monitored. The filter is designed using Java Management Extension (JMX).

• Client

The client should have a filter option to better analyze the business process. There may be
case where the administrator might be interested at the business process that throws Exception
at the logic level or might be interested at one particular user who uses the business process.
Considering the volume of information that can be retrieved from the Topic, which is
proportional to the volume of clients that access the business process, the filter should be set
at the Topic rather than at the client. This brings down the amount of communication traffic
between the client and the Topic. The message selector, which is described earlier, is used for
this strategy. The filter parameters are set at the properties of the message. Following snippet
shows the filter parameters representing the Level of the business process, the name of the
process and the user who has accessed the process and finally the payload which is the
business object itself:

 message.setIntProperty("level", record.getLevel());
 message.setStringProperty("service", record.getServiceName());
 message.setStringProperty("user", record.getUser());

 44

 message.setStringProperty("message”, record.getMessage());
 message.setObject(record);

At the monitor end, a query is built based on the needs of the administrator before retrieving
the information. The following code snippets demonstrate the usage of the message selector:

String selector = “level = SEVERE and service = BankAccountEntity”;
topicSession = topicConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

 subscriber = topicSession.createSubscriber(topic, selector, true);

The above piece of code broadcasts only the BankAccountEntity business
record that has SEVERE level which is described by the message property to
the subscriber.

4.5.4 Monitor

Monitor is the client who subscribes to the Topic to retrieve the information.
LoggingServiceConsumer object is the mediator between the client and the MessageListener.
This LoggingServiceConsumer also provides the provision to add as many Handlers as
needed which can process/log the information from the Topic. The Handlers may use a rich
Graphic User (GUI) interface or log the information to a file. With the ground structure of the
monitor, new handlers can be just added to the LoggingServiceConsumer without changing
the existing code. This is detailed in the sequence diagram as shown in the figure 15.

Figure 15: Sequence diagram of the monitor

 45

The figure 16 shows the information that is retrieved from the Topic with the Handler that
displays the result in a rich GUI. The information is monitored for the service
‘CountryEntity’. The message field shows the sequence of events that happen when the
CountryEntity service is called. The last field shows an Exception which is of Level Severe.
The business object of the particular service can also be viewed by double clicking on the
service row which is shown in the figure 17.

Figure 16: GUI of the Monitor

 46

Figure 17: Business Object view for the selected Service

4.6 LoggingService incorporated in Business Process

The business process may contain one or many EJB or Servlet components. The components
are made “manageable” by using simple calls to the LoggingService interface whose
implementation is completely hidden from the BP. The following code demonstrates the
simple EJB that is made manageable:

Public SampleBean extends EJBOject {

//logging the information at the point when an instance of a
//bean is created

Public Object ejbCreate() {
//just a string object is logged in this case. But user defined
//information can also be logged
 getLoggingService().log(“Instance Created”);
}

Public void businessMethod() {
//the name of the method and the timestamp is logged
 getLoggingService().log(“Start of businessMethos”,
timestamp);
 //actual business logic starts

…
…
//business logic ends
//information is logged
getLoggingService().log(“end of businessMethos”,

timestamp);

}

 //LoggingService is a singleton for a given instance of a Bean
 Public LoggingService getLoggingServce() {
 if (loggingService == null)
 loggingService = new LoggingServiceImpl();
 return loggingService;

}
}

 47

5 Performance analysis

The management models implemented with JMX/JMS are in the production phase. The J2EE
applications are internally implemented. The management implementation is a performance
overhead when the application is not monitored. Hence there is a strong need to turn off the
management process when not needed without halting any business process or redeployment
of the business process. The management architecture should implement a filter which
enables the administrator to turn on/off the monitoring process to improve the performance.

5.1 Filter options

The filter options can be set at a point that is common to both the management console and
the management implementation. There are various options to implement the “common
point”. But as this closely related to the business process itself, it is necessary to choose the
best option that would perform better requiring lesser resource to manipulate.

5.1.1 Database

The easiest to implement the “turn off/on” mechanism is through a database. The database
here is the only point where the administrator has control over the management process. The
simple filter console can be incorporated in the management console. The filter parameters
are set by the administrator and are read by the management process before logging the
information from the business process. The database need not necessarily be in the same
server. The database can be in a remote server. Though this is a very simple implementation,
the amount of resource consumed is considerable. Establishing a connection to a database is
quite expensive. Though this is a better option, but there are still simpler ways to implement
the filter.

5.1.2 File system

A simple file system can effectively handle the situation without much effort. But there is lot
of disadvantages in accessing a file system. The file in which the filter parameter to be set
must be remotely available to the administrator. In a J2EE environment, the better way to
access a file system is through a resource adapter which is Java 2 Connector Architecture
(JCA) compliant. The business process can contain EJB components. The EJB specification
forbids the use of I/O packages. The reasons for prohibiting the I/O packages to access file
system from EJB are

o Access to file system is not transactional.

o Accessing file system is a potential security hole.

Hence both at the implementation level and at the performance level, this approach fails
miserably.

 48

5.2 JMX implementation of filter option

A simple architecture with Java Management Extension is devised to include the filter option
in the management model. The main goals of this architecture:

o To enable easy access of the “common point” to both the management console and
the management process.

o Consume less resource to get access to the “common point”

The architecture is detailed in the figure that follows.

Figure 18: Architecture for implementing filter options.

5.2.1 Filter repository

The shortcomings that are discussed earlier are overcome with a simple object that holds the
filter data. The object may reside locally or remotely. The object is a simple HashMap that
holds the filter parameters. This object made available both to the management console and to
the business process itself through the LoggingService interface.

BP

LoggingService

O
J
E
C
T

 MBean

JMS/JMX
Monitor

Get filter

Set/Unset
filter

Log info Retrieve
logged info

(Associated with a JNDI
Namespace) SERVER

 49

5.2.2 Persistence of the filter repository

JNDI, acronym for Java Naming and Directory Interface, is Sun's standard API for interfacing
with directory and naming servers. JNDI's object-storage capabilities allow it to play the role
of resource administrator in distributed applications and to provide simple, manageable object
persistence.

According to the JNDI specification, service providers are encouraged, but not required, to
support object storage in one of the following formats:

• Serialized data

The most obvious approach to storing an object in a directory is to store the serialized
representation of an object. The only requirement is that the object's class should
implement the Serializable interface.

Serialization is the technique by which an object can store and restore its state, usually
to and from a stream of bytes. When an object is serialized, it is basically broken down
into its most primitive values like integers, booleans and strings. These primitive
values must be managed in a predetermined format and order so that the object can be
deserialized, thus restoring the object to its original state. Support for serialization
allows an object to be persistent. In the simplest terms, this means that an object can
survive from one program instance to another.

Thus when an object is serialized, its state becomes transformed into a stream of bytes.
The service provider takes the stream of bytes and stores it in the directory. When a
client looks up the object, the service provider reconstructs it from the stored data.

• Reference

Sometimes it is not appropriate to serialize an object. If the object provides a service
on a network, for example, it does not make sense to store the state of the object itself.
An example is a connection to an external resource (one outside the scope of the Java
Virtual Machine) such as a database or file.

• Attributes in a directory context

This approach provides directory functionality instead of only naming functionality,
allowing storage of an object as a collection of attributes on a DirContext object. A
DirContext instance differs from a Context instance in that it may have attributes. This
approach is useful when the object must be accessible by non-Java applications.

In our case, first and the last option can be used. In case of the last approach, an object that
implement the DirContext interface must be created and contain the code necessary to write
their internal state as an Attributes object. An object factory to reconstitute the object must
also be created. Though this approach also help to solve the issue, but the first approach is
simple and clean with minimum complexity.

 50

The Object that is associated with a namespace and stored in a JNDI tree must be changed by
the management tool. The object is serialized and made accessible to the management
console. When a filter parameter is to be changed, the object, in effect the HashMap is
changed, the changes are to be made persistent. This requires the parameters of the object,
which is associated with the same namespace, have to be changed to make the changes made
by a management console available to other services that may access the filter parameters.
New Object can be reassociated to the namespace. Manipulating a JNDI tree require
administrative privileges. The management console need not necessarily have administrative
privileges of an application server. Hence a solution has to be achieved to manage the filter
parameters locally on an application server.

5.2.3 Manipulation of filter parameters through MBeans

The main functionality of MBean is to manage the Object that holds the filter parameters. As
the filter parameters remain static for a given implementation, StandardMBean will be
sufficient for exposing the management interface. The management interface will be simple
get and set methods for each filter parameters. The MBean is shown in the code snippet that
follows:

Public interface FilterMBean extends StandardMBean {

//the getter and setters for the filter parameters

public void setUser(String user);
public String getUser();
..
..

}

All application servers start all the MBeans that are registered to the MBeanServer at the start
up of the server. The list all the MBeans are usually obtained from a configuration file, which
in most cases is XML file. For a given application server instance there will be only one
instance of MBeanServer. The MBeanServer holds references to the instances of the MBeans
that are registered to it. Hence for a given application server instance, there will be only one
instance of the MBeanServer and MBeans. Hence the best design would require the MBean to
get an instance of the serialized object that holds the filter parameters at the start up itself.
Hence for a every get method, the JNDI tree is not looked up every time instead the parameter
is returned from the local copy of the filter object.

The filter parameters can also be changed by the management console. In that case the new
filter parameter is set to the filter object and rebound to the JNDI tree and the local copy is
changed. Though it would be a valuable argument to question the use of the JNDI association,
the main purpose of usage of the JNDI namespace is to make the application server remember
the last changed value of the filter parameters even after a restart of the application server.
The following code snippet explains more clearly:

 51

Public Filter implements FilterMBean {

 //constructor which is called at the start up of the server

Public FilterMBean() {
//get the instance of the filter Object from the JNDI
//name space

 context = new InitialContext();
 obj = context.lookup(“NAMESPACE”);
}

//for the filter parameter “User”

public void setUser(String user) {
 obj.getHasMap().put(“USER”, user);
 context.rebound(“NAMESAPCE”, obj);
}

public String getUser() {
 //return the result from the local copy of the filter
 //object
 return (String) obj.get(“USER”);
}

}

The LoggingService can get access to the filter parameters by directly accessing the JNDI
tree. The LoggingService just reads the data and does not manipulate the data. The
LoggingService constructor will now be as shown in the following code snippet:

public LoggingService (ServiceLocator sl, String serviceName)
throws Exception {

//get the filter parameters from the JNDI namespace
 filterObject = serviceLocator.getObject(“NAMESPACE”);

//check the filter parameters
 if(isLoggingEnabled(filterObject))

// necessary initialization required for JMX/JMS
//implementation
logging = true;

 else

//a flag is set false which will be checked for
//each log call

 logging = false;

}

The log method that is called by the business methods to log information is logged based on a
flag value set at the point of creation of an instance of the LoggingService. The log flag
determines whether to log the information or not.

 52

5.3 Comparison of JMX and JMS architectures

The architectures implemented with JMX and JMS technologies are suited much in the
situations where one of the architectures fails, the other fills the void. But it is hard for any
one implementation to work efficiently in all situations. Some of the situations are described
as follows.

5.3.1 Performance

Performance here effective means the fastness or the responsive time for an execution. The
performance is decided on the means which the LoggingService uses to accesses the resource
to log the information.

• JMS implementation

In the JMS implementation, the LoggingService has to get a reference to the instance
of the Topic to publish the information. The JNDI look up is quite expensive if the
Topic is located at a remote server. The LoggingService has to get a reference of the
ConnectionFactory before getting a reference to the Topic.

• JMX implementation

In the JMX implementation, the LoggingService has to get an instance of the
MBeanServer. The MBeanServer instance that the LoggingService holds is actually a
stub of the MBeanServer. Most of the application servers are compliant to the J2EE
Management Model (JSR -77) standard, it is not even necessary to get a stub of the
MBeanServer. The MBeanServer stays at the remote/local location, but a stateless
session bean that interacts with the MBeanServer is exposed to the LoggingService.
Hence the LoggingService gets the stub of the Management bean. This just requires
single lookup in the JNDI tree and the Bean exposes the management interfaces that
incorporate the notification model.

Though a single or double lookups do not make much difference at the performance, but this
depends very much on how complicated the BP is. Hence JMX implementation is slightly
better than the JMS implementation as for as performance is concerned.

5.3.2 Server Cluster

A server cluster consists of multiple copies of the server program running simultaneously and
working together to provide increased scalability and reliability. A cluster appears to clients to
be a single server instance. The server instances that constitute a cluster can run on the same
machine, or be located on different machines. A cluster's capacity can be increased by adding
additional server instances to the cluster on an existing machine, or by adding machines to the
cluster to host the incremental server instances

 53

A server cluster provides these benefits:

• Scalability

The capacity of an application deployed on a server cluster can be increased
dynamically to meet demand. Server instances can be added to a cluster without
interruption of service—the application continues to run without impact to clients and
end users.

• High-Availability

In a server cluster, application processing can continue when a server instance fails.
An application component can be clustered by deploying them on multiple server
instances in the cluster—so, if a server instance on which a component is running fails,
another server instance on which that component is deployed can continue application
processing.

The choice to cluster server instances is transparent to application developers and clients.
However, understanding the technical infrastructure that enables clustering will help
programmers and administrators maximize the scalability and availability of their
applications.

The key clustering capabilities that enable scalability and high availability:

• Failover

Simply put, failover means that when an application component doing a particular
"job"—some set of processing tasks—becomes unavailable for any reason, a copy of
the failed object finishes the job.

For the new object to be able to take over for the failed object:

 There must be a copy of the failed object available to take over the job.
 There must be information, available to other objects and the program that

manages failover, defining the location and operational status of all objects—so
that it can be determined that the first object failed before finishing its job.

 There must be information, available to other objects and the program that
manages failover, about the progress of jobs in process—so that an object taking
over an interrupted job knows how much of the job was completed before the first
object failed, for example, what data has been changed, and what steps in the
process were completed.

Hence the state of the particular component that is processed at one server instance has to
be replicated to other server nodes that are in the cluster.

• Load balancing

Load balancing is the even distribution of jobs and associated communications across
the computing and networking resources in your environment. For load balancing to
occur:

 54

 There must be multiple copies of an object that can do a particular job.
 Information about the location and operational status of all objects must be

available.

Many application servers allow objects to be clustered—deployed on multiple server
instances—so that there are alternative objects to do the same job. Server shares and
maintains the availability and location of deployed objects using multicast, IP sockets, and
JNDI.

In clustered environment, the components of a given application server are also clustered. The
components are mostly EJBs or Servlets. Many application servers allow clustering of EJBs
and Servlets.

In case of clustered environment, the management must also be compliant. Almost all
application servers support or partially support clustering of JMS Topic. Both the cases fail-
over and load balancing are supported by most application servers. But the components of
JMX, mainly the MBeanServer and the MBeans are not cluster-wise visible. They are tied up
to the single instance of the application server.

Hence in a single application server environment, the architecture based on JMX is preferred
considering the performance supremacy over the JMS implementation. But in a clustered
environment, the JMX implementation fails and the JMS implementation is well suited.

 55

6 System-level Management

The system-level management means managing the system level resources that the business
components use. The system-level resources include mainly the connection pools or the actual
connection the business components make to the back end system which could be a database
or an ERP system, the thread pools, the CPU utilization, etc. The business process
performance depends very much on the resources. Hence there is a need to manage the
resources to have an effective of the BP.

The J2EE based application servers have their own way of handling the resources. Hence the
resource management is quite vendor-specific. Many application servers are based on JMX or
have an implementation of JMX to expose the management interfaces of the system resources
through MBeans. In effect, to manage the system resources means to understand the
architecture of each application server and expose the management interface to the custom
management console. Before discussing on how to manage system resources, the architecture
of the application server has to be analyzed.

6.1 Architecture of JBoss Application Server

The JBoss server and container are completely implemented using component-based plug-ins.
The modularization effort is supported by the use of JMX. Using JMX, industry-standard
interfaces help manage both server components and the applications deployed on it. JMX
provides a common spine that allows the user to integrate modules, containers and plug-ins.
Figure 19 shows the role of JMX as an integration spine or bus into which components plug.

Figure 19: JBoss JMX integration bus and the standard JBoss components

JMX IMPLEMENTATION

JTS/JTA Security Datasources

EJB
Containner JSP JMS

 56

When JBoss starts up, one of the first steps performed is to create an MBean server instance.
The JMX MBean server in the JBoss architecture plays the role of a microkernel aggregator
component. All other manageable MBean components are plugged into JBoss by registering
with the MBean server. The kernel in that sense is only an aggregator and not a source of
actual functionality. The functionality is provided by MBeans, and infact all major JBoss
components are manageable MBeans interconnected through MBean server.

6.2 J2EE server management with JSR 77

The J2EE specification should ease enterprise computing; we should be able to simply
develop enterprise applications and deploy them into a J2EE-compliant product. But the
reality is different because the J2EE specification does not go far enough. Many application
server features are vendor specific, and, to avoid vendor lock-in, we need further
standardization. One particular aspect of standardization is J2EE server management, an
aspect covered by the J2EE Management Specification, Java Specification Request (JSR) 77.
The J2EE Management Specification abstracts the manageable parts of the J2EE architecture
and defines an interface for accessing management information. This helps in integrating
J2EE server management with the custom management console.

JMX enables Bean developers to also provide a management interface, which the user can
then incorporate into his management tool. What JMX does not do is to specify the meaning
behind the management interface. Therefore, the client has to investigate the interface at
runtime and then provide a management UI dynamically. JSR-77 now specifies the
management interface; therefore, the management tool can be more specific for the J2EE
environment. In addition, it defines how the information is made available to the remote
client. The following description of the JSR-77 is based on the J2EE Management
specification of Sun Microsystems, Inc.

6.2.1 Differences between JMX and JSR 77

Note that JSR-77 does not provide Java classes for its implementations. It does provide a
model and a meta-model of how the data is presented to the client. The model describes how
the data is grouped together into objects and how the objects are related to each other
(inclusive cardinalities).

Since JSR-77 does not provide classes, the term object should not be associated with Java
instances. Here, it just means a group of information representing a logical object of the J2EE
server, such as a Web module, a JNDI service, a computer, and so forth. Because of the
general nature of JSR-77, it does not have to represent physical objects when the application
server is built differently.

Also noteworthy is the fact the JSR-77 does not have a notion of an agent. Each J2EE server
provides one or more points of access for remote clients. The Management EJB is required
but JSR-77 also contains specifications for the SNMP and CIM protocols.

 57

6.3 J2EE Management Model

A J2EE server is a concrete system, and JSR 77 defines a concrete object model. This J2EE
management model contains managed objects models for all well-known concepts from the
J2EE world, such as a Java Virtual Machine (JVM), EJB and EJB module. The term managed
object refers to the definition of a unit of management information. Management
instrumentation provides the “glue” which takes the information available on an entity to be
managed and makes it appear as a collection of managed objects.

6.3.1 Managed objects

All managed objects derive common features from a base model called J2EEManagedObject,
shown in figure 20. All managed objects in the J2EE platform must include the attributes of
the J2EEManagedObject model. All managed objects must have a unique name.

Figure 20: J2EEManagedObject

An important attribute of J2EEManagedObject is the objectName of type OBJECT_NAME;
an objectName identifies an object. Here's an example of an object name's string presentation:

jboss.management.single:name=localhost,j2eeType=JVM,J2EEServer=Single

This object name is from JBoss. The string to the left of the colon (:) is the domain name, a
string used as a namespace. Three key attributes follow the colon:

 name, the object's actual name
 j2eeType, the managed object's concrete type name (in the example above, a JVM

with the name localhost)
 The relationship to a parent—the parent is the J2EEServer with the name Single

Other attributes for the J2EEManagedObject: stateManageable, statisticsProvider, and
eventProvider. All these attributes are of type Boolean and indicate the existence of other
features. If stateManageable is true, the object provides additional operations to start and stop
its services. If statisticsProvider is true, an object can provide runtime statistics. If
eventProvider is true, an event provider object enables a client to register for events and
receive event notifications. Specialized models derive from the J2EEManagedObject model.
Though figure 21 shows only a part of the hierarchy, it includes some well-known J2EE
concepts.

 58

Figure 21: JSR-77 objects overview

6.3.2 Events

Just to prevent some confusion: events here are similar in concept to the JMX's notifications
concept. Any server-side event provider can send the client a message. This prevents the
client from polling the server to see if any events are in the queue, and the client can inform
the users immediately when the event is received.

Basically any Managed Object can send an event by indicating that it is an event provider.
Then the client can register a listener for this Managed Object and receive an event when the
object sends one. Currently, it is up to the implementation of the server-side to define how the
events are transferred. It can be RMI or JMS, because they come with the J2EE server.

When an object indicates that it is an event provider, it implements the EventProvider object,
containing a list of types of events it emits. As a reminder, “implements” here means not the
implementation of an interface, but merely the providing of another attribute.

 59

6.3.3 State Management

State management refers to the management facilities that are provided by compliant J2EE
platforms to manage the state of a J2EE platform and the components that comprise it. The
management facilities allow Management Applications to get the current state of the platform
and its components, find out how long the platform and components have been running, and
start and stop the platform components. The StateManageable model specifies the operations
and attributes that must be implemented by a managed object that supports state management.
A managed object that implements the StateManageable model is termed a State Manageable
Object (SMO). An SMO generates events when its state changes.

When an object indicates that it can manage a state, it implements the StateManageable object
containing an integer indicating the state and the timestamp for when the object was last
started. In addition, it implements the start(), startRecursive(), and stop() methods. This
start() method starts the object; the startRecursive() also starts all state-manageable children
of this object after the object is started; and the stop() method first stops the object and then
all of the state-manageable children; therefore, we have no stopRecursive() method.

6.3.4 Performance Monitoring

The Performance Data Framework specifies a performance data model as well as performance
data requirements of the J2EE Management Model. The Performance Data Framework
consists of the StatisticsProvider model, which any managed object may implement, the Stats
interfaces, which specify standard performance attribute semantics for each managed object
type, and the Statistic interfaces which provide specific interfaces for representing the
common performance data types.

The StatisticsProvider model must be implemented by all managed objects that provide
performance data. A managed object that implements the StatisticsProvider model must have
its statisticProvider attribute set to "true". The stats attribute references the specific Stats
interface that corresponds to the managed object type that is providing Statistics. For example,
an EntityBean managed object that implements StatisticsProvider will have a reference in the
stats attribute to an object that implements the EntityBeanStats interface. The detail for the
stats attribute includes a table of the appropriate Stats interface that each managed object must
implement if it provides performance data.

6.4 J2EE Management EJB Component

The J2EE Management EJB component (MEJB) provides interoperable access to the J2EE
Management Model from any J2EE component on all platforms that implement the J2EE
Management specification. The MEJB component incorporates the Java Management
Extensions (JMX) API, a standard framework for Java object instrumentation. The MEJB
component exposes the managed objects on any J2EE platform as JMX manageable
resources. The MEJB component provides local and remote access of the platform’s
manageable resources through the EJB interoperability protocol.

 60

All compliant J2EE products must provide an implementation of an Enterprise Session bean
component which implements the interfaces specified so far. The MEJB component may be
automatically deployed during server installation. A compliant J2EE product must deploy an
MEJB component before installation of that product can be considered complete. The MEJB
component provides access to the managed object instances of all the available managed
objects in one or more management domains. Compliant implementations of the MEJB
component must provide access to all managed object instances required by the J2EE
Management Model. All attributes required by the J2EE Management Model for a standard
J2EE managed object type must be accessible from the MEJB component. All operations
required by the J2EE Management Model for a standard J2EE managed object type must be
able to be invoked from the MEJB component.

This MEJB is a stateless session bean, which is available under the JNDI name
ejb/mgmt/MEJB. The following code snippet obtains the MEJB:

Context ctx = new InitialContext();
Object objref = ctx.lookup("ejb/mgmt/MEJB");
ManagementHome home = (ManagementHome)
 PortableRemoteObject.narrow(objref,ManagementHome.class);
Management mejb = home.create();

The MEJB's interface is very simple. It provides methods to query objects, to get all metadata
for an object, to get and to change attributes, and more. Figure 22 shows the MEJB remote
interface.

Figure 22: MEJB remote interface

To find a managed object, the queryNames() method must be used, which returns a
java.util.Set containing object names that identify the objects matching the query parameters.
The class ObjectName comes from JMX. queryNames()'s first parameter is an ObjectName
that specifies a query string. A second parameter is a QueryExp, which is used for more
specific searches. For simple queries, the second parameter can be null. The following code
uses queryNames():

Set names = mejb.queryNames(new ObjectName(“domain :j2eeType=EJBModule,*"),
 null);

 61

The attributes provide the information of the managed objects. The values of the attribute can
be read as shown in the following code snippet:

Iterator itr = names.iterator();
while(itr.hasNext()) {
 ObjectName name = (ObjectName)itr.next();
 ObjectName[] ejbs = (ObjectName[])mejb.getAttribute(name, "ejbs");
}

Operation of a managed object can be invoked through the methods provided by the
Management interface. The following code demonstrates how to invoke an operation of a
managed object.

mejb.invoke(name, “test”, new Object [] {}, new String [] {});

name is the ObjectName of a Managed Object and “test” is the name of the operation of the
Managed Object that should be invoked. The other two parameters are the arguments of the
operation and their signatures. The invoke operation returns the return value from the
operation that is being invoked.

The system-level management can be achieved by managing the resources that are used by
the enterprise applications. The enterprise applications, in most cases, are the EJBs. The cache
utilization of the Entity bean can also be monitored. With the help of the JSR-77 specification,
the MBeans that are specific to the application servers are exposed. The figure 23 and figure
24 shows screen shots of data sources and services (EJBs) management respectively.

Figure 23: Management of Datasources

 62

Figure 24: Management of the deployed services

 63

7 Management of Tomcat

Tomcat is the Reference Implementation (RI) for the Java Servlet and JavaServer Pages (JSP)
technologies. It is the official reference implementation for these complementary
technologies. Tomcat is a servlet container with a JSP environment. A servlet container is a
runtime shell that manages and invokes servlets on behalf of users.

7.1 JMX and Tomcat

Tomcat has an implementation of JMX for instrumentation of the resources and the
applications deployed in an instance of Tomcat. Tomcat 4.1 binary release comes bundled
with the open source MX4J version 1.1.1 implementation of the JMX 1.1 Specification. The
Tomcat 5.0 binary release comes bundled with Sun's JMX 1.2 reference implementation,
along with Sun's JMX Remote API 1.0 reference implementation. Both MX4J and JMX
Remote API address the connectivity to a remote JMX Agent and expose the MBeans that
manage the resources. Tomcat’s JMX implementation is based on Model MBeans. The
Modeler component of the Jakarta Commons subproject offers convenient support for
configuring and instantiating Model MBeans (management beans), as described in the JMX
Specification.

7.2 Modeler component

Modeler component is typically used within a server-based application that wants to expose
management features via JMX. Model MBeans are very powerful - and the JMX specification
includes a mechanism to use a standard JMX-provided base class to satisfy many of the
requirements, without having to create custom Model MBean implementation classes
manually. However, one of the requirements in creating such a Model MBean is to create the
corresponding metadata information (i.e. an implementation of the
javax.management.modelmbean.ModelMBeanInfo interface and its corresponding subordinate
interfaces). Creating this information can be tedious and error prone. The Modeler package
makes the process much simpler, because the required information is constructed dynamically
from an easy-to-understand XML description of the metadata. Once the metadata is defined,
and registered at runtime in the provided Registry, Modeler also supports convenient factory
methods to instantiate new Model MBean instance. Registry is the registry for modeler
MBeans. This is the main entry point into modeler. It provides methods to create and
manipulate model MBeans and simplify their use.

Model MBeans effectively manage the resources in Tomcat. Having discussed the Modeler
package which in creating the ModelMBean, it now easy to add a feature to the Tomcat and
expose the management interface in the standard JMX way. One of the features that is added
to the Tomcat is a way to remotely make the log information available to the management
console. The web modules decide the location and name of the log file in which the log
information is to be stored. The Tomcat exposes the file name and the location but not the
content of the log file.

 64

7.3 Custom service in Tomcat

Modeler package helps in adding a custom service to Tomcat. Modeler requires a
configuration file that describes the metadata ultimately need to construct the
javax.management.modelmbean.ModelMBeanInfo structure that is required by JMX. The
configuration file is an XML file which should conform to the mbeans-descriptors.dtd DTD
that defines the acceptable structure.

Fundamentally, <mbean> element is to be constructed for each type of Model MBean that a
registry will know how to create. Nested within this element will be other elements describing
the constructors, attributes, operations, and notifications associated with this MBean. The
mbeans-descriptor file for the log information MBean is as shown below:

<mbeans-descriptors>
 <mbean name="LogService"
 description="Service to read logged info"
 domain="LogService"
 type="de.coryx.apps.crc.server.LogService">

 <operation name="openLogFile"
 description="Open logfile and read the content"
 impact="ACTION"
 returnType="void">
 <parameter name="directory"
 description="Directory of the logfile"
 type="java.lang.String"/>
 <parameter name="fileName"
 description="Name of the logfile"
 type="java.lang.String"/>
 </operation>

 <attribute name="logDetails"
 description="logged info"
 type="java.lang.String"
 writeable="false"/>
 </mbean>
</mbeans-descriptors>

This MBean represents an instance of de.coryx.apps.crc.server.LogService, which is an entity
representing the logged information which is read from the log file for a given web module.
This MBean advertises support for only one attribute, which is the logged information
“loDetails” itself, that roughly correspond to JavaBean properties. By default, attributes are
assumed to have read/write access. For this particular MBean, the logDetails attribute is read-
only (writeable="false"). Finally, this MBean supports only one operation (openLogFile),
which accepts two parameters: directory and fileName, which roughly correspond to
JavaBean methods on the underlying component. The operation, openLogFile, returns void.

 65

In general, Modeler provides a standard ModelMBean implementation that simply passes on
JMX calls on attributes and operations directly through to the managed component that the
ModelMBean is associated with. For special case requirements, a subclass of
BaseModelMBean can be defined that provides override methods for one or more of these
attributes (i.e. the property getter and/or setter methods) and operations (i.e. direct method
calls).

The BaseModelMBean is the basic implementation of the ModelMBean interface, which
supports the minimal requirements of the interface contract. This can be used directly to wrap
an existing java bean, or anywhere an MBean would be used. The String parameter passed to
the constructor will be used to construct an instance of the real object that is wrapped.

The metadata information, and the corresponding Model MBean factory, is represented at
runtime in an instance of Registry whose contents are initialized from the configuration file
prepared as was described above. Typically, such a file will be included in the JAR file
containing the MBean implementation classes themselves, and loaded as follows:

 URL url= this.getClass().getResource
 ("/de/ceryx/apps/crc/server/mbeans-descriptors.xml");

Registry registry = Registry.getRegistry();
registry.loadMetadata(url);

Besides using the configuration file, it is possible to configure the registry metadata by hand,
using the addManagedBean() and removeManagedBean() methods. However, this standard
support for loading a configuration file is convenient and sufficient. Modeler will also look
for an mbeans-descriptors.xml file in the same package with the class being registered and in
its parent. If no metadata is found, modeler will use a number of simple patterns to determine
a reasonable metadata.

 LogService service = new LogService(); //managed component instance
 MBeanServer mserver = registry.getMBeanServer();

String oname = "LogService:name=LogService";
registry.registerComponent(service, oname,
service.getClass().getName());

The registerComponent method of the Registry instance takes three arguments: instance of
managed bean, the ObjectName of the MBean and the type of the MBean. The service can be
made to run at the start up of the server by adding a Listener to the server.xml file of the
server. The Listener controls the life of the MBean. The above snippet of code can be used at
the start up of the server.

7.4 Managing and Monitoring Tomcat

There are many MBeans that are exposed by the Tomcat that does the task of managing and
monitoring the server instance, the applications that are deployed and the resources. The
Tomcat adheres to the JMX specification and hence the management interfaces can be
acquired as described in the earlier chapters. The remote client could get access to the
management interface through Java Specification Request (JSR) 160.

 66

The Java Management Extension (JMX) API is defined and under maintenance release of the
Java Specification Request (JSR) number 3. JMX defines the API for management of Java
applications, and those API are local to the application. This means JMX specification does
not provide a solution to access the management interfaces remotely. To fill this gap, JSR 160
extends JSR 3 by providing a standard API to connect to remote JMX-enabled applications.
Currently, JSR 160 has defined a mandatory connector based on RMI (that supports both
RMI/JRMP and RMI/IIOP), and an optional one based on sockets and Java serialization
(JMXMP). JSR 160 thus provides a standard way to connect to remote JMX-enabled
applications using RMI.

7.4.1 Java Specification Request 160

Java Specification Request (JSR) 3 defines the JMX specification. What is standardized by
JSR 3 is the way in which resources are instrumented within a management agent based on
Java technology, and a certain number of agent-local services based on that instrumentation.
Although JSR 3 defines terminology for remote access to instrumentation, it does not
standardize any particular remote access API or protocol. Many solutions exist for exporting
JMX API instrumentation either through existing management protocols such as the simple
network management protocol (SNMP) or through proprietary protocols. This JSR (JSR 160)
standardizes one such solution.

7.4.2 Connectors

The JMX specification defines the notion of connectors. A connector is attached to a JMX
API MBean server and makes it accessible to remote Java technology-based clients. The
client end of a connector exports essentially the same interface as the MBean server. A
connector consists of a connector client and a connector server. A connector server is attached
to an MBean server and listens for connection requests from clients. A connector client takes
care of finding the server and establishing a connection with it. A connector client will usually
be in a different Java Virtual Machine from the connector server, and will often be running on
a different machine.

Many different implementations of connectors are possible. In particular, there are many
possibilities for the protocol used to communicate over a connection between client and
server. This standard defines a standard protocol based on Remote Method Invocation (RMI)
that must be supported by every conformant implementation. It also defines an optional
protocol based directly on TCP sockets, called the JMX Messaging Protocol (JMXMP). An
implementation of this standard can omit the JMXMP connector.

7.4.3 Connection Establishment

A connector client is represented by an object that implements the JMXConnector interface. If
the client has the address (JMXServiceURL) of the connector server to which it wants to
connect, it can use the JMXConnectorFactory to make the connection. A JMXServiceURL is a
string of the form:

service:jmx: <protocol>://[[[<host>]: <port>]/ <path>]

 67

where protocol is a short string that represent the protocol such as "rmi", "iiop", "jmxmp" or
"soap", while host, port and path are optional. A JMXServiceURL can be seen as the "address"
of a JMXConnectorServer, and it is the mean by which a JMXConnector can connect to a
JMXConnectorServer.

For example, an application app1 that includes an MBean server might export that server to
remote managers as follows:

1. Create a connector server cServer
2. Get cServer’s address addr, either by using the JMXServiceURL that was supplied
to its constructor to tell it what address to use, or by calling cServer.getAddress()
3. Put the address somewhere the management applications can find it, for example in
a directory or in an SLP service agent

A manager can start managing app1 as follows:

1. Retrieve addr from where it was stored in step 3 above
2. Call JMXConnectorFactory.connect(addr)

In our case, the application appl is the Tomcat server. For a given instance of the Tomcat
server, there may be one or more MBean server and a connector server is attached to each
MBean server. The client end will have the following code to establish a connection to the
instance of Tomcat:

// The address of the connector server
JMXServiceURL address = new
JMXServiceURL(“service:jmx:rmi://test4:1099”);

// The creation environment map, null in this case
Map creationEnvironment = null;

// Create the JMXConnector
JMXConnector cntor = JMXConnectorFactory.newJMXConnector(address,
creationEnvironment);

// The connection environment map, null in this case
// May contain - for example - user's credentials
Map connectionEnvironment = null;

// Connect
cntor.connect(connectionEnvironment);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc = cntor.getMBeanServerConnection();

Once the stub is obtained, the server can be queried for the management interfaces and
metadata with the ObjectName which uniquely identifies each MBean.

Though Tomcat comes with a web-based management console, the main idea is to manage
multiple instances of Tomcat servers under single interface. The following screen shots
demonstrate the multiple instance management.

 68

Figure 25: Management attributes for a web-module in an instance of Tomcat server

Figure 26: Log information of a web-module in an instance of Tomcat server

 69

8 Conclusion

Management and monitoring are essential parts of an effective e-business. Most application
developers view management as an afterthought when building and delivering their
applications. In some cases, developers try to anticipate administration and monitoring needs
of their users, and build such administration, logging and instrumentation into their
applications. This often uses a variety of proprietary mechanisms for consoles, log files, and
instrumentation. While this may fulfil the immediate needs anticipated by application
developers, it is usually a poor fit with the real requirements of enterprises that have to deal
with a complex integration of many such applications. If each application has its own way to
do administration and monitoring, handling the diversity of management tools becomes its
own challenge.

Hence a generic effective way of managing the J2EE application both at the development and
production phase has to be devised at the development phase itself. Various methodologies,
some of which are current industry standard, are analyzed and better solution is approached
through the technologies: JMS and JMX. The core need for management is the notification
model. The notification model triggers an event as when an action is performed. The action
could be a database access, execution of a critical part of business logic. The action is the
breakpoint which is set by the developer. The events that are triggered hold the performance
metrics or the business data itself for management and monitoring. The bottlenecks, if any
arose, can be determined beforehand by analyzing the data received from the application
through the notification model. The notification model has been developed with JMX and
JMS to work seamlessly both in the local environment and the distributed environment. The
application can also run in a clustered environment. JMX has some pitfalls in the clustered
environment and JMS fills that gap. Most J2EE application servers in the market partially or
fully support clustering of JMS.

As the management and monitoring part comes as a part of the application itself, a simple
off/on option of the management has also been devised. The little overhead that comes due to
the management factor can be easily removed when not monitored without changing a single
line of the existing code.

The future work will include an auto-generation framework that will generate the necessary
code, relieving the developer from manually writing the management code at critical points of
the business logic. A simple XML file that specifies the critical parts of the business logic, as
set by the developer, and the type of management code that is to be generated. The generator
reads the XML file, analyses the business logic and generates the code as specified without
touching the business logic. The generated should also be able to extract the business logic
specific data also.

 70

References

[1] Java 2 Platform Enterprise Edition Specification, Version 1.4, Sun Microsystems,
Inc., November 2003.

[2] Java Management Extensions (JMX) Instrumentation and Agent Specification,

Version 1.2, Sun Microsystems, Inc., October 2002.

[3] Java Management Extensions (JMX) Remote API Specification, Version 1.0, Sun
Microsystems, Inc., October 2003.

[4] Java Platform, Enterprise Edition Management Specification - JSR-77, Version 1.0,

Hans Hrasna, Sun Microsystems, Inc., June 2002.

[5] Java Message Service Specification, Version 1.1, Mark Hapner, Rich Burridge, Rahul
Sharma, Joseph Fialli and Kate Stout, Sun Microsystems, Inc., April 2002.

[6] Enterprise JavaBeans Specification, Version 2.1, Linda G. DeMichiel, Sun

Microsystems, Inc., November 2003.

[7] JBoss Administration and Development, Scott Stark, Marc Fleury, The JBoss Group,
Sams publication, 2002, ISBN: 0672323478.

[8] Managing Java Applications with JMX, J. Steven Perry, O’Reilly Publication, 2002,

ISBN: 0596002459

[9] WebLogic: The Definitive Guide, Jon Mountjoy, Avinash Chugh, O'Reilly publication,
2004, ISBN: 059600432X

[10] JMX in Action, Benjamin G. Sullins and Mark B. Whipple, Manning publications,

2002, ISBN: 1930110561

[11] Java Message Service Tutorial, Kim Haase, Sun Microsystems, Inc., 2002,
 [http://java.sun.com/products/jms/tutorial/index.html]

[12] Enabling Component Architectures with JMX, Marc Fleury, Juha Lindfors, 2001,
 [http://www.onjava.com/pub/a/onjava/2001/02/01/jmx.html]

[13] Using JMX to manage Web Application, Tony G. Thomas, AdventNet Inc., March
2003, [http://www.theserverside.com/articles/article.tss?l=JMXWebApps]

[14] JBoss Clustering Analysis, Özalp Babaoğlu, Alberto Batoli, Vance Maverick, Alberto

Montresor, Davide Rossi, Jakša Vučković, March 2003, Information Society
Technology Programme of the 5th Framework (1998-2002).

[15] Using WebLogic Server Clusters, Version 8.1, BEA Systems Inc., 2004,

 [http://edocs.bea.com/wls/docs81/cluster/]

 71

[16] Clustering with JBoss 3.0, Bill Burke, Sacha Labourey, October 2002,
 [http://www.onjava.com/lpt/a/1517]

[17] JMX Studio product documentation, Version 5, AdventNet Inc.

[18] Introducing A New Vendor-Neutral J2EE Management API, Andreas Schaefer, March

2002, [http://www.onjava.com/pub/a/onjava/2002/03/27/jsr77.html]

[19] Introduction to Aspect-Oriented Programming, Graham O'Regan, January 2004,
 [http://www.onjava.com/pub/a/onjava/2004/01/14/aop.html]

[20] Separate software concerns with aspect-oriented programming, Ramnivas Laddad,

April 2002, [http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html]

[21] Aspectwerkz – Dynamic AOP for Java, Jonas Bonér and Alexandre Vasseur,
 [http://aspectwerkz.codehaus.org/index.html]

[22] Performance Analysis of J2EE Applications Using AOP Techniques, Ramchandar

Krishnamurthy, May 2004,
 [http://www.onjava.com/pub/a/onjava/2004/05/12/aop.html?page=1]

[23] Implementing vendor-independent JMS solutions, Nicholas Whitehead, IBM Software

Group report, February 2002,
 [http://www-106.ibm.com/developerworks/java/library/j-jmsvendor/]

[24] Java theory and practice: Coaxing J2EE out of the container, Brian Goetz, IBM
Software Group report, April 2004,
[http://www-106.ibm.com/developerworks/java/library/j-jtp04204.html]

[25] BEA WebLogicTM JMS Performance Guide, BEA Systems Inc., July 2003.

[26] Java Management Extensions White Paper - Dynamic Management for the Service
Age, June 2001, Sun Microsystems Inc.

[27] JMX for Managing Java Applications, Daniel F. Savarese, October 2003 issue of
JavaPro magazine.

[28] EJB 2 Clustering with Application Servers, Tyler Jewell, December 2000,
 [http://www.onjava.com/pub/a/onjava/2000/12/15/ejb_clustering.html]

[29] Draft paper - Achieving Instant Insight into the Real-time Electronic Enterprise,

David Luckham, Stanford University.

[30] Complex Event Processing in Distributed Systems, David C. Luckham and Brian

Frasca, Program Analysis and Verification Group, Computer Systems Lab, Stanford
University, August 1998.

 [31] Core J2EE Patterns, Deepak Alur, John Crupi, Dan Malks, Sun Microsystems press,

A Prentice Hall Title, 2001.

 72

[32] [http://jboss.org/wiki/Wiki.jsp] - JBoss documentaion.

[33] [http://mx4j.sourceforge.net/] – Open source JMX for Enterprise computing.

[34] [http://www.jboss.org/index.html?module=bb] – JBoss forum.

