

Generation of Struts software artefacts

from UML stereotypes

Project Work

as a requirement of master’s programme in
Information and Media Technologies

Submitted by:
Andriy Dekhtyar

andriy.dekhtyar@tu-harburg.de

Matriculation number: 23818

Supervised by:
Prof. Dr. J. W. Schmidt

STS - TUHH

M.Sc. Miguel Garcia
STS – TUHH

Hamburg, Germany
February 2004.

- 2 -

Abstract

Subject domain: Modeling, Web Applications, MDA.

Problem description: This work is devoted to modeling of web applications based on Struts

framework as a part of whole process of software application development. After conducting an

analysis of existing approaches in web application development and tools available in the

market, a given proposal of meta-model for web application modeling targets to fill the gap in

modeling of web applications. An existing framework was extended and enhanced to reflect new

visual syntax for modeling interactions and architecture of web application.

Applied method has proven its capabilities in modeling web applications. Its usage can

considerably increase the speed of development process of web application.

- 3 -

Table of Contents:
1 Description of web application modeling. .. 6

1.1 Goal of web application modeling.. 6
1.2 MDA brief description.. 7

1.2.1 MDA vs. traditional development?... 8
1.2.2 Provided benefits of MDA approach. ... 8

1.3 Specification of input and output data .. 9
2 State of the art in the web application modeling .. 10

2.1 Survey of tools used for web application development .. 10
2.1.1 Struts Console ... 10
2.1.2 Struts Builder .. 11
2.1.3 WebRatio .. 12
2.1.4 Exadel Struts Studio 4.7.. 18
2.1.5 ArcStyler 4 .. 19
2.1.6 AndroMDA + Poseidon for UML .. 20

2.2 Different approaches to web application modeling .. 23
2.3 MDA tools competitors .. 24
2.4 Architectural and modeling aspects of AndroMDA framework................................... 24
2.5 Problem statement... 24

3 AndroMDA based Web Dynamics Modeling. ... 26
3.1 Weaknesses of AndroMDA in the area of web application modeling.......................... 27
3.2 Analysis of possible alternatives... 28
3.3 Detailed specification of required input and output data. ... 29
3.4 WDM Meta-model description. Visual syntax. .. 29
3.5 Bridge between Meta model and Web application model .. 32
3.6 Sample usage WDM meta-model stereotypes are assigned to model elements 33
3.7 Comparison of once and many times generated target elements.................................. 36
3.8 WDM vs. AndroMDA. Enhancements... 36
3.9 Comparison to BPM4Struts .. 37
3.10 Integration with Poseidon ... 38
3.11 Sample project for web application development... 39

4 Directions for further work ... 42
4.1 AndroMDA 3. Decorator Pattern, Bpm4Struts .. 42
4.2 QVT based model elements transformations for precise source code generation 42
4.3 Granularity of transformations.. 42

Conclusion: ... 43
Bibliography: .. 44

- 4 -

List of figures

Figure 1.1 Layers in web application.. 7
Figure 2.1 Struts Console Application.. 10
Figure 2.2 Struts Console as a plugin to IDEA... 11
Figure 2.3 Struts Builder... 12
Figure 2.4 WebRatio. Site Composition view .. 14
Figure 2.5 WebRatio. Data Mapping view. .. 16
Figure 2.6 WebRatio. Presentation View ... 17
Figure 2.7 Struts Studio. Dynamic view... 18
Figure 2.8 AndroMDA framework. .. 20
Figure 2.9 AndroMDA sample model. ... 21
Figure 2.10 Poseidon for UML Car-Rental-System, AndroMDA example 22
Figure 3.1 Car-Rental-System. AndroMDA example. Admin Creates Car. 27
Figure 3.2 WDM. Meta-model ... 30
Figure 3.3 WDM. Resource and Struts related domain .. 31
Figure 3.4 WDM. Transition domain ... 32
Figure 3.5 Transition to static resource. ... 34
Figure 3.6 Transition to jsp page. ... 34
Figure 3.7 Transition to CompositeJsp ... 35
Figure 3.8 Transition to StrutsAction ... 35
Figure 3.9 Integration of “Poseidon for Uml” and AndroMDA... 39

- 5 -

List of Acronyms:
CASE

Computer Aided Software Engineering.. 15, 20, 22, 24
DB

Database.. 6, 12, 15
DDL

Data Definition Language... 6
ER

Entity-Relation.. 6, 15
HTML

Hyper Text Markup Language.. 7, 11, 16, 28
IDE

Integrated Development Environment.. 11, 12, 18, 19, 23
JSP

Java Server Page ... 6, 10, 11, 18, 19, 37
MDA

Model Driven Architecture ...6-9, 22-24, 44
MDR

Metadata Repository ... 24, 26, 28, 38, 44
MVC

Model-View-Controler ... 6, 34, 37
PIM

Platform Independent Model .. 8, 9, 23
PSM

Platform Specific Model ... 8, 23
QVT

Query/View/Transformation... 42
RDBMS

Relational Database Management System.. 6
TAS

Target Application Space.. 26
UML

Unified Modeling Language.......................6-9, 13, 15, 19, 20, 22-26, 28, 32, 33, 37, 38, 43, 44
WDM

Web Dynamics Modeling ..29, 30, 36, 38-40, 42, 43
WebML

Web Modeling Language...12-18, 23, 44
XMI

XML-based Metadata Interchange ... 20, 24, 26, 28, 38
XML

Extensible Markup Language ... 6, 14
XSL

Extensible Style Language.. 16

- 6 -

1 Description of web application modeling.

Humans tend to be lazy, with two absolutely different consequences. On the one hand, this can
lead to stagnation. On the other, it can lead to looking for ways to do something with less effort
but achieving the same result. This last aspect has been key in human evolution. Concerning
programming we can see the same thread all over years: make something that might be reused
afterwards with as small changes as possible. That took us from procedural paradigm in software
development to the object-oriented paradigm. And it can be taken one step further by adopting
modeling techniques. This applies to software engineering as well as to any other of the
engineering sciences. So, we do build models of software that we want to implement, with the
result that good models will be reuse later. For building models we use UML that provides us
with set of diagrams, each used for a special purpose.

After successfully following some approach, we want to apply the same approach again in
similar situations. In the case of software, this requires that our models can be translated to
implementations that are correct and defect-free. Moreover, we want this pattern to be
customizable for our needs in specific cases. Thus we come to the main idea of the Model
Driven Architecture (MDA). MDA is about generating executable applications from models
expressed in one or more modeling languages.

1.1 Goal of web application modeling

For the usual software applications there are many tools, even non-MDA tools that can generate
code based on models. For example, there are tools to generate source code from classes. The
source code can later be changed, adjusted for specific needs, compiled and finally deployed and
executed. But in general, there is no self-standing mechanism to generate all software artifacts
that we will need for web applications. We agree with the remark that UML is not for generating
any files, but for representing the dependencies between and within entities used for modeling.

The kinds of web applications I will focus on are those consisting of three layers (so called 3-tier
architecture): Data-, Business- and Presentation Layers.

Data layer: Usually an RDBMS. It is desirable to create the DB schema in the same tool
as the rest of the web application, e.g. by using either the ER notation or UML. Another
issue is the transformation from the graphical representation to the DDL. The data for the
application might be also contained in XML- based DB.

Business layer: This layer I would like to subdivide into 2 sub-layers, with regards to
purposes of web application:

o Logical layer: the one that ensures proper functionality, consistency of data,
inter-connectivity between objects, dataflow management. This layer is
completely independent from the web front-end of the application. Here might be
pure J2EE integration: EJB, JavaBeans…

o Web adapter layer: the one necessary for adjusting the logical model to the
specific needs of web application. That is the one that will be used as the “Model”
in the MVC pattern that will be applied in the presentation layer.

Presentation layer: The web-front-end of the web application. In this work, it is
assumed to be implemented following the MVC pattern, using Struts. The main idea
behind that is separation of concerns, but here as the logic we have the Web Adapter
Layer, the workflow is regulated by the Struts framework with the help of Struts Actions,
and the presentation is done via appropriate JSP pages that render the output of the
“model” to be presented in the “view”.

- 7 -

Presentation Layer

Business layer

Data layer

Logical layer

Web Adapter

1.1
View

Controller

DB

XML

Wap Adapter

These layers can be seen in the following chart:

Figure 1.1 Layers in web application

Web applications consist of static HTML files, dynamically generated web pages, configuration
files and so on. The UML notation clearly defines the purposes of different diagrams. But still
there is no clear way to specify which diagrams, or what modeling abstractions should be used
for web application modeling.

Another quite challenging issue is type of diagram to use to show the dynamics within web
application. We need to represent transitions and transformations that occur to some parts of web
application. Usually specifically for that purpose in UML there are Sequence, Activity or State
diagrams.

This work is trying to fill that gap, and provide a possibility to model web applications and
transform these models to a compilable set of files. I will use State Diagrams for showing
dynamics in web application, where a "State" is a processing of some resource by a server, e.g.
by a Struts action. This work uses the AndroMDA framework as a basis, adapting and extending
it [AndroMDA].

1.2 MDA brief description

Model Driven Architecture is a comprehensive approach to information systems
engineering that systematically addresses the complete life cycle of designing,
deploying, integrating, and managing software applications using open
standards. In short, MDA is a way to bring order to the increasing complex and
fragmented world of enterprise computing. Introducing MDA rapidly pays for
itself in reduced software development and maintenance costs, as well as
improved time-to-market and quality for mission-critical applications.[FStrt]

There are quite some articles present describing benefits and pros of MDA approach in software
development. Here I am providing some citation from one of them made by Middleware
Company in productivity analysis of MDA based approach.

 The Model-Driven Architecture is a development paradigm that aims to insulate business and
application logic from technology evolution. It helps you build code quickly, in a middleware-
independent, well-architected, consistent and maintainable fashion.

- 8 -

The crux of the MDA paradigm is a development process with the following steps:

1. Secure business requirements for an application.

2. Develop UML diagrams for the domain model, independent of any particular technology
(J2EE, Microsoft .NET, CORBA, etc.). This UML model represents the core business
services and components. This UML model is called a Platform-Independent Model
(PIM) because it is completely technology-independent — this UML model would be the
same regardless of whether you decided to use J2EE or .NET. You develop this UML
model using the UML modeling capabilities of an MDA specific modeling tool.

3. Build UML diagrams for the application, specific to a particular technology (such as
J2EE, for example). This UML model will have elements that are technology-specific,
such as specific J2EE design patterns. This UML model is called the Platform-Specific
Model (PSM). You can build this manually, or you can generate much of it using an
MDA tool and hand-tune only the pieces of it that require customization.

4. Finally, generate the application code using an MDA tool. That is to say, instead of
writing the application by hand based on the UML model, you generate the majority of it
from the UML diagrams. In the case of J2EE, the MDA tool would generate most of the
servlets, JSPs and EJBs. You would then be left to fill in any details that could not be
modeled using UML, such as business logic.[CaseSt]

1.2.1 MDA vs. traditional development?

Here I will try to compare MDA approach with traditional way of creating a software product. I
will do that on the grounds of the same research conducted by Middleware. MDA lets you
generate code from UML models, that is true, but it was also true pre-MDA. Rational Rose, for
example, can generate Java classes from a UML model. The key advancement of MDA is that it
lets you go from a platform independent, high-level design all the way to platform specific code
that is fairly complete. There are several particular points to note:

MDA starts from a higher level of abstraction than other design processes. The top-level
model (PIM) is very abstract; just entities and services.

The PSM is a complete description of the application in the form of metadata. At that
level you can enhance the design with technology specific features (e.g. custom finders
for EJB entity beans) without touching Java code.

The code generated from the PSM is close to a complete application. Many tools generate
code from some kind of model (such as Middlegen or XDoclet), but they give you pieces
of an application. They are not comprehensive because they do not start from a complete
model of the application.

The algorithms that generate PSM from PIM, and code from PSM, are intended to be
configurable by the architect.[CaseSt]

1.2.2 Provided benefits of MDA approach.

The Middleware Company in its report “Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach” analyzes benefits that organizations gained by applying
MDA way of software development:

Faster development time. By generating code rather than handwriting each file, you are
saving the “busy work” required to write the same files over and over again. For
example, in the J2EE world, you sometimes need to write six or more files to create just
one EJB component. Most of this can be automated with a clever code generation tool.

Architectural advantages. When using MDA, you model your system using UML—not
just by modeling Java classes, but high-level domain entities as well. This procedure

- 9 -

forces you to actually think about the architecture and object model behind your system,
rather than simply diving into coding, which many developers still do. Software
engineering principles have proven that by designing your system first, you’ll reduce the
possibility of introducing architectural flaws into your system later on in the development
life cycle.

Improves code consistency and maintainability. Most organizations have problems
keeping their application architectures and application code consistent in their projects.
Some developers will use well-accepted design patterns, while others will not. By using
an MDA tool to generate your code with a consistent algorithm, rather than writing it by
hand, you give all developers the ability to use the same underlying design patterns, since
the code is generated in the same way each time. This is a significant advantage from the
maintenance perspective. For example, developers at organizations that subscribe to an
MDA approach to development will all be able to understand each other’s code more
easily because they will be leveraging the same design paradigm and language.

Increased portability across middleware vendors. If you need to switch between
middleware platforms (for example, switching between J2EE, .NET or CORBA), the
Platform-Independent UML Model (PIM) is reusable. From the PIM, one should be able
to regenerate the code for the new target platform. While not all of the code can be
regenerated automatically, the ability to regenerate a large proportion of one application
certainly would save time over having to rewrite it all from scratch. [CaseSt]

1.3 Specification of input and output data

The overall goal of MDA is not to write whole application manually, so that we want is to create
a model, then “press a button” and receive a skeleton of the web application that might be used,
complete it with some domain specific business logic, and receive a full fledged web application.
Later, in case we want to implement some changes, we would like not to start everything from
scratch, but instead to make some changes in model, then “press a button” once again and
receive a changed implementation of the web application that uses the previously generated and
manually changed files. We should take care about overlapping between different versions.

- 10 -

2 State of the art in the web application modeling

There is no clear or standardized view now in the industry about how web application modeling
should be carried out. Different vendors present their own understanding of this problem and
propose solutions to solve it. Some of those approaches will be discussed in greater detail in the
first half of this chapter. Afterwards I will classify them from developer perspective, and after
conducting appropriate analysis of their pros and cons I will formulate the requirements for web
application modeling and choose one of them as a basis for the given work.

2.1 Survey of tools used for web application development

2.1.1 Struts Console

“The Struts Console is a free standalone Java Swing application for
developing and managing Struts-based applications. With the Struts Console
you can visually edit JSP Tag Library, Struts, Tiles and validator
configuration files.

The Struts Console also plugs into multiple, popular Java IDEs for seamless
management of Struts applications from one central development tool.”
[Concole]

As mentioned in the official information this tool focuses on manipulating the Struts
configuration file. That is done via a visual representation GUI, which allows specifying such
parameters from Struts framework as: Actions, Action Forms, Data Sources and Forwards.

Figure 2.1 Struts Console Application

The interface is intuitive, but implies from user good understanding of the Struts framework
itself. You have to manually provide all the data that is related to the Struts specification, such as

- 11 -

for instance full names of the classes corresponding to StrutsActions or StrutsForms. The good
thing about that is the possibility to validate the file you already have for compliance.

Another great issue about the Struts Console is the possibility to use it as a plugin for the Java
IDE in use. Currently supported IDEs are: Borland JBuilder (version 4+), Eclipse (version 1+),
Intellij IDEA (version 3.0 +, build 668), IBM WebSphere Appl. Dev. (version 4.0.3+), NetBeans
(version 3.2+), Oracle JDeveloper (version 9i+), Sun One Studio (Forte) (version 3.0+). Using
this tool as a plugin enables you to concentrate on application development and not on the xml
syntax bug fixing.

Figure 2.2 Struts Console as a plugin to IDEA

Hence, we can position the Struts Console tool for modeling on the Presentation Layer of our
model of web application, with strong focus on Struts framework and experienced developer.

2.1.2 Struts Builder

“A Java Swing-based development environment to assist in the rapid creation of Struts-based
(currently Struts 1.1b) web applications. This standalone application allows users to create from
scratch and/or import existing Struts 1.x struts-config.xml files,”[StBlder]

This open-source project allows modification of Struts configuration file via form-based
interface. Stated import feature failed on importing existing Struts project that might be caused
by only Beta-version availability of the tool. Given tool can generate the shell code including
JSP/HTML pages, web.xml, struts-config.xml and java source files for Actions and ActionForms
classes required for an implementation. But on the other hand this is only useful in case of from
scratch development of the project, with assumption that further structure will not be changed.
Quite obvious that is not true for most of the applications.

- 12 -

Figure 2.3 Struts Builder

As authors mentioned the future development of this project will be concentrated on integrating
this tool to IDE available on the market. So currently we can specify this tool as the one useful
for basic development of blueprint of future project that requires quite good knowledge from
developer of Struts itself, and the application domain to provide the structure that will not be
changed in future. In current state this tool is not applicable in the production development of the
web application

2.1.3 WebRatio

A great and, at the same time, restrictive tool. This tool is the only one that is focused on the
whole process of web application development. You are allowed to create an application from
scratch to the real running product. It takes care on all layers of abstraction from data-layer
allowing to specify the Data Base schema, and create a DB as well as fill it with a test data for
future testing of application, to the presentation layer, where they even subdivide this layer into
2: the SiteView Layer and PagePresentation Layer. One positive thing about Siteviews in
particularly and WebRatio tool in general is that it is based on the abstract notation – WebML
(Web Modeling Language). That specifies aspects specific to the web application
development.[WebML][WebRatio]

The project is represented via several views on the future web application, here I will list them,
giving a short description and afterwards I will describe each of them more precisely
highlighting pros and cons, so:

- 13 -

1. ”Editing view” – Here we have an overall structure of the web application represented
via

– Data Structure – Specifying the structure of the information objects used by the
application.

– Site Composition – Site views that represent views for different users. Specifying a
site view for letting users access the information managed by the application.

2. Mapping View – Creation of a data source, connecting it to the project and filling with
test data for simulating the content

3. Presentation View – Specification of the site presentation via page design and generating
the application code.

Test-project observation:

By providing these three views on the process of web application development vendors trying to
focus on site logic as it is. That leads them to reducing the role of the business logic of the
application as it was described in the model. While concentrating on presentational workflow
they lose the point in the data management (retrieving, synchronization) as well as possible
optimization on different levels of abstraction. All data transformation and manipulation and
management till the point of presentational workflow are restricted to what is available in the
tool; that on my opinion is a disadvantage. Within the process of site workflow management
used WebML notation could not be overestimated, it provides a lot useful abstractions that can
be used for dataflow management, such as Data/Multi Data Unit, Scroller Unit, Entry Unit,
Create/Delete/Modify Unit, Login/Logout Unit several Link Units and so on. Given abstractions
might be well applied for separation of the presentation to several areas, pages and transitions
between them with help of links.[WebML]

Another issue about WebRatio tools is non-intuitive and inconvenient graphical interface. The
one using it either should already has done several projects with this tool, or is forced to consult
the manual throughout the whole process. Set of immediate accessible actions is really limited,
to change some parameter in one of the diagrams one supposed to make set of actions. For
instance: while creating anything let’s say entity in Data Structure view you obviously want to
change the name of this entity from “Entitity4” to something more meaningful. For entity it is
still quite ok, because your focus is set to the name field in the property panel, which is strictly
parked to the left lower corner of the screen. If you then want to add some attributes to this entity
you have to move focus either to the diagram screen or hierarchy tree, where you can access this
possibility via context menu, and then once again move back to property panel, to change the
name, but for an attribute you definitely want to specify something more then just name, let’s say
type, but to do that you have manually with help of the mouse set focus to the field type and then
edit it. Just imagine the number of mouse movements just for setting focus if you want to set
several parameters related to the attribute of property such as constraint, type, value.

So let’s start walking through the WebRatio web application development process in details:

1. Editing view

Here we can actually create the model of our application in two different perspectives. Data
Structure and Site Composition. This model will become a basis for future web application and
for the transformations that we have to make with the model. Data Structure represents the
Structure model concept from WebML that is actually a combination of UML Class Diagrams
and Entity-Relation modeling concept. The fundamental elements of structure models are
entities, defined as containers of data elements, and relationships, defined as semantic
connections between entities. Entities have named properties, called attributes, with an
associated type. Entities can be organized in generalization hierarchies and relationships can be
restricted by means of cardinality constraints. Instances of entities are considered individually

- 14 -

addressable by means of a unique identifier (OID). This OID is the primary key of the entity it
cannot be removed or manipulated by the application directly. For the XML data store OID
represents the XML ID attributes.

Site composition in the editing view allows to create several site views on the given web
application specifying what information is relevant for each view. You can provide here for
instance one view for the administrator of the site, that will be totally different from the one for
the regularly user. Each of this site views represents the combination of composition and
navigation model of WebML. Where on composition model you specify what is represented
where in the web site, whilst on a navigation model you specify possible transitions from one
page to another. More precisely composition modeling specifies which pages compose the
hypertext, and which content units make up a page. The pages of the web site are the containers
of information delivered to the user. Units are atomic content elements used to publish the
information described in the structure model. Seven types of units are predefined in WebML to
compose pages: data, multi-data, index (and its variants multichoice and hierarchical), entry,
and scroller.

Figure 2.4 WebRatio. Site Composition view

The transitions between pages are provided with the help of links. Links might be defined
between units inside a single page, between units placed in different pages, and between pages.
A link may serve the following purposes:

1. Moving the focus of presentation from one page to another one.

2. Passing information from a unit to another unit.

3. Producing some side effect (e.g., the execution of an update operation)[WebML].

- 15 -

The information carried along a link is called navigation context, or simply context. Links that
carry context information are called contextual links, whereas links that have no associated
context information are called non-contextual links.

We can relate site views to the basic UML notation where site composition is Use Case diagram,
“Site Views” – set of Use Cases for different “Users” – Actors. Site views are trying to represent
the dynamics of the web application, where all the dynamics of presentation is based on pages,
page-blocks and transitions between (links). I think this approach should be extended, by
providing “more dynamic views” on model. Because now site views are more like
implementation class diagram in UML stating the dependencies between objects not providing
the real transition overview. So the good idea would be to take the best that WebML provides for
navigation model and enhance that with some diagrams of UML that are used for modeling
interactions and dynamic behavior. I am going to expand this idea further.

2. Mapping view

At this project view the user is supposed to create a mapping from ER diagram of data structure
view to the real underlying DB. The expected behavior of a user will be to specify Data source,
to which the existing model has to be transformed. User has to pick up one of the 5 possible
choices which DB he wants to use, give username, password. After that the one thing left is press
the button and you will have newly created DB filled with sample data.

This scheme works quite well whilst you don’t have any knowledge about DB architecture, you
do not want to get in touch with the process of transformation, or at least choosing the database
that is not supported by the tool. If you are the one that want, at least, to set some information
you will face some troubles:

1. You cannot specify a new driver for the database that is not included in the tool. So you
are restricted to 4 provided DB drivers and one JDBC-ODBC bridge connector.

2. It is not possible to use your own driver even for databases that are provided, so that
means that if there will be a new driver for MySQL database you will not be able to use
it, because the tools is restricted to “some” concrete MySQL driver, and you even cannot
obtain the information easily what driver it actually uses.

3. You are not allowed to specify to what database type specific model type is mapped,
neither to see to which they have been mapped.

4. You cannot access the DB schema for created database, as well as the executed SQL
statements, that might be very useful in case of analysis and understanding of the
architecture of created application.

I can summarize this part as being really very weak concerning the help to the Developer, and
not to the person that creates his first “Hello, world” program. Even though WebRatio is not
supposed to be the DB CASE tool it still lacks some basic things that were described before.

Another thing that cannot be considered as the good part is the hiding of information about how
data mapping is programmatically implemented. As we know, several patterns exist for mapping
business layer with the persistent layer, and to have a look at that can help discovering of
bottlenecks of the application. I am positively concerned that the approach to connect business
and persistence layer should be taken with regards of the application architecture that we are
designing.

- 16 -

Figure 2.5 WebRatio. Data Mapping view.

3. Presentation view

The generation of the templates constituting the site is the last step to obtain a running
application. You can select a style sheet that for the project itself and this value will be default
for all paged in the project. Also you can specify style sheet directly for that page. In this view
user is entitled to create layout of his pages. At first you have a blank page, for each page or page
block that should be represented in the project, for each page you have a set of item units
associated with this page on editing stage. You can allocate them on the page on the basis on
table layout that is provided here.

The layout management and template management are based on XSL transformation, which map
WebML pages into mark-up code.[WebRatio] For direct manipulation with the styles that can be
assigned for the item they use Easy-Styler. This component allows you to view existing
stylesheets, templates as well as provide new ones. I have to admit that even though this is stated
to be true, it is not clear how to do this. The user interface is still does not provide any hint about
the correctness or right sequence of actions to achieve desired result.

For each stylesheet and layout combination they assign the view to each item to be displayed in
the page. That is quite good, but still you are suggested to use external HTML editor for creating
your templates, but while doing this, you have to leave the EasyStyle tags formatting untouched.
That supposed to provide compatibility with the style generation framework used within
WebRatio.

- 17 -

Figure 2.6 WebRatio. Presentation View

Application execution.

Then after you passed through all that steps for generation of pages you really have to press one
button, and all pages and files that is necessary for this web application will be generated in the
provided directory. The most stunning part is that if you have done everything correctly in
previous step it will run. If not, then you will receive some help about what elements should be
changed to omit existing warning or errors.

If you are quite curious to have a look on what actually was generated, you will find

1. A bunch of jsp pages with corresponding xml pages, where as I understand jsp specifies a
layout, and xml specifies the data content that should be put to that layout.

2. Set of resource folders and files, providing css files, pictures and other look and feel staff.

3. Within WEB-INF folder you will find struts configuration file and struts tile files [PrgStr]
[StrInAct], as well as WebML tile file.

4. Folder “desc” that contains some information about navigation between pages, data units
and even more, it contains information what database statements must be executed

5. You will NOT find any java classes generated by the framework except ones for struts
forms. This was quite surprising for me, because I was really wondering how data
manipulation is done. Obtaining this information is quite a problem. I suppose that all
information management is done within the framework taking as an input the content of
the desc folder (see previous list item). But again that is a pure assumption.

- 18 -

Summary: The only tool for the moment that covers all process of web application development
from first stage till last. It is based on the underlying methodology – WebML. The general
architecture of web application is hidden from the developer. You can understand that you are
using Struts if you know that “do” extension is associated with Struts actions in general. It is not
clear how to extent this framework even though it stated that it is possible.

2.1.4 Exadel Struts Studio 4.7

“Struts Studio is an integrated Struts development tool that covers the whole
gamut of the Struts application development cycle from creating the application
to running it.”[StStudio]

It is really easy to use from creating application from scratch or integrating the existed project
into Struts Studio IDE. Design and representation are based on rendering of the struts-config.xml
file. In case of creating web application from the beginning with the Struts Studio you design the
struts-config.xml file, generate stubs for java classes, code JSP pages and java classes, compile
the code, and run the application all without ever leaving Struts Studio. We can position this tool
to the presentation layer of our hierarchy, highlighting its deep orientation on the professional
developer. A software architect can have such perspectives on the web application

1. Presentation perspective. – Set of jsp files whose source code can be viewed by the
developer. This view provides wide possibility of using tiles. User can manipulate with
already plugged tiles, as well as create new ones. The set of tiles that are already
provided is very impressive, and can be used for almost any situation that might occur.

2. Java Source view. – This IDE encapsulates quite good Java editor, with such
possibilities as “code insight” It is not very impressive, but as this is not the main focus
of the application, so we should not expect some outstanding code writing support.

Figure 2.7 Struts Studio. Dynamic view

- 19 -

3. Dynamic view. – That is actually the core feature of the whole application. Dynamic
view allows user to create transitions between content related entities. It operates in
Struts framework terms, providing actions, forwards, redirects, simple JSP pages, form
beans, data sources, global forwards, property handling and all other stuff. This is
implemented in a very good, user-friendly manner. For creating a transition or forward
you need really closed to nothing number of actions to produce.

Dynamic view is based on the analysis of struts-config.xml file itself and the syntax
analysis of the source pages that you insert into the model. That allows auto creation of
the links (transitions) between dependent issues. So if you add a page that has a link to
another page or action then this link is automatically shown in the diagram. Jsp-page
representation gives you the possibility to specify two ways of representing the link
between dependent pages. The first one is the usual – direct connect, and the second one
– is the representation as a shortcut, where the dependent page is being displayed next to
given page with a short label.

Dynamic view if being created from scratch allows you to generate stubs for java classes
for struts forms, struts actions. On the contrary if being used on the late stages of the
project development it helps a lot while analyzing the logic of the application, transitions
and dependencies between pages.

4. Deployment. Struts Studio has an integrated ANT support. That means that you can
specify the ant script file that you want to operate with, and then call ant task from within
the IDE itself. The real value of this could not be overestimated. Especially if you use
this tool not from the first step of your web application development, then you might
have already had a build file for your application that does all the compiling, deployment,
and configuration management for you. In this case you have to just attach this file to the
Struts Studio project, and continue further rapid development. Even if you are starting
you project right from the start in the Struts Studio environment implementing build tasks
for ant would be a good idea, for not being dependent on some specific environment
variables or other parameters that are in use in IDE.

5. Execution. Struts Studio has a lightweight Tomcat web server integrated in it. So you
can run your application right from the IDE, just by pressing a button. On that all
necessary files will be compiled and updated and you will be able to start your
application in usual browser.

We have to emphasize the outstanding customization possibilities of the Struts Studio. For the
jsp page itself you can specify any parameter that it might need, as well as all parameters for the
whole application, and that is all done in a clear and distinctive way. The only lack of this tool is
lacking of the preview tab of the jsp-page, and the possibility of visual rendering of that page. I
hope that it will be possible in next releases.

Summarizing all stated above about Struts Studio I could say that this is the best tool for
managing presentation layer of the web application and its collaboration with business layer.
Struts Studio is possible to use either for newly created projects, or for projects that undergo
some changes in design and implementation.

2.1.5 ArcStyler 4

Brief overview. Very generic tool focuses on overall process of application development. There
is no special focus on web application development, but it is possible. The main idea behind
ArcStyler is transformation of UML model to specific implementation based on the Model
Driven Architecture approach. On the basis of the model you are allowed to produce different

- 20 -

kinds of implementation depending on the set of cartridges that you use. All transformation of
the model to specific code is actually hidden within that cartridge. The implementation of the
cartridge is unknown, because it’s the intellectual property of IO-Software. The output of this
transformation is:

Set of Java source files. In case as a cartridge you have chosen the one for EJB
transformation, then you will get all files-stubs implementing home and remote
interfaces

Default test client for testing your applications

Deployment descriptors for this EJB to be installed into application server

JBuilder project file that emphasizes the strong trend to cooperation with Borland
JBuilder

ANT build support files. These ant files may be executed as from ArcStyler itself or
from the shell directly. From within ArcStyler you have quite a good visual overview
of possible ANT task to run, where you can chose appropriate, establish a sequence and
execute them.

As a general resource requirements of this tool are beyond any expectations. The minimum
requirement is 256 M of RAM. But from my practical experience I can say that that’s quite not
true. Cause having just exactly 256M for me it was very irritating to wait each time for response
for some seconds, and sometimes for some tens of seconds, so more precise requirements
concerning RAM should be considered those mentioned as preferable in the tool description,
namely 1 Gb of RAM.

2.1.6 AndroMDA + Poseidon for UML

AndroMDA is an open source code generation framework that follows the model driven
architecture paradigm. It takes a UML model from a CASE-tool and generates classes and
deployable components (J2EE or other), specific for your application architecture.[AndroMDA]

Figure 2.8 AndroMDA framework.

AndroMDA is a code generator framework that takes UML model from a CASE-tool in XMI
format and generates custom components. It comes with a set of sample templates that generate
classes attributed with XDoclet tags. One build step later, the XDoclet tool generates full-blown

- 21 -

components that can readily be deployed in the JBoss application server (and the other servers
that XDoclet can feed).

XDoclet is an extended Javadoc Doclet engine. It is a generic Java tool that
lets you create custom Javadoc @tags and based on those @tags generate
source code or other files (such as xml-ish deployment descriptors) using a
template engine it provides. XDoclet supports a set of common standard tasks
such as web.xml or ejb-jar.xml generation; users and contributors can create
other templates and @tags and add support for other technologies,
too.[XDoclet]

Appropriate modules implement specific code generation. These modules, called cartridges, are
plugged into core framework and produce source code on the basis of template evaluation. There
are several cartridges available for specific needs. Among them are

1 andromda-java – generates general Java source code.

2 andromda-ejb – generates Enterprise JavaBeans.

3 andromda-hibernate – generates persistent classes for the Hibernate O/R mapper.

4 andromda-struts – generates web pages, forms and action classes for use with Jakarta
Struts.

Figure 2.9 AndroMDA sample model.

The current support for Struts includes basic generation of Struts-Form classes, and generation of
the stubs for Struts-Action classes. Moreover framework provides generation of struts-
config.xml. Generation of struts configuration file is based on the specific diagrams in the model
of the application. Currently they use class diagrams and dependency links to provide
information about transitions. That seems not very straightforward.

- 22 -

The main idea behind is that user needs to draw a model in the CASE tool like Poseidon,
afterwards AndroMDA generates a set of classes, due to the rules specified in plugged
cartridges, then you can manually change implementation of those classes where you want to
provide your specific business logic, and afterwards all this combination of handwritten and
generated classes can be build in distribution, deployed to application server and run with web
graphical interface.

Poseidon for UML is a full-fledged UML CASE-Tool. It evolved from the open-source project
ArgoUML and has turned it into a world class modeling tool. Today, it has the fastest growing
user community and is famous for its superior usability. Its superior usability makes it the easiest
tool to learn and work with. With UML standards compliancy, it facilitates interoperability with
other sets of tools while maintaining investment security. [gw.com]

Poseidon support quite customizable plug-in mechanism that allows extending its possibilities
with new features. The plug-in mechanism and integration interface allows plug-in selection and
development, as well as providing a high degree of modularity.

Figure 2.10 Poseidon for UML Car-Rental-System, AndroMDA example

As one of the possible plug-ins it provides a plug-in to the AndroMDA. This is one of the
possible good approaches in development of applications in general and web applications in
particularly.

Let’s have a look to the process of web application development with help of Poseidon and
AndroMDA from the point of having the intention to build something till the last step of
deployment to the application server.

This process is equal to the process of general software design, but it has one major difference.
All classes that are present in the model should be created regarding the MDA perspective. That
means that classes, attributes must have a special stereotype, associated with parameter of such
type in the MDA specification. Moreover, some of them should also be designed with
appropriate tagged values to foresee future possible AndroMDA transformation.

In the given example we have a stereotypes for whole EJB components development, stereotypes
for enabling Struts framework functionality. These examples are present in the Figure 2.10 They

- 23 -

design and represent the dynamics of the web application with help of class diagram. The
dependencies represent the transitions between pages, actions in the sense of Struts framework.

After we have created our model with regards to the MDA specification and to the restrictions
that AndroMDA oblige we can generate source code for the web application. It is possible to
generate all ant tasks from within Poseidon IDE. Produced code is very good structured and easy
to read and improve.

As a short summary about cooperation of AndroMDA and Poseidon I can say this combination
allows you to create web application from scratch, maintain it afterwards, make some changes in
the architecture, and update the source.

2.2 Different approaches to web application modeling

All existing approaches for web application modeling can be classified by the target architectural
layer. As it was shown in the beginning of this paper I consider Data, Business and
Presentational layer as in web application. Data layer is definitely out of scope of concerning
interactions modeling that is true for all approaches. Hence I will describe them from the point of
Presentation or Business layer focus in web application modeling.

Presentation layer focused modeling tools.

Here a distinctive player is “Exadel Struts Studio” they use somehow “from source”
approach. They rely on evaluating configuration file for Struts based application as a
basis, and on that they create visual presentation of dependencies present in the struts-
config.xml, displaying all possible transition specified there. To the presentation user
allowed adding additional links that symbolize dependencies between presentational
pages or Struts actions. They provide very good support in customizing presentational
preferences of a web application. The detailed description is present in previous part of
this paper.

Business layer focused modeling tools plus additional support for presentation layer

– WebML based – “WebRatio”

Approach based on another language for modeling applications. This “Web Modeling
Language” (WebML) was created specifically for web application modeling by Italian
company WebRatio. WebML specifies abstractions for web application development. In
the tool they focus on the whole process of web application development. One of the
major disadvantages of this approach is its strict borders and ignoring of standardized
conventions for modeling, namely UML. Detailed description for this tool is also given in
the first part of this paper.

– Pure UML based – MDA tools

To this group I can ascribe all tools that advocate MDA driven style of development.
They provide some sort of framework for applying rapid transformations of the PIM
UML model to PSM UML model, and one-step later transformation of the PSM model to
code. All that is done with the idea of cyclic application development in mind. So, they
assure resolution of conflict due to overlapping in those transformations in further stages
of application development. Each of vendors presented here provides own view of
modeling with regards to web application and web front-end of enterprise application.

- 24 -

2.3 MDA tools competitors

Currently on the MDA market of tool providers there is no standardized way of applying model
transformations, which is the core thing in MDA paradigm, so each vendor finds its own way of
doing that. But still every vendor is trying to force his approach in doing that. All share the same
concept of transformation model to code based on some assumption about the model. Among
them are

1. “ArcStyler” — created by IO-Software, closed architecture, transformations applied on
the basis of set of available cartridges. Very customizable, there are really a lot of target
platforms to which it can be deployed to, different application servers and so on. More
detailed description can be found in the first part of the paper.

2. “OptimalJ” — created by Compuware Corporation, closed architecture, transformations
applied on the basis of patterns found in a model. OptimalJ’s pattern editing functionality
enables software architects and senior designers to build and maintain their own patterns;
business-focused developers then apply the pattern solution to their specific project and
the time it takes to develop an application is significantly reduced, compared to creating
one from scratch.[OptimalJ]

3. “AndroMDA” is an open source code generation framework that follows the model
driven architecture paradigm. It takes a UML model from a CASE-tool and generates
classes and deployable components (J2EE or other), specific for your application
architecture

As a basis for this work I have taken AndroMDA framework owing to its open source and
possibility to provide additional functionality.

2.4 Architectural and modeling aspects of AndroMDA framework

As it was mentioned before AndroMDA is a code generator framework that can generate custom
components from UML model taken from a CASE-tool. It allows creation of several types of
software artifacts, among them is a set of files generated for web application.

This approach uses class diagrams for representing dynamic behavior of web application. I
would say that here we can observe mix of concerns, in class diagrams here we face
representation of dependencies between classes, some of which are used for representing control
flow from one class to another. By that it is sometimes difficult to distinguish whether
presentation and where logic is modeled.

Current release of AndroMDA is going to undertake considerable changes in next, third release.
The whole architecture is going to change implementing new concept of meta-model decorators,
while current is based on script helpers and dynamic proxy patterns that will be described
further. Research and work done in this project were based on stable AndroMDA 2 release. So
the proposal and ideas discussed here should be considered as improvements and additions for
implementation of dynamic proxy architecture of AndroMDA.

AndroMDA framework facilities might be interconnected with “Poseidon for UML” modeling
tool. By this cooperation you can run all AndroMDA transformations from within Poseidon that
reduces amount of time necessary from building internal model of AndroMDA, cause the UML
model is read not from XMI file, but from Meta Data Repository (MDR) repository
directly[MDRWP][MDRHome]

2.5 Problem statement

Representation of dynamic behavior in web application requires specific kinds of diagrams. I
point out that point of interest here is representation of dynamics with regards to the Struts

- 25 -

framework, Java Server Pages, and web application in general. I will not focus on User Interface
modeling and interaction of a user with the system in a sense of supplying data to the system. I
will primarily concentrate on interactions within different parts of the system, forced by the user
that means that I will describe transitions performed in usual dynamic behavior.

I am interested in specifying the way to display possible transitions from pages to Struts actions
and the other way around, transitions from within the pages, and cooperation of dynamically
generated pages with static pages.

For representing dynamic behavior of an application UML provide three types of diagrams:
sequence, activity and state diagrams. The two that can be applied in situation of web application
modeling was: Activity and State Diagrams.

We have to take consider such points for representing dynamic behavior:

1. There should be a possibility to apply Struts framework concepts. That is we have to
model struts action behavior, taking care about possible transition of control from Struts
action.

2. There should be a possibility to model dependencies between different jsp pages, as well
as dependencies within one jsp page.

3. The diagrams have to provide a clear visual way of observing all dependencies and
transitions between entities present in web application.

4. We have to ensure that concerns are not mixed in one diagrams, if a diagram is used for
logic flow then there should not be object constraints and interdependencies.

5. We have to ensure separation of concerns between business, data and presentation layer
modeling.

By that I will try to introduce new visual notation for modeling dynamic behavior of web
application as well as providing possibilities for modeling application’s logic.

- 26 -

3 AndroMDA based Web Dynamics Modeling.

The purpose of this work is to extend existing AndroMDA framework so that dynamics of web
application can be described and represented with Statechart Diagrams. By that, I will ensure
that different concerns are handled individually: Class Diagrams will describe dependencies
between classes involved in model, whilst Statechart Diagrams will describe interaction with a
user, which activities should web application perform to satisfy user needs.

In this part I am going to describe the whole procedure of AndroMDA transformation process
more precisely, pointing out the places where changes will be introduced. I am going to plug
some necessary functionality to AndroMDA framework so that it would be possible to subdivide
representation of interactions and class dependencies.

The overall process of AndroMDA transformations looks like this:

1. AndroMDA reads the model given either in XMI file in general or directly from MDR
repository in case of Poseidon’s plugin.

2. This UML model is transferred into internal model of AndroMDA. How is this done?
We search the given UML model for elements with specific stereotypes, which are
specified in the AndroMDA, relate those elements in the AndroMDA technological
space based on stereotypes, and relationship in the UmlModel.

3. AndroMDA provides the model that it builds from the source to the transformation
engine that performs all transformations. The transformations are separated for
different domains (target application spaces (TAS)) that means that transformation for
EJB is different from transformation for Java, or Struts, These transformations for
specific TAS are made with help of cartridges

Each cartridge has to provide a configuration file that will in specific format describe how to
use this cartridge in AndroMDA framework. Basically this file provides information about
stereotypes and templates that should be associated with given stereotype. Afterwards while
processing a model if a model element with given stereotype is found this model element is
processed with help of this cartridge. If some specific implementation was already provided
for some elements then we merge the velocity transformed model elements with source code
Velocity is a Java-based template engine. It permits anyone to use the simple yet powerful
template language to reference objects defined in Java code.[Velocity]

A cartridge consists basically of two parts:

Java classes, enhancing framework

Velocity templates files that are used actually to perform transformation.

AndroMDA uses declarative way of applying transformations assuming that for each pattern
present in the template files, the model is requested whether such type of pattern can be found in
it. If yes then the transformation is applied and the output of that action is some file or files
specific for given TAS.

Concerning web application development we have an andromda-struts plugin here, which is used
currently for all actions to be done concerning Struts framework. AndroMDA framework as is
does not meet a requirement of reading StateChart Diagrams.

For reaching the goal stated for this work I have to extend AndroMDA framework somehow.
The easiest way would be to enable AndroMDA core framework read not only class diagram
specification, but statechart diagrams also. Then I do not need to handle situation of processing
transformations because it is already done in framework. If we observe all process of work of
AndroMDA that is done to receive desired results, then I will introduce some changes on the first

- 27 -

part while reading model elements and building AndroMDA internal model tree, and change
some output templates, providing more flexibility comparing to original templates used for
Struts. With this approach we do not affect internal process of AndroMDA processing of model
elements, we only feed it with some additional. This will be described in section 3.3

The outcome of this proposal would be a new syntax for visual modeling of dynamic behavior of
web application, that syntax will be based on a meta-model of web application that uses Struts
framework. This meta-model will be described in 3.4 as well as the exact purpose of its usage.

3.1 Weaknesses of AndroMDA in the area of web application modeling

In this section I will describe AndroMDA way of representing dynamic behavior of web
application more precisely, pointing out strengths and weaknesses.

I will show all possibilities for describing dynamics with help of the one scenario present in the
AndroMDA example for web application. This scenario represents a use case of creating a car by
the system administrator.

Figure 3.1 Car-Rental-System. AndroMDA example. Admin Creates Car.

We can observe three types of entities: WebForm, WebAction and WebPage. They represent
objects of corresponding types of files within Struts framework: StrutsForm, StrutsAction and
JspPage. For each class in the model an appropriate file will be generated.

Transitions of control focus between those classes are modeled with dependencies, where
association roles serve for specific Struts notions. Thus, association role with name “failure” or
“success” represents name of a “forward” from action in the Struts framework. In this
representation only these names are fixed and you do not have a possibility to use another names.
Role name “page” is handled as an “input” parameter of struts action. That means that an
appropriate class with stereotype “WebPage” is used for representing Jsp page, which, in turn, is
used for input for struts action. This is also fixed. Association with role name “form” is used for
binding together struts action CarCreationAction and struts form CarCreationForm.

- 28 -

This way of representing transition in a web application might work for generating necessary
output files and actually it does, but it is unclear what will happened if we want to show other
dependencies of these classes. For instance what if our Action class has associations with other
classes and why the transition from action class should be always named success or failure. What
will happen if there are more then two transitions?

Here by using associations as transitions we observe some substitution of UML concerns. The
class diagrams and classes are used for representation of dynamic behavior that was not meant to
be. What is also lacking here is some way to model and represent dependencies between Jsp
pages. That might become quite challenging to observe.

3.2 Analysis of possible alternatives

I analyzed two types of diagrams that better suit for visual representation of web application:

1. Activity diagrams. Here pages are represented as activities that are performed to
generate a page. Activities might be nested, so that for producing one page-output we
need to undertake several other activities, in the sense of <include> or <forward>
directives.

In this situation quite some uncertainty about how to represent struts actions. And visual
representation of interaction within jsp pages itself was less informative than in following
case. The activity of processing one page to produce output might depend on output from
other activity. I tried to keep the layout of the this diagram close to the way of visual
representation so this rendering as passing the control to other activity and back was not
very clear.

2. State diagrams. I will consider a "State" as a processing of some resource by server, i.e.
Jsp page, or Struts action or something else. The final result of this processing will be the
output (as HTML) to a user. The processes might be interconnected, so that the output is
the combination of outputs of several processes, the processes might be organized in a
line so that the final output is the output of the last one and so on.

Transitions might be between different states or within one page, with different data
filling, so that the “the state” here is the page that is sent to the client, and “transitions”
from one state to another are forced by interactions with a user by means of request-
response operations. A “request” consists of some data and metadata that causes the
specific transition.

After analyzing all pros and cons of each diagram representation I came to the conclusion that
State Diagrams are more informative, in this case, and might be used for clearer modeling of
web application. Hence, I do need to provide a possibility of usage of State Diagrams within
AndroMDA framework.

There are two slightly different ways of doing that.

1. Read content of State Diagrams from source model (either XMI or MDR-repository)
directly to the AndroMDA model that forces us to change or enhance framework
somehow.

2. Transform State Diagrams and elements in them to Class diagrams common in
AndroMDA. That would require making changes on the level of XMI representation of
the model. That will restrict using the AndroMDA framework within Poseidon, because
even if we would decide to write a plugin for Poseidon that will do necessary changes in
the model within Poseidon, then we would not be allowed to do that, because the MDR
repository can be only changed from Poseidon itself, not from a plugin.

- 29 -

In both approaches I will face the problem of identifying the states used for specific processes.

I have chosen the first choice, as it is much easier to implement and that is more important, I can
make robust development within Poseidon. By implementing described changes I introduce new
Web Dynamics Modeling framework (WDM) based on AndroMDA.

3.3 Detailed specification of required input and output data.

Here I will describe what requirements I will impose on the user model of web application so
that it will guarantee applicability of WDM-AndroMDA transformations.

In AndroMDA framework itself such mechanism was already implemented. This
correspondence between model elements and transformations that should be applied to them is
done via “Stereotype mechanism” So that, if you want that this model element to be transformed
to this and this target files, you assign this model element specific stereotype that afterwards is
handled by the framework. As we know each cartridge defines set of stereotypes that it can
process, so when model element with given stereotype is found, output is produced. As a remark
we can mention that if there are more then one template assigned for one stereotype then several
output files are produced.

Transformations made with help of described approach are one-way transformations. For making
them we have to ensure that the model is “well-formed”, this well-formeness will be guaranteed
by the fact that we will assign stereotypes not only for classes and class members as it was in
pure AndroMDA, but for states and transitions as well. Specification and correlations between
those stereotypes will be described a little bit later in this chapter.

By the output we will get full set of files necessary for working web application, we will ensure
that in case of making changes to a model, after rerunning transformation on the modified model
we will get freshly configured web application with all business logic inserted to classes
preserved.

3.4 WDM Meta-model description. Visual syntax.

For making transformations from initial model to set of implementation classes we definitely
have to make some assumptions about, what the model look like. What types of entities must be
present, what might be present, and cannot be at the model. Here I am stating that I will need a
model of data types and relation between those that later will be used as stereotypes for objects
in user model, hence I need a meta-model for web application.

In this chapter I will explain the basics for technological space or domain that I will use in
WDM-AndroMDA framework.

- 30 -

Figure 3.2 WDM. Meta-model

This diagram represents all classes that are relevant for WDM framework, it combines elements
from four different target fields: Resources (white), Transitions (red) and Struts framework
related implementation classes (violet) and one class that serve as Configuration class (blue).

For dynamics modeling the main group here is Resources. “Resource” is actually anything that
might be accessed in web application from user point of view. Currently I am not interested on
any type of media resources, so from our point of view resources might be either static or
dynamic. So I am not interested in image files, media files and so on they all can be considered
as static resources. User will use resources only for creating State Diagrams. This statement
implies that resource will be used only for modeling interactions; they are not focused on filling
web application entities with content. They serve as a facade for real implementation. The
classes used for real implementation are those in violet: Struts Framework related. In user model
of web application instances of these violet classes might be used to provide and add some
domain specific content to generated classes.

- 31 -

Figure 3.3 WDM. Resource and Struts related domain

A resource is characterized by its location and name, location is represented as a separate class
“Href” that exactly specifies the unique address of the resource. The purpose of making Href as a
separate class is because it might be also used as part of another very important class: “Link”.

As I have said before we distinguish static and dynamic resources, “Dynamic resource” is
characterized by its scope (session, page, application or request), while for static resources I
consider, for given example, only static web pages. This is the reason why “HtmlPage” is direct
descendant from Resource not from some static resource that would be the issue of we would
consider some other types of static resources.

Concerning dynamic resources, we have here either “StrutsAction” or “JpsPage”. First one
describes representation of Struts action; attributes symbolize Struts action configuration
parameters that will be used for generating struts-config.xml – Struts configuration file. JspPage
class represents jsp page that can be used either as a page for representation of information or as
well as input resource for Struts action. Here we consider Jsp Page to be a simple page that has
no dependencies to another pages. JspPage is specialized to “CompositJsp” the difference
between them that CompositeJsp contains another pages included into it. That might be done
using <jsp:include ..> directive in source code of generated file.

- 32 -

StrutsAction class once again represents Action from Struts framework, has a dependency on
StrutsForm, which if present in the cooperation with StrutsAction means that a control flow may
pass to the StrutsForm class if appropriate attribute is specified in the StrutsAction. StrutsAction
may depend on some page or descendants as an input, and has one or more Resources as
forwards to which control is passed to render the request further.

Classes used as resources will be used for modeling states in the state diagrams, to bind those
states with classes that will serve for realization- struts framework related we need somehow
have a reference within a state to a realization class. That will be done with the help of tagged
values [OMG-UML]. Ideally we would need just a small feature like attribute assigned to state
that can keep reference to the class of realization, but that is not possible, so like workaround I
will used special tagged value named “classRef” that will be used as this reference. The value of
this tagged value, should be a name of a class associated with this state.

The same idea of tagged values will be used to specify additional, not required parameters of
Struts actions, like “unknown” and “validate”. Those parameters are of type boolean so if such
tagged values will be present in the state, then they must have appropriate values either “true” or
“false”.

Figure 3.4 WDM. Transition domain

Class “Transition” represents transition from one resource to another, so actually it is the
transition from one state to another. Transition might be “Forward”, “Redirect”, “Include” or
“Input” each of them serves specific purpose. Forward and Redirect are used for outputs from
StrutsAction, Input is used for ingoing transition to StrutsAction. Include is the one used to
represent transitions and interdependencies within one CompositeJsp, that corresponds to
<jsp:include > directive. Class “Link” may be considered as the one forcing transition so it might
be used for representing possible transition.

Class StrutsConfig will be used as a stereotype for generating configuration file for Struts.

3.5 Bridge between Meta model and Web application model

In this part I will specify which classes will serve for what goal in the web application modeling.
As it was stated before I am going to use stereotypes assigned to specific model elements so that
they will meet our requirements and assumptions about web application abstractions used for
modeling. That means that classes shown in meta-model will be used as stereotypes for model
elements in real web application model.

- 33 -

Four groups of entities will be mapped each to specific group of model elements in user created
model of web application. So I assume and require that

1. “Resources” stereotypes should be used for stereotypes of states.

Remark: I only mean those classes might be used as stereotypes that are not abstract in meta-
model, namely: StrutsAction, JspPage, HtmlPage, CompositeJsp and we add here a
StrutsForm class. Furthermore there are some more restrictions:

1.1 Stereotypes “JspPage”, “StrutsForm” and “HtmlPage” should be used for Simple States
in State diagram in terms of UML.

1.2 Stereotypes “StrutsAction” and “CompositeJsp” must be the only two that should be used
for Composite States

1.3 Stereotype “StrutsForm” can be used for nested state in composite state that has
stereotype “StrutsAction”, in this case this means that this action uses this StrutsForm

2. “Transition” and “Link” stereotypes are used to represent transitions between states in
StateDiagram

Remark

2.1 Stereotype “Forward” and “Redirect” can be used for transitions from the state marked
with stereotype “StrutsAction”.

2.2 Stereotype “Input” can be used for transition to the state that has stereotype “Struts
Action”

2.3 Stereotype “Include” can be used to specify transition to inner states of a composite state
that is marked with stereotype “CompositeJsp”. This transition specifies the insertion of
output of inner state to the output that produces Composite state.

3. Struts related stereotypes can be assigned to the classes in the Class Diagrams. For some state
that can have a reference to the Struts related this reference must be specified in the tagged
value “classRef“ and set to the name of appropriate class from Class Diagram.

3.1 States that has stereotype “StrutsAction” or “StrutsForm” MUST have such a reference.
We need to have a reference in this case, cause we will need to include a fully qualified
name of the references class in the configuration file for struts based web application. As
a remark concerning “StrutsForm” elements we can add: if a same Struts form is intended
to be used in several Struts actions, then at least one of them must have such reference.

3.2 States that has stereotype “JspPage” or “CompositeJsp” might have such a reference, in
case they do, data provided in associated class will be used for code generation for this
jsp files.

3.3 States with stereotype “HtmlPage” need not do have such reference cause the code
generated does not depend on associated class.

4. Stereotype “StrutsConfig” must be assigned to one class in the model of web application this
file will be used to create configuration file for Struts, namely struts-config.xml. Once again
there should be only once class in the whole model with such stereotype assigned to it.

3.6 Sample usage WDM meta-model stereotypes are assigned to model elements

In this section I will provide examples of usage of those stereotypes, how they might be used in
State Diagrams. I will describe different types of transition that might occur between different
resources. A user will finally operate precisely with these transitions, combining them to some
diagram specifying some process of interactions in web application.

- 34 -

Basically there are 4 different cases, I will divide them by the target of transition principle. So
we have: Transition to HtmlPage, Transition to JspPage, and Transition to CompositeJsp,
Transition to and from Struts Action.

1. Transition to simple html page:

Figure 3.5 Transition to static resource.

We can reach our Target page either from another page, using the link to make transition from
Source to destination. Or we can access target page as a result of Forward or Redirect
processing, so that some process (StrutsAction) forwarded a request to this page.

Source page should have one of the following stereotypes: CompositeJsp, JspPage, HtmlPage.
The reason for using Forward stereotype for a transition from Jsp page is that jsp sometimes can
be used with some logic assign to it, so it can decide to forward a request somewhere else. But
that must be omitted in correct MVC based application, where Jsps are used only for
presentation purposes.

2. Transition to Simple Jsp.

There is no much difference from the previous picture, except that for creating the output to a
user, we create some content on the fly.

Figure 3.6 Transition to jsp page.

- 35 -

3. Transition to Composite Jsp.

Figure 3.7 Transition to CompositeJsp

The way to reach the resource is still the same, but for producing an output to user in this case
we depend on the other Jsp pages or static pages. That is symbolized by the processing of several
inner jsp states within one composite state. The output might be a combination of self produced
content by the composite jsp with output of included resources.

A “Redirect” transition should be checked. The idea was if jsp directive allows such kind of
references then they should be shown

4. Transition to Struts action

Transition to Struts action might be as a result of usual link; in that case referencee might be
used as an “input” in the Struts framework. Or might be the result of processing of previous
Struts action that used such kind of forward to pass control over user’s request. The main
property of Struts action is that it doesn’t produce direct output, as output we receive one of
possible “Forwards” or “Redirects” that should be processed further to obtain the output to be
sent to a user. The selection of “Forward” is done depending on the outcome of the request
processing in business layer. So, while using diagrams representing transitions to Struts actions
the user will need to provide all “Forwards” that might be the outcome of the Struts action.

Figure 3.8 Transition to StrutsAction

- 36 -

Those possible transitions form full set of available to a user to design his transitions in web
application. This set is full and I was not able to find out any other possible transition in web
application that might not be covered with given types of diagrams

3.7 Comparison of once and many times generated target elements

Now I want to dwell on the output that we will receive after applying transformations based on
the WDM-AndroMDA. How those files will be organized, how they can be changed and
modified.

As for any web application that uses Struts framework we need to obtain following files:

Configuration file, one for whole application

Java source files representing classes used for Struts actions

Java source files representing classes used for Struts forms

Source files for presentation that is set of jsp pages and html pages if any.

AndroMDA framework transformation of model might be customized in whether the
transformations should be undertaken for given model element or not. That is done in
configuration file for specific cartridge. When you provide information about stereotypes that
this cartridge is uses, at the point where you set values for specific stereotype you can set
“overwrite” attribute either to true or false. What it does?

If this value is set to false, then while processing a model and finding a element with
corresponding template, framework checks whether an output file was generated previously for
this model element or not. If nor then it performs transformations and creates an output file. If a
file already exists then no output that would overwrite possible manual changes is produced.

If a value of overwrite attribute is set to “true” then no matter was the output file present or not a
new will be generated and the old one will be overwritten. How can we use that in our
framework? That is really quite useful feature of AndroMDA framework that allows us to create
model, then apply some changes to the model, generate transformations once again and obtain
new working implementation of the system, with all business logic saved from previous
transformations and manual changes.

Concerning our model I want a configuration file to be generated every time we do
transformations. Source files for Struts actions and Jsp pages should be generated only once,
cause afterwards we need to provide additional business logic to them, and Struts form source
files can also be generated each time depending on current state of the model.

3.8 WDM vs. AndroMDA. Enhancements

This chapter will focus of what changes I have introduced to existing AndroMDA framework
and what additional flexibility it provides for us.

First of all, a new representation possibility was added that allows a new more intuitive
modeling of web application.

Representation of transitions between all parts of web application is now possible, I
introduced transitions between web pages, struts actions and forms, moreover I provided
more clear view on processes performed by the server to process a user’s request

I provided more flexibility in class dependencies for Struts actions and Struts forms.
These classes now can have inheritance relationship with other classes and the generated

- 37 -

files will have corresponding information. On the contrary, on original AndroMDA
framework struts actions and forms were inherited directly and from Action or
ActionForm classes of Struts framework

I separated presentation logic from business logic, allowing user to concentrate on one
issue at a time.

I provided more flexibility in customizing Struts configuration file parameters, such as I
provided a possibility to adjust such setting valid for Struts action as “validate” and
“unknown”. Struts action and form in configuration file and within web application no
longer have to have their names set to the names of the classes that realize them. Those
values are now different, name in web application is taken as a State name, and
referenced class is being assigned to this form or action in the configuration file.

I introduced some enhancements in generated code for Struts actions. So, in original
AndroMDA framework Struts action always had to have only two forwards from action,
one is named success, another failure. This was not customizable. Now a Struts action
can have any number of forwards, and their names are used for generating source code,
that might be adopted afterwards.

3.9 Comparison to BPM4Struts

Currently the AndroMDA development team works on the next thirds release of AndroMDA,
there will some considerable changes in the architecture. They are going to move from Proxy
pattern to MetaModelDecorator Pattern [amdaWiki]. One of the other enhancement might be a
proposal for another cartridge for dealing with web applications, namely bpm4struts.

Among stated features of new cartridge are:

Modeling using activity graphs to express the application flow

Modeling using class diagrams to express MVC implementation details

Auto-generation of abstract action classes and associated skeleton implementation classes

Auto-generation of abstract form classes and associated skeleton implementation classes

Auto-generation of Javadoc from the documentation added by the user in the UML model

Auto-generation of suitable method and file names from the UML model

Auto-generation of JSP files that do not require manual updating to make them work, the
available input fields will also be generated and depend on the request parameter types

Auto-generation of struts-config.xml (done by XDoclet)

Auto-generation of javascript validation (done by XDoclet)

We can observe quite some similarities and differences in two approaches:

Similarities:

1. Both authors (author of this work and author of bmp4struts: Wouter Zoons) agree on
separating two concerns presentation workflow modeling from business logic modeling.

2. More detailed generation of output target files implementing MVC pattern

3. Almost the same concept is used for representation of workflow within web application,
as you remember the possibility to use activity diagrams was discussed earlier in this
paper.

- 38 -

Differences

1. – Author of Bmp4Struts mostly focuses on business modeling. He presents good idea
about separating the customizable and not customizable behavior of Struts action classes.
By means of delegation pattern he specifies a workflow of action handling in abstract
action class, and forces a user to overwrite some methods in inherited class. By these
actions it is possible to provide necessary decision selection for workflow of action

– This work basically targets representation of dynamic behavior of web application in
the scope of interactions with a user. Prove of this concept was done during the whole
paper.

2. Bmp4strtus uses and tries to implement MetaModel-Decorator pattern while WDM
currently uses proxies pattern. That is caused by the fact that the only stable release
available at that time was AndroMDA 2. The architecture of WDM later can be changed
to satisfy needs of new architecture requirements of AndroMDA.

3. Bmp4Struts generates configuration file for Struts1.1 on the contrary to 1.0 configuration
file of WDM.

Summarizing all written above about bmp4struts vs. WDM I can assume that these 2 approaches
might be combined to implement full set of requirements that might occur for modeling web
application. The correspondence between authors of these two approaches assumes that this
cooperation might happen:

>>“Your ideas are very welcome, I think it is best we bundle our efforts on the same cartridge,
>>rather than work in parallel on different ones.”

3.10 Integration with Poseidon

Here I will provide some justifications for integration of AndroMDA into Poseidon for UML.

Poseidon support quite customizable plug-in mechanism that allows extending possibilities of
Poseidon with new features. The plug-in mechanism and integration interface allows plug-in
selection and development, as well as providing a high degree of modularity.

AndroMDA framework might be integrated into Poseidon for UML modeling tool with help of
special plug-in written by the lead developer of AndroMDA framework. What does it provide?
As we know, AndroMDA expects a well-formed model as an input that is stored in XMI file.
While reading this model it builds its internal model filling MDR repository with data stored in
XMI file and later applies transformations to the created model. By using AndroMDA within
Poseidon we can omit step of reading model from XMI file and creating internal MDR
repository model. The reason is that Poseidon itself uses MDR repository for storing a model of
designed application. So, AndroMDA reads data directly from Poseidon’s repository; that saves
at least 30% of time required for performing transformations from scratch.

What do we need to make all that work, is just provide paths to the appropriate jars during start
up of Poseidon. Those jars are related to AndroMDA and Java, we need to have tools.jar in the
classpath of started application to be able to run some AndroMDA ant-task from Poseidon.

AndroMDA plugin extends Poseidon with set of Stereotypes that are used in AndroMDA
framework. This is done in AndroMDA configuration file that is being read on the start of
Poseidon. To extend that to satisfy our needs, (we need to add our own designed stereotypes) we
can either edit AndroMDA configuration file, or use Profiling mechanism of Poseidon.

For enabling usage of our stereotypes while modeling of a web application I store created meta-
model of Web Dynamics Modeling as a profile. Later, when we are starting new project, we load
stored profile into Poseidon, by that adding all stereotypes to the Poseidon environment. Now we

- 39 -

can assign WDM stereotypes for model elements as any other stereotypes already present in the
system.

Figure 3.9 Integration of “Poseidon for Uml” and AndroMDA.

For building our application one selects ANT build file from, and then he can select what tasks
to run, arrange them in the necessary order and undergo transformations. As an output we will
receive the same set of files that we would in case of using AndroMDA from shell, but much
faster.

3.11 Sample project for web application development.

For proving that given concept can work I have changed existing sample web application from
AndroMDA framework CarRentalSystem. The changes were done to reflect new designing and
modeling capabilities. I have changed configuration of AndroMDA framework so that new files,
generated by means of WDM extension, are stored in another directory then originally generated
files.

By comparing a content of two different directories I afterwards can make a decision whether the
new extension can be used instead of old andromda-struts cartridge.

A new state diagram was added to existing Poseidon project, representing CarRentalSystem –
“Dynamics”. I added new stereotype to existing class representing configuration of web
application. A full state diagram might be found in second enclosure.

The result of comparison is adequate. The sets of generated files are identical representing files
for Jsps, StrutsActions, StrutsForms and configuration file. Content from WDM code generation
part is slightly different from that of pure AndroMDA that was expected owing to enhancement
introduced in WDM. First of all that apply to configuration file and Struts Action source files.
The differences for configuration file can be observed in 2 following listings

- 40 -

Listing 3.1Comparison of AndroMDA and WDM.

Original AndroMDA framework WDM-AndroMDA framework
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software
Foundation//DTD Struts Configuration 1.0//EN"
"http://jakarta.apache.org/struts/dtds/struts-
config_1_0.dtd">
<struts-config>

<!-- ======= Form Bean Definitions -->

<form-beans>

<form-bean name="AdminLoginForm"

type="org.andromda.samples.carrental.admins.web.AdminL
oginForm"/>

<form-bean name="ReservationForm"
type="org.andromda.samples.carrental.contracts.web.Rese
rvationForm"/>

<form-bean name="CustomerCreationForm"
type="org.andromda.samples.carrental.customers.web.Cust
omerCreationForm"/>

<form-bean name="CustomerLoginForm"
type="org.andromda.samples.carrental.customers.web.Cust
omerLoginForm"/>

<form-bean name="CarCreationForm"
type="org.andromda.samples.carrental.inventory.web.CarC
reationForm"/>

<form-bean name="CarTypeCreationForm"
type="org.andromda.samples.carrental.inventory.web.CarT
ypeCreationForm"/>

</form-beans>

<!-- ========== Action Mapping Definitions -->

<action-mappings>

<action path="/AdminLoginAction"
type="org.andromda.samples.carrental.admins.web.AdminL
oginAction" name="AdminLoginForm" scope="request"
input="/AdminLoginPage.jsp" unknown="false"
validate="true">

<forward name="failure"
path="/AdminLoginPage.jsp" redirect="false"/>

<forward name="success"
path="/AdminMenuPage.jsp" redirect="false"/>

</action>

<action path="/CarReservationAction"
type="org.andromda.samples.carrental.contracts.web.CarR
eservationAction" name="ReservationForm"
scope="request" input="/ReservationPage.jsp"
unknown="false" validate="true">

<forward name="failure"
path="/ListOfReservationsAction.do" redirect="false"/>

<forward name="success"
path="/ListOfReservationsAction.do" redirect="false"/>

</action>

<action path="/ListOfReservationsAction"
type="org.andromda.samples.carrental.contracts.web.ListOf
ReservationsAction" name="ReservationForm"
scope="request" input="/ReservationPage.jsp"
unknown="false" validate="true">

<forward name="success"
path="/ReservationPage.jsp" redirect="false"/>

</action>

<action path="/CustomerCreationAction"
type="org.andromda.samples.carrental.customers.web.Cust
omerCreationAction" name="CustomerCreationForm"
scope="request" input="/CustomerCreationPage.jsp"
unknown="false" validate="true">

<forward name="failure"
path="/CustomerCreationPage.jsp" redirect="false"/>

<forward name="success"
path="/ListCustomersAction.do" redirect="false"/>

</action>

<action path="/ListCustomersAction"
type="org.andromda.samples.carrental.customers.web.List
CustomersAction"

name="CustomerCreationForm"

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software
Foundation//DTD Struts Configuration 1.0//EN"
"http://jakarta.apache.org/struts/dtds/struts-
config_1_0.dtd">
<struts-config>

<!-- ========== Form Bean Definitions -->

<form-beans>

<form-bean name="AdminLoginForm"

type="org.andromda.samples.carrental.admins.web.AdminL
oginForm"/>

<form-bean name="ReservationForm"
type="org.andromda.samples.carrental.contracts.web.Rese
rvationForm"/>

<form-bean name="CustomerCreationForm"
type="org.andromda.samples.carrental.customers.web.Cust
omerCreationForm"/>

<form-bean name="CustomerLoginForm"
type="org.andromda.samples.carrental.customers.web.Cust
omerLoginForm"/>

<form-bean name="CarCreationForm"
type="org.andromda.samples.carrental.inventory.web.CarC
reationForm"/>

<form-bean name="CarTypeCreationForm"
type="org.andromda.samples.carrental.inventory.web.CarT
ypeCreationForm"/>

</form-beans>

<!-- ========== Action Mapping Definitions -->

<action-mappings>

<action path="/AdminLogin"
type="org.andromda.samples.carrental.admins.web.AdminL
oginAction" name="AdminLoginForm"
input="/AdminLoginPage.jsp" scope="request"
unknown="false" validate="true">

<forward name="success"
path="/AdminMenuPage" redirect="false"/>

<forward name="failure"
path="/AdminLoginPage.jsp" redirect="false"/>

</action>

<action path="/CarReservation"
type="org.andromda.samples.carrental.contracts.web.CarR
eservationAction" name="ReservationForm"
input="/ReservationPage.jsp" scope="request"
unknown="false" validate="true">

<forward name="success"
path="/ListOfReservations.do" redirect="false"/>

<forward name="failure"
path="/ListOfReservations.do" redirect="true"/>

</action>

<action path="/ListOfReservations"
type="org.andromda.samples.carrental.contracts.web.ListOf
ReservationsAction" name="ReservationForm"
scope="request" unknown="false" validate="true">

<forward name="success"
path="/ReservationPage.jsp" redirect="false"/>

</action>

<action path="/CustomerCreation"
type="org.andromda.samples.carrental.customers.web.Cust
omerCreationAction" name="CustomerCreationForm"
input="/CustomerCreationPage.jsp" scope="request"
unknown="false" validate="true">

<forward name="failure"
path="/CustomerCreationPage.jsp" redirect="true"/>

<forward name="success"
path="/ListCustomers.do" redirect="false"/>

</action>

<action path="/ListCustomers"
type="org.andromda.samples.carrental.customers.web.List
CustomersAction" name="CustomerCreationForm"
scope="request" unknown="false" validate="true">

- 41 -

scope="request" unknown="false" validate="true">

<forward name="success"

path="/CustomerCreationPage.jsp" redirect="false"/>

</action>

<action path="/CustomerLoginAction"

type="org.andromda.samples.carrental.customers.web.Cust
omerLoginAction" name="CustomerLoginForm"
scope="request" input="/CustomerLoginPage.jsp"
unknown="false" validate="true">

<forward name="failure"

path="/CustomerLoginPage.jsp" redirect="false"/>

<forward name="success"

path="/CustomerMenuPage.jsp" redirect="false"/>

</action>

<action path="/CarCreationAction"
type="org.andromda.samples.carrental.inventory.web.CarC
reationAction" name="CarCreationForm" scope="request"
input="/CarCreationPage.jsp" unknown="false"
validate="true">

<forward name="failure"
path="/CarCreationPage.jsp" redirect="false"/>

<forward name="success"
path="/ListCarsAction.do" redirect="false"/>

</action>

<action path="/ListCarsAction"
type="org.andromda.samples.carrental.inventory.web.ListC
arsAction" name="CarCreationForm" scope="request"
unknown="false" validate="true">

<forward name="success"
path="/CarCreationPage.jsp" redirect="false"/>

</action>

<action path="/CarTypeCreationAction"
type="org.andromda.samples.carrental.inventory.web.CarT
ypeCreationAction" name="CarTypeCreationForm"
scope="request" input="/CarTypeCreationPage.jsp"
unknown="false" validate="true">

<forward name="failure"
path="/CarTypeCreationPage.jsp" redirect="false"/>

<forward name="success"
path="/ListCarTypesAction.do" redirect="false"/>

</action>

<action path="/ListCarTypesAction"
type="org.andromda.samples.carrental.inventory.web.ListC
arTypesAction" name="CarTypeCreationForm"
scope="request" unknown="false" validate="true">

<forward name="success"
path="/CarTypeCreationPage.jsp" redirect="false"/>

</action>

</action-mappings>
</struts-config>

<forward name="success"

path="/CustomerCreationPage.jsp" redirect="true"/>

</action>

<action path="/CustomerLogin"

type="org.andromda.samples.carrental.customers.web.Cust
omerLoginAction" name="CustomerLoginForm"
input="/CustomerLoginPage.jsp" scope="request"
unknown="false" validate="true">

<forward name=""

path="/CustomerLoginPage.jsp" redirect="false"/>

<forward name="" path="/CustomerMenuPage"

redirect="false"/>

</action>

<action path="/CarCreation"

type="org.andromda.samples.carrental.inventory.web.CarC
reationAction" name="CarCreationForm"
input="/CarCreationPage.jsp" scope="request"
unknown="false" validate="true">

<forward name="failure"
path="/CarCreationPage.jsp" redirect="false"/>

<forward name="succcess" path="/ListCars.do"
redirect="false"/>

</action>

<action path="/ListCars"
type="org.andromda.samples.carrental.inventory.web.ListC
arsAction" name="CarCreationForm" scope="request"
unknown="false" validate="true">

<forward name="success"
path="/CarCreationPage.jsp" redirect="true"/>

</action>

<action path="/CarTypeCreation"
type="org.andromda.samples.carrental.inventory.web.CarT
ypeCreationAction" name="CarTypeCreationForm"
input="/CarTypeCreationPage.jsp" scope="request"
unknown="false" validate="true">

<forward name="success"
path="/ListCarTypes.do" redirect="false"/>

<forward name="failure"
path="/CarTypeCreationPage.jsp" redirect="false"/>

</action>

<action path="/ListCarTypes"
type="org.andromda.samples.carrental.inventory.web.ListC
arTypesAction" name="CarTypeCreationForm"
scope="request" unknown="false" validate="true">

<forward name="success"
path="/CarTypeCreationPage.jsp" redirect="true"/>

</action>

</action-mappings>
</struts-config>

- 42 -

4 Directions for further work

This project might be further continued in three quite related directions. Parts of them are bound
to a development of AndroMDA framework itself, and in some aspects changes that might be
done are discussed in response to the new language for transformations specified by OMG.

4.1 AndroMDA 3. Decorator Pattern, Bpm4Struts

AndroMDA on its next release will no longer support proxies architecture, but will move to the
Meta-model Delegation pattern. So the whole architecture of core AndroMDA and all cartridges
used in it are being changed to satisfy new requirements. The state of the process is not even pre-
alfa release.

Besides, as it was already mentioned, in new AndroMDA 3, the former part that was related to
web application modeling will be substituted with a new cartridge bpm4struts. This cartridge is
now also changing architecture to satisfy overall architecture of AndroMDA.

One of possible improvements and directions of further research might be close cooperation with
bpm4struts developers so that in final plugin combine positive ideas from both present
approaches. This seams to be not so difficult to implement, because WDM has not changed
AndroMDA core framework very much, so that makes us hope that that changes will not require
many efforts.

4.2 QVT based model elements transformations for precise source code generation

QVT stands for Query/View/Transformation is the proposal of OMG for language that will
specify transformations between different models or within one model [QVT]. Currently the
state of standardization process passed second revised submission, so we may hope that one of
the proposals will be approved in near future.

How that can be used here? As followed from the target of QVT we will be able to create
transformations not like now from model to code, but from one generic model to more specific,
and so on. The first example that we can imagine might be transformations from platform
independent to platform specific model. That in tern will give us more flexibility in designing
applications in general and web application in particularly. By that finally we will be able to
generate code more eligible for user needs and expectations.

4.3 Granularity of transformations.

Taking under consideration the previous aspect, afterward we can concentrate on more distinct
transformations, so that we can generate code for operation and overwrite only that operation in
the previously generated file. For instance we might want to change method signature in
operation, add or remove some parameters.

It might be also possible to provide a more precise way of handling and modeling business logic
in application. So, we can more precisely model workflows, and transitions and later transform
that model to real application.

- 43 -

Conclusion:

The goal of the project was to extend the existing AndroMDA framework by providing a
statechart-based notation to model dynamic behavior aspects of web application based on the
Struts framework. The main achievements of this work are:

Separation of concerns in modeling web application

New notation for modeling transitions in web application and interactions with a user.

More customizable code generation facilities.

An extension at the Meta-Model level for Web Dynamics Modeling is explicitly described in the
paper and examples of usage are given, as well as some generated code for sample web
application.

Sample project present on the AndroMDA framework is changed in compliance with new
requirements imposed by the WDM specification. The project is presented in “Poseidon for
UML” that allows us to observe increase of performance in applying WDM-AndroMDA
transformations.

- 44 -

Bibliography:

[FStrt] http://www.omg.org/faststart/program.htm

[CaseSt] MDA Productivity case study. Middleware company. “Model Driven

Development for J2EE Utilizing a Model Driven Architecture (MDA) Approach”

[Concole] http://www.jamesholmes.com/struts/console/

[StBlder] http://sourceforge.net/projects/rivernorth/

[WebML] http://www.webratio.com/upload/webml_guide.pdf

[WebRatio] Site Development Studio user guide

[PrgStr] “Programming Jakarta Struts”, Chuck Cavaness, O’Reilly

[StrInAct] “Struts in Action. Building web applications with the leading Java framework.”,

Ted Husted, Cedric Dumoulin, George Franciscus, David Winterfeldt. Manning

2003

[StStudio] http://www.exadel.com/downloads/struts/doc/StrutsStudioGuide.pdf

[AndroMDA] http://www.andromda.org

[XDoclet] http://xdoclet.sourceforge.net/

[gw.com] http://www.gentleware.com

[OptimalJ] http://www.compuware.com/products/optimalj/

[MDRWP] http://mdr.netbeans.org/MDR-whitepaper.pdf

[MDRHome] http://mdr.netbeans.org/

[Velocity] http://jakarta.apache.org/velocity/index.html

[OMG-UML] OMG. Unified Modeling Language Specification. Version 1.5. March 2003

[amdaWiki] http://team.andromda.org/tiki/tiki-index.php?page=MetamodelDecorators

[QVT] http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf

http://www.jamesholmes.com/struts/console/
http://sourceforge.net/projects/rivernorth/
http://www.webratio.com/upload/webml_guide.pdf
http://www.exadel.com/downloads/struts/doc/StrutsStudioGuide.pdf
http://www.andromda.org
http://xdoclet.sourceforge.net/
http://www.compuware.com/products/optimalj/
http://mdr.netbeans.org/
http://jakarta.apache.org/velocity/index.html
http://team.andromda.org/tiki/tiki-index.php?page=MetamodelDecorators

