
 Technical University Hamburg-Harburg

Degree course: Information and Media Technologies
Supervising examiner: Prof. Dr. Joachim W. Schmidt
Second examiner: Dr. Hans-Werner Sehring
Delivery day 30th August 2004

Project Study Report

Fenfang Xu

Asset Presentation in Open Dynamic Content Management Systems: A Model of User
Interface Components and Design Considerations for a Visualization Engine or Generator

2

Index

1 Introduction ... 9
1.1 Motivation.. 9
1.2 The Structure of this Project Report... 10

2 Requirements... 11
2.1 Problems of Existing User Interface Visualization Approaches... 11
2.2 Requirements of a Visualization Engine or Generator.. 15
2.3 Possible Approaches ... 16

3 Selected Visualization Components... 21
3.1 Container Component .. 21

3.1.1 Window Component... 22
3.1.2 Panel Component.. 23
3.1.3 Toolbar Component.. 23

3.2 Layout Management ... 24
3.2.1 Design of Layout Managers According to the Strategy Pattern ... 24
3.2.2 GridLayout Manager .. 25
3.2.3 GridBagLayout Manager.. 26
3.2.4 BoxLayout Manager ... 26
3.2.5 FlowLayout Manager ... 26
3.2.6 BorderLayout Manager... 27

3.3 The MVC Design Pattern to Design View Component and Model and Controller 27
3.3.1 The Model-View-Controller Design Pattern .. 27
3.3.2 View Component.. 28
3.3.3 Active Components .. 31

3.4 UI Components.. 32
4 Visualization Technologies ... 33

4.1 Layout Description Languages .. 33
4.1.1 SGML-based Layout Description Languages... 34
4.1.2 XML-based Layout Description Languages... 34

4.2 Tool-based Interface Generation... 44
4.3 Toolkits and User Interface Libraries for Programming Languages 46
4.4 Scripting Languages ... 48
4.5 UI Technologies Supported by a Visualization Engine or Generator 49

5 A Visualization Engine or Generator .. 51
5.1 Analysis of Possibilities to Implement a Visualization Engine or Generator 51
5.2 GUI Domain .. 52
5.3 Technology Domain .. 54

4

5.4 Different Possibilities for Implementation of a GUI Engine or Generator.......................... 54
5.4.1 Creating a UI Component Based on the Type of an Asset’s Content Reference................................ 54
5.4.2 A Java Class is the Value of a Characteristic of an Asset... 56
5.4.3 An Instance of a Component is the Value of a Characteristic of an Asset ... 58
5.4.4 An Instance of a UI Component is the Value of a Content of an Asset.. 60
5.4.5 A Combination of Technologies as Instances and Components as Classes.. 62
5.4.6 A Different Combination of Technologies as Instances and Components as Classes 64
5.4.7 Another Combination of Technologies as Instances and Components as Classes 66

5.5 Comparison of Different Possibilities to Implement a GUI Engine or Generator.............. 68
6 Summary and Outlook.. 71

6.1 Summary.. 71
6.2 Outlook... 71

Appendix A: Visualization Components Class Diagrams ...I

Appendix B: Visualization Technologies Diagrams... III

Appendix C: Glossary... V

Appendix D: References ..IX

Declaration...XIII

List of Figures

Figure 2-1: Assets represent entities by [content | concept]-pairs.. 12

Figure 2-2: Three-tier architecture ... 12

Figure 2-3: The waterfall model... 13

Figure 2-4: Iterative incremental development model ... 13

Figure 2-5: The evolution of a user interface... 14

Figure 2-6: The personalization of a user interface.. 15

Figure 2-7: The variants of a user interface ... 15

Figure 2-8: Use case diagram of a user .. 17

Figure 2-9: The working mechanism of the UI visualization engine or generator 17

Figure 2-10: Case diagram of a domain designer .. 18

Figure 2-11: Case diagram of a GUI engine or generator.. 18

Figure 3-1: Components class diagram.. 21

Figure 3-2: Container class diagram .. 22

Figure 3-3: Frame... 22

Figure 3-4: Internal frame .. 22

Figure 3-5: Dialog .. 23

Figure 3-6: Panel .. 23

Figure 3-7: Scroll panel.. 23

Figure 3-8: Tool bar ... 24

Figure 3-9: LayoutManager class diagram... 24

Figure 3-10: The strategy pattern ... 24

Figure 3-11: A grid layout example ... 25

Figure 3-12: A grid bag layout example .. 26

Figure 3-13: A box layout example.. 26

Figure 3-14: A flow layout example .. 26

Figure 3-15: A border layout example ... 27

Figure 3-16: The Model-View-Controller pattern ... 28

Figure 3-17: View class diagram ... 29

Figure 3-18: Combo box .. 29

Figure 3-19: Progress bar ... 29

Figure 3-20: List... 30

6

Figure 3-21: Spinner... 30

Figure 3-22: Text field and a label ... 30

Figure 3-23: Table.. 30

Figure 3-24: Tree.. 31

Figure 3-25: Active component class diagram... 31

Figure 3-26: Button .. 31

Figure 3-27: Menu.. 32

Figure 4-1: Existing visualization technologies diagram... 33

Figure 4-2: One SwiXML example.. 35

Figure 4-3: Meta-Interface model diagram .. 36

Figure 4-4: One UIML example... 37

Figure 4-5: One XAML Example .. 41

Figure 4-6: The Structure of XIML.. 43

Figure 4-7: UI Libraries for programming languages diagram.. 46

Figure 4-8: UI technologies supported by a GUI engine or generator spectral diagram 49

Figure 4-9: UI technologies supported by a GUI engine or generator class diagram.............. 49

List of Tables

Table 4-1 Comparison of the new approach with some existing visualization technologies .. 50

Table 5-1: Analyses the alternatives for implementation of a GUI engine or generator 70

8

Appendix

Appendix A 1 Component class diagram...I

Appendix A 2 Container class diagram..I

Appendix A 3 LayoutManager class diagram..I

Appendix A 4 View class diagram.. II

Appendix A 5 ActiveComponent class diagram... II

Appendix B 1 Existing visualization technologies diagram .. III

Appendix B 2 UI libraries for programming languages diagram... III

Appendix B 3 UI technologies supported by a GUI engine or generator spectral diagram. III

Appendix B 4 UI technologies supported by a GUI engine or generator class diagram IV

1 Introduction

 9

1 Introduction

This chapter will describe a motivation and the structure of the project report.

1.1 Motivation

A new approach called conceptual content management [1] is based on a new language called
asset language. This approach uses assets to model application domain in an innovative way.
The conceptual content management is open and dynamic. Open means that users can change
a domain model on the fly and any time. Dynamic means that the system implementation
changes dynamically following any on the fly modification of a domain model. A user
interface (UI) of a conceptual content management system has to be adapted dynamically
because domain models change constantly. However, dynamic adaptation of a UI is usually
not addressed by the existing UI technologies. Openness and dynamics together allow
conceptual content management systems to be constantly adapted, refined and personalized
according to the requirements as demanded by its users’ tasks.

Since a good layout of a UI cannot be decided by a machine and a UI cannot be automatically
constructed, a UI has to be user definable. Some inputs such as a layout from a user or a
screen designer are required. After researching the existing UI technologies, no UI
technologies which are open and dynamic could be found and there is no suitable UI
technology for dynamic adaptation of a UI. A UI engine is needed to render a UI or a UI
generator is required to generate code that creates a UI. There are several approaches to
realize the dynamic adaptation of a UI. One approach is that a UI engine is given and user
input such as a layout is required. The disadvantage of this approach is that a user has to use
more than one language such as one language for application domain and one language for
Layout. Alternative is that a UI engine is provided and user input such as a layout is defined
by using assets. The user interface is implemented by describing UIs through the Asset
Definition Language (ADL) by using assets to model the UI realm. The advantage of this
approach is that the ADL allows three contributions: the evolution, personalization, and
adaptability of a user interface. A user is required to use only one language which he already
knows. A UI engine or generator is designed in order to realize an open dynamic
visualization. The visualization is realized by a combination of the application domain and the
UI realm. There are two domains in the UI realm that are orthogonal: one for logical UI
components and one for presentation technologies. The UI engine or generator works based
on a UI components model, a UI technologies model, and an application domain model.

This project study does a preparation for the development of an engine or generator for
dynamic UIs and defines a UI components model and a UI technologies model logically as
well as its formalization in terms of the asset language and analyses design considerations for
a visualization engine or generator which realize dynamic visualization.

1 Introduction

10

1.2 The Structure of this Project Report

After a short discussion of requirements for the visualization of a UI (chapter 2) we design a
possible UI components model (chapter 3). Chapter 4 illustrates a UI technologies model.
Chapter 5 analyses several possibilities for implementing a UI engine or generator and
proposes one solution. Finally, chapter 6 concludes with a short summary and a look at future
development of the UI visualization engine or generator for UIs.

2 Requirements

 11

2 Requirements

As briefly mentioned in chapter 1, the existing UI technologies have limitations. They are not
open and dynamic as mentioned in chapter 1. In this chapter, first, we will discuss problems
of existing user interface visualization approaches. Then we will analyse the requirements of a
visualization engine or generator. Finally, we will look at possible approaches.

2.1 Problems of Existing User Interface Visualization Approaches

Existing user interface visualization approaches are not open and dynamic. For example,
HTML is the language for writing hypertext. It is inadequate for a large and complex
application due to its fixed set of tags and limited graphic capabilities. UIML (User Interface
Markup Language) [2] allows designers to describe the user interface in generic terms, and
then uses a style description to map the interface to various operating systems and appliances.
SwiXML [3] is a small GUI generating engine for Java applications and applets. Graphical
User Interfaces are described in XML documents that are parsed at runtime and rendered into
javax.swing objects. XUL (XML User Interface Language) is a markup language created for
the Mozilla application and is used to define its user interface [4]. WebML (Web Modelling
Language) is a notation for specifying complex Web sites at the conceptual level [6], and
WML (Wireless Markup Language) [7] is a markup language based on XML whose goal is to
deliver content and user interface to devices with small displays and limited bandwidth,
including cellular phones and pagers, etc. all have their limitations. These interface languages
only partially cover the evolution, personalization and variants aspects of a UI, not all, such as
WebML supports personalization by using User Modelling.

The existing visualization technologies are not suitable. Our innovative approach, open
dynamic conceptual content management (see Figure 2-1: Assets represent entities by
[content | concept]-pairs) is designed to cover advanced aspects of entity modelling, including
three essential advantages: the evolution, personalization, and variants of a user interface, and
including also other additional characteristics, such as logical organization, scalability,
flexibility and efficiency.

In this report several different terms are used in describing the new approach and the UI
engine or generator, but actually they express the same essential ideas. Here are some of the
names used when describing our new approach, for instance, a content-concept based asset
management, an asset language, ADL (Asset Definition Language), expressiveness and
responsiveness, open and dynamic, conceptual content management, and concept-oriented
content management, open and dynamic content management, Open dynamic conceptual
content management. The UI engine may be referred to as a GUI (Graphic User Interface)
engine, a GUI generator, a compiler, a visualization engine, a UI engine, and a UI
visualization engine. We would like to introduce these terms here before discussing them in
detail to avoid causing confusion while reading.

Application contents and application concepts are closely linked and represented by a single
notation called an asset. An asset language has two properties [8]: expressiveness, which
means the entity modelling has to cover three different perspectives, namely an entity’s

2 Requirements

12

inherent characteristics, its relationships to other entities and systematise behind the first two
perspectives and responsiveness, which means entity modelling processes have to be open
and dynamic.

Asset

Entity

ConceptContent

model
view

media
view

content characteristic

relationship

constraints
Figure 2-1: Assets represent entities by [content | concept]-pairs

Openness and dynamics together allow an asset management system to be constantly adapted,
refined and personalized in a process which converges towards the requirements as demanded
by its users’ tasks. Since domain models change constantly, a UI of content concept
management systems has also to be adapted dynamically.

Application
Layer

Presentation
Layer

Domain
Model

Layout

DB

Figure 2-2: Three-tier architecture

An open dynamic conceptual content management system has a three-layer architecture or
even more layers (see Figure 2-2: Three-tier architecture). A model compiler has done data
layer and application layer. Normally a lower layer change will affect the upper layers. In a
traditional implementation of information systems, data layers change constantly, but the
presentation layer is not dynamically adaptable. However, an open dynamic content
management requires dynamically adaptable UIs. Like the domain model, the presentation of
Assets has to be user-definable. In concept-oriented content management systems, the

2 Requirements

 13

presentation changes constantly follow dynamic schema changes. Dynamically adaptable UIs
cannot be created from a domain model or a compiler only. Some hints or inputs, such as a
layout from a user or a screen designer are required.

In contrast to the drawbacks of the classic waterfall model (see Figure 2-3: The waterfall
model, source [9]), which are difficult to rework and changes can be expensive, a conceptual
content management system uses an IID (Iterative Incremental Development) model (see
Figure 2-4: Iterative incremental development model, source [10]). The advantages of an IID
model are that it has a better risk management, has no development cycle, delivers complete
functionality per slice, and complete testing is done at the end of every slice.

Figure 2-3: The waterfall model

Figure 2-4: Iterative incremental development model

ADL (Asset Definition Language) allows the evolution, personalization and variants of a UI
[11]. The following presents a detailed description of these three essential advantages. In
order to explain them in an understandable way, one example class Person is given here:

class Person {
 content name: java.lang.String
 address: Address
 concept relationship visualizedComponentClass : UIComponent

 visualizedtechnologyClass : UITechnology
}; Person

class Student refines Person {content Id: StudentId}; Student

class Professor refines Person {content dept: Department}; Professor

class Person2 {
 content name: java.lang.String
 address: Address
 age: java.lang.Integer
 concept relationship visualizedComponentClass : UIComponent

visualizedtechnologyClass : UITechnology
}; Person2

This example will also be used in chapter 5 while analyses different possibilities for the
implementation of a UI engine or generator.

2 Requirements

14

First, the evolution of a UI, where the different classes are presented by their corresponding
user interfaces. With a changing domain model, the user interface changes too. The evolution
is done during modelling time. For example, class Person has no content age, but class
Person2 does. The user interface UIPerson, which corresponds to class Person, does not
show age information. The user interface UIPerson2, which corresponds to class Person2,
does show age information. When class Person is modified to class Person2, the user
interface UIPerson1 will also be modified dynamically to the user interface UIPerson2 (see
Figure 2-5: The evolution of a user interface).

Second, the personalization of a UI, which is the definition of content or a presentation style
based on user profile data, is the customisation feature for one-to-one content delivery. One
class is presented by different user interfaces for several users or one user in the different
contexts. Usually users are not willing to explicitly provide data that they do not consider
interesting. Personalization is done during modelling time.

There are various possibilities for personalization. First, a user group provides a general UI.
Then users adapt it, which means that users do not have to specify the whole UI, for example,
users can use a provided frame, but adapt a label. The second alternative is that a user can
design his own individual UI for different situations. The third alternative is that various UIs
are already provided, so a user simply selects the one that matches his needs. For example,
class Person can be depicted by two different user interfaces UIWithStreet, which shows
information for name, street and city, and UIWithAddress, which shows information for
name and address. A user can select either UIWithStreet or UIWithAddress according to his
requirement (see Figure 2-6: The personalization of a user interface), so using personalization
a user is able to define a UI that matches his needs.

Person1

name: String
address: Address

Person

Person2

name: String
address: Address

age: Int

UIPerson

Name:

Street:

City:

UIPerson2

Name:

Street:

Age:

City:

Figure 2-5: The evolution of a user interface

2 Requirements

 15

UIWithStreet

Name:

Street:

City:

UIWithAddress

Name:

Adress:

name: String
address: Address

Person

Figure 2-6: The personalization of a user interface

Third, the variants of a UI permit one UI to be adapted to super class and all its subclasses
according to their attributes. The variants of a UI mean that a user interface can be adapted
according to the class of an asset instance at run time. For example, a class Person has two
subclasses Student and Professor. If at run time an object belongs to subclass Student or
Professor that has an attribute ID, then the user interface called UIPerson will show an Id
label and its text field; If an asset to be visualized belongs to the super class Person that has
no attribute ID, then the Id label and its text field will disappear from the user interface
UIPerson (see Figure 2-7: The variants of a user interface).

UIPerson

Name:

Street:

name: String
address: Address

Person

Professor

depart :
Department

Student

Id: StudentId

UI Without Id
and Department

UI With Id Without
Department Id:

Depart:

UI With Department Without Id

City

Figure 2-7: The variants of a user interface

2.2 Requirements of a Visualization Engine or Generator

As mentioned earlier, there are three essential contributions of a content-concept based asset
language. Content is always associated with its concept and represented by assets. Asset
schemata are open so that users can change asset attributes on-the-fly and at any time, thus
guaranteeing best correspondence with the entity-at-hand. Asset management systems are
dynamic, i.e., the system implementation changes dynamically following any on-the-fly
modification of an asset schema.

2 Requirements

16

To achieve dynamically adaptable UIs, a GUI engine or generator requires the following
features [12]:

(1) Portability: applications must be portable across many machines and compilers.
(2) Evolution: A user interface has to be adjusted as the observed entities change.
(3) Personalization: The user’s expertise influences the user interface needs. A user
interface needs to be tailored to the user’s needs.
(4) Variants: A user must be able to view a user interface in different contexts. Different

user interfaces may be needed in order to adapt to a changing context.
(5) Dynamics: The user interface implementation changes dynamically according to any

on-the-fly modification of classes.
(6) Extensibility: A UI visualization engine or generator must be able to work with new
appliances and interface technologies. A user interface is extended with extra functionality
with the advent of a new visualization technology.
(7) Reusability: when a family of products is evolving, the design for the old devices can
be reused in an optimal way.
(8) Scalability: The UI engine or generator has to be designed for environments with large

numbers of assets and users.
(9) Consistency: The UI engine or generator must offer consistency of the user interface

among different environments and systems.
(10) Richer user interface: meet the needs of different users.
(11) Usability for end users, administrators, and implementers.
(12) Integration: allows the integration of software components from different sources.
(13) Ease to learn and use: The UI engine or generator has to be designed to be easy to
learn and use by end users.
(14) Simplicity: The implementation of a UI engine or generator should be simple, not

complex.
(15) Accessibility support: A UI engine or generator facilitates interface design for
people with disabilities in a natural way [13]. Accessibility for disabled persons may
require alternate interface technology, for example, using voice synthesis or Braille. This
mandates that a user interface designer create not one, but multiple user interfaces. Thus a
platform independent UI engine or generator must allow management of multiple
interfaces naturally.

2.3 Possible Approaches

A special UI visualization engine or generator must be designed in order to realize an open
dynamic visualization. This UI engine or generator is different from other GUI engines, such
as the SwiXML engine that relies strongly on Swing and not open and dynamic. The UI
engine or generator has the following essential properties: it is an innovative way that cannot
be done only by one existing technologies such as Java or XML. The UI engine or generator
is built on an asset-based technology, and use a presentation logic that associates assets from
the application domain and the GUI realm. The UI engine or generator generates a user
interface and exploits the dynamic openness of an asset management system for user interface
adaptation. End users can define a user interface themselves by defining a domain model and
a user interface layout (see Figure 2-8: Use case diagram of a user).

2 Requirements

 17

User

defines Domain
Model

chooses
technology

defines UI

Figure 2-8: Use case diagram of a user

Because the UI engine or generator is built on an asset-based technology and the visualization
is realized by a combination of the application domain and the UI realm, the UI engine or
generator should work based on a UI components model, a UI technologies model, and a
domain model (see Figure 2-9: The working mechanism of the UI visualization engine or
generator). Finally, the UI engine or UI generator will generate a user interface to for an end
user. The whole working process of the UI engine or generator can be divided into three
stages:

(1) First a designer defines the UI components model and UI technologies model based on
an asset language. The UI components model defines all components, such as
container, window, and view, of the user interface. The UI technology model defines
visualization technologies, for instances HTML, Java, AWT and Swing (see Figure
2-10: Case diagram of a domain designer).

(2) Then a user can define an individual domain model and user interface layout, and
choose the UI technologies, which are inputs to the UI engine or UI generator at run
time (see Figure 2-8: Use case diagram of a user).

(3) Finally the UI engine dynamically renders or a compiler generates a user interface for
the end user (see Figure 2-11: Case diagram of a GUI engine or generator).

A UI Engine or Generator

UIComponentsModel Domain Model

Technologies
Choosed By

User

UITechnologiesModel

renders

A User Interface:
UILayoutDefin

edByUser

DomainModel
DefinedByUser

Implemented by

visualized by

Figure 2-9: The working mechanism of the UI visualization engine or generator

2 Requirements

18

A domain
designer

defines UI
Components

Model

defines UI
Technologies

model
Figure 2-10: Case diagram of a domain designer

GUI
engine

renders UIs
dynamically

Figure 2-11: Case diagram of a GUI engine or generator

The working mechanism of the UI engine or UI generator will be designed according to the
above requirements and properties. All possibilities to implement this UI engine or generator
will be found and analysed.

There are several possibilities to implement the GUI engine or GUI generator. The essences
of the implementation are as follows:

(1) Class-based implementation of a GUI engine or generator. The following code, for
example, shows that UITechnology is a class and Java is a subclass of
UITechnology.

a. class UITechnology {…}
b. class Java refines UITechnology {…}

(2) Instance-based implementation of a GUI engine or generator. The following code, for
instance, shows that UITechnology is a class and java is an instance of
UITechnology.

a. class UITechnology {… }
b. let java := create UITechnology {}

(3) Various combinations to implement a GUI engine or UI generator:
a) UI components represented by classes, UI technologies represented by instances
b) UI components represented by instances, UI technologies represented by classes
c) Both UI components and UI technologies represented by classes

Chapter 5 analyses seven selected possibilities to implement the UI visualization engine or UI
generator. They are described as follows:

(1) A UI engine or generator creates a UI component based on the type of an asset’s
content reference.

(2) A Java class is the value of a characteristic of an asset.
(3) An instance of a Component is the value of a characteristic of an asset.

2 Requirements

 19

(4) An instance of a UI component is the value of a content of an asset.
(5) A combination of technologies represented by instances and components represented

by classes.
(6) A different combination of technologies represented by instances and components

represented by classes.
(7) Another alternative of combination of technologies represented by instances and

components represented by classes.

The following different aspects will be discussed for each alternative in chapter 5. How can a
visualization engine or generator work? How can a user define a user interface? What are the
advantages and disadvantages of each alternative? How complex would a UI engine or
generator be? What are the numbers of asset classes and / or instances of both UI component
and UI technology which have to be defined? Finally, the best solution to implement the UI
engine or UI generator will be sought.

Before the detailed analysis of the different possibilities to implement a UI engine or
generator, it is necessary to first design and define the representations of UI components and
UI technologies. The following chapter discusses the visualization components and chapter 4
describes the visualization technologies.

2 Requirements

20

3 Selected Visualization Components

 21

3 Selected Visualization Components

Chapter 2 has already described the contributions, requirements, and possible implementation
approaches of a UI engine or generator. Because such a UI engine or generator is based on UI
components, UI technologies and a domain model, this chapter discusses the selected
visualization components. The appearance and behaviour of the components can generate
look and feel of the visualization. After we have researched the existing user interface
technologies, such as javax.swing [14], javax.faces, JavaServer Faces [15], java.awt
[19], a possible UI components model will be designed and discussed in the following
chapters (see Figure 3-1: Components class diagram).

Container

Dialog SplashWindow

Component

ModelLayoutManager View Controller

ToolbarPanel

GridLayout BorderLayoutFlowLayoutBoxLayoutGridbagLayout

...

Window

Frame

...

...

ActiveComponent

Menu Button

...

List Spinner

...
ComboBox ProgressBar Tree LabelTextField Table

Figure 3-1: Components class diagram

3.1 Container Component

The Container is a component class at the top of any containment hierarchy, which holds
other components [17]. For example window and panel are containers that can be used under
several circumstances (see Figure 3-2: Container class diagram). The Container is also
associated with the layout manager. The class LayoutManager will be discussed in section
3.2 Layout Management.

3 Selected Visualization Components

22

Container

Window ToolbarPanel

Component

LayoutManager

...

Figure 3-2: Container class diagram

3.1.1 Window Component

A Window is a container that is a user interface element that organizes and contains the
information, which users see in an application. Dialog, Frame and SplashWindow are direct
subclasses of Window.

A Window can contain a Frame component, which has a subclass InternalFrame (see Figure
3-3: Frame and Figure 3-4: Internal frame).

Figure 3-3: Frame

Figure 3-4: Internal frame

A dialog component is a window displayed by an application to gather information from
users. Examples of the dialog component include windows that set properties of objects, set
parameters for commands, and set preferences for use by the application. A dialog component
can also present information, such as displaying a progress bar. A dialog component can
contain panes, lists, buttons, and other components (see Figure 3-5: Dialog).

3 Selected Visualization Components

 23

Figure 3-5: Dialog

3.1.2 Panel Component

A direct subclass of Container called Panel provides general-purpose containers. A panel
can be a container for organizing the contents of other components like a Label, but a panel
component cannot contain a Window component. Figure 3-7 shows a label on a panel.

Figure 3-6: Panel

A ScrollPanel is a direct subclass of Panel. A ScrollPanel manages a view point. The
following picture demonstrates that a ScrollPanel provides a scrollable view of a
component.

Figure 3-7: Scroll panel

3.1.3 Toolbar Component

A ToolBar is a container that groups several components into a row or column. It is a
collection of frequently used commands or options. Toolbars typically contain buttons with
icons (see Figure 3-8: Tool bar), like a tool bar button, but other components (such as text
fields and combo boxes) can be placed in toolbars as well. However, a ToolBar cannot
contain a Window component.

3 Selected Visualization Components

24

Figure 3-8: Tool bar

3.2 Layout Management

Layout management provides several layout managers (see Figure 3-9: LayoutManager class
diagram) [18]. Layout manager is used to determine the size and position of components
within a container, which is associated with a layout manager. Each container type has a
default layout manager [19].

LayoutManager

GridLayout BorderLayout

Container

FlowLayoutBoxLayoutGridbagLayout

...

Figure 3-9: LayoutManager class diagram

A strategy pattern is the design pattern for layout management. The reason why a strategy
pattern is used will be discussed in subsection 3.2.1.

3.2.1 Design of Layout Managers According to the Strategy Pattern

A Strategy Pattern is a design pattern to encapsulate variants of algorithms. According to
Erich Gamma Erich Gamma [20], a Strategy Pattern is intended to define a family of
algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm
vary independently from the clients who use it. The Strategy Pattern has three participants
that include Strategy, Concrete Strategy and Context (see Figure 3-10: The strategy
pattern).

Context
 - Astrategy: aStrategy

+ Void: ContextInterface()
+ void: AlgorithmInterface()

AStrategy

+ void: AlgorithmInterface()

ConcreteStrategyA

+ void: AlgorithmInterface()

ConcreteStrategyC

+ void: AlgorithmInterface()

ConcreteStrategyB

Figure 3-10: The strategy pattern

3 Selected Visualization Components

 25

In the layout management (see Figure 3-9: LayoutManager class diagram), the abstract class
called LayoutManager is referred to as the Strategy, the concrete classes called
GridLayout, GridbagLayout, BoxLayout, FlowLayout, and BorderLayout are
referred to as Concrete Strategies and the Container is referred to as the Context using
Strategy.

Benefits of using Strategy Pattern to implement layout management are:

(1) A family of layout management algorithms can be defined as a class hierarchy and can
be used interchangeably to alter application behaviour.

(2) By encapsulating the algorithm, new layout management algorithms complying with
the same interface can be easily introduced.

(3) A user can switch layout management strategies at run time.
(4) Strategy pattern enables the domain designer to choose the required layout

management algorithm without using a "switch" statement or a series of "if-else"
statements.

(5) Data structures used for implementing the layout management algorithm are
completely encapsulated in Strategy class LayoutManager. Therefore, the
implementation of a layout management algorithm can be changed without affecting
the Context class Container.

Drawbacks of using the strategy pattern to implement the layout management are that a user
must be aware of all the strategies to select the right one for the right situation. Strategy base
class LayoutManager must expose interface for all the required layout management
behaviours, which some concrete Strategy classes might not implement.

Five Layout managers, which are called GridLayout, GridbagLayout, BoxLayout,
FlowLayout, and BorderLayout, are depicted in the sequel.

3.2.2 GridLayout Manager

A GridLayout simply makes a bunch of components equal in size and displays them in rows
and columns. The following picture shows that a GridLayout places components in a grid of
cells.

Figure 3-11: A grid layout example

3 Selected Visualization Components

26

3.2.3 GridBagLayout Manager

A GridBagLayout is a sophisticated, flexible layout manager. The following picture
demonstrates that a GridBagLayout manager aligns components by placing them within a
grid of cells, allowing some components to span more than one cell.

Figure 3-12: A grid bag layout example

3.2.4 BoxLayout Manager

A BoxLayout manager puts components in a single row or column as shown in the following
picture.

Figure 3-13: A box layout example

3.2.5 FlowLayout Manager

A FlowLayout manager simply lays out components in a single row as demonstrated in the
following picture. If the horizontal space in the container is too small to put all the
components in one row, a FlowLayout uses multiple rows. Within each row, components are
centered (the default), left aligned, or right aligned as specified when the FlowLayout is
created.

Figure 3-14: A flow layout example

3 Selected Visualization Components

 27

3.2.6 BorderLayout Manager

A BorderLayout manager places components in up to five areas: top, bottom, left, right, and
centre. The following picture shows how five different components are put in these five areas.

Figure 3-15: A border layout example

3.3 The MVC Design Pattern to Design View Component and Model and
Controller

This section discusses View component and ActiveComponent. The Model-View-Controller
(MVC) pattern is used to design View and ActiveComponent. First we will discuss the reason
why MVC pattern is used, then illustrate View component and finally explain
ActiveComponent.

3.3.1 The Model-View-Controller Design Pattern

The Model-View-Controller (MVC) [21] design pattern separates design concerns, decreasing
code duplication, centralizing control, and making the application more easily modifiable.

The MVC pattern hinges on a clean separation of objects into one of three categories —
models for maintaining data, views for displaying all or a portion of the data, and controllers
for handling events that affect the model or view(s).

Because of this separation, multiple views and controllers can interface with the same model.
Even new types of views and controllers that never existed before can interface with a model
without forcing a change in the model design. The MVC abstraction can be graphically
represented as follows (see Figure 3-16: The Model-View-Controller pattern).

3 Selected Visualization Components

28

Figure 3-16: The Model-View-Controller pattern

In our case, a user interacts with instances of ActiveComponent. The UI engine or generator
passes events to the controller. The controller changes the state of a model or view. A model
contains assets. A model updates view when assets change. The view accesses the data from
the model and draws them on the screen. The controller and model are associated with the
attribute called visualizedAsset in a View component, because UIComponents are
associated with assets.

The reason for using the MVC design pattern here is that the MVC divides the responsibilities
for a user interface into three components thus allowing greater flexibility and possibility for
re-use. The MVC also provides a powerful way to organise systems that support multiple
presentations of the same information. Consequently, we represent arbitrary assets that are
from domain model by generic views that are from component model and control it in a AML
(Asset Manipulation Language) way.

However at the abstract level MVC provides a convenient division of the user interface. In
practice it is difficult to implement and the result is a highly coupled model, view, and
controller components. Coupling decreases the reusability and complicates making
interchangeable software components for the user interface. Also each MVC component
includes the code to display it, which makes it difficult to display it in more than one way or
make global changes in the implementation.

3.3.2 View Component

A View component is a specific visual representation of information. in a window (see Figure
3-17: View class diagram). Direct subclasses of View have ComboBox,ProgressBar, List,
Spinner, TextField, Table and Tree, which are atomic components that exist solely to
give the user information.

3 Selected Visualization Components

 29

ComboBox Tree

View

Spinner

...
ProgressBar List TableTextField

Figure 3-17: View class diagram

Combo box is a class of components with a drop-down arrow that the user clicks to display a
list of options. There are two alternatives to implement a combo box component. One
alternative is an ActiveComponent. The other alternative is a View component. As an
ActiveComponent, combo box, which is called the editable combo box, offers a text field as
well as a list of options features. The user can make a choice by typing a value in the text field
or by choosing an item from the list. In our choice, combo box is a View component. A
Combo box lets the user choose one of several choices (see Figure 3-18: Combo box) and is
uneditable.

Figure 3-18: Combo box

A ProgressBar is a component element that indicates that one or more operations are in
progress and show the user what proportion of the operations has been completed (see Figure
3-19: Progress bar).

Figure 3-19: Progress bar

A List is a component that presents a user a group of items, displayed in one or more
columns, to choose from. Lists can have many items, so they are often put in scroll panel (see
Figure 3-20: List). Items in a list can be text, graphics, or both. A List can be used as an
alternative to radio buttons and checkboxes.

3 Selected Visualization Components

30

Figure 3-20: List

Spinners let the user choose one from a range of values, and generally allow the user to type
in a value. Spinners typically provide a pair of tiny arrow buttons for stepping through the
elements of the sequence. Here's a picture of an application named SpinnerDemo that has
three spinners used to specify dates:

Figure 3-21: Spinner

TextField, Table and Tree can also be designed either as an active component or as a view
component. In our design, they are view components that illustrate the information to a user
and noneditable.

A TextField is a basic text control that lets the user enter a small amount of text (see Figure
3-22: Text field). In a noneditable text field, a user can copy, but not change, the text.

Figure 3-22: Text field and a label

A Table can display data. Here's a picture of a typical table displayed within a scroll panel:

Figure 3-23: Table

3 Selected Visualization Components

 31

A Tree is a component that can display hierarchical data. Here's a picture of a tree:

Figure 3-24: Tree

As the preceding Figure shows, each row displayed by the tree contains exactly one item of
data, which is called a node. Every tree has a root node from which all nodes descend. By
default, the tree displays the root node. A node can either have children or not. Nodes that can
have children are branch nodes. Nodes that can't have children are leaf nodes. Branch nodes
can have any number of children. Typically, the user can expand and collapse branch nodes
(making their children visible or invisible) by clicking them.

3.3.3 Active Components

Active components are components that a user can manipulate to perform an action, choose
an option, or set a value (see Figure 3-25: Active component class diagram). Direct subclasses
are Button and Menu. They are atomic components that exist primarily to get input from the
user. In our design active component takes a controller role.

Button Menu

ActiveComponent

...

Figure 3-25: Active component class diagram

A Button is an interactive component, which can display both text and an image. When a
button is disabled, it is shown in a disabled appearance (see Figure 3-26: Button).

Figure 3-26: Button

3 Selected Visualization Components

32

A Menu is a component that provides a space-saving way to let the user choose one of several
options (see Figure 3-27: Menu). A list of menu items are logically grouped and displayed by
an application so that a user needs not memorize all available commands or options. A menu
usually appears either in a menu bar or as a popup menu. A menu bar contains one or more
menus and has a customary, platform-dependent location — usually along the top of a
window. A popup menu is a menu that is invisible until the user makes a platform-specific
mouse action, such as pressing the right mouse button, over a popup-enabled component. The
popup menu then appears under the cursor.

Figure 3-27: Menu

3.4 UI Components

As mentioned earlier, Figure 3-1, “Components class diagram”, shows some examples of UI
components. This is one possible model, which demonstrates selected UI components. UI
components are implementation dependent. However, they do not rely on any existing user
interface technologies. The UI components model is extendable because it is convenient to
add a new UI component into this model and / or delete a UI component from the model.

4 Visualization Technologies

 33

4 Visualization Technologies

As described in chapter 2, the UI engine or generator works based on a UI components model,
a UI technologies model and a domain model. The UI components have already been
discussed in chapter 3. This chapter discusses the UI technologies. First, we will look at the
existing visualization technologies, then analyse their advantages and disadvantages.
Afterwards we will discuss the technologies that a UI engine or generator supports.

There are several ways to create user interfaces (UIs) for Web and network applications.
Initially there were markup languages: Dynamic HTML, or DHTML, and XML-based User
Interface Language (XUL) [4] for traditional desktop applications; then Wireless Markup
Language (WML) [7] for mobile devices such as cell phones with display. The growing
popularity of the Extensible Markup Language (XML) [22] promises even more languages. In
addition, there are traditional programming and scripting languages (e.g., Java, JavaScript,
and Visual Basic and C++ through Active-X). These visualization technologies can be
classified into four categories (see Figure 4-1: Existing visualization technologies diagram):
Layout Description Languages, Tool-based Programming, UI Libraries for Programming
Languages, Server Script and Browser Script. The following is a short description of each
type of UI technology.

ToolkitsAndUILibrariesLayoutDescriptionLanguages Tool-based InterfaceGeneration

UI Technology

Java MFC

AWT Swing

SGMLBased

HTML DHTML

XMLBased

...

...
...

Wizard ToolJavamatic

ServerScripting

... ...

...

Browser
Scripting

UIML XIML

...

SwiXMLXUL eNode UIXBL XAML JAXFront
Figure 4-1: Existing visualization technologies diagram

4.1 Layout Description Languages

Layout description languages can be divided into two main categories: SGML-based and
XML-based layout description languages. SGML and XML are the two most popular syntax
standards for markup languages. First, we will discuss the SGML-based layout description
languages, especially the advantages and disadvantages of HTML. Then we will discuss
XML-based layout description languages, such as SwiXML, UIML (User Interface Markup
Language), XUL (XML-based User Interface Language) and XBL (XML Binding Language).

4 Visualization Technologies

34

4.1.1 SGML-based Layout Description Languages

SGML (Standard Generalized Markup Language) is a language for describing markup
languages, particularly those used in electronic document exchange, document management,
and document publishing. SGML has been in existence since the mid-80s but never received
acceptance beyond the information retrieval community mainly due to its complexity. SGML-
based layout description languages include HTML and DHTML (see Figure 4-1: Existing
visualization technologies diagram).

The HyperText Markup Language (HTML) [23] is an example of a language defined in
SGML. HTML is a language based on a document composition style known as “markup.”
HTML outlines a hypertext structure, which is the publishing language of the World Wide
Web. HTML 4.0 is an SGML application conforming the International Standard ISO 8879.
HTML 4.0 introduced Cascading Style Sheets (CSS) and the Document Object Model
(DOM). CSS gives a style and layout model for HTML documents. The DOM gives a
document content model for HTML documents.

Dynamic HTML or DHTML [25] is a combination of technologies to make Web pages
dynamic by interaction of HTML, CSS and XSL (XML Style sheets Language) style sheets,
the Document Object Model, and scripting. With DHTML, a Web developer can control how
to display HTML elements in a browser window.

The advantages of HTML are that it is simple and easy to learn. HTML is portable, especially
over networks. HTML pages that are textual files written in HTML are the most popular
resources requested on the Web. The disadvantages of HTML are that Portability is limited in
reality because of vendor-specific dialects. In HTML, the structure and the content are mixed
together. HTML is insufficient for large and complex applications, due to its fixed set of tags
and limited graphic capabilities.

4.1.2 XML-based Layout Description Languages

The Extensible Markup Language (XML) [26] describes a class of data objects called XML
documents. XML is so-called application profile or restricted form of SGML. By
construction, XML documents are conforming SGML documents. Its goal is to enable generic
SGML to be served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability with both
SGML and HTML.

Many of the new declarative languages obtain their syntax from XML. XML facilitates the
creation of new vocabularies that describe domain-specific content and context, organized
into hierarchical information structures. XML has become the official meta-language for
information on the Internet. It is a meta-language because it can be used to define other
languages that are relevant to various application domains by providing a common syntax.

There are some XML-based user interface definition languages (see Figure 4-1: Existing
visualization technologies diagram), such as SwiXML, UIML, XUL, XBL, XAML, eNode
UI, and XHTML. The following is a description of the advantages and disadvantages of
several selected XML-based user interface definition languages.

4 Visualization Technologies

 35

4.1.2.1 SwiXml

SwiXml [3] is a small GUI generating engine for Java applications and applets. Graphical
User Interfaces are described in XML documents that are parsed at runtime and rendered into
javax.swing objects. The SwingEngine class is the rendering engine, which is able to
convert an XML descriptor into a javax.swing UI.

The following is one example of SwiXML (see Figure 4-2: One SwiXML example):

<?xml version="1.0" encoding="UTF-8"?>
<frame size="640,480" title="Hello SWIXML World"

DefaultCloseOperation="JFrame.EXIT_ON_CLOSE">
 <panel constraints="BorderLayout.CENTER">
 <label LabelFor="tf" Font="Comic Sans MS-BOLD-12" Foreground="blue"

text="Hello World!"/>
 <textfield id="tf" Columns="20" text="Swixml"/>
 <button text="Click Here" Action="submit"/>
 </panel>
</frame>

Figure 4-2: One SwiXML example

The advantages of SwiXML are that SwiXml allows developers to generate graphical user
interfaces by writing XML documents defining the layout and content of the interfaces. These
XML documents are parsed at runtime and rendered into javax.swing objects by a rendering
engine. SwiXML frees the developer from programming by using the javax.swing.
Programmers who know Swing already can immediately start writing descriptors: Class
names are translated into tag names and method names into attribute names.

The disadvantages of SwiXML are that SwiXml relies completely on javax.swing. It doesn't
free the developer from knowing the javax.swing package. The dynamic behaviour of the
user interface has to be coded in Java.

4.1.2.2 UIML (User Interface Markup Language)

The User Interface Mark-up Language (UIML) [2] is a language for describing user interfaces
in a device-independent manner. However, the UI designer must still design separate UIs for
each device, and then represent those designs in UIML. UIML does not magically create
multiple UIs from a single description. Instead it is a language in which those multiple UIs

4 Visualization Technologies

36

can be recorded. UIML describes the appearance of a UI, the user interaction with the UI, and
how the UI is connected to the application logic.

UIML is an interface meta-language that is based on the MIM model (Meta-Interface Model).
The MIM model (see Figure 4-3: Meta-Interface model diagram, source [2]) is designed to
describe generic interfaces that map to multiple devices and can connect to a wide range of
application technologies.

Figure 4-3: Meta-Interface model diagram

MIM divides the interface into three major components: presentation, logic, and interface.
The logic component provides a canonical way for the user interface to communicate with an
application while hiding information about the underlying protocols, data translation, method
names, or location of the server machine. The presentation component provides a canonical
way for the user interface to render itself while hiding information about the widgets and their
properties and event handling. The interface component describes the dialogue between the
user and the application using a set of abstract parts, events, and method calls that are device
and application independent.

MIM subdivides the interface component into four additional subcomponents: structure, style,
content, and behaviour. The structure describes the organization of the parts in the interface,
the style describes the presentation specific properties of each part, the content describes the
information that is presented to the user, and the behaviour describes the runtime interaction
(including events and application method calls).

UIML factors the interface into the following five components: structure, style, content,
behaviour, and peers according to the MIM model. The first four describe the interface and
are grouped under the interface component. The last one describes the connections to the
presentation and to the application logic. Here is a skeleton of a UIML document [27]:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE uiml PUBLIC "-//Harmonia//DTD UIML 2.0 Draft//EN" "UIML2_0e.dtd">

<uiml xmlns='http://uiml.org/dtds/UIML2_0e.dtd'>
 <head> ... </head>

4 Visualization Technologies

 37

 <interface>
<structure>… </structure>
<style>… </style>
<content>… </content>
<behaviour>… </behaviour>

</interface>
 <peers> ... </peers>
 <template> ... </template>
</uiml>

The four elements head, interface, peers, and template may appear in any order. A UIML
document must contain at least an interface element to be rendered.

A UIML interface element may contain multiple structure, style, content, or behaviour
elements, provided that each one can be uniquely identified by name. Multiple structure,
style, and behaviour elements allow reuse of the interface across different families of devices.
Multiple content elements allow reuse across different applications.

UIML includes a peers element that specifies what widgets in the target platform and what
methods or functions in scripts, programs, or objects in the application logic are associated
with the user interface. In UIML, all the device and toolkit information is isolated in the
peers element. This information is used by a UIML rendering engine to resolve all the names
from the property, call, and event elements into actual widgets, methods, and events.

The following is one UIML example (see Figure 4-4: One UIML example, source [2]). The
example displays a single window that represents a possible login screen for an application on
a web site. The screen contains a header, two input fields (for the name and PID), and three
buttons (to accept, to clear the input, and get help). The UIML document is rendered using the
Java AWT toolkit.

Figure 4-4: One UIML example

In this example, the main container is rendered as a frame (java.awt.Frame). We specify the
title, the layout manager, and whether the user can resize the frame or not. For the label
“Title” (java.awt.Label) we specify the font, the text alignment, the background and
foreground colors, the text inside the label, and the alignment within the parent frame. For the
center panel “CenterPanel” (java.awt.Panel) we specify the layout manager and its
properties, and the alignment within the parent frame. For the input fields and their labels
(“NameL”, “NameT”, “PIDL”, “PIDT”) (java.awt.TextField) we specify the label text and the
number of characters allowed in each textfield. Finally, for the three buttons (“Accept”,

4 Visualization Technologies

38

“Reset”, “Help”) (java.awt.Button) we specify the text on them. The following is the
complete UIML source code for the example.

<uiml>
 <interface name="Simple">
 <structure>
 <part name="Top_TimeTable" class="Frame">
 <part name="Title" class="Label"/>

 <part name="CenterPanel" class="Panel">
 <part name="NameL" class="Label"/>

<part name="NameT" class="TextField"/>
<part name="PIDL" class="Label"/>
<part name="PIDT" class="TextField"/>

 </part>
 <part name="Actions" class="Panel">

 <part name="Accept" class="Button"/>
<part name="Reset" class="Button"/>
<part name="Help" class="Button"/>

 </part>
</part>

</structure>

<style>
 <property part-name="Top_TimeTable"
 name="title">VT HOKIES</property>
<property part-name="Top_TimeTable"
 name="layout">java.awt.BorderLayout</property>
<property part-name="Top_TimeTable"
 name="resizable">false</property>

<property part-name="Title"
 name="borderAlignment">North</property>
<property part-name="Title"
 name="font">Dialog-Bold-24</property>
<property part-name="Title"
 name="text">Login Screen</property>
<property part-name="Title"
 name="alignment">CENTER</property>
<property part-name="Title"
 name="background">lightGray</property>
<property part-name="Title"
 name="foreground">black</property>

<property part-name="CenterPanel"
 name="borderAlignment">Center</property>
<property part-name="CenterPanel"
 name="layout">java.awt.GridLayout</property>
<property part-name="CenterPanel"
 name="layout_columns">2</property>
<property part-name="CenterPanel"
 name="layout_rows">0</property>

<property part-name="Actions"
 name="borderAlignment">South</property>

<property part-name="NameL" name="text">Name:</property>
<property part-name="PIDL" name="text">PID:</property>
<property part-name="NameT" name="columns">15</property>
<property part-name="PIDT" name="columns">15</property>

4 Visualization Technologies

 39

<property part-name="Accept" name="label">Accept</property>
<property part-name="Reset" name="label">Clear</property>
<property part-name="Help" name="label">Help</property>

</style>

<behaviour>
<rule>
 <condition>

 <event class="actionPerformed" part-name="Accept"/>
</condition>
<action>
 <property part-name="Top_TimeTable"

 name="exists">false</property>
</action>

</rule>
</behaviour>

 </interface>
</uiml>

Now let us look at the advantages and disadvantages of UIML. UIML is a declarative
language. It describes user interfaces in an appliance-independent manner. For example, the
interfaces for different appliances can be generated from a single UIML description with
different style sheets. UIML is not claimed that it covers the evolution, personalization and
variants aspects of a user interface. It may realize the personalization of a UI based on the
MIM model. However, It can be seen that the UIML language structure decides that a user
interface cannot be adapted dynamically according to class of an instance at run time.

4.1.2.3 XUL (XML-based User Interface Language) and XBL (XML Binding Language)

XUL is glossed alternately as "XML-based User Interface Language," "XML User Interface
Language," and "Extensible User Interface Language." XUL is an interface definition
language associated with the Mozilla XPToolkit Project [5]. XUL is an XML-based
language for describing the contents of windows and dialogs. XUL was created by the
Mozilla community to simplify the user interface development for new applications running
under the Netscape Web browser. XUL separates the user interface into four parts: content
(structure and description of UI elements), appearance (look, feel, skin, and themes),
behaviour and locale (localization information for internationalisation).

XUL has built-in user interface widgets, but creating additional custom widgets needs a
related language called the Extensible Bindings Language (XBL).

XBL (XML Binding Language) is used for declaring the behaviour of XUL widgets. XBL is a
markup language for describing bindings that can be attached to elements in other documents.
Bindings can be attached to elements using either cascading style sheets (CSS) or the
document object model (DOM). The element that the binding is attached to, called the bound
element, acquires the new behaviours specified by the binding. Bindings can contain event
handlers that are registered on the bound element, an implementation of new methods and
properties that become accessible from the bound element, and anonymous content that is
inserted underneath the bound element [28].

The following shows the basic skeleton of an XBL file:
<!ENTITY % bindings-content "(binding|script|stylesheet)*">

4 Visualization Technologies

40

<!ELEMENT bindings %bindings-content;>
<!ATTLIST bindings
 id ID #IMPLIED
 type CDATA #IMPLIED
>

<?xml version="1.0"?>
<bindings xmlns="http://www.mozilla.org/xbl">
 <binding id="binding1">
 <!-- content, property, method and event descriptions go here -->
 </binding>
 <binding id="binding2">
 <!-- content, property, method and event descriptions go here -->
 </binding>
</bindings>

The bindings element is the root element of an XBL document. It contains zero or more
binding elements as children. Each binding child element defines a unique binding that can be
attached to elements in other documents. The bindings element can also contain script and
style sheet elements as children. These specify scripts and style sheets that are used by the
bindings.

The id attribute is a document-unique identifier. The value of this identifier is often used to
manipulate the element through a DOM interface (e.g., using document.getElementById).

The type attribute specifies the scripting language used by all bindings in the document.
Bindings can selectively override this default by specifying type attributes of their own.

An XBL file contains a set of bindings. Each binding describes the behaviour of a XUL
widget. For example, a binding might be attached to a scroll bar. The behaviour describes the
properties and methods of the scroll bar in addition to describing the XUL elements that make
up a scroll bar.

The disadvantages are that XUL is an integral part of the Mozilla browser. XBL and XUL
rely strongly on each other. XUL and XBL are not claimed that they cover the evolution,
personalization, and variants characteristics of a user interface. Let us look at the structure of
the XUL and XBL; it seems difficult to realize the variants of a user interface, which means
that a UI is adapted dynamically according to class of instances at run time.

4.1.2.4 XAML (Microsoft Extensible Application Markup Language)

XAML (Extensible Application Markup Language) [29] is a code name for the Microsoft
“Longhorn” Markup Language. It is a new scripting language based on XML and enables
developers to specify a hierarchy of objects with a set of properties and logic. The main
purpose of XAML is to bring both Windows and Web programming worlds together. Here
one example, create a file named HelloWorld.xaml with the following content:

<?xml version="1.0" standalone="yes"?>
<Window>
 <Button>Hello World</Button>
</Window>

4 Visualization Technologies

 41

Open this XAML file in Windows Longhorn browser as follows (see Figure 4-5: One XAML
Example, source [29]):

Figure 4-5: One XAML Example

XAML uses .NET - C# as a script language. There are two ways to attach code to XAML
events: either write C# directly into the XAML within a CDATA tag, or write the code in a
separate file. The following is one example to create a button.

<Canvas ID="root"
xmlns="http://schemas.microsoft.com/2003/xaml"
xmlns:def="Definition">
 <Button>Click Me!</Button>
</Canvas>

However, if we want some event to occur when users click the button we must use code
behind or within the markup to handle the click event. The following example shows a code
block inside an "XAML" file. When the button is clicked its background becomes red.

<Canvas ID="root"
xmlns="http://schemas.microsoft.com/2003/xaml"
xmlns:def="Definition">
 <Button Click="Button_Click">Click Me!</Button>

<def:Code>
 <![CDATA[

 void Button_Click(object sender, ClickEventArgs e)
 {
 btn1.Background = Brushes.Red;
 }
]]>
</def:Code>
</Canvas>

We can also place event-handling code in a file separate from the "XAML" file, called a
"code-behind" file. The following example creates the same application as the previous
example but the code is in two files—an "XAML" file and a C# code-behind file.

"XAML" file
<Canvas ID="root"
xmlns="http://schemas.microsoft.com/2003/xaml"
xmlns:def="Definition">
 <Button Click="Button_Click">Click Me!</Button>
</Canvas>

C# code-behind file
using System;
using System.Windows;
using System.Windows.Controls;

4 Visualization Technologies

42

using System.Windows.Media;
namespace Button
{
 public class Default : Panel
 {
 // Event handler
 void Button_Click(object sender,
System.Windows.Controls.ClickEventArgs e)
 {
 btn1.Background = System.Windows.Media.Brushes.Red;
 }
 }
}

Comparison of Figure 4-2: One SwiXML example with Figure 4-5: One XAML Example, it
can be seen that both UIs are similar. However, they are based on different languages.
SwiXML relies on javax.swing. Graphical User Interfaces are described in XML documents
that are parsed at runtime and rendered into javax.swing objects. XAML uses .NET - C# as
a script language. SwiXML is simpler than XAML.

The disadvantages of XAML are that XAML complies with only Microsoft Windows
platform. It does not free users from knowing .NET - C# languages. As mentioned earlier, the
main goal of XAML is to bring both Windows and Web programming worlds together.
XAML is not claimed to focus on the evolution, personalization, and variants of a UI, which
have been already discussed in chapter 2 Requirements.

4.1.2.5 XIML (Extensible Interface Markup Language)

XIML (Extensible Interface Markup Language) [30] is an XML-based interface
representation language for universal support of functionality across the entire lifecycle of a
user interface: design, development, operation, management, organization, and evaluation.

XIML is an XML-based language that provides a framework for the definition and
interrelation of interaction data items. Figure 4-8 (source [30]) shows the basic
representational structure of the XIML language. The XIML language includes the following
representational units:

Components: XIML is an organized collection of interface elements that are categorized into
one or more major interface components. These components are those typically found in an
interface model: user tasks, domain objects, user types, presentation elements, and dialog
elements.
Relations: A relation in XIML is a definition or a statement that links any two or more XIML
elements either within one component or across components. By capturing relations in an
explicit manner, XIML creates a body of knowledge that can support knowledge-based
design, operation, and evaluation functions for user interfaces.

Attributes: In XIML, attributes are features or properties of elements that can be assigned a
value. The value of an attribute can be one of a basic set of data types or it can be an instance
of another existing element.

4 Visualization Technologies

 43

Figure 4-6: The Structure of XIML

XIML provides a framework for the development of user interfaces that have multiple target
displays. There are various widgets available for personalization in an XIML specification.
However, XIML is not claimed that it covers the evolution and variants of a UI that have been
already discussed in chapter 2 Requirements.

4.1.2.6 eNode UI Markup Language

The eNode UI Markup Language [31] is used to describe user interfaces that may be difficult
or impossible to describe using HTML and JavaScript; User interfaces can be reconstructed
from markup data using a process called object realization. An eNode Object Realizer can
realize objects from resource descriptions. By default, the realized form of a frame element is
an instance of javax.swing.JFrame, and that of a label element is an instance of
javax.swing.JLabel. eNode UI Markup Language defines the default mapping between an
element type and the class used to realize an element of that type. It is easy to override this
default mapping and substitute a different class, perhaps one that is user-defined, to realize an
element. This can be done directly in the markup, on a per-element basis.

The eNode UI Markup Language is simple. The disadvantage of eNode UI Markup Language
is that it relies on javax.swing. It is not claimed that the eNode UI Markup Language
provides the properties such as the evolution, personalization, and variants of a user interface
that have been described earlier.

4.1.2.7 JAXFront

JAXFront [32] generates the graphic user surface on the basis of an XML Schema. Its
business model consists of XML Schema as well as a XML instance. The XML Schema
describes the syntactic requirements of the business model, while the XML instance
represents the described model. JAXFront analyses the business data structures from the
XML Schema and provides a generic graphical user interface at run-time.

The presentation logic is partitioned in layout and behaviour ranges. The layout determines
the appearance and the arrangement of the graphic elements, whereby the behaviour describes
rules and conditions of the graphical front end.

4 Visualization Technologies

44

There are two renderers that generate the graphical user components. The Java Renderer uses
the Java Swing graphic toolkit for the creation of graphical user interfaces. These visual
components are all subclasses of JComponent. The HTML Renderer creates HTML forms
based on a XML Schema.

Using a Java Client, JAXFront is integrated in an existing Client Framework running in the
presentation layer. Providing a client in terms of HTML user interfaces, JAXFront needs to be
embedded in an existing server infrastructure.

JAXFront relies on Swing and HTML. It may cover the personalization of a user interface
according to the system structure of JAXFront. However, it is not claimed that JAXFront
focuses on the evolution and variants of a UI that have been discussed in chapter 2.

4.2 Tool-based Interface Generation

This section discusses tool-based interface generation. First, we will look at model-based
tools. Afterwards we will discuss some direct manipulation tools.

Model-based tools reported in the literature include: Mickey [37], DON [38], UIDE [39],
HUMANOID [40], ITS [41], Javamatic [42]. The following is a brief description of some of
these tools.

UIDE [39] is a system with similar features. UIDE places its emphasis on describing the
effects of commands and the application supports, and not the interface. The user interface
description includes pre- and post- conditions of the operations that the system uses to
automatically generate the interface.

Humanoid [40] uses the following dimensions in the model of how an interface should look
and behave: application semantics, presentation templates (style), behaviour, dialog
sequencing, and action side effects. The applications semantics refer to the objects and
operations of the application domain. The presentation templates refer to the visual
appearance of the interface (as defined by widgets). The behaviour refers how the user
interacts with the presentation objects. The dialog sequencing refers to how commands are
organized (usually with ordering constraints). The action side effects refer to what actions are
executed automatically after a command.

ITS [41] is a system that uses design rules to generate an interface. The ITS architecture
separates the application into four layers. The action layer implements backend application
functions, the dialog layers defines the content of the user interface independent of its style,
the style rule layer defines the presentation and behaviour of a family of interaction
techniques, and the style program layers implements primitive toolkit objects that are
composed by the rule layer into complete interaction techniques. ITS considers content as the
objects that are included in each frame of the interface, the flow of control among frames, and
the actions associated with each object. Example style programs include routines to format
text, render images, and arrange units in rectangular layouts.

Javamatic [42] is an automated generation tool. Javamatic implements a method that allows
programmers to add a Web-based graphical interface to command-line driven applications

4 Visualization Technologies

 45

without programming. Javamatic uses a high level description of an application to
automatically generate a user interface, and then invokes commands in the legacy application
transparently. Javamatic does not require any changes to the application code, nor does it
require application recompilation with special toolkits. The application can be written in any
programming language (compiled or interpreted) as long as the needed functionality is
accessible from the command-line. Javamatic is written entirely in the Java language.
Javamatic can add a modern GUI to legacy applications, can make them accessible on
platforms to which the code has not been ported (e.g., scientific codes on supercomputers can
be run from personal computers), can make them Web accessible through regular Web pages,
and can permit collaboration between geographically separate users, because they share a
single program and its associated data.

Direct manipulation tools can be subdivided into four categories: Prototyping tools, Wizard
(sequence of cards) tools, Interface builders, and Graphical editors.

The prototyping tools allow the designer to quickly mock up how the interface looks for
certain scenarios but cannot create the real user interface. These tools are different from
“rapid prototyping” tools that can create workable user interfaces.

The wizard tools are tools for developing user interfaces that exhibit sequential behaviour.
The user traverses a sequence of screens and the final screen shows the result. Each screen
contains a set of widgets, which can be static (fixed set of widgets) or dynamic (set of widgets
depends on previous responses from the user). The wizard tools usually allow the designer to
create both static screens (each screen individually) and dynamic screens (using a template
with embedded scripts).

Interface builders allow the designer to build the interface using direct manipulation. The user
selects a widget from the list of available widgets (associated with a particular toolkit) and
places them on a drawing area using a pointing device. The system then generates code that is
compiled with the rest of the application. An example of an interface builder is “Visual
Studio” from Microsoft, which provides a graphical tool to generate a user interface and then
compile it with the actual application (written in C++, Visual Basic, or Java).

Finally, graphical editors are specialized tools for data visualization applications. Although
similar to interface builders, they include custom widgets for sophisticated operations (such as
simulations, process control, system monitoring, network management, and data analysis).

All interface generation tools are faced with a trade-off between giving designers control over
an interface design and providing a high level of automation. Given extensive control forces
designers program by hand all the details of the design. In this case, the designer must be an
expert in interface design and the interface is costly to build. Automating significant portions
of the interface design, on the other hand, removes the power from the designers, allowing
them to control only a few details. This is preferred for applications where few resources are
available for building and maintaining the interface code. Automation can generate cheap yet
complete and consistent user interfaces. The goal is to achieve a balance between detailed
control of the design and automation.

4 Visualization Technologies

46

4.3 Toolkits and User Interface Libraries for Programming Languages

In this section we will look at some toolkits and user interface libraries for programming
languages.

There are many different toolkits that render user interfaces. Some of the most popular
toolkits are Microsoft Foundation Classes (or MFC), Motif, Interviews, Open View, and
Smalltalk libraries.
Sun designed a toolkit—Java Foundation Classes or JFC, which provides that same look-and-
feel on any platform that has a Java Virtual Machine (or JVM) implementation. JFC goes one
step further in that it provides javax.swing to separate the look and feel from the
implementation. Thus, you can create a custom look-and-feel and enforce it for all
applications on all platforms.

Apple created MacApp, a software system that guides programmers in the development of
user interfaces by providing an application framework. MacApp provides the classes for the
most common parts, such as windows, buttons, etc., and the programmer specializes these
classes to provide application-specific details. This ensured that the resulting user interface
conforms to the Apples style guidelines and simplifies the writing of Macintosh applications.

Each toolkit is trying to solve a different problem: portability, easy of use, looks, more
features, and so on. Tradeoffs between these problems makes it is very difficult to strike a
balance and this has motivated development of multiple toolkits. The problem with too many
toolkits is that programmers must support different toolkits for different platforms, thus
defeating the original goal, which is portability.

One of the most popular ways to build user interfaces for applications is with a high-level
language or with a visual designer, such as C++ or Visual Basic. High-level programming is
powerful and provides the programmer with a lot of control over details in the design, while
encapsulating the low-level assembly programming. However, it also requires significant
programming experience and knowledge about the specific toolkit and usability principles.
The most popular high-level languages are C/C++, Java, and Visual Basic (see Figure 4-7: UI
Libraries for programming languages diagram).

UILibrariesForProgammingLanguages

C / C++

...
Java Visual Basic

AWT Swing

...

Figure 4-7: UI Libraries for programming languages diagram

The following is a description of AWT and Swing. We will also discuss their advantages and
disadvantages.

4 Visualization Technologies

 47

AWT stands for Abstract Window Toolkit. The Abstract Window Toolkit supports Java GUI
programming. It is a portable GUI library for stand-alone applications and/or applets. The
AWT provides the connection between the application and the native GUI. The AWT is
composed of a package of classes and it supports everything from creating buttons, menus,
and dialog boxes to complete GUI applications. The AWT is platform independent, supports
GUI Java programming.

Swing implements a set of GUI components and provides a pluggable look and feel. Swing is
implemented entirely in the Java and AWT programming language.

AWT features include a rich set of user interface components, a robust event-handling model,
graphics and imaging tools (including shape, colour, and font classes), layout managers which
are for flexible window layouts that don’t depend on a particular window size or screen
resolution and data transfer classes which are for cut-and-paste through the native platform
clipboard.

Swing features include all the features of AWT, a rich set of higher-level components (such as
tree view, list box, and tabbed panes) and pluggable look and feel.

Comparison of AWT with Swing, they both have the advantages and disadvantages. The
advantages of AWT are that use of native peers speeds component performance. AWT
components more closely reflect the look and feel of the OS they run on. The disadvantages
of AWT are that use of native peers creates platform specific limitations. Some components
may not function at all on some platforms, e.g. J2SE versus J2ME. The majority of
component makers, including Borland and Sun, base new component development on Swing
components. There is a much smaller set of AWT components available, thus placing the
burden on the programmer to create his or her own AWT-based components.

The advantages of Swing are that pure Java design provides for fewer platform specific
limitations. Pure Java design allows for a greater range of behaviour for Swing components
since they are not limited by the native peers that AWT uses. The pluggable look and feel lets
you design a single set of GUI components that can automatically have the look and feel of
any OS platform (Microsoft Windows, Solaris, Macintosh, etc.). It also makes it easier to
make global changes to your Java programs that provide greater accessibility (like picking a
hi-contrast colour scheme or changing all the fonts in all dialogs, etc.). However, the
drawbacks of Swing are that Swing components are generally slower than AWT. Moreover,
Swing applications consume too much memory, which is not suitable for small devices such
as mobile phones.

Since AWT and Swing have disadvantages as mentioned earlier, many people advocate
Eclipse’s SWT now. SWT (The Standard Widget Toolkit) is a cross platform GUI developed
by IBM. SWT solves the problems seen with the AWT and the Swing frameworks. The SWT
framework accesses native widgets through JNI (Java Native Interface). If a widget is not
available on the host platform, SWT emulates the unavailable widget [43].

4 Visualization Technologies

48

4.4 Scripting Languages

This section briefly describes scripting languages. There are server scripting language and
browser scripting language.

A scripting language is a programming language that performs tasks within a host
environment. The host environment provides an interface to the user and a system of objects
and facilities within which the scripting language performs its tasks. The combination of the
scripting language and its host environment makes a complete programming environment.

Server scripting language, such as ASP, PHP, ADO, are executed on the server. ASP (Active
Server Pages) is a program that runs inside IIS (Internet Information Services), which comes
as a free component with Windows 2000. An ASP file can contain text, HTML, XML, and
scripts and have the file extension “.asp”. ADO (ActiveX Data Objects) is a Microsoft
Active-X component that is automatically installed with Microsoft IIS, and is a programming
interface to access data in a database by using SQL (Structured Query Language). PHP
(Hypertext Preprocessor) is a server-side scripting language, like ASP. A PHP file may
contain text, HTML tags and scripts.

The Velocity Template Language (VTL) [44] is scripting language. Velocity is a Java-based
template engine. It permits web page designers to reference methods defined in Java code.
Web designers can work in parallel with Java programmers to develop web sites according to
the Model-View-Controller (MVC) model, meaning that web page designers can focus solely
on creating a well-designed site, and programmers can focus solely on writing code. Velocity
separates Java code from the web pages. It can be used to generate web pages, SQL,
PostScript and other output from templates. It can be used either as a standalone utility for
generating source code and reports, or as an integrated component of other systems.

Browser scripting language such as JavaScript and VBScript allow user to write scripting
code and embed it in a HTML page.

VBScript [45] is short for Visual Basic Scripting Edition, a scripting language developed by
Microsoft and supported by Microsoft’s Internet Explorer Web browser. VBScript is based on
the Visual Basic programming language, but is much simpler. In many ways, it is similar to
JavaScript. It enables Web authors to include interactive controls, such as buttons and
scrollbars, on their Web pages.

JavaScript [46] is a scripting language that is interpreted by the browser. It is included in the
HTML page using the <SCRIPT> tag. JavaScript code is executed at load and unload time of
a page and during or before actions that the browser user takes. The invocation of JavaScript
code follows a trigger / event – action mechanism. An action can be the invocation of a
JavaScript function. Functions are registered to events using on-Conditions.

Scripting languages are portable, simple to use, and do not require compilation. However it is
difficult to reuse and extend the code that is embedded in a HTML page.

4 Visualization Technologies

 49

4.5 UI Technologies Supported by a Visualization Engine or Generator

After discussing so many existing UI technologies, we conclude that a visualization engine or
generator is proposed to support HTML, Java, AWT, and Swing UI technologies (see Figure
4-8: UI technologies supported by a GUI engine or generator spectral diagram and Figure 4-9:
UI technologies supported by a GUI engine or generator class diagram).

...
HTML Java, AWT, Swing

Figure 4-8: UI technologies supported by a GUI engine or generator spectral diagram

UITechnology

...

LayoutDescriptionLanguages

HTML

...

... UILibraryForProgammingLanguages

Java

AWT Swing

...

...

Figure 4-9: UI technologies supported by a GUI engine or generator class diagram

The advantages and disadvantages of HTML have been discussed in subsection 4.1.1
“SGML-based Layout Description Languages”. The advantages and disadvantages of the Java
libraries have been already described in section 4.3 “Toolkits and User Interface Library for
Programming Languages”.

HTML is simple, easy to learn, and very popular. A GUI engine or generator is proposed to
support Java AWT and Swing, and then an end user can flexibly choose either AWT or Swing
technology.

Here we compare a UI rendering of our new approach called conceptual content management
with some existing visualization technologies such as HTML, SwiXML and UIML (see Table
4-1 Comparison of the new approach with some existing visualization technologies).

It can be seen that the existing visualization technologies such as HTML, SwiXML and
UIML have their advantages and disadvantages. However, as mentioned earlier, it is not
claimed that these visualization technologies cover the evolution, personalization and variants
of a UI. A UI rendering of a conceptual content management system covers the evolution,
personalization and variants of a UI that are three essential advantages of our new approach
and have been discussed in chapter 2 “Requirements”.

4 Visualization Technologies

50

Approaches

Advantages

A UI Rendering of a
Conceptual Content
Management

HTML SwiXML UIML

Portability + +- + +

Evolution + - - -

Personalization + - - -

Variants + - - -

Dynamic + - - +

Extensibility + - - +

Reusability + + - +

Usability + + + +

Ease to learn and
use + ++ + +

Simplicity + ++ + +

Platform
independence + +- + ++

Table 4-1 Comparison of the new approach with some existing visualization technologies

5 A Visualization Engine or Generator

 51

5 A Visualization Engine or Generator

The requirements for a UI engine or generator are discussed in chapter 2. The visualization
engine or generator works based on the UI component, the UI technology, and the domain
model, and then visualizes the user interface to an end user (see Figure 2-9: The working
mechanism of the UI visualization engine or generator on page 15). Selected visualization
components have been designed in chapter 3 and visualization technologies have been
described in chapter 4. This chapter discusses and designs the visualization engine or
generator, and describes seven possibilities to implement the visualization engine or
generator.

As mentioned in chapter 1, since domain models change constantly, open dynamic content
management requires dynamically adaptable user interfaces. In order to realize dynamic UIs,
the following discusses the implementation of the GUI engine or generator.

5.1 Analysis of Possibilities to Implement a Visualization Engine or Generator

There are several possibilities to implement a GUI engine or generator. As described in
chapter 2, the GUI engine or generator needs input in terms of assets. The essence of the
implementation of the GUI engine or generator is class-based approach, instance-based
approach, and various combinations of class-based and instance-based approach to implement
the GUI engine or generator. The following are seven selected possibilities to implement the
GUI engine or generator:

(1) Class-based approach: a visualization engine or generator creates a UI component
based on the type of an asset’s content reference. The first approach will be discussed
in subsection 5.4.1.

(2) Instance-based approach: a Java class is the value of a characteristic of an asset. A

programmer defines the mapping between asset components and implementation
classes. java.lang.String such as “menu” is the value of a characteristic called
name of an asset. java.lang.Class such as javax.swing.JMenu is the value of a
characteristic called peerClass of an asset. The default mapping between a
component type like swingMenu and the class used to realize a component of that type
such as javax.swing.JMenu is defined. The second alternative will be discussed in
subsection 5.4.2.

(3) Class-based approach: an instance of a Component is the value of a characteristic

called peer of an asset. When a user specifies an instance of the type such as
java.awt.Frame for peer, a visualization engine or generator dynamically creates
an instance for peer. The third alternative will be discussed in subsection 5.4.3.

(4) Class-based approach: an instance of a UI component is the value of a content called

prototype of an asset. A programmer defines the combination between model
UIComponents and model UITechnologies such as class AWTWindow that is a
subclass of both Window and AWT and assigns an instance of a UI component to

5 A Visualization Engine or Generator

52

prototype. The prototype pattern which means that it creates objects by cloning [20]
is used in this alternative. This approach needs the multiple inheritances. When a user
creates an instance of class AWTWindow, a visualization engine or generator
dynamically creates an instance according to prototype. The fourth alternative will
be discussed in subsection 5.4.4.

(5) In this approach technologies are instances and components are classes. An instance of

a Component is a content called prototype of an asset in model UITechnologies.
The fifth alternative will be discussed in subsection 5.4.5.

(6) Technologies are instances and components are classes. An instance of a Component is

a content called prototype of an asset in model UIComponents. The sixth alternative
will be discussed in subsection 5.4.6.

(7) Technologies are instances and components are classes. An instance of a

UIComponent is a content called prototype of an asset in both model UIComponents
and model UITechnologies. The seventh alternative will be discussed in subsection
5.4.7.

The following aspects will be analysed for each approach: How can a visualization engine or
generator work? How can a user define a user interface? What are the advantages and
disadvantages of each alternative? How complex would a visualization engine or generator
be? What are the numbers of asset classes and instances of both UI components and UI
technologies that have to be defined?

The example class Person that has been given in section 2.1 will be used here again while
discussing. Classes in both the GUI domain and the technology domain have to be defined,
before each alternative is discussed. Section 5.2 and section 5.3 will describe these two
domains.

5.2 GUI Domain

Selected UI components have been discussed in chapter 3 (see Figure 3-1: Components class
diagram on page 21). This section will define some UI components based on the asset
language. The definitions are given in a simple and general way. Detailed definitions will be
described in section 5.4 while discussing the different possibilities for an implementation of
the GUI engine or generator.

The class Component has two characteristics called visible and size. The characteristic
visible decides whether a Component is visible or invisible. The characteristic size decides
the size of a Component. The class Component has two relationships called
visualizedAsset that is an instance of Asset and visualizedAssetClass that is an
instance of AssetClass. The connection between application domain and layout assets is
done by these two relationships visualizedAsset and visualizedAssetClass. The View
class is a subclass of Component as described in subsection 3.3.2. As mentioned in
subsection 3.3.1, the Model-View-Controller Design Pattern is used. The List class and
Label class are subclasses of View that correspond to the design in chapter 3.

5 A Visualization Engine or Generator

 53

class Component {
 concept characteristic visible : boolean
 characteristic size : java.awt.Dimension
 concept relationship visualizedAsset : Asset

 relationship visualizedAssetClass : AssetClass
} ; Component

class View refines Component {…} ; View
class List refines View {…} ; List
class Label refines View {…} ; Label

The class Container is a subclass of Component as described in section 3.1. A
Container contains other components and is also associated with a layout manager. The
classes Panel and Window are subclasses of Container and are described in subsection 3.1.1
and 3.1.2. The classes FlowLayout and GridLayout are subclasses of LayoutManager and
are described in section 3.2.

class Container refines Component {
 concept relationship components : Component*

relationship layout : LayoutManager
} ; Container

class Panel refines Container {…} ; Panel

class Window refines Container {
 concept relationship contentPane : container
 relationship menuBar : Menu*
} ; Window

class LayoutManager{…} ; LayoutManager
class FlowLayout refines LayoutManager {…} ; FlowLayout

class GridLayout refines LayoutManager {
 concept characteristic rows : int > 0
 characteristic cols : int > 0
} ; GridLayout

The class ActiveComponent is a subclass of Component. The class Button and Menu are
subclasses of ActiveComponent that correspond to the design considerations mentioned in
subsection 3.3.3.

class ActiveComponent refines Component {…} ; ActiveComponent

class Button refines ActiveComponent {
 concept characteristic label : Label …
} ; Button

class Menu refines ActiveComponent {
 concept relationship label : Label
 relationship menuItem: MenuItem*
} ; Menu
…

5 A Visualization Engine or Generator

54

5.3 Technology Domain

The UI technologies have been discussed in chapter 4. This section will define some UI
technologies based on the asset language. The definitions are given in a simple and general
way. Detail definitions will be described in section 5.4 while discussing the different
possibilities for implementation of the GUI engine or generator.

The class UITechnology has subclasses such as HTML, Java, Swing and Awt that
correspond to the design considerations described in section 4.5.

class UITechnology {

content prototype : Component
concept relationship superType : UITechnology
…

}; UITechnology

class HTML refines UITechnology {…}; HTML

class Java refines UITechnology {…};Java

class Swing refines UITechnology {
 prototype : javax.swing.JComponent

superType : Java
…

}; Swing

class Awt refines UITechnology {

prototype : java.awt.Component
superType : Java
…

}; Awt
...

5.4 Different Possibilities for Implementation of a GUI Engine or Generator

Some classes of both the GUI domain and the technology domain have been defined in
section 5.2 and 5.3. In this section seven selected possibilities to develop a GUI engine or
generator will be described and their advantages and disadvantages will be discussed.

5.4.1 Creating a UI Component Based on the Type of an Asset’s Content
Reference

This subsection discusses the first approach—a UI engine or generator creates a UI
component based on the type of an asset’s content reference as mentioned in section 5.1.

The class Component has four attributes that are called peer, visualizedAsset,
visualizedAssetClass and visualizedAttribute. The content called peer of an asset
is a type of java.awt.Component. The relationship visualizedAsset is a type of Asset.
The relationship visualizedAssetClass is a type of AssetClass. The connection between
application domain and layout assets is done by two relationships visualizedAsset and

5 A Visualization Engine or Generator

 55

visualizedAssetClass. The characteristic visualizedAttribute is a type of Attribute
that is associated with the application domain when a user defines a UI.

class Component {
 content peer : java.awt.Component
 concept relationship visualizedAsset : Asset

relationship visualizedAssetClass : AssetClass
 characteristic visualizedAttribute : Attribute
} ; Component

The class Container is a subclass of Component as already mentioned in section 5.2.

class Container refines Component {
 concept relationship components : Component*
 relationship layout : LayoutManager
} ; Container

The class Window is a subclass of Container that corresponds to the design considerations
described in subsection 3.1.1. The value of the attribute peer of the class Window is an
instance of java.awt.Window. The attribute size defines the size of a window.

class Window refines Container {
 content peer : java.awt.Window
 concept characteristic size : java.awt.Dimension
 constraint peer.getSize ().equals (size)
 onviolation peer.setSize (size)
} ; Window

The class AWTWindow is a subclass of Window. The value of the attribute peer of the class
AWTWindow is an instance of java.awt.Frame. The attribute size defines the size of an
AWTWindow. The class SwingWindow is also a subclass of Window. The value of the attribute
peer of the class SwingWindow is an insatnce of javax.swing.JFrame. The attribute peer
has different types in different classes Component, Window, AWTWindow and
SwingWindow. The GUI engine or generator creates an instance of a given class for peer.

class AWTWindow refines Window {
 content peer : java.awt.Frame
 concept characteristic size : java.awt.Dimension
} ; AWTWindow

class SwingWindow refines Window {
 content peer :javax.swing.JFrame
} ; SwingWindow
…

A user can define a user interface in a very simple way as follows:

let fenfang : Person := create Person {}

let myPersonWindow : Window := create AWTWindow {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
 components := {
 create Label { text = “Name:” }
 create TextField { visualizedAttribute := Person.name
 text := fenfang.name}

5 A Visualization Engine or Generator

56

 create Label { text := “Street:” }
 …
 }
 layoutManager := create GridLayout { width :=2 height :=3 }
 …
}

A user first creates an instance of class Person called fenfang, then creates an instance of
class AWTWindow named myPersonWindow and gives fenfang as the value of the relationship
visualizedAsset, Person as the value of the relationship visualizedAssetClass. As
mentioned earlier, two relationships visualizedAsset and visualizedAssetClass connect
application domain and layout assets. Finally, a UI engine or generator generates an
AWTWindow to show the information about person fenfang.

A user can also select SwingWindow as the class to create an instance of SwingWindow named
myPersonWindow as follows:

let myPersonWindow : SwingWindow := create SwingWindow {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
 components := {
 create Label { text := “Name:” }
 create TextField {

 visualizedAttribute := Person.name
 text := fenfang.name

 }
 create Label { text := “Street:” }
 …
 }
 layoutManager := create GridLayout { width := 2 height := 3 }
 …
}

The number of classes that have to be defined is:
(the number of components) * [(the number of technologies) * (the number of components)]
A programmer has to define one class for each component and one class for each combination
of the technology and the component.

It can be seen that the advantages of this approach are that it is simple and easy to learn for a
user. The drawback is that the class definition is not portable because the type of peer is
given and fixed. This leads to difficulty of reusing the code.

5.4.2 A Java Class is the Value of a Characteristic of an Asset

The following is a description of the second alternative— a Java class is the value of a
characteristic of an asset as mentioned in section 5.1. A programmer defines the default
mapping between a component type like swingMenu and the class used to realize a component
of that type such as javax.swing.JMenu.

The class Component has four attributes visualizedAsset, visualizedAssetClass, name
and peerClass. The value of the attribute visualizedAsset is an instance of Asset and
the value of the attribute visualizedAssetClass is an instance of AssetClass. These two

5 A Visualization Engine or Generator

 57

attributes create the connection between application domain and layout assets. The value of
the attribute name is an instance of java.lang.String. The value of the attribute peerClass
is an instance of java.lang.Class. A programmer defines the default mapping between a
component type name and the class used to realize a component of the type peerClass as
follows:

class Component {
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
 concept characteristic name : java.lang.String
 characteristic peerClass : java.lang.Class
} ; Component

let awtWindow := create Component {
 name := “window”
 peerClass := java.awt.Window.class
 ; create an instance called awtWindow of class java.awt.Window.class
}

let swingWindow := create Component {
 name := “window”
 peerClass := javax.swing.JWindow.class
}

let swingMenu := create Component {
 name := “Menu”
 peerClass := javax.swing.JMenu.class
}

let awtMenu := create Component {
 name := “Menu”
 peerClass := java.awt.Menu.class
}

let awtMenuBar := create Component {
 name := “Menu-bar”
 peerClass := java.awt.MenuBar.class
}

let swingMenuBar := create Component {
 name := “Menu-bar”
 peerClass := javax.swing.JMenuBar.class
}

let swingMenuItem := create Component {
 name := “Menu-item”
 peerClass := javax.swing.JMenuItem.class
}

let swingMenuItemSeperator := create Component {
 name := “Menu-item-seperator”
 peerClass := javax.swing.JSeperator.class
}
…

Each component such as swingMenu and awtMenu must have attributes called name and
peerClass. The name must be unique within the mapping definitions. The notion of

5 A Visualization Engine or Generator

58

peerClass specifies an object type; the component’s name uniquely identifies an instance of
that type.

A visualization engine or generator can create objects from resource descriptions, for
example, the realized form of a frame element is an instance of javax.swing.JFrame, and
that of a label element is an instance of javax.swing.JLabel.

A user can define a user interface as follows:

class VisualizedPerson refines Person {
 concept relationship visualizedBy : Component
} ; a subclass called VisualizedPerson of class Person

let fenfang := create VisualizedPerson {
 visualizedBy := awtWindow
}

let myPersonWindow := create Component awtWindow
 modify myPersonWindow {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

A user first creates a subclass called VisualizedPerson of class Person, and then creates an
instance of class VisualizedPerson called fenfang. The user creates an instance awtWindow
of class Component named myPersonWindow that is a prototype, and then the user modifies
the prototype according to the value of the attribute visualizedAsset called fenfang and
the value of the attribute visualizedAssetClass called Person. As mentioned earlier, two
relationships visualizedAsset and visualizedAssetClass connect application domain
and layout assets.

The number of classes and asset instances that are defined in a mapping file is:
(1 class for Component) + (the number of technologies) * (the number of components)
A programmer has to define one class for Component and create one instance for each
combination of technology and component.

The advantages of this approach are that it allows the language to be extensible. It is easy to
override this default mapping and substitute a different class, perhaps one that is user-defined,
to realize a component.

5.4.3 An Instance of a Component is the Value of a Characteristic of an Asset

The third alternative—an instance of a Component is the value of a characteristic of an asset
as mentioned in section 5.1. Definitions of both the model Components and the model
Technologies are given as follows:

model Components
class ComponentType {
 concept relationship superType : ComponentType
}; ComponentType

5 A Visualization Engine or Generator

 59

The class ComponentType has an attribute superType whose value is an instance of
ComponentType. The class Component is a subclass of ComponentType. It has five attributes
visualizedAsset, visualizedAssetClass, type, technology and peer. The
attributes visualizedAsset and visualizedAssetClass create the connection between
application domain and layout assets. The value of the attribute type is an instance of
ComponentType. The value of the attribute technology is an instance of UITechnology and
the value of the attribute peer is an instance of Component.

class Component refines ComponentType {
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
 relationship type : ComponentType
 relationship technology : UITechnology
 characteristic peer : Component
}; Component

let component := create ComponentType {}
let window := create ComponentType { superType := component }
…

model Technologies

class UITechnology { concept relationship superType : UITechnology }
let java := create UITechnology {}
let awt := create UITechnology { superType := java }
…

Then a user can use this definition to create an awt window as follows:

let fenfang : Person := create Person {}
create Component {
 peer := new java.awt.Frame ()
 type := window
 technology := awt
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

A user can also create a Swing window by changing the values of attributes peer, type and
technology as follows:

create Component {
 peer := new javax.swing.JFrame ()
 type := window
 technology := swing
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

The number of classes and instances that have to be defined is:
(one class for ComponentType) + (one class for Component) + (one class for UITechnology)
+ (The number of components) + (The number of technologies)
A programmer has to define one class for ComponentType, Component, UITechnology
respectively, create one instance for each component and create one instance for each
technology.

5 A Visualization Engine or Generator

60

The advantages of this alternative are that it is based on instances of model Components and
model Technologies. It is dynamic. A visualization engine or generator searches the
prototype of the instance according to the given value of the attributes type and technology.
The disadvantages of this approach are that it is complex to implement the GUI engine or
generator. It will be a problem if a user first creates a Component that has the attribute peer
whose value is an instance of java.awt.Frame, and then the user modifies the Component
that has the attribute peer whose value is an instance of javax.swing.JFrame. The
following code describes this scenario:

let myFrame : = create Component {
 peer := new java.awt.Frame ()
 type := window
 technology := awt
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

modify myFrame {peer := new javax.swing.JFrame ()}

modify myFrame {peer := new javax.swing.XFrame ()}

The worst-case scenario is that the user modifies the Component that has the attribute peer
whose value is an instance of javax.swing.XFrame. It is a run time error because
javax.swing.XFrame does not exist in the technology model.

5.4.4 An Instance of a UI Component is the Value of a Content of an Asset

In this subsection the fourth alternative will be analysed— an instance of a UI component is
the value of a content of an asset as mentioned in section 5.1.

The class Component has two attributes visualizedAsset and visualizedAssetClass.
The attributes visualizedAsset and visualizedAssetClass create the connection between
application domain and layout assets. The class Container and the class Window are
subclasses of Component.

model UIComponents:

class Component {
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
}; Component

class Container refines Component {
 concept relationship components : Component*
 relationship layout : LayoutManager
}; Container

class Window refines Container{…}; Window
…

5 A Visualization Engine or Generator

 61

The class UITechnology has a content called prototype of an asset, whose value is an
instance of java.awt.Component. The class Java is a subclass of UITechnology and the
class AWT is a subclass of Java.

model UITechnologies:

class UITechnology {

content prototype : java.awt.Component
}; UITechnology

class Java refines UITechnology {…}; Java

class AWT refines Java {…}; AWT
class Swing refines Java {

content prototype : javax.swing.JComponent
…

}; Swing

...

The class AWTWindow is a subclass of both Window and AWT. It has an attribute prototype,
which is an instance of java.awt.Frame. The class SwingWindow is a subclass of both
Window and Swing. It has an attribute, which is an instance of javax.swing.JFrame. A UI
engine or generator creates an instance based on prototype according to prototype pattern as
mentioned in section 5.1.

class AWTWindow refines Window, AWT {
 content prototype : java.awt.Frame := new java.awt.Frame ()
}; AWTWindow

class SwingWindow refines Window, Swing {
 content prototype : javax.swing.JFrame := new javax.swing.JFrame ()
}; SwingWindow
…

A user can define a user interface as follows:

let fenfang : Person := create Person {}

;create myPersonWindow as an instance of AWTWindow
let myPersonWindow : Window := create AWTWindow {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
 …
}

; Or create myPersonWindow as an instance of SwingWindow
let myPersonWindow : Window := create SwingWindow {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
 …
}

A user first creates an instance of class Person called fenfang, then creates an instance of
class AWTWindow or SwingWindow named myPersonWindow and gives fenfang as the value
of the relationship visualizedAsset and Person as the value of the relationship

5 A Visualization Engine or Generator

62

visualizedAssetClass. As mentioned earlier, two relationships visualizedAsset and
visualizedAssetClass create the connection between application domain and layout assets.

Then the UI engine or generator creates an instance of AWTWindow called myPersonWindow
based on the value of prototype given in class AWTWindow. As mentioned earlier, this
approach uses the prototype pattern which creates instances by cloning. The UI engine or
generator can also clone an instance of SwingWindow called myPersonWindow according to
the value of prototype given in class SwingWindow.

The number of classes, which have to be defined, is:
(the number of components) + (the number of technologies) + (the number of components) *
(the number of technologies)
A programmer has to define one class for each Component,each UITechnology and each
combination between Component and UITechnology.

The advantage of this alternative is that it is portable. It is simple and easy to use. The
drawback is that this approach has to support the multiple inheritances such as class
AWTWindow refines Window, AWT {}. The requirement of the multiple inheritance leads to
complex implementation of a UI engine or generator.

5.4.5 A Combination of Technologies as Instances and Components as Classes

The following describes the fifth alternative— a combination of technologies represented by
instances and components represented by classes as mentioned in section 5.1.

In this approach technologies are instances and components are classes. The class
UIComponent has an attribute technology, whose value is an instance of UITechnology.
The class Component is a subclass of UIComponent. It has two attributes visualizedAsset
and visualizedAssetClass that create the connection between application domain and
layout assets.

model UIComponents

class UIComponent {concept relationship technology : UITechnology*}

class Component refines UIComponent {
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
}; Component

class Container refines Component {
 concept relationship components : Component*
 relationship layout : LayoutManager
}; Container

class Window refines Container{…}; Window
…

model UITechnologies

class UITechnology {
 content prototype : Component

5 A Visualization Engine or Generator

 63

 concept relationship superType : UITechnology
}

let java := create UITechnology {…}

let awt := create UITechnology { superType := java }

let swing := create UITechnology { superType := java }
...

The class UITechnolgy has two attributes prototype whose value is an instance of
Component and superType whose value is an instance of UITechnology. The technologies
such as java, awt and swing are instances of UITechnology. In this approach the
instance awtWindow is created as follows: First, an instance of Window is created. Second,
the attribute technology of Window is assigned the value awt, which is an instance of
UITechnology. Finally, the value of the attribute prototype of awt is modified from an
instance Component to an instance of java.awt.Frame. The instance swingWindow can be
created in the same way.

let awtWindow := create Window {
 technology := modify create UITechnology awt {

prototype := new java.awt.Frame()
 }
}

let swingWindow := create Window {
 technology := modify create UITechnology swing {

prototype := new javax.swing.JFrame()
 }
}
…

A user can define a user interface as follows:

class VisualizedPerson refines Person {
 concept relationship visualizedComponent : UIComponent
}; Define subclass VisualizedPerson of super class Person

let fenfang : Person := create VisualizedPerson {
 visualizedComponent := awtWindow
}; select awtWindow as visualizedComponent

let fenfang : Person := create VisualizedPerson {
 visualizedComponent := swingWindow
}; Or select swingWindow as visualizedComponent

let myPersonWindow : Window := create UIComponent {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

First, a user creates a subclass VisualizedPerson of class Person. It has an attribute
visualizedComponent whose value is an instance of UIComponent. Second, the user creates
an instance of class VisualizedPerson called fenfang whose attribute
visualizedComponent has the value awtWindow or swingWindow. Third, the user creates an
instance myPersonWindow of class Window and gives fenfang as the value of the attribute

5 A Visualization Engine or Generator

64

visualizedAsset and Person as the value of the attribute visualizedAssetClass. As
mentioned earlier, two relationships visualizedAsset and visualizedAssetClass connect
application domain and layout assets.

Then a GUI engine or generator generates an awtWindow according to the value of the
attribute visualizedComponent in the object fenfang. In the same way a UI engine or
generator generates a swingWindow according to the value of the attribute
visualizedComponent in the object fenfang.

The number of classes and instances, which have to be defined, is:
(the number of components) + (one class for UITechnology) + (the number of technologies)
+ (the number of components) * (the number of technologies)
It means that a domain designer has to define one class for each component, one class for the
class UITechnology, create one instance for each technology and each combination between
components and technologies.

The advantage of this alternative is that the value of the attribute prototype of
UITechnology is given directly such as prototype: = new javax.swing.JFrame() by a
programmer. The disadvantages of this approach are that it is complex, for example
“technology: = modify create UITechnology awt {prototype: = new
java.awt.Frame()}”. It is not easy to use for a user. The number of classes and instances
that have to be defined is quite larger compared to the other possibilities.

5.4.6 A Different Combination of Technologies as Instances and Components as
Classes

The sixth alternative— a different combination of technologies represented by instances and
components represented by classes as mentioned in section 5.1.

Technologies are instances and components are classes in this approach. The class
UIComponent has an attribute technology whose value is an instance of UITechnology. The
class Component is a subclass of the class UIComponent. It has three attributes prototype,
visualizedAsset and visualizedAssetClass. The value of the attribute prototype is
an instance of Component. The attributes visualizedAsset and visualizedAssetClass
create the connection between application domain and layout assets.

model UIComponents

class UIComponent {concept relationship technology : UITechnology*}

class Component refines UIComponent {
 content prototype : Component
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
}; Component

class Container refines Component {
 concept relationship components : Component*
 relationship layout : LayoutManager
}; Container

5 A Visualization Engine or Generator

 65

class Window refines Container{…}; Window
…

The class UITechnology has an attribute superType whose value is an instance of
UITechnology. The technologies such as java, awt and swing are instances of the class
UITechnolgoy. The instance awtWindow is created as follows: First, an instance of the class
Window is created. Second, an instance of java.awt.Frame is assigned as the value of the
attribute prototype of the class Window. Third, the attribute technology of the class Window
is assigned the value awt, which is an instance of UITechnology. The instance swingWindow
of the class Window can be created in the same way.

model UITechnologies

class UITechnology {
 concept relationship superType : UITechnology
}

let java := create UITechnology {}

let awt := create UITechnology { superType := java }

let swing := create UITechnology { superType := java }
...

let awtWindow := create Window {
 prototype := new java.awt.Frame()
 technology := awt
}
let swingWindow := create Window {
 prototype := new javax.swing.JFrame()
 technology := swing
}
…

A user can define a user interface as follows:

class VisualizedPerson refines Person {
 concept relationship visualizedComponent : UIComponent
}; define subclass VisualizedPerson of super class Person

let fenfang : Person := create VisualizedPerson {
 visualizedComponent := awtWindow
}; select awtWindow as visualizedComponent

let fenfang : Person := create VisualizedPerson {
 visualizedComponent := swingWindow
}; Or select swingWindow as visualizedComponent

let myPersonWindow : Window := create UIComponent {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
 components := {
 create Label { text := “Name:” }
 create TextField {

visualizedAttribute := Person.name
text:=fenfang.name

 }
 create Label { text := “Street:” }

5 A Visualization Engine or Generator

66

 …
 }
 layoutManager := create GridLayout { width := 2 height := 3 }
 …
}

First, a user creates a subclass VisualizedPerson of class Person. It has an attribute
visualizedComponent whose value is an instance of UIComponent. Second, the user creates
an instance of class VisualizedPerson called fenfang whose attribute
visualizedComponent has the value awtWindow or swingWindow. Third, the user creates an
instance myPersonWindow of class Window, gives fenfang as the value of the attribute
visualizedAsset and Person as the value of the attribute visualizedAssetClass, and
creates components Label and TextField to show the name and street information of the
person fenfang. As mentioned earlier, two relationships visualizedAsset and
visualizedAssetClass connect application domain and layout assets.

Then a GUI engine or generator generates an instance awtWindow called myPersonWindow of
class Window according to the value of the attribute visualizedComponent in the object
fenfang. In the same way a UI engine or generator can also generates an instance
swingWindow myPersonWindow of class Window according to the value of the attribute
visualizedComponent in the object fenfang.

The number of classes and instances that have to be defined is:
 (the number of components) + (one class for UITechnology) + (the number of technologies)
+ (the number of components) * (the number of technologies)
It means that a domain designer has to define one class for each component, one class for the
class UITechnology, create one instance for each technology and each combination between
components and technologies.

The advantages of this approach are that the value of the attribute prototype of the class
UITechnology is given directly such as prototype := new javax.swing.JFrame() by the
domain designer. It is simpler compared to the fifth solution by moving the attribute
prototype from the class UITechnology to the class UIComponent. The disadvantages of this
approach are that the number of classes and instances, which have to be defined, is quite
huge. It is not easy to use for a user.

5.4.7 Another Combination of Technologies as Instances and Components as
Classes

The following discusses the last approach— another combination of technologies represented
by instances and components represented by classes as mentioned in section 5.1.

Technologies are instances and components are classes. The class UIComponent has three
attributes prototype, visualizedAsset and visualizedAssetClass. The value of the
attribute prototype is an instance of UIComponent. The attributes visualizedAsset and
visualizedAssetClass create the connection between application domain and layout assets.
The class Component is a subclass of the class UIComponent. The class Container is a
subclass of the class Component and the class Window is a subclass of Container that

5 A Visualization Engine or Generator

 67

corresponds to the design consideration described in section 3.1. The awtWindow is an
instance of Window whose attribute prototype is an instance of java.awt.Frame. The
instances such as swingWindow and htmlWindow can be created by the same way.

model UIComponents

class UIComponent {
 content prototype : UIComponent
 concept relationship visualizedAsset : Asset
 relationship visualizedAssetClass : AssetClass
}
class Component refines UIComponent {…}; Component

class Container refines Component {
 concept relationship components : Component*
 relationship layout : LayoutManager
}; Container

class Window refines Container{…}; Window
…
let awtWindow := create Window { prototype := new java.awt.Frame () }

let swingWindow := create Window { prototype := new javax.swing.JFrame () }

let htmlWindow := create Window { prototype :=
“<script>window.open(...)</script>” }
...

The class UITechnolgy has an attribute prototype whose value is an instance of
UIComponent. The class Java is a subclass of the class UITechnolgy and the class AWR is a
subclass of Java. The awtWindow is an instance of AWT whose attribute prototype is an
instance of java.awt.Frame. The instances such as awtButton and awtTextField can be
created by the same way.

model UITechnologies

class UITechnology {content prototype : UIComponent }
class Java refines UITechnology { ... }
class AWT refines Java { ... }
...

let awtWindow := create AWT { prototype := new java.awt.Frame () }
let awtButton := create AWT { prototype := new java.awt.Button () }
let awtTextField := create AWT { prototype := new java.awt.TextField ()}
...

A user can define a user interface as follows:

class VisualizedPerson refines Person {
 concept relationship visualizedComponentClass : UIComponent
 relationship visualizedTechnologyClass : UITechnology
}; define subclass VisualizedPerson of class Person

let fenfang : Person := create VisualizedPerson {
 visualizedComponentClass := Window
 visualizedTechnologyClass := AWT
}; select Window as visualizedComponentClass and AWT as
visualizedTechnologyClass

5 A Visualization Engine or Generator

68

let fenfang : Person := create VisualizedPerson {
 visualizedComponentClass := Window
 visualizedTechnologyClass := Swing
}; Or select Window as visualizedComponent and Swing as
visualizedTechnologyClass

let myPersonWindow : Window := create Window {
 visualizedAsset := fenfang
 visualizedAssetClass := Person
}

First, a user creates a subclass VisualizedPerson of class Person. It has an attribute
visualizedComponentClass whose value is an instance of UIComponent and an attribute
visualizedTechnologyClass whose value is an instance of UITechnology. Second, the
user creates an instance of the class VisualizedPerson called fenfang whose attributes
visualizedComponentClass and visualizedTechnologyClass have the value Window and
AWT respectively. Third, the user creates an instance myPersonWindow of class Window, gives
fenfang as the value of the attribute visualizedAsset and Person as the value of the
attribute visualizedAssetClass.

Then the GUI engine or generator starts to search for the parameter with the value Window and
the parameter with the value AWT, and then find the intersection of class extensions, here the
intersection of class extensions is awtWindow. Finally, the GUI engine or generator clones an
instance of java.awt.Frame as the value of the attribute prototype.

The number of classes and instances that have to be defined is:
(the number of components) + [(the number of components) * (the number of technologies)]
+ (the number of technologies) + [(the number of components) * (the number of
technologies)]

A programmer has to define one class for each component and create one instance for each
combination between components and technologies in the UIComponents model. In the same
way, one class for each technology has to be defined and one instance for each combination
between components and technologies has to be defined in the UITechonologies model.

The advantage of this alternative is that it is dynamic, portable, reusable, and extensible. The
disadvantages of this approach are that it is complex because a UI engine or generator has to
search for the parameter with the value of the attribute visualizedComponentClass and the
attribute visualizedTechnologyClass, and then decide the type of the attribute prototype
and clone it. The number of classes and instances that have to be defined is the largest
compared to the other possibilities.

5.5 Comparison of Different Possibilities to Implement a GUI Engine or
Generator

Based on the above detailed analyses of seven different alternatives to implement a GUI
engine or generator, now their advantages and disadvantages will be further compared from
the following different aspects: portability, personality, dynamic, etc. for details see the
following table (Table 5-1: Analyses the alternatives for implementation of a GUI engine or
generator). The advantages and disadvantages of each approach will be considered, and then

5 A Visualization Engine or Generator

 69

the best solution will be found. The following recommends one solution to implement a GUI
engine or generator.

What we have done in this project is to define a model of UI components, UI technologies by
assets, and analyse design considerations for a visualization engine or generator. Now come
to the point to decide which alternative is the best to implement the GUI engine or generator.
Before make a decision, let us look at table 5-1 in detail.

The first approach as mentioned in subsection 5.4.1 is very simple and easy to learn, but the
drawback is that the class definition is not portable and not dynamic. We think that portable
and dynamic properties are very important for a GUI engine or generator, so this is not a good
solution.

The second alternative as mentioned in subsection 5.4.2 is very extensible, also simple and
easy to learn, but not dynamic, so it is not the optimal way to implement a GUI engine or
generator.

The third alternative as mentioned in subsection 5.4.3 is more complex than the other
alternatives such as the solution (1), (2) and (5). As mentioned in subsection 5.4.3, it will be a
problem if a user first creates a Component that has the attribute peer whose value is an
instance of java.awt.Frame, and then the user modifies the Component that has the
attribute peer whose value is an instance of javax.swing.JFrame. Simplicity is a very
important characteristic of a GUI engine or generator, so we do not think this is a good
solution.

The fourth alternative as mentioned in subsection 5.4.4 needs the multiple inheritance such as
class AWTWindow refines Window, AWT {}. The requirement of the multiple inheritance
leads to complex implementation for a UI engine or generator, so this is not a good solution.

Now let us look at three different combinations of technology represented by instances and
component represented by classes. The seventh alternative as mentioned in subsection 5.4.7
requires the largest number of classes and instances that have to be defined. The fifth
alternative as mentioned in subsection 5.4.5 and the seventh alternative as mentioned in
subsection 5.4.7 are much more complex than the sixth alternative as mentioned in subsection
5.4.6. This matters learning difficult.

Finally, we conclude that the sixth alternative as mentioned in subsection 5.4.6 is the best
solution to implement a GUI engine or generator because it is more dynamic, extensible,
portable, has lower engine complexity and the lower number of defined classes and /or
instances compared to the other solutions.

5 A Visualization Engine or Generator

70

Solutions

Advantages
(1) (2) (3) (4) (5) (6) (7)

Portability - + + + + + +

Evolution + + + + + + +

Personalization + + + + + + +

Adaptability + + + + + + +

Dynamic - - +++ + +++ +++ +++

Extensibility + +++ ++ +++ +++ +++ +++

Reusability - + + + + + +

Usability + + + + + + +

Ease to learn and
use +++ ++ + + - + -

Simplicity +++ ++ + + - + -

Platform
independence + + + + + + +

Engine complexity + + ++ ++ +++ + ++

Table 5-1: Analyses the alternatives for implementation of a GUI engine or generator

6 Summary and Outlook

 71

6 Summary and Outlook

This chapter will conclude with a short summary and a look at the further development of a
UI visualization engine or generator for UIs.

6.1 Summary

Openness and dynamics as introduced in chapter 1 allow conceptual content management
systems to be constantly adapted, refined and personalized according to the requirements as
demanded by its users’ tasks. Since domain models change constantly, open dynamic
conceptual content management requires dynamically adaptable user interfaces. However, UI
technologies are not open and dynamic as described in chapter 4.

Open dynamic conceptual content management that is based on a new language called asset
language is an innovative way to implement information systems. Like the application
domain model the presentation of assets has to be user-definable because a UI cannot be
automatically constructed. The user interface of our approach is implemented by describing
UIs through the ADL (Asset Definition Language) by using assets to model the UI realm. The
advantages of this approach are that the ADL allows three essential contributions: the
evolution, personalization, and adaptability of a user interface. A special UI visualization
engine or generator must be designed in order to realize open dynamic visualization. The
visualization is realized by a combination of the application domain and the UI realm that
consists of two domains: one for logical UI components and one for presentation
technologies. These two domains are orthogonal. A UI engine or generator as presented in
this report works based on a UI components model, a UI technologies model, and an
application domain model.

Consequently, this project study has defined models for UI components (chapter 3) and UI
technologies (chapter 4) logically as well as the implementation by assets (section 5.2 and
5.3). Design considerations for a visualization engine or generator which realizes dynamic
visualization are discussed (chapter 2 and chapter 5). There are several different approaches to
design the input format of a GUI engine or generator. The advantages and disadvantages of
seven selected possibilities have been analysed (section 5.4). Finally, a combination of
technology represented by instances and component represented by classes was found that is
an expected solution to implement a GUI engine or generator. This is because it is more
dynamic, extensible and portable. Moreover, the engine complexity and the number of
defined classes and instances are lower compared to the other solutions (section 5.5).

6.2 Outlook

As described in section 5.4, there are several alternatives to develop a GUI engine or
generator. According to the recommendation in section 5.5, a combination of technology
represented by instances and component represented by classes is an expected solution to
implement a GUI engine or generator. For the next phase, the following is a description of
what should be done in order to implement the GUI engine or generator that is based on assets

6 Summary and Outlook

72

technology and realizes dynamic visualization. First, classes of all components in the UI
components domain as described in chapter 3 have to be defined. Second, instances of all
technologies in the UI technologies domain as described in chapter 4 have to be defined.
Third, all instances that relate the UI components domain with the UI technologies domain
have to be defined. Finally, a UI engine or generator has to be designed and implemented
according to the chosen domain models.

A UI engine or generator has to be applied so that end users can use it in order to verify the
suitability of the chosen approach, which includes ease of learning, user acceptance and
maintainability, etc. The performance of a UI engine or generated code must be checked. It is
also necessary to validate the methodology for refining UIs.

Appendix A: Visualization Components Class Diagrams

 I

Appendix A: Visualization Components Class Diagrams

Container

Dialog SplashWindow

Component

ModelLayoutManager View Controller

ToolbarPanel

GridLayout BorderLayoutFlowLayoutBoxLayoutGridbagLayout

...

Window

Frame

...

...

ActiveComponent

Menu Button

...

List Spinner

...
ComboBox ProgressBar Tree LabelTextField Table

Appendix A 1 Component class diagram

Container

Window ToolbarPanel

Component

LayoutManager

...

Appendix A 2 Container class diagram

LayoutManager

GridLayout BorderLayout

Container

FlowLayoutBoxLayoutGridbagLayout

...

Appendix A 3 LayoutManager class diagram

Appendix A: Visualization Components Class Diagrams

II

ComboBox Tree

View

Spinner

...
ProgressBar List TableTextField

Appendix A 4 View class diagram

Button Menu

ActiveComponent

...

Appendix A 5 ActiveComponent class diagram

Appendix B: Visualization Technologies Diagrams

 III

Appendix B: Visualization Technologies Diagrams

ToolkitsAndUILibrariesLayoutDescriptionLanguages Tool-based InterfaceGeneration

UI Technology

Java MFC

AWT Swing

SGMLBased

HTML DHTML

XMLBased

...

...
...

Wizard ToolJavamatic

ServerScripting

... ...

...

Browser
Scripting

UIML XIML

...

SwiXMLXUL eNode UIXBL XAML JAXFront

Appendix B 1 Existing visualization technologies diagram

UILibrariesForProgammingLanguages

C / C++

...
Java Visual Basic

AWT Swing

...

Appendix B 2 UI libraries for programming languages diagram

...
HTML Java, AWT, Swing

Appendix B 3 UI technologies supported by a GUI engine or generator spectral diagram

Appendix B: Visualization Technologies Diagrams

IV

UITechnology

...

LayoutDescriptionLanguages

HTML

...

... UILibraryForProgammingLanguages

Java

AWT Swing

...

...

Appendix B 4 UI technologies supported by a GUI engine or generator class diagram

Appendix C: Glossary

 V

Appendix C: Glossary

Abstraction

A description of something that omits some details that are not relevant
to the purpose of the abstraction. It is the converse of refinement.

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents the
common pattern and provides a means for specifying which variation to
use.

Application

A program that combines all the functions necessary for a user to
accomplish a particular set of tasks

Active
component

Components that a user can manipulate to perform an action, choose an
option, or set a value. Examples include buttons, sliders, list, and
combo boxes.

Available

Able to be interacted with. When a component is unavailable, it is
dimmed and is unable to receive keyboard focus.

Behaviour
 Refers to how applications interact with users.

Checkbox

A control, consisting of a graphic and associated text, which a user
clicks to turn an option on or off. A check mark in the checkbox
graphic indicates that the option is turned on.

Combo box

A component with a drop-down arrow that the user clicks to display a
list of options. Noneditable combo boxes have a list from which the
user can choose one item. Editable combo boxes offer a text field as
well as a list of options. The user can make a choice by typing a value
in the text field or by choosing an item from the list.

Component

A super class, Most components—for example, menus and toolbars—
enable a user to control an application.

Container

A component (such as an applet, window, pane, or internal window)
that holds other components.

DHTML

Dynamic HTML is a combination of technologies to make Web pages
dynamic by interaction of HTML, CSS and XSL style sheets, the
Document Object Model, and scripting.

Dialog

A secondary window displayed by an application to gather information
from users. Examples of dialog component include windows that set
properties of objects, set parameters for commands, and set preferences
for use of the application. Dialog component can also present
information, such as displaying a progress bar. A dialog component can
contain panes, lists, buttons, and other components.

eNode UI
Markup

The eNode UI Markup Language is used to describe sophisticated user
interfaces that may be difficult or impossible to describe using HTML

Appendix C: Glossary

VI

Language

and JavaScript; User interfaces can be reconstructed from markup data
using a process called object realization.

HTML

The HyperText Markup Language (HTML) is an example of a
language defined in SGML. HTML is a language based on a document
composition style known as “markup.” HTML outlines hypertext
structure, is the publishing language of the World Wide Web.

JAXFront

JAXFront generates the graphic user surface on the basis of an XML
Schema. Its business model consists of a standardized model (XML
Schema) as well as a concrete development of it (XML instance). The
XML Schema describes the syntactic requirements to the business
model, while the XML instance represents a concretising of the
described model.

Label Static text that appears in the interface.

Layout manager

Software that assists the designer in determining the size and position
of components within a container. Each container type has a default
layout manager.

List

A set of choices from which a user can choose one or more items.
Items in a list can be text, graphics, or both. List can be used as an
alternative to radio buttons and checkboxes. The choices that users
make last as long as the list is displayed.

Look and feel The appearance and behaviour of a complete set of GUI components.

Menu

A list of choices (menu items) logically grouped and displayed by an
application so that a user need not memorize all available commands or
options.

Menu bar

The horizontal strip at the top of a window that contains the titles of the
application’s drop-down menus.

Menu item

A choice in a menu. Menu items (text or graphics) are typically
commands or other options that a user can select.

Panel A container for organizing the contents of a window, dialog box, or
applet.

Progress bar

An interface element that indicates one or more operations are in
progress and shows the user what proportion of the operations has been
completed.

Properties For user interface objects, characteristics whose values users can view
or change.

Scrollbar

A component that enables a user to control what portion of a document
or list (or similar information) is visible on screen. A scrollbar consists
of a vertical or horizontal channel, a scroll box that moves through the
channel of the scrollbar, and two scroll arrows.

Separator A line graphic that is used to divide components into logical groupings.

SGML SGML (Standard Generalized Markup Language) is a language for

Appendix C: Glossary

 VII

describing markup languages, particularly those used in electronic
document exchange, document management, and document publishing.

Slider

A control that enables the user to set a value in a range—for example,
the RGB values for a colour.

Status bar

An area at the bottom of a primary window. A status bar is used to
display status messages and read-only information about the object that
the window represents.

Submenu

A menu that is displayed when a user chooses an associated menu item
in a higher-level menu.

SwiXML

SwiXML is a small GUI generating engine for Java applications and
applets, graphical User Interfaces are described in XML documents that
are parsed at runtime and rendered into javax.swing objects.

Table A two-dimensional arrangement of data in rows and columns.

Text field

An area that displays a single line of text. In a noneditable text field, a
user can copy, but not change, the text. In an editable text field, a user
can type new text or edit the existing text.

Title bar

The strip at the top of a window that contains its title and window
controls.

Toolbar

A collection of frequently used commands or options. Toolbars
typically contain buttons, but other components (such as text fields and
combo boxes) can be placed in toolbars as well.

UIML

UIML is User Interface Markup Language that allows designers to
describe the user interface in generic terms, and then use a style
description to map the interface to various operating systems and
appliances;

 View A specific visual representation of information in a window or pane.

Window

A user interface element that organizes and contains the information
that users see in an application.

XAML

XAML (Extensible Application Markup Language) is a new scripting
language based on XML produced by Microsoft. The main purpose of
XAML is to bring both Windows and Web programming worlds
together.

XBL XML Binding Language (XBL) is a markup language for describing
bindings that can be attached to elements in other documents.

XHTML

XHTML (eXtensible Hypertext Markup Language) is the combination
of HTML and XML. It has taken the vocabulary of HTML and merged
that with the syntax of XML.

XIML

XIML (Extensible Interface Markup Language) is an XML-based
language that enables a framework for the definition and interrelation
of interaction data items.

Appendix C: Glossary

VIII

XML

Extensible Markup Language (XML) is a simple, very flexible text
format derived from SGML (ISO 8879). Originally designed to meet
the challenges of large-scale electronic publishing, XML is also playing
an increasingly important role in the exchange of a wide variety of data
on the Web and elsewhere.

XUL

XUL (XML User Interface Language) is a markup language that was
created for the Mozilla application and is used to define its user
interface.

Appendix D: References

 IX

Appendix D: References

[1] Joachim W. Schmidt, Hans-Werner Sehring. Conceptual Content Modeling and

Management: the Rationale of an Asset Lanuage Proc. Perspectives of System
Informatics (PSI’03), 9-12 July 2003, Novosibirsk, Akademgorodok, Russia, LNCS,
Springer-Verlag, 2003.

[2] Constantinos Phanouriou. UIML: A Device-Independent User Interface Markup

Language. Dissertation, Virginia Polytechnic Institute and State University, 2000.

[3] Homepage of SwiXML. http://www.swixml.org, 2004.

[4] Homepage of xulplanet. http://www.xulplanet.com/, 2004.

[5] Mozilla, XUL Language Spec, second draft. www.mozilla.org/xpfe/languageSpec.html,

2004.

[6] Stefano Ceri, Piero Tranternail, Aldo Bongio, Marco Brambilla, etc. Designing Data-

Intensive Web Applications. Morgan Kaufmann Publishers, 2003. ISBN: 1-55860-843-5.

[7] Ben Forta. WAP, WML und WMLScript : developer's guide. München, Markt+Technik

Verl., 2001. ISBN: 3-8272-5995-9.

[8] Hans-Werner Sehring. Konzeptorientiertes Content Management: Modell,

Systemarchitektur und Prototypen. PhD thesis, the Software Systems Department of the
Technical University Hamburg-Harburg, Germany, 2003.

[9] Martin Fowler. UML distilled: a brief guide to the standard object modeling language.

Addison-Wesley, 2004. ISBN: 0-321-19368-7.

[10] Ivar Jacobson, Grady Booch, James Rumbaugh. The unified software development

process: UML; the complete guide to the Unified Process from the original designers.
Addison-Wesley, 2003. ISBN: 0-201-57169-2.

[11] Hans-Werner Sehring, Joachim W. Schmidt. Beyond Databases: an Asset Language for

Conceptual Content Management. To be published in the proceedings of Eighth East-
European Conference on Advances in Databases and Information Systems, 2004.

[12] B. Shneiderman. Designing the User Interface. Addison-Wesley, 1998. ISBN: 0-201-

69497-2.

[13] John M. Slatin, Sharron Rush. Maximum accessibility: making your web site more

usable for everyone. Addison-Wesley, 2003. ISBN: 0-201-77422-4.

[14] Sun Microsystems. Java Look and Feel Design Guidelines. Addison-Wesley, 2001.

ISBN: 0201725886.

Appendix D: References

X

[15] David M. Geary, Cay S. Horstmann. Core JavaServer Faces. Sun Microsystems Press,
2004. ISBN 0-13-146305-5.

[16] Miles O'Neal, Tom Stewart. AWT programming for Java. New York, M & T Books,

1997. ISBN: 1-558-51494-5.

[17] Douglas Bell, Mike Parr. Java for students: Java 2 with swing. Prentice Hall, 2002.

ISBN 0-13-032377-2.

[18] Ralf Jesse. Swing: Swing-Komponenten, Layout-Manager, Ereignisse, Threads. Kaarst :

bhv, 2003. ISBN: 3-8287-2055-2.

[19] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-

Wesley, 1999. ISBN 0-201-31009-0.

[20] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design patterns: elements

of reusable object-oriented software. Addison-Wesley, 1994. ISBN: 3-89319-950-0.

[21] Sherman R. Alpert, Kyle Brown, Bobby Woolf. The Design Patterns Smalltalk

Companion (Software Patterns Series). Addison-Wesley, 1998. ISBN: 0201184621.

[22] Aaron Skonnard, Martin Gudgin. Essential XML quick reference: a programmer's

reference to XML, Xpath, XSLT, XML Schema, SOAP, and more. Addison-Wesley, 2003.
ISBN: 0-201-74095-8.

[23] Elizabeth Castro. HTML for the World Wide Web. Peachpit Press, 2003. ISBN: 0-321-

13007-3.

[24] Deborah S. Ray, Eric J. Ray. Mastering HTML and XHTML. SYBEX, 2002. ISBN: 0-

7821-4141-2.

[25] Danny Goodman. Dynamic HTML: the definitive reference. O'Reilly, 2002. ISBN: 0-

596-00316-1.

[26] Neil Bradley. The XML schema companion. Addison-Wesley, 2004. ISBN: 0-321-

13617-9.

[27] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen Williams,

Jonathan E. Shuster Harmonia, Inc. UIML: An Appliance-Independent XML User
Interface Language http://www.harmonia.com/resources/papers/www8_0599/index.htm,
2004.

[28] David Hyatt. XBL - XML Binding Language. http://www.w3.org/TR/xbl/, 2004.

[29] Homepage of XAML. http://www.xaml.net/, 2004.

[30] Angel Puerta, Jacob Eisenstein. XIML: A Universal Language for User Interfaces.

RedWhale Software. http://xml.coverpages.org/, 2004.

Appendix D: References

 XI

[31] Homepage of eNode-powerful XML infrastructure.
http://www.enode.com/x/index.html, 2004.

[32] Homepage of JAXFront. http://www.jaxfront.com, 2004.

[33] Homepage of Open Dynamic Conceptual Content Management. http://www.sts.tu-

harburg.de/~hw.sehring/cocoma/, 2004.

[34] Christian Pesch. CobWeb-Ein Prototyp für ein personalisiertes, intranet-orientiertes

Literaturinformationssystem zur kooperativen Bearbeitung von Bibliographien. Project
report, the Software Systems Department of the Technical University Hamburg-Harburg,
Germany, 1997.

[35] Homepage of Warburg Electronic Library. http://www.welib.de/, 2004.

[36] Homepage of coremedia. CoreMedia Smart Content Solutions.

http://www.coremedia.com/, 2004.

[37] D. R. Olsen. A Programming Language Basis for User Interface Management. In

Human Factors in Computing Systems. Proceedings SIGCHI’89. Austin, TX, 1989.

[38] W. C. Kim, J. D. Foley. DON: User Interface Presentation Design Assistant. In

Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technology. ACM, New York, 1990.

[39] J. Foley, W. Kim, K. Murray, S. Kovacevic. UIDE – An Intelligent User Interface

Design Environment. In Sullivan, J. and S. Tyler (eds.), Intelligent User Interfaces.
Addison-Wesley, Reading, MA, 1991.

[40] P. Szekely, P. Luo, R. Neches. Beyond Interface Builders: Model-Based Interface Tools.

In Human Factors in Computing Systems. Proceedings INTERCHI’93, Amsterdam, the
Netherlands, 1993.

[41] C. Wiecha, W. Bennett, S. Boies, J. Gould, S. Greene. ITS: A Tool for Rapidly

Developing Interactive Applications. In ACM Transactions on Information Systems, 8
(1990).

[42] C. Phanouriou, M. Abrams. Transforming Command-Line Driven Systems to Web

Applications. In Computer Networks and ISDN Systems, 29 (1997).

[43] Homepage of developer. SWT Programming with Eclipse.

http://www.developer.com/java/other/article.php/3330861, 2004.

[44] Jim Cole, Joseph D. Gradecki. Mastering Apache Velocity (Java Open Source Library).

Wiley Computer Publishing, 2003. ISBN: 0471457949.

[45] Wolfgang Dehnhardt. Scriptsprachen für dynamische Webauftritte: JavaScript,

VBScript, ASP, Perl, PHP, XML. Hanser, 2001. ISBN: 3-446-21413-5.

Appendix D: References

XII

[46] John Pollock. JavaScript: a beginner's guide. McGraw-Hill/Osborne, 2004. ISBN: 0-
07-222790-7.

Declaration

 XIII

Declaration

I declare within the meaning of the examination and study regulations of the international
master program course Information and Media Technologies: this project report has been
completed by myself independently without outside help and only defined sources and study
aids were be used. Sections that reflect the thoughts of other works are made known through
the definition of sources.

City Date Signature

