Technische Universitat Hamburg-Haburg

Business Process Automation and

Web Service Choreography
Project Work

Submitted by:
SalLiu
Information and Media Technologies

Matriculation Number: 24060

Supervised by:
Prof. Dr. J. W. Schmidt
STS- TUHH

M.Sc. Miguel GARCIA
STS—-TUHH

Technical University Hamburg Harburg, Germany
2004-06-29

| declare that:
thiswork has been prepared by myself,
all literally or content-related quotations from other sources are clearly pointed out,

and no other sources or aids than the ones that are declared are used.

Hamburg, 29.06.2004

SalLiu

Abstract

The idea of Web Service Choreography is to integrate and coordinate different service
partners in a business process, so that the workflow can be automated. BPEL4AWS
provides an XML-based syntax to describe the execution of business process.

This paper focuses both on the conceptual investigation of Web Service Choreography
and practical implementation of business processes. The technical requirements of
Web Service Choreography and Orchestration are to coordinate, manage and monitor
the flow. Currently a few of products have been developed to fulfill these
requirements. Collaxa BPEL solutions are taken as examples in this paper.

Collaxa Orchestration Server makes it possible to model, execute, and manage
complex business processes. It includes a graphical editor, the Collaxa BPEL
Designer, which enables the business analysts and developers to visually model and
define the processes. The BPEL Designer is integrated in Eclipse platform. Collaxa
Orchestration Server provides an execution environment for the process. It supports
concurrent invocation of multiple Web Services, asynchronous messaging,
dehydration (de-activation) of process instances, as well as run-time error and events
handling. Collaxa Console is a Web tool that enables the developers to view, debug
and manage running processes. Monitoring of a process can be either graphic view or
text audit.

A scenario of a business process is realized based on Amazon Web Service and
Barnes& Noble Web Service. The case study also suggests the implementation phases
of a BPEL project with Collaxa products. A set of Flash demos are developed to
illustrate the usage of the tools, thus making easier to evaluate finer aspects of the tool
support.

Table of Contents

TABLE OF FIGURES. ...tttk ettt ettt eae bt e nnas 3
TABLE OF EXAMPLES ...ttt bttt sttt st s ae et s ae et e e ae et e et e sae e e nas 4
1 INTRODUGCT ION ...ttt et e e se et b s bt sbe b et neesbe s e e e e e nenes 5
11 BACKGROUND ...t ettteenteeereseseseseseseseesesssssssesssesesesessssssssssssssenssensasssnssesssesssesesesesssnssssssssees 5
1.2 OBJIECTIVE OF THE STUDY ..cuvitiiitieeitseeiesseie st sse e sne s sre s s sne e sre st sae s snesssne s snensnnas 6
13 OVERVIEW OF THE REPORTcutututatseuesesssesssesssesesssessssssssessssssssssssnssenssssssssssssssssesesesesssesssnssses 7

2. WEB SERVICE CHOREOGRAPHY / ORCHESTRATIONccciiieeeeeeeeee e 8
2.1 INTRODUCTION TO WEB SERVICE CHOREOGRAPHY / ORCHESTRATIONcovvveuiereeereeeenenenns 8
2.2 TECHNICAL REQUIREMENTS OF WEB SERVICE CHOREOGRAPHYecururererunereneeenenereneserenerenes 9
2225 TR oo 01 i o] o 1P 9

22,20 MBNAGEITIENLcoueeiieuieieeii ettt sttt sttt be bt et s be st e see s b e s be e e e e b e e et et eneebeebenaennes 10

22 T 1Y (o o (o] T T PSSR 10
2.3. CURRENT VENDORS SUPPORTING WEB SERVICE CHOREOGRAPHYcovueuinieiinreiinneeereenenee 10

3. COLLAXA BPEL SOLUTIONS..... .ttt s e e s ne e 12
3.1 COLLAXA BPEL DESIGNERcuctturteteuetearereseresereseresesenssesssssssssssesesssesssnssssessssssssssssnsssssssens 13
3.2 COMPILING AND DEPLOYING ...cuveutireiinreiistesesssiessesessesessssessssessssessesssessessssesssssssesssessessssessssens 14
3.3. COLLAXA BPEL CONSOLEcitiiiiieitrieisieesree e 15
3.4. MAIN FEATURES OF THE COLLAXA BPEL SERVERc.cututurueirueirieieeeinesesesesisesenesenesenesenesnenns 19
3.4.1. Correlate asynChronouS CONVEr SALIONccoeirieirieireeerieesie st sesse s sas s sessesaesens 20

3.4.2. Coordinate MUIti-SteP FIOWS.......ccceiriiiiiireser e 21
BTG T B 1= 01Y 0| = < 1 o TP 21

3.5. FEATURES NOT SUPPORTED BY COLLAXAotiiuiieiirietisesresesseseeie e 22

4. BUSINESS PROCESS MODELING AND DEPLOYMENTooctiiiiiininc e 24
4.1 MODELING A PROCESS IN BPEL DESIGNERuruerereerereseseesesenssessseasesasessssesessssssssssesesenesens 24
411, THE SEIVICE PAINEY S.cueeiieiiieiesieiesie sttt sttt bttt b et bt be st et nbe st staneas 25
4.1.2. The deployment ESCIIPLONoovieeeeeeeeeeee e see e eeas 26
4.1.3. ThemeSSAgE Jala tYPE ..o ettt sae st sne et seeseesaeeeneeneens 27
4.1.4. Theoperationsto iNVOKE the ProCeSS.........ccviiiinrinrers s 28

415, Theglobal Variables...........ccc it e s 28

4.1.6. Assignvariables and iNVOKE SErVICES.ooeieirireeeee e 29
417, COMPArE thE PriCES...c.iiiiiieirieerieere ettt bbbt etan 31
4.2. DEPLOY AND EXECUTE THE PROCESS ON THE BPEL SERVER......ccocvtrertreeenencanneeneceseeeseeenenes 33

5. CONCLUSION. .ttt sttt ettt et e s ae e b e e he e b e s et e sbe e e e saeebesae e beeneenbeeneesaeannenn 36
5.1 SUMMARY .ottt b et h bbb e bRt bt b et r e n e 36
5.2. TROUBLES ENCOUNTERED......c.ctteereeeesesesesssssesssesssssssssssssssssssssssenssessnsssnssssssesssesesmsesssnes 37
5.3. TEACHING WARE FOR COLLAXA PRODUCTS.....c.ctetreresesenesessansessseassessssssssssesssesesssssssssssenns 37
54. FUTURE WORKccutiitiiiiiisieestese sttt 38
REFERENGCESottt bbbt e b ettt ettt b et nne bt e nnen 40

Table of Figures

Figure 1 Emerging Standards of Web Service in 2002 [Greenwood, 2003] 5
Figure 2 Web Service Choreography [McDonald, 2003].........cccceeveeviiieiieeiie e 8
Figure 3 Web Service Orchestration [McDonald, 2003]..........cccoeverieieeneinieenieenienene 9
Figure 4 Collaxa BPEL Solution Schematics [Collaxa, 2004]cccceveeeieeiierieenne 12
Figure 5 Collaxa BPEL DESIGNEN........ccciiiiieiie et e et se e sne e sraeennae e 13
Figure 6 Creating BPEL ProjeCts..........cooieiiiiierie ettt 14
Figure 7 Compiling @ BPEL PrOJECL........coiiiiiiiiiieieeee e e 15
Figure 8 BPEL Console: overview of process inStanCesS.........cccvevveecveeeieeiveesieeeinnens 15
Figure 9 BPEL Console: initiale aNew INSLANCEcccoerrrerieereeesieeie e 16
Figure 10 BPEL Console: three views of an instance..........cccceceeeeieecceecceecceeeeee, 17
Figure 11 BPEL Console: visual view of the flow instance............cccccceevveeiiecneene. 17
Figure 12 BPEL Console: audit trail of the flow instance.............ccocevieieeiicicnenne. 18
Figure 13 BPEL Console: debug the flow instance.........ccccvevveeeiieccee e 19
Figure 14 System Architecture [Collaxa Developer’s Guide, 2003]ccccveevennne. 20
Figure 15 Asynchronous messaging and concurrent activities............cccvveieereenneee 21
Figure 16 Activity dehydration............ccveiiieeiieiie e 22
Figure 17 Overview of AMBZONFIOW.cccviiiuieeiie s 29
Figure 18 INVOKE the SEIVICES.ooiiieeieeiee et e 30
Figure 19 Collaxa BPEL Copy CUSLOMIZESccocveeiiieiiiecee et 31
Figure 20 COMPAIe PriCES SCOPE.cueerrerrereeaieesreeureesreseesseesseessesseesseeseeennesseesneennes 32
Figure 21 getPrice Request & RESPONSE........c.coviriierier e 33
Figure 22 AsinSearch ReqUESt & RESPONSE.......cccueeiuiiiiieiiiie e e srieeitee e sraeesee e 34
Figure 23 Result Of priCe COMPEAIiSONcocviiiiriiriiieiee e e 34
Figure 24 RODODEMO.........couuiiieiee ettt e 38

Table of Examples

Example 1 AmazonSearchServiceRef WSlccoviiiiiiiiire e 25
Example 2 Define processid in bpel Xml.........ccoooviiiiiiiiieee e 26
Example 3 Define WSDL locations in bpel . Xml ... 26
Example 4 Define default input request in bepl.xml ... 26
Example 5 Define datatypesin AmazonFlow.wsdlcccoeevieeiieciie e 27
Example 6 Define messages in AmMazonF oW WScccoeeiiniinieninnc e 28
Example 7 Define operations in AmazonFIow.Wsdlccooiiiinieninnc e 28
Example 8 Declare variables in AmazonFlow.bpelcooveveiieciiiiiieee, 29
Example 9 Parallel execution in AmazonFlow.bpel ..., 30
Example 10 Invoke servicesin AmazonFlow.bpelcocveeeiiieicie e 31
Example 11 Case activity in AmazonFlow.bpel ..o, 32

1. Introduction

1.1. Background

As Web services rapidly emerge to be the most effective approach of integrating customer,
vendor, and partner applications in a platform- and language-independent manner, more
and more companies begin to develop and publish their individual Web services. This
brings new challenges to integration of enterprise applications, both internally and
externally. These web services must be connected and the collection of Web services
should be specified to implement more complex functionalities, typically a workflow or
business process.

Business collaborations require long-running interactions driven by an explicit process
model. However, existing approaches to business process modeling are not designed to
interact with components crossing organizational boundaries. Failing to satisfy the
requirements of collaboration between those individual applications may lose the
significance of Web services. Therefore, the current trend is to express the logic of a
composite Web service using a business process modeling language.

Accordingly, the main technology companies start to converge the existing business
process languages to a new standard. Early works include Web Services Conversation
Language (WSCL), IBM Web Services Flow Language (WSFL) and Microsoft’s
XLANG and so on. WSCL allows defining the abstract interfaces of Web services,
focused on modeling the sequencing of interaction between Web services. WSFL was an
IBM protocol specifying two types of Web services composition 1) an executable
business process known as a flowModel, and 2) a business collaboration known as a
globaModel [Virdell, 2003]. The flow model represents the series of activities in the
process, while the global model binds each activity to a specific web service instance.

IBM Microsoft

Workflow |
Publishing & P | Emerging
gis:;vIZ?y | UDDUDISGG J Layers
Description WSDL*

SOAP SOAP Core
Message

i XML Layers

TCP/IP, HTTP,etc Transport TCP/IP, HTTP,etc

Figure 1 Emerging Sandards of Web Service in 2002 [Greenwood, 2003]
Microsoft's XLANG was the Business modeling language for BizTalk, which is a

component of .NET that enables EAlI. XLANG focused on the creation of business
processes and the interactions between web service providers. The specification provided
support for sequential, parallel, and conditional process control flow. O gives a layered
view of Web service standards supported by IBM and Microsoft.

In May 2003, Microsoft, IBM, Siebel Systems, BEA, and SAP authored the 1.1 release of
the specification of Business Process Execution Language for Web Services (BPEL4AWS).
BPEL4WS is the cooperative merging of WSFL and XLANG, for Web services
choreography, workflow, and composition. It provides an XML-based syntax to describe
the control logic, how the coordinate Web services participate in a business process.
BPEL4WS is essentialy a layer on top of WSDL, with WSDL defining the specific
operations alowed and BPEL4WS defining how the operations can be sequenced [Peltz,
2003].

BPEL4WS supports both executable and abstract business processes. An executable
process models the behaviour of participants in a specific business interaction. Abstract
processes, also named as business protocols in BPEL4AWS, specify the public message
exchanges between parties, without exposing the internal details of a process flow.

BPEL itself is defined as a Web service, whose interface is described by aWSDL, so that
recursive composition with other Web services is supported. The specification provides
execution of sequential, parallel, and conditional process control flow. It aso includes a
robust exception handling facility, with support for long-running transactions through
compensation. In April 2003, BPEL was submitted to OASIS to obtain a broader industry
acceptance and open standardization

1.2. Objective of the study

The aim of this report is to investigate the idea of Web Service Choreography and
Orchestration. A set of emerging technologies, including BPEL4WS (Business Process
Executable Language for Web Service), Web Service Choreography and Orchestration will
be studied thoroughly in this report. To help understanding the theory, concrete design and
execution of BPEL using BPEL editor and engine should be performed, especidly the
Collaxa products. The Collaxa BPEL Designer provides a visual editor to design and
modify business processes from a developer’s point of view. The Collaxa BPEL Server
provides a scalable and reliable run-time environment for deploying, executing and
managing BPEL processes. Demos using Collaxa BPEL Console to deploy a business
process will be taken as an example for illustrating the result of the investigation.

According to the three main requirements of Web Service Choreography, the objectives
of this study can be summarized as follows:

Coordination: using open standards (JavalJ2EE, IMS, XML, SOAP, WSDL) to
build loosely coupled services and to support non-linear asynchronous
Interactions.

Management: to coordinate, store and manage the state of each conversation
while using asynchronous messaging; to handle business level exception and to
manage non-linear transaction, cancellation and compensation.

Monitoring: to provide business visibility on the state of the conversations and
to trace the execution of the business process; also to supply detailed reports
relating to the process execution.

1.3. Overview of the report

The report is organized into the following chapters.

Chapter 2 starts with the introduction of Web Service Choreography and Orchestration.
Three technical requirements are discussed in detail. The current vendors supporting Web
Service Choreography are briefly introduced.

Chapter 3 provides detailed investigation of the Collaxa BPEL Designer and Server. The
main features of the BPEL Server are discussed in detail, along with some business
scenarios. Throughout the study, the absence of some capabilities to support BPEL
should also be discovered.

The case study is illustrated in Chapter 4 by going through a concrete deployment of a
business process. The case study should better explain and support the analysis and
statements in Chapter 3. Some screenshots and code snippets help to demonstrate the
whole procedure when applying the BPEL Designer and Server.

Finally a conclusion is driven in Chapter 5, summarizing the strength of the BPEL Server,
lessons learned from the study, future prospect of Web Service Choreography, etc.

2. Web Service Choreography / Orchestration

2.1. Introduction to Web Service Choreography / Orchestration

“Web services choreography, orchestration, and general business process management
are the programming equivalents of ballroom dancing” [Rhody, 2003]. As these terms
like Choreography and Orchestration occur more and more often in Web services
technical articles, their origina meanings are amost ignored. But actualy they are
visualized analogy to the execution of business processes. Since Web service itself is
making multiple applications work together, choreography defines the behaviors, the
timing and ordering of each individual “dancer “ — each single Web service. While a
group of dancers perform in a coordinated manner, the choreographed performance
depends on their physical interactions. Variations or errors brought by each individual
may cause changes to the others. Thus, choreography is associated when tracking the
sequences and public messages exchange among multiple parties.

In general, Web Service Choreography focuses more on the external view, as illustrated
in 0 The external flow describes the information exchange among multiple participants,
including suppliers, customers and partners.

Internal External Internal

b=
d __ o< |
. 7 ; o @ ¥ig ’*
] / e
'\.‘ Y | / \\‘

[:f F - O "? /f:}—i i 9
® @ ' =
Sove ©& DSse

Figure 2 Web Service Choreography [McDonald, 2003]

While Web Service Orchestration describes how web services can interact with each
other at the message level, including the business logic and execution order of the
interactions. This concentrates more on an internal view, tracking the interactions with
certain timing and order, which result in a long-lived, transactional, multi-step process
model. It is like a musical director imposes order and timing individually on a set of
musicians in order to coordinate their performance in a concert.

It is said that Orchestration is more static, rule-based automation of workflow and
Choreography is more dynamic and people-based. But the distinctions between them are
actually blurring and the two viewpoints are converging. Merging the two viewpoints
means that the ability of workflow software to flexibly handle varied and unexpected

circumstances becomes very important [Virdell, 2003].

As has been point out in 0, Orchestration lays on top of the WSDL layer and the SOAP
messages. This gives a reasonable answer to the next question: Why do we need Web
Service Choreography and Orchestration?

Orchestration

SOAP messaging

WSDL Interfaces

Components

Figure 3 Web Service Orchestration [McDonald, 2003]

Enterprise applications are modelled in components with their public interfaces exposed.
WSDL describes these interfaces through standardized XML semantics and defines
protocols and messaging end points of Web services. SOAP makes the platform- and
language-independent XML format messaging possible. Above all these layers, the
automated business processes are realized by Web Service Orchestration and
Choreography.

2.2. Technical requirements of Web Service Choreography

There are many important technical requirements that must be addressed when designing
business processes involving long-lived multiple web services. Knowing of these
requirements will help in positioning the various standards that have been introduced for
Web Services Choreography.

2.2.1. Coordination

As the main objective of Web Service Choreography is to manage composition and
collaboration between web services, variability during the process becomes a challenge.
For instance, new components are integrated into the application, business level
exceptions and timeouts, conditional branching and parallel execution, etc. These
requirements demand great flexibility and reliability. Invoking services asynchronously
allows achieving the non-linear interactions between services. With asynchronous
support, a business process can invoke web services concurrently rather than sequentially
in order to enhance performance. For example, in aticket booking system, the customers
may want to interact with multiple supplier web services at the same time, looking for the
one who can offer the lowest price, earliest shipment date and best service. Asynchronous
messaging can be achieved through web services by applying various correlation
techniques.

2.2.2. Management

Web Service Choreography composes both local, tightly coupled components and remote,
loosely coupled components. These components may be invoked synchronously or
asynchronously. To realize sophisticated management of choreography, the following
aspects should be considered:

The logic embedded in a process-centric application includes various building blocks,
interfaces, and protocol behaviors. Efficient design and deployment guarantee a
successful execution later, but still the version control should be supported in order to
trace the steps and roll back in case necessary.

Long-running processes should consider not only exceptions, but also timeout and
transaction integrity. The system must react in a proper way if it does not get a
response after some time. Also it has to be taken into account, how the transactional
integrity is managed. Here the traditiona ACID rules may not satisfy the
requirements, since the transaction is talked for distributed applications.
Compensation is performed in case of cancellation.

Components may need to be upgraded gracefully, without interfering with their
execution and human intervention may be needed for handling exceptions, timeouts,
and altering the application’s functional execution. This requires the system to be
scalable and adaptable.

2.2.3. Monitoring

The life cycle of the process-centric applications need be monitored, from specification
through maintenance. Different audience may require visibility at their respective level of
involvement and comprehension of the process functionality. For example, business
analysts want to visualize a high-level view of the business process functionality.
Developers need to trace the execution of the business process to debug during
developing phase. Quality managers may need the detailed auditing of the process and
business owners require viewing reports relating to the process execution to derive
business intelligence and achieve ongoing process optimization.

2.3. Current Vendors Supporting Web Service Choreography

To investigate Web Service Choreography, a glance should be taken to the current
vendors and products. The following is an overview of the BPEL editors and servers
supporting Web Service Choreography and Orchestration. Information about these tools
was collected from their white papers and some technical articles.

Collaxa: provides Collaxa BPEL designer for creating and editing BPEL, Collaxa
Orchestration Server for business process execution and Console for monitoring and
management.

IBM: offers BPEL4J editor and engine. The editor, as same as Collaxa Designer, isa
visual tool for designing BPEL. The runtime engine can be deployed on both Tomcat
4.0.1+ and WebSpehere 4.x and 5.x. BPEL4J also includes a web-based interface for
viewing deployment of processes.

-10-

Microsoft: BizTalk Server 2004 contains a superset of BPEL4WS capahilities,
including nested processes, long-running transactions, correlations and mapping
between messages. It orchestrates business processes and seamlessly integrated with
MS Office 2003 and Visio. The graphic process design from a business perspective is
fulfilled by Visio, then it is exported to Visual Studio .Net and the orchestration is
built on BizTalk Server. Finally MS Excel is used to monitor data of running process.

OpenStorm and Sonic also announced for their abilities to support Web Service
Orchestration and Composition in their products.

In this paper, Collaxa products are taken as an example and will be further inspected in
Chapter 3.

-11-

3. Collaxa BPEL Solutions

Collaxa provides a standard-based software infrastructure to design, deploy and execute
collaborative business processes.

The Collaxa Designer is a visual editor of a BPEL project, which provides a simple user
interface for creating and modifying BPEL files. The process developer can drag and
drop BPEL activities to a “process map” and edit the attributes of each element using the
corresponding wizard. By building the BPEL project, the process flow is compiled and
then can be deployed on the Collaxa Orchestration Server.

The Orchestration Server provides the underlying infrastructure, handling asynchronous
messaging, business transactions and processes coordination. According to the
XML-based standards, the WSDL binding framework connects the existing messaging
infrastructures so that it enables the interoperability between systems. The BPEL Server
also supplies user task definition, which is mainly associated with portal systems. To
support asynchronous conversation, the flow can be dehydrated. This means the current
state is persisted in a database (to free resources), from where it can be later brought back
to main memory to continue processing.

| Eclipse, JDevaloper

DESIGH

BPEL semer

WiDL Binding Built-in Integration Services

Weh Service

Core BPEL Engine -
BPEL Corsale

JZEE Application Server
(Webl ogic, Oracle A%, JBoss, WebSphere)

Figure 4 Collaxa BPEL Solution Schematics [Collaxa, 2004]

The BPEL Console is a management tool binding with the server. Runtime execution of a
process can be monitored in the console. There are three views available in the console:

-12-

visual flow, audit instance and debug instance. Developers can trace the process
execution by looking at each activity in the visua flow, view a more detailed textua
representation of audit trail and debug the variables of the dehydrated instances.

Figure 4 gives architecture of the Collaxa products. In the following sections, a more
detailed explanation of applying Collaxa Designer and Server is given.

3.1. Collaxa BPEL Designer

Collaxa Designer is a BPEL editor. Its current version (2.0) is integrated in Eclipse
3.0M7, with its own perspective window, as shown in Figure 5.

(52 BREL - Loanflow.bpel - Sollaxa BEEL Besigner

B R Mavgee Sech Broject Bun BPEL Mindow Help
o | 2| R | SR oA
. Mavigatar T2 - % B &~ 208 Fowlbpal £

o CrediFion |
£ 1ok LoanFiow

Qerden | Pocsshen |

[Lnbed canzer.. (starloanTarsi

M ant ¥orm =0

BPEL Desigrer |BPEL Source

2 Froblems 13| Conzole X oroon
Frablems [0 Rems)
Descripton Rescuroe I Foder Location

Event: BrovserREadyEv et undefned

Figure 5 Collaxa BPEL Designer

The BPEL Designer includes a New Project wizard that automatically generates the
skeleton of a BPEL project: a BPEL source, containing the minimum activities and
definitions; a WSDL file defining the client interface for this process, a BPEL
deployment descriptor, which defines the locations of the WSDL files for services called
by this flow, along with other project-specific parameters; an Ant script for compiling
and deploying the BPEL process. At the left side there is a small window for project
navigation (Figure 6.a), listing the above mentioned files of each project.

By opening the BPEL file, an overview of the BPEL is displayed in the main window in
the middle, with its client interface on the left side, global variable list in the middle and
partnerLinks on the right. Something worth to be mentioned is, for each partnerLink, all
the services provided by the partner are automatically loaded, through the specified
WSDL of the partner.

The process map tab in the middle window gives the possibility to visualize the flow
representation of a BPEL, as illustrated in Figure 5. To create a more complex BPEL,

-13-

Collaxa Designer provides the drags and drops from the BPEL Palette (Figure 6.b) on the
right side of the main window, to compose sequences, flows, scopes and assignments.
Additionally, using the activity User Task, a Task Service can be initialized, which is a
generic service bundled with Collaxa BPEL Server and accessible via a standard Web
Service interface. In thisway, manual tasks can be integrated into a BPEL process just as
any other Web services. It is also possible to embed java code in the process using Java
<exec> activity, which utilizes the BPEL extension capabilities.

=% BPEL - LoanFlow.bpel - Col| BFEL Palette BREEREPEERan
: : : 3 assign <process: v
Hle Edit Navigate Search Er-::]mD g - =
8 invoke name LoanFlow .1
s, o [v [
i 1 an < || [>4 reply targetames... pyn:eamples.cx ¥
5. Navigator 23 . ooy gl | 0 o8 receive quenyianguAne]
N expressionla... w
128 CreditFlow More Activities w ;
! 5 |, Flo suppressloin... yes w
?_' Sl 'th @D wait enablelnstan... v
L= .proje & terminate abstractProcess ~
= bpelxml ?
Y ?Ej build.xml & throw - Partner Links
s LoanFlow.bpel H compensate ienk b
[LoanFlow.wsdl r% iy creditRatingService ¥
= SyncHelbWorId UnitedLoanService w
= TEISF{SEIITIDLE! [ccone StarLoanService e
{21 TerraFlow ” i = XML Variables
@ switch iFigit =
@ while crinput v
@ pick cridutput v
._—_[:; flow crError “
] loanaApplication w
O sequence
loanOfferl v
i loanOffer2 v
L2 Java Embedding selectedLoanOffer v
& User Task - Exception Management
a. Project Navigator b. BPEL Palette c. BPEL Inspector

Figure 6 Creating BPEL Projects

The inspector pane on the right (Figure 6.c) allows user to initialize and edit attributes of
selected activity. For example, to add a new assign activity, drag an “assign” from the
palette and drop it to the proper position on the process map, then name it in the inspector.
A “copy rule” should be created in the inspector by filling the specific variables, parts
and XPATH Query in “from” and “to” elements respectively.

3.2. Compiling and deploying

The Collaxa BPEL server provides a runtime environment for deploying, running and
managing BPEL processes. After creating the process model in BPEL Designer, the flow
can be compiled in a command prompt using the command “cxant”. This will set some
environment variables and then invoke the Apache Ant utilities. “cxant” initiates the
compiler “bpelc” to create an execution map for the process. “bpelc” utility generates a
BPEL archive, ajar file that contains all the classes needed to create and run instances of

-14-

the process, so that it can be executed by the Collaxa Server, passivated when it is
necessary and correlated with its asynchronous service invocations. Figure 7 shows an
example of using “bpelc” compiler in windows system. The "-deploy" option specifies
that the process should be automatically deployed to the BPEL Server so that it is
available for testing and invocation. The "-rev" option specifies a revision number that is
used for BPEL Process versioning.
C:\collaxa\samples\interop\microsoft\TerraFlow>bpelc -deploy default -rev 1.0

Collaxa BPEL Process Processor Uersion 2.0

http: //wwW.collaxa.com/developer.support.html

Copyright (c) 2002 - Ceollaxa Inc (Patent Pending)

(type bpelc -help for help)

bpelc> validating "C:\collaxa\samples\interop\microsoft\TerraFlow\TerraFlow.bpel

bpelc> BPEL suitcase deployed to: C:\collaxa\domains\defaulti\deploy

bpelc completed successfully.

Figure 7 Compiling a BPEL project

To build the project, the deployment descriptor bpel.xml file is required. It specifies
where to find the WSDL files for services that are called by the BPEL Process and other
run-time configuration parameters. The deployment of BPEL is not described by its
specification and therefore vendor specific. To port a process running on one engine to
another engine, the deployment information should be modified accordingly.

3.3. CollaxaBPEL Console

A Collaxa BPEL Console »2.0 - Microsoft Internet Explorar

Be Edt Yew Fpvortes Took Help "
&1 hitop:/ocahost 197 0/ BPEL Consolef ndex. jsp + G0 &
[Dashbosrd | BFEL Frocesses | dnstances | Actiwities |
Ciepioyed BPEL Procesoes In-Might BAE Proces= Instmnces 1 - X
Cradith.ali ngg ervice 5 : Imstance #5 of TaskManager TaskManagar [w. L0 2004-05+08 1336532, 155
LannFlaw | 2004.00.08 0434
2, cliant (updaraTask
Exsrl omn X n
i, cleanit (cormplebaTack
TakManager
11 Instance £1 of LoanFlow LoanFliow { «. 1.8 040800 18,08, 51, 4
L | S
i StarLeanSendos [onA sl
3 : Inslance #3 of StarLoan Starloan | v. 1.0 0040503 13:36:51.044
" approvalManager (onTaskResul
Recantly Sompisted SFEL Frocsss Instances [More..]
o & | Instmnce =4 of UnitedLoan UnitedLoan { ul E-0 130050 0L
Diagloy Meew Procass of 21 Instance £3 of CreddfiatingService | CrodRRacingServiee (v 1.0 2004-05-08 13:36:51, 793
Logoed to domain: defausit Coflana APEL Consoke w2.0 ro
£] &l Loc Intranet

Figure 8 BPEL Console: overview of process instances

-15-

Collaxa provides the possibility to monitor and manage BPEL execution in a BPEL
Console, a web-based user interface. After deployment, start the server and login to the
start page under URL http://localhost:9700/BPEL Console.

An overview of the console is all around the deployed processes, listing on the left side.
On the right side are instances of these processes, with those who are till pending on
above and the completed instances at bottom (See Figure 8).

By clicking the name of a process, we can come to the site for initiating a new instance
(See Figure 9). Here is the start point of execution of this BPEL. Data needed for
initiation can be either filled inaHTML form or specified in XML source. Once the data
is submitted, namely a message is sent to the BPEL’s Web service, the client invokes the
BPEL and the flow start to run.

! Collaxa BPEL Console #2.0 - Microsoft Internet Explorer

B Edt Jew Foworbes Took Help &
=i) bt iecainost ST 0VEPEL Consols depiny Frooess. o7 processlil =L oanFisdrey BonTag =1.0 = ElGo -l i
m OPEL Console Marags EFEL ODoman | Legowt | Suppart

Doshdcard | BPEL Precesses | lestsnces | Bclivites]

Loanfzw 10 Achive
EE=T TRTTE e TR TRl S T

Testing his BFEL Proosss

3 About this BPEL Process -

2 This demo showcases the integration of synchrongus and asychrongus services into #n eng-to-and business procass. This
loan processing application can also be indtiated trom a cuabom web infedace. Mease refer to the BPEL developer's guide

far mare informatien on haw to run through this demo.

Initiating a test instance ML fem @
To cresbe & new 'test’ instance of this BPCL Process, fill Eals form and click on the "Post XML Message' sutton.

WaOL | Initacs | W

loandpplication gy 2494
amail dama?iicollaxa com

ety

customerMzame Test

aanfmount 10000

o

carModal BMW
carfear 2
creditRating

O Peform stress besk

[Fost ¥hMsssege] &
Loongad bo doman: delfalt Colasxa 308 Corcobke wE.0 rch

Fl w4 Local infraret

Figure 9 BPEL Console: initiate a new instance

To monitor the execution of a process, Collaxa Console provides three kinds of
representation: the visual flow, a graphic view of the process activities; the audit trail, the
text audit of the instance; and the debugger for inspecting current state of an instance
when waiting for an asynchronous call back (Figure 10).

Selecting the Visual Flow link, we can see a graphic representation of the current state of
the flow (Figure 11). The graphic model is the same as designed in Collaxa Designer. It is
to some sense similar to the activity diagram in UML, with arrows connecting each
activity represented by a node. To be noticed here is that, only the BPEL specific and the
Collaxa specific activities are used to construct the model.

-16 -

: Eollaxa BPEL Console »2.0 - Microsoft intermet Explorer = l_ -‘K

. pe Edt Wew ravodes ook Hep *
| Mwm@hm}m:grm;ﬂwmjm = B0 ks
m BPEL Cormole Manape BPEL Coman | Logest | Suppart

-

BEL Pracess

BarmhiaThesd

Tuxt Instarcm Inrtsted

. Instance 'ef32d81d309d3 1fe:1b4a74b:fc64454a40:-7Hc' |5 being processed asynchronously.

For mare information:

N - .

Misual Flow ~ Audit Instance Debug [nstance

Click hers ta initiate anather test instance,

reerreim e e b

e

Figure 10 BPEL Console: three views of an instance
= O

Web Pape Malog ')(

X Activity Audit Trail -

il upedloanSersice [onResult) e

Ii'.;a.uiin;] Far '-:nil.nulz‘ from
“UnitedloanSendee”. Asyndronous calback. I

Hmenred ‘unkm-ul:" ;:ﬂlhﬂ:lﬂ from partre=r

izupl reprepsmstian of the hehorg of this BFEL business fiow it P

=lpanifferd=
F F-: <P N e Dol ool
=|oanCHwr
| SHgh mminas” bt Swwnssiolcan ceminemtelean’s
Amign spradamEsUnBed L« et riena s
| stk faise e e qieds

1 ol B T Tl B
| «AFR 5. Fef UPR.Z
T = flcan Offwr>

. z'par=
| | <MaenGiferis

SharLomnSanyios UpitadLoanger,
(inmiate)

Em 26 entries rendered, %) Local inganer

Figure 11 BPEL Console: visual view of the flow instance
By clicking each activity node, a popup window is opened, showing the message

-17 -

exchange in this activity. Figure 11 gives an example of the value of an asynchronous
callback. The <receive> activity of StarLoanService is marked as yellow, indicating that
the flow is dehydrated because no response got from StarL oan service provider yet. The
process will wait until it gets the return value or timeout.

Clicking the “Audit” tab along the left hand side of the window, a text audit is available
to be inspected, with message exchanges occurred in each activity (Figure 12). The audit
trail is also organized in a XML-like hierarchy, with sub-activities under their
super-activities. In this example, the dehydrated activity is marked as pending. The link
“more” or “less” shows or hides the detailed information of the XML variables.

3 Collaxa BPEL Console v2.0 - Microsoft Internet Explorer

Bie Ede Yew Fgvortss Took Hep o
ldress | i8] hitpodfiocathost: 5700/BPELCDresck/dsplyinstance_ jspfreferenceid == 32dE 1d30903 1fe: 1baa7 4b: fo544 54a40 - 7Hsar # B @ e
m BPEL Console Mamsgs BFEL Doman | Logout | Sippart
Cashboard | BPEL Processes | Instences | Aouvities |
Instances #6 of LoanFlos 2N04-05-08 131544095
bl ool oo 'l P K L Pl el S opanunning
LaRnFisw fye 405 el
Zusdt tral of thes BPEL stanoe | Viss Bmw ¥M [8= wf 5804 2102 PH] Retresh
- -
E
§ % Assign
= Updated vanable Toandpphoation” |
¢
den 2l s
et
& 10000
g B
= #
2B
H
&
.
i @ StarLoanService (initiate)
Irveakad 1-way aparagon “mitEts on partner " RarleanServes .
§ 4 StarLoanService (onResult) - pending
ks ‘Waitmg for “onRasult” fram “Sarloansarace . Apmctwonaus calback
4@ UnitedLoanService (initiate)
Irvegkad 1-way oparagan “mitigts” on partner “UnitedupanServics”.
@ UnitedLoanService ([onResult)
‘Waiting for “onRasult” from “UnitedLoanseracs . Asmchronaus e,
Racaivad "onRasult” callback from partner “UntadLoanSarvice
w
Lasgged to domain: defoult Cidlaxa BPEL Consale 2.0 roh
] Done. 25 enfries rendered. &y Local infranet
b

Figure 12 BPEL Console: audit trail of the flow instance

Another representation of the flow is shown in the debugger, opened from the tab
“Debug” on the left side. It is similar to a program IDE’s debug perspective. The
asynchronous <receive> activity is highlighted like a breakpoint in a program. By
clicking the link of each variable, a popup window shows its current value (Figure 13).

This is convenient for the developer to view the BPEL source and check the XML
variables’ state if the flow is pending or exceptions occur. But it is not a rea sense
debugger, since no break points can be set manually. That isto say, if some invalid value

-18-

is returned from the service provider or some uncaught exceptions, but still accepted by
the flow, it won’t be possible to stop the process and debug it step by step. This might be
anew feature enabled in the future version of Collaxa Console.

E b ~ .-.=. f'.-l 15 2D
i R ST I 4
- varisbla: lnsaApphcation Qo by chpeand §
Acdress | @] hiipa ocalhost 97 00EPELCorsoleidepleyInssance. spirelene noeld=o3 281 d305d3 1fe T T
= loapApplication xalns =
BPEL G "hettperarw. avtoloan. com'ns/autolean”
| Pashbsars | ePELE | rnst | Actoia | Pl
234
Instance =6 of LoarFlw ; J
ol /L Flamed VS el
. A SRl
demo2i@eollaxa.com
Actwity: | flom R erloanSernce [onfmeil] ¥ L
5 i
3 ¥ costomeriam
B e e e e s e s e Test
> 178 A TR kL
& 101001 u
ZAAqUAL A —_—
[Close wntch Window
-
-
i P LA i prie
® pocclipe= 1 L
o - i
g
3
& <rEo=ive name=TIeoe avokelnicedloan® gpeIatior="crie=ult" partnerlink="Toicsdloanfervice®
poECIype=ta, Ange eCallbaok® warishle=s [fexl® 3
;E v e
=N eEN
E + +
g é Ll B B
‘aziak = =R < " = Ll " ocEe £
SN ST g
wrEosive pame=* opEEa = par ErLink
pareTypamnaary =e® wiziaklesmd LaanCd: i
o e N
| Logged ko damain: default Collaxa APEL Coreale w20 rof
] Resizing Wew [11 of 3 % Local intraret

Figure 13 BPEL Console: debug the flow instance

Collaxa Console also gives other possibilities to manage the flows, instances and
activities. All processes, instances and activities have their corresponding states. A
process’s state can be on or off, indicating its lifecycle is active or retired. New instances
can only be initiated from active processes. There are four states for each instance:
running, completed, cancelled or stale. Instances can be searched by their states, time of
creation, process to which it belongs, or some other attributes. To improve the server’s
performance, closed instances can also be exported to an external datastore. To clean the
testing/development environment, it is also possible to delete al instances on the server
by clicking a single purge button.

3.4. Main Features of the Collaxa BPEL Server

Figure 14 shows the system architecture of the Collaxa BPEL Server. The server is the
heart of the solution. It executes BPEL processes and correlates and coordinates
asynchronous interactions into collaborative and transactional business flows. The

-19-

dehydration module passivates BPEL instances in a database while waiting for callbacks
from remote partnerLinks and other asynchronous or long-running activities. The WS-T
module coordinates compensating business transactions across loosely-coupled services.
The version control module offers side-by-side versioning of the BPEL processes. It
helps to simultaneously test and compare multiple versions of the flows. The delivery
service manages the delivery of SOAP, IMS and email messages to remote destinations.
It includes hooks for authentication, encryption and non-repudiation [Collaxa
Developer’s Guide, 2003].

| BPEL Activity Set ++

Core BPEL Orchestration Server

Deliver

Version Load
(D ELEE Service
. Control || Balancer (WS-RM)

J2EE

Figure 14 System Architecture [Collaxa Developer s Guide, 2003]

After looking at the system architecture, the following sections will focus on some main
features supplied by the server. These are also the basic characteristics required for
running Web Service Orchestration and Choreography.

3.4.1. Correlate asynchronous conversation

Task of Web Service Choreography is to assemble and coordinate published service.
Since each of the services has its own presentation logic, internal business logic and
sophisticated interfaces, the execution of each service may certainly take some time.
Frequently, some particular transactions may need manual approval, which depends on
the working time of the employees; or according to the server’s performances, not all
requests can be processed at once so that some will have to be put in awaiting list, and so
on. For the long-running execution of processes in a loosely-coupled environment,
asynchronous messaging must be supported by the server.

Whether a particular Web service is synchronous or asynchronous is decided by the
service provider. For asynchronous services, the BPEL Server provides a listener for the
callbacks, in order to take care of correlating the initiation of the service with the result
being returned. In the BPEL standard, the <invoke> activity can directly cal a
synchronous service, while for an asynchronous service, two steps should be taken: one
to <invoke> the service and a second to <receive> its result. The <invoke> call returns
immediately. The second call to receive the result can be made later. Figure 15 gives an
example of two parallel asynchronous invocations of two services.

-20-

In the case of such asynchronous communication, the BPEL Server will supply additional
information to the provider to facilitate a response from the provider. The protocol used
is that specified by the emerging standards supporting Web Services, such as
WS-Transaction, WS-Coordination, WS-Addressing, IMS and JCA.

o

Ea‘;r

o

initiate initiate
{(UnitedLoanSer... (StarLoanServi...

onResult onResult
{UnitedLoanSer... (StarLoanServi...

Figure 15 Asynchronous messaging and concurrent activities
3.4.2. Coordinate multi-step flows

The client couldn’t be satisfied, if each service in the process could only be invoked one
by one in sequence. For instance, the customer who is applying for a Loan may want to
try with more providers and compare their rating. This requires branching and join
pattern in the process.

Branching in BPEL is realized by nesting the parallel <sequence> activities in a <flow>.
As shown in Figure 15, the requests are submitted to the two loan providers,
UnitedLoanService and StarL oanService simultaneously. Afterwards, when both of them
receive the return value from the service providers, or any or both of them run in timeout,
the parallel branches are joined again. Here the comparison of results from two services
are made by the <switch> <case> activities.

3.4.3. Dehydrate flow

Astalked in section 3.4.1, the flow can not go on to the next step whileit iswaiting for
the asynchronous callback. Thus, it must be avoid that arbitrary code is executed in the
interim. The process must be blocked for awhile until receipt of the return value. Thisis
achieved by the feature of dehydration.

While the execution of a BPEL instance iswaiting for the return value, the Collaxa BPEL
Server will dehydrated the flow, so to say passivate it in a database, so that no resources
or threads are being held by the waiting flow. In this way, the execution is completely

-21-

reliable. The server can be restated or even reboot of the machine will not affect the
correct execution of the flow.

After receiving the callback message, the state of the flow is recovered, the process again
released and ready to execute the rest part.

=l GetLoanOffer

Assign

P

StarLoanService UnitedLoanSer...
(initiate) {initiate)

StarLoanService UnitedLoanSer...
{onResult) (onResult)

|
Figure 16 Activity dehydration

3.5. Features not supported by Collaxa

As currently there are many approaches to model BPEL, at least the one using Unified
Modelling Language (UML) activity diagram and the one used in Collaxa BPEL
Designer [Yuan, 2004]. Since Collaxa has its own modelling notations, it loses the
capability to adapt the design phase of a process with existing design of programs using
UML. ldeally for the developers if they could construct business processes using
software based on the know-how they had, without learning new notations and extra rules.
Sonic Orchestration Server, for example, provides this kind of features, so that the UML
activity diagram edited in Rational Rose can be directly imported to a business process
definition.

Besides, the validation of a process is performed on deployment. Although there might be
errors when validating, the process is loaded on the server and could be executed. Thisis
actually an error prone feature. It should be originally a task of the Designer to validate
and refine the process, and the server is only responsible for run-time exceptions.

Security is also a concern for web services orchestration and web servicesin general. It is
an important issue because we are now exposing interfaces on a somewhat less-secure

-22-

protocol. There are a number of standards being discussed for web services security
including Digital Signatures, Encryption and WS-Security. These standards hope to fill
specific web services security requirements for the authentication and authorization of
users, and for securing the XML message itself. However, the Collaxa products presented
in this paper neither claim to offer direct support for security, nor provide any
mechanisms through third party software. For example, how do the roles defined for each
partner relate the existing authentication and authorization? When should the request and
response messages be encrypted and decrypted? At this point, the vendor should consider
amore secure solution in the next release.

-23-

4. Business Process M odeling and Deployment

4.1. Modeling aprocessin BPEL Designer

A case study will be introduced in this chapter to illustrate the concept of Web Service
Choreography. As we are not going to develop real world business transactions and there
are not many free services offered, the following business process is taken as an example
of running BPEL using Collaxa software.

Assume there is a business process handling books. The customer may want to query
book information and compare the prices from two different service providers. The
complete book information is taken from Amazon Web Service (AWS)*, whereas the BN
Quote Service (BNQS)? also provides prices of books. Comparison of prices is redized
using XPath query in the BPEL flow.

We name the project as AmazonFlow. In Collaxa BPEL Designer, a project consists of at
least 5 files [Collaxa Tutorial, 2003]:

The BPEL source for the process. The New Project wizard creates
an empty flow, with just the minimum activities and definitions for
the selected flow type. For a synchronous BPEL process, the only
activities will be a <receive> to initiate the flow from a
synchronous client request and a <r epl y> to return.

AmazonFlow.bpel

The WSDL (client) interface for this process. Defines the input and
output messages for this flow, the client interface and operations
supported, and the BPEL partnerLinkType(s), so that the flow can
AmazonFlow.wsdl | pe incorporated into other processes. The New Project wizard
generates a document-literal style WSDL that takes a string input
message and returns a string response message. In this case study
we should manually modify the input variable to construct request
messages for other services.

bpel.xml The deployment descriptor for the process. Defines the locations of
the WSDL files for services called by this flow, along with other
project-specific parameters.

build.xml Apache Ant script for compiling and deploying this process.

.project Eclipse .project format file.

1 http://soap.amazon.cony/schemas3/A mazonWebServices.wsdl

2 http://www.xmethods.net/sd/BNQuoteService.wsdl

-24-

http://soap.amazon.com/schemas3/AmazonWebServices.wsdl
http://www.xmethods.net/sd/BNQuoteService.wsdl

Besides these, some additional WSDL files are needed to create partner links between the
process and the service partners.

4.1.1. The service partners

Amazon Web Services (AWS) provides direct access to Amazon's technology platform®.
The WSDL of AWS exposes many operations for different searching mechanisms and
enabling purchases of products. Using AWS, we can access catalogue data, create and
populate an Amazon shopping cart, and even initiate the checkout process.

To invoke the operations of AWS, it is first required to register and obtain a developer’s
token from AWS. This token is then attached to each request call of the service. In this
example, the “AsinSearchRequest” is chosen as search function by giving a book’s ISBN
and retrieving complete product information including price supplied by Amazon.

The BN Quote Service is a simple Web Service based on the data of “Barnes & Noble”
book store”. It provides only one operation “getPrice” to get a book’s price by giving
ISBN.

These two services are added to the flow as partners. For most synchronous or older web
services, the service WSDL will not actually include a partnerLinkType since this was
added by the BPEL standard (leveraging the WSDL 1.1 extensibility features). In this
case, the partnerLinkType has to be created by the developer and the WSDL of the
service should be referenced in the local WSDL file.

To get clear how to write a WSDL identifying partners for Amazon Web Service, let’s
look at the following example:

<definiti ons nanme="AmazonSear ch"
xm ns:tns="http://soap. anazon. cont'
t ar get Nanespace="htt p://soap. amazon. cont’
xm ns="http://schemas. xm soap. org/ wsdl /"
xm ns: pl nk="http://schemas. xm soap. or g/ ws/ 2003/ 05/ part ner-1i nk/ ">
<i nport
| ocation="http://soap. amazon. com schemas3/ AmazonWebSer vi ces. wsdl "/ >
<pl nk: part nerLi nkType nane="AmazonSear chServi ce">
<pl nk: rol e nane="AmazonSear chServi ceProvi der" >
<pl nk: port Type name="t ns: AmazonSear chPort"/ >
</ pl nk: rol e>
</ pl nk: part ner Li nkType>
</definitions>

Example 1 AmazonSearchServiceRef.wsdl

As we can see, a patne is added to the WSDL file with the role
AmazonSear chSer vi ceProvi der and the original WSDL for Amazon Web Service is
imported, so that the BPEL can refer to the operations defined for AWS. A similar WSDL
should be defined for BN Quote Service as well. These two files are included in the

3 http://www.amazon.com

4 http://www.barnesandnoble.com

-25-

http://soap.amazon.com
http://soap.amazon.com
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/ws/2003/05/partner-link/
http://soap.amazon.com/schemas3/AmazonWebServices.wsdl
http://www.amazon.com
http://www.barnesandnoble.com

BPEL project.

4.1.2. The deployment descriptor

The deployment descriptor for the process defines the locations of the WSDL files for
services caled by this flow, along with other project-specific parameters. Here is an
example for AmazonF ow.

The "id" property defined in the bpel.xml deployment descriptor is used as the name of
the deployed process in the BPEL Console and will also be used to name the deployment
package jar which bpelc creates.

| <bpel-process id="AmazonFlow" src="AmazonFlow.bpel" wsdlLocation="AmazonFlow.wsdl"> |

Example 2 Define processid in bpel .xml

The two WSDL locations are defined respectively under id “AmazonSearchService” and
“BNQuoteService”. These are the services the process going to invoke. As explained in
the last section, we need extra WSDL files to define partner links, therefore the
“wsdlLocation” is not directly pointing to the origina WSDL of the services, but the
reference files.

<properties id="AmazonSearchService">
<property name="wsdl Locati on">AmazonSear chSer vi ceRef . wsdl </ property>
<property name="send-type-attribute">true</property>
</ properties>
<properties id="BNQuoteService">
<property name="wsdl Locati on" >BNQuot eSer vi ceW apper . wsdl </ property>
</ properties>

Example 3 Define WSDL locations in bpel.xml

The property “console-testForm” is an optional property used to customize the BPEL
console test form. Here for the default input, an AsinSearchRequest is constructed
according to AWS’s WSDL. When the AsinSearchRequest operation isinvoked, all of the
data are required as input request.

<properties id="consol e-test Forni>
<property nane="defaul t|nput">
<! [CDATA[
<ns1: Asi nSear chRequest xsi:type="nsl: Asi nRequest"

xm ns: ns1l="http://soap. anazon. cont'

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<nsl:asin xsi:type="xsd:string">0201633612</ns1: asi n>
<nsl:tag xsi:type="xsd:string">webservices-20</nsl:tag>
<nsl:type xsi:type="xsd: string">heavy</nsl:type>
<nsl: devtag xsi:type="xsd:string">D8907FASD398</ nsl: devt ag>
<nsl:offer xsi:type="xsd:string">1l</nsl:offer>
<nsl: of f er page xsi:type="xsd:string">1</nsl: of f er page>
<nsl:local xsi:type="xsd:string">en</nsl:|ocal >
<nsl: nbde xsi:type="xsd: string">book</nsl: node>

</ nsl: Asi nSear chRequest >
11>
</ property>
</ properties>

Example 4 Define default input request in bepl.xml

-26-

http://soap.amazon.com
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

It’s necessary to explain some of the request data in details:

§
§

§
§

asin: The ASIN of a project, here ISBN of the book to be searched.

tag: Amazon.com enables Web site owners to link to their store and earn referral
fees for any sales that are generated through their links. This is done through an
associates program. Each associate get an Associates Id, which should be attached
to the request in tag element. If no Associates Id, the tag is assigned with value
“webservices-20” for invoking AWS in US.

type: The output type, can be heavy or lite.
devtag: The developer token, can be obtained when register as devel oper.

offer: The offer parameter is used to request and limit the types of offerings
returned as part of an ASIN search. 1 represents “ThirdPartyNew”.

offerpage: The offerpage parameter is used to request a particular page of
offering information. The default value is 1; 25 offerings are returned per page.

locale: International locale specifier.
mode: Product line, can be book or dvd, etc.

4.1.3. The message datatype

When creating a BPEL application, the first step is to use XML Schema to define the
messages which will be exchanged with the process. The message data types are defined
in AmazonFlow.wsdl, which describes the interface of the process.

<conpl exType name="Asi nRequest " >
<al | >

</all>
</ conmpl exType>
<el ement name=" Asi nSear chRequest" type="tns: Asi nRequest"/ >
<el ement name="onAmazonFl owResul t " >

</ el ement >

<el enent nanme="asin" type="string" />

<el enrent nanme="tag" type="string" />

<el ement name="type" type="string" />

<el ement nanme="devtag" type="string" />

<el ement nanme="offer" type="string" m nCccurs="0" />

<el ement nanme="of f er page" type="string" minCccurs="0" />
<el ement nanme="|ocal e" type="string" m nCccurs="0" />
<el ement nanme="node" type="string" m nCccurs="0" />

<conpl exType>
<sequence>
<el ement name="result" type="string"/>
</ sequence>
</ conpl exType>

Example 5 Define data types in AmazonFlow.wsdl

As shown in the example above, there are two types of elements defined for messages.
One is “AsinSearchRequest”, having the same structure as the default input message
defined in the deployment descriptor bpel.xml (Example 4). The other element
“onAmazonFowResult” contains only one sub-element “result” for the return value of

-27 -

the flow.
According to the data type, input and output messages are defined as following:

<nmessage nanme="initi at eAnmazonFl owSoapRequest " >

<part name="paraneters" el enent="tns: Asi nSear chRequest "/ >
</ nessage>
<message name="onAmazonFl owResul t SoapRequest " >

<part name="paraneters" el enent="tns: onAmazonFl owResul t"/>
</ nessage>

Example 6 Define messages in AmazonFlow.wsdl

4.1.4. The operationsto invoke the process

The AmazonFlow BPEL process will be exposed as a coarse-grained, asynchronous
operation that will be initiated through a 1-way operation caled initiate and will
callback the requester through a 1-way callback operation called onResul t . The input to
the flow is a message i ni ti at eAmazonFl owSoapRequest and the result is message
onAnmazonFl owResul t SoapRequest .

<port Type nanme="AnmazonFl ow'>
<operation nane="initiate">
<i nput message="tns:initiateAmazonFl owSoapRequest "/ >
</ operation>
</ port Type>
<port Type name="AnmazonFl owCal | back" >
<operation nane="onResult">
<i nput message="t ns: onAmazonFl owResul t SoapRequest "/ >
</ operation>
</ port Type>

Example 7 Define operations in AmazonFlow.wsdl

The client is added in the WSDL file as another partner link, so that the client can act as
requestor to invoke both operations defined above and execute the process. The partner
link binds the service and requestor portType into an asynchronous conversation.

4.1.5. The globa variables

Figure 17 is an overview of the AmazonFlow in Collaxa BPEL Designer. Three service
partners are connected to the flow. On the left side is the client, the service requestor
initiating the process and receive return value from the asynchronous call back. On the
right side are two services, whose operations invoked by the AmazonFlow. If the WSDL
location is correctly defined, the Designer automatically loads all operations supplied by
these services. As we can see from the figure, BNQuoteService exposes only one
operation “getPrice” and AmazonSearchService provides powerful search functions and
some other transaction methods.

-28-

=
| AmazonFlow
r

client BNQuoteService
initiate = getPrice 5-‘1
|‘@“’ cnResult _J
B &3 AmazonSearchService

KeywordSearc...
TextStreamSe...

PowerSearchR...
© Edit Process Map B b
1| rowselNodeSe...

| Global XML wariables |)
. | AzinSearchReq...

input
BlendedSearch...
output
request UpcSearchReq...
response SkuSearchReq...
getPriceRequest AuthorSearchR...
geibiiceREsparse ArtistSearchRe...
& Add XML Variable
| ActorSearchRe...

Manufacturers...

) %0 # #) #4 #0 #0 #0 %0 8 €0 €0

Figure 17 Overview of AmazonFlow

To exchange messages between partners, XML variables are used to store temporary
values. By default, the BPEL Designer declares two variables i nput as request to
initiate the process and out put to keep the return value. To contain request and
response messages for the two services, two pairs of variables are declared:

<vari abl es>
<vari abl e name="request" nessageType="ans: Asi nSear chRequest"/ >
<vari abl e name="response" nessageType="ans: Asi nSear chResponse"/ >
<vari abl e nanme="get Pri ceRequest" nessageType="BNQuot eServi ce: get Pri ceRequest"/ >
<vari abl e name="get Pri ceResponse" nessageType="BNQuot eServi ce: get Pri ceResponse"/>
</vari abl es>

Example 8 Declare variables in AmazonFlow.bpel

Since these variables are input and output parameters of the service operations, their
types are defined in the corresponding service WSDL files.

4.1.6. Assign variables and invoke services

Once the partner and associated variables have been appropriately declared and
configured, we can add the BPEL activities responsible for actually calling the web
service.

As we want to query the book’s price simultaneously, the two invocations are executed in
parallel. In BPEL thisisrealized by the <f | ow> activity. The scopeis similar to a piece of
code block in normal programming language, like C or Java.

<scope nane="getPrices">
<fl ow>
<sequence>.. .. </ sequence> <!-- invoke getPrice -->
</ fl ow>
<f | ow>

-29-

<sequence>.. .. </ sequence> <!-- invoke AsinSearchRequest -->
</fl ow>
</ scope>

Example 9 Parallel execution in AmazonFlow.bpel
Figure 18 is the graphic representation of the code in Example 9. Each of the branchesis

represented by a <f | ows> activity. The sequence inside a flow consists of an <assi gn> and

an <i nvoke> activity respectively.

B R

getPrice AsinSearchReg...
(BNQuoteServi... (AmazonSearc...

Figure 18 Invoke the services

The assign activities are used to copy part of a message to another message, namely to
exchange values between variables. Here for example, in variable i nput , the default
input data is sent by the client as request. To invoke BNQuoteService, only the ISBN is
required. Therefore the ISBN value needs to be extracted from input request and copied
to the variable get Pri ceRequest .

The Collaxa BPEL Designer provides graphic editor to modify the flow model. New
copy rules can be added to the <assi gn> activity using “Copy Customizer” (Figure 19).
In BPEL, an <assi gn> statement can have many copy rules, each using variable data,
XPath queries, XPath expressions, and/or literals to do simple data manipulation and
transformation. Each copy rule for an <assi gn> activity has a From part, which specifies
the source data, and a To part, which specifies a variable or element part as the
destination for the data.

-30-

@ Collaxa BPEL Copy Customizer - Web Page Dialog e

Copy Rule
Uze this form to customize this copy rule

From . ' \ariable Part
input b parameters e

XPATH Query
JAsinSearchRequest/asin bt

<* AsinSearchRequest
~e4r gsin

-4 tag

ed ¥ type

-4 devtag

o offer

-1 offerpage

4 locale

L4 » mode

To + | variaome FaErT
getPriceRequest b isbn ¥

XPATH Query

Done Cancel

Figure 19 Collaxa BPEL Copy Customizer

Figure 19 is the screen shot of the Copy Customizer, showing the copy rule when assign
ISBN to the input request of BNQuoteService. The source variable is “input” and
destination is “getPriceRequest”. What makes it convenient for developers is that the
Customizer can load the structure of the variable in XPath Query field according to its
definition in Schema. The developer can just pick up the desired element and the query is
automaticaly filled in.

The attributes of invoke activity can also be edited in graphic model. As partner links and
variables are properly configured, they are loaded in the drop down lists. By selecting the
corresponding values, the following code is generated automatically.

<i nvoke nane="i nvokdBNQ@Sear ch" part nerLi nk=" BNQuot eSer vi ce"
port Type="BNQuot eSer vi ce: BNQuot ePort Type" operati on="getPrice"
i nput Vari abl e="get Pri ceRequest" out put Vari abl e="get Pri ceResponse"/ >

<i nvoke nane="i nvoke" partnerLi nk=" AnazonSear chServi ce"
port Type="ans: AnmazonSear chPort" operati on="Asi nSear chRequest"
i nput Vari abl e="request" out put Vari abl e="response"/ >

Example 10 Invoke services in AmazonFlow.bpel

4.1.7. Compare the prices

The Amazon Search operation provides the complete information about the book,
including its price. The BNQuoteService returns the price available in their book store.

-31-

To output the lower price to the client, the <switch> - <case> - <otherwise> activities are
implemented. If the condition in <case> activity is fulfilled, say, the price get from
BNQuoteService is lower than that from Amazon, this price is then copied to the variable
“output”. Otherwise the price provided by Amazon is assigned.

Figure 20 Compare prices scope

Notice that in the schema of these two services, prices are defined in different data types.
Amazon’s price is of string type and Barnes&Noble’s price is float number. To
investigate more examples from Amazon, it can be determined that the Amazon’s prices
are attached with currency sign. Since currently Amazon supplies international \Web
Services in US, UK, Germany and Japan, the currency varies with the different Services
being invoked.

Here to simplify the implementation, it is supposed that we only call the service in US
and the currency is “$”. The condition attribute in <case> activity is:

<case condition="bpws: get Vari abl eDat a(' get Pri ceResponse','return') <
nunber (substri ng-after(bpws: getVari abl eData(' response', ' return','/retur
n/Details/Details[1]/QurPrice'), "$))">

Example 11 Case activity in AmazonFlow.bpel

Here XPath is used for the expression for case statement. BPEL defines a number of
XPath function calls, e.g get vari abl eDat a(). These are al defined within the BPEL
namespace of http://schemas.xmlsoap.org/ws/2002/07/busi ness-process.

To get the return value from BNQuoteService, the first parameter get Pri ceResponse iS
variable name, and the second r et ur n isthe part where price value is stored. However, to
retrieve price from the return value of AmazonSearchService is more complicated.
Except the variable and part name as parameters, an additional XPath expression is
required to refer to the element cur Pri ce. Because the data returned from Amazon is the
whole information about the book, while what we need is only the price supplied by
Amazon.

The XPath function subst ri ng- af t er () removes the “$” sign in front of the number, so
that a string represented number is returned. To convert the string to float, another XPath

-32-

http://schemas.xmlsoap.org/ws/2002/07/business-process

function nunber () isinvoked.

Finally, as this statement is in an XML context, the “<” sign should be substituted by
‘6&1 t , 9’.

An extension to this implementation could be, invoking another Web Service for currency
conversion before comparing prices. This will better support internationalization of the
application and carry out the Web Service Choreography between multiple participantsin
run time.

4.2. Deploy and execute the process on the BPEL Server

As introduced in section 3.2, after design of the process, the BPEL project can be
compiled and deployed on the Collaxa BPEL Server using command “cxant”. After
successful deployment, the AmazonFlow will appear in the Collaxa console. If the default
input value (Example 4) is submitted to initiate the flow, the process is supposed to get
the price of the book Desi gn Pat t er ns with the ISBN 0201633612.

When clicking the flow audit of the BPEL Console, we can see that the process is
completely executed, because the invoked operations are both synchronous and the
response is smultaneously returned.

&) Activity Audit Trall — Web Page Dialog e
&
2% BNQuoteService (getPrice) L

Invoked 2-way operation "getPrice” on partner "BNQuoteService”.

<messages>
<getPriceRequest=
<part xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance”
name="isbn"=
<isbn xmins:xsi="http:/fwww.w3.0rg/2001/XMLSchema-instance”
wsitype="wsd:string">0201633612</isbn=
«fpart=
</getPriceRequest=
<getPriceResponse=
<part xmins:xsi="http://www.w3.0rg/1393/XMLSchema-instance”
name="return">
<return xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsiitype="xsd:float"=54.99</return=
<fpart=
«/getPriceReszponse=
</messages=>

Copv details to clipboard:

Figure 21 getPrice Request & Response

-33-

&) Activity Audit Trail -- Web Page Dialog e
<ImageUrl=mall
xsistype="xsd:string">http://images.amazon.com/images/P/0201633612.01.T| -
<ImageUriMedium
xsi:type="xsd:string" = http://images.amazon.com/images/P/0201633612.01.M
<ImagelUriLarge
xsi:type="xsd:string" = http://images.amazon.com/images/P/0201633612.01.L]
<ListPrice xsi:type="wsd:string">%54.99</ListPrice=
«<0urPrice xsi:type="xsd:string">$43.99=</0urPrice> ;
<lUsedPrice xsiitype="x=d:string">%$35.62</UsedPrice= m
< CollectiblePrice xsi:type="xsd:string"=$51.88«</CollectiblePrice=
<ThirdPartyMNewPrice xsi:type="xsd:string"=>%34.96</ThirdPartyNewPrice=
<SalesRank xsiitype="x=d:string">627</SalesRank>
<Lists zoapenc:arrayType="x=d:string[3]" xsi:type="SOAP-ENC:Array"=
<Listld xsi;type="xsd:string">LLI461545VSU=/Listld=
<Listld xsi:type="xsd:string">QTEESQTVMa18</Listld=
«<Listld xsi:type="xsd:string" > 10QVOAGCQGOED </ ListId=
</Listz=
«<Browselist soapenc:arrayType="amazon:BrowseNode[11]" xsi:type="S0AP-
ENC:Array">
<BrowseMNode xsi:type="amazon:BrowseNode"=
<BrowseName xsi:type="w=d:string"=Computer Bks - Languages [
Programming</BrowseName=
</BrowseNode=
<BrowseNode xsi:type="amazon:BrowseNode">
<BrowseName xsi:type="xsd:string">=Computer Books And
Software</BrowseName>
</BrowseNode=

4= 3 b
Figure 22 AsinSearch Request & Response

Figure 21 and Figure 22 are the audit trails from the two services respectively. When
executing the operation getPrice, we can see ISBN is sent as request and the return value
is the price 5499 as float number. Whereas the response of operation
AsinSearchRequest contains the entire information of the book, even with three prices:
ListPrice, OurPrice and UsedPrice. ListPrice $54.99 is the same value as got from
BNQuoteService, and OurPrice $43.99 is the price provided by Amazon with discount.
Therefore, the result of comparison should be $43.99, as shown in Figure 23.

&) Activity Audit Trai -- Web Page Dialog e

[3E) Assign

Updated variable "output”
<output>
<part xmins:xsi="http:/fwww.w3.0rg/1393/XMLSchema-instance”
name="parameters">
<onAmazonFlowResult xmins="http://s0ap.amazon.com’=
<result xminsxsi="http://www.w3.org/2001/XMLSchema-instance”
weiitype="xsd:string" > $43.99</result>
«fonAmazonFlowResult=
<fpart=
=<foutput>

Copy details to clipboard

Figure 23 Result of price comparison

To search for another book, we can initiate a new instance of the flow and change the
default ISBN by another one. In Collaxa Console, all the instances are numbered and
listed under the I nstances tab so that they can be reviewed and managed | ater.

Although not further investigated here, the scenario of the flow could be extended by
building upon this basic process. For instance, if the price provided by Anazon is lower

-34-

than that of Bar nes&Nobl e, the client can decide to get details of the customer reviews
of that book and add the book to Amazon’s shopping cart, or invoke some other service
rather than Amazon.

Thisillustrates the idea of Web Service Choreography and Service Oriented Architecture,
which allows Web services to be integrated and sequenced programmatically, with the
result of one Web service affecting which action or Web service is going to be performed
next.

-35-

5. Conclusion

5.1. Summary

The ultimate goal of integrating applications is business acceleration, which enables the
agility and efficiency to response accurate information. This certainly rewards the
companies increased business opportunities and profits. What makes the integration
especially complicated is that the enterprise applications very often cross physical and
organizational boundaries, therefore making the traditional business process management
difficult. Since the emerging technology of Web Service Choreography results solution of
interaction between applications by message exchange in XML format, the companies
can now move away from expensive legacy connectors and adaptor solutions to Web
Services.

This paper concludes with an outlook of emerging technology of Web Service
Choreography and Orchestration, their technical requirements, tools supporting design
and implementation of business processes and real world scenarios.

Web Service Choreography and Orchestration means to assemble and coordinate services,
from both internal enterprise components and external trading partners, into a
manageable business application. Implementing, executing and managing orchestration
logic demands a set of infrastructure-level requirements.

First, the support of coordination between loosely-coupled services and asynchronous
messaging.

Second, management of the process, error and events handling, transactions and
compensations, etc.

Third, monitoring the execution, to view the message exchange and report of the
results.

To assist design of orchestration logic and simplify the implementation, a set of products
are developed. Although al of the software provided by different vendors varies with
some features and representation, the main functionalities are intended to fulfill these
requirements above. Thus, they all have a graphical editor for modeling the process, a
runtime engine to deploy and run the process and observer software to manage and
monitor the process execution.

In this paper Collaxa product is taken as an example and are tested by developing and
deploying areal world business scenario on it. Using Collaxa Designer, business analysts
gather information required to model and design the business process the enterprise is
planning to automate. The compiler can specify a verson number so that different
versions are kept for developers to fine tuning the process. During the implementation
stage the runtime environment is set up and the project is deployed on the Collaxa
Orchestration Server. After deployment, a test interface is automatically generated in

-36-

Collaxa Console. The process can be initiated and the observation is possible in three
viewpoints: view visual flow (graphical audit trail), audit the instance (the text audit trail)
or debug the instance (the source code).

The case study presented in this paper, is a simple business process integrating two Web
Service partners to retrieve a book’s information and compare prices supplied by these
two vendors. It supports concurrent execution by branching and joining the process. It
also introduces some XPath methods used in queries for assignment of BPEL variables.
Last but not least, this case study gives a complete example of design and implementation
phases of a simple BPEL project using Collaxa software.

5.2. Troubles encountered

At beginning of the project work, the Microsoft MapPoint Web Service® was considered
to be illustrated in the scenario. It is a hosted, programmable XML Web Service for
integrating maps, driving directions, distance calculations, proximity searches and other
location intelligence into applications, business processes, and Web sites. Especially the
Location Service based on the MapPoint Location Server is investigated, since it is very
applicable in the mobile industry. This service contains methods that can be used to locate
the geographic position of a user carrying alocatable device such as a cell phone or pager.
It also provides methods for managing the personal preferences of users, such as culture,
visibility settings, and contact lists.

Although the initial aim was to use MapPoint as case study, it was determined that the
MapPoint Location Server has very high software and hardware requirements, and that
the web service itself is not offered for free but through an evaluation account managed in
a very sophisticated manner. Although being left aside because of these reasons,
MapPoint Web Service is awell developed mature service that is worth of investigation.

Since Amazon Web Service is one of the earliest services that have been tested by
number of developers, being basically free, it was finally chosen to be part of the case
study. AWS supplies very powerful searches and enables transactions as well. The request
and response can be delivered via either REST or SOAP protocol. In this paper, the
examples are all based on SOAP messaging. While in AWS APIs, it is not clearly
documented how the request invoking a transactional operation is constructed. Some
sample SOAP files for executing the search methods are well defined, whereas those for
handling shopping cart and payment are still missing.

5.3. Teaching ware for Collaxa products

A collateral product of this project work is a set of Flash demos created as teaching wares.
Therefore, the achievement of the project can be reviewed not only by text report, but
also by vivid animations, consisting of screen shots, sounds, captions and interactions.
The traditional video format is nowadays substituted by small Flash files, which

5 http://www.microsoft.com/mappoint/webservice/default. mspx

-37-

http://www.microsoft.com/mappoint/webservice/default.mspx

contributes mostly to the modern E-Learning area.

The tool used to create the Flash files is RoboDemo® developed by Macromedia. The
user can choose automatic recording or manual recording mode, and the frame size can
be set to fit arunning application, or full screen, or customized size.

Figure 24 shows the RoboDemo movie project when editing the Flash demo for Collaxa
Console. All frames, mouse motions, sounds and captions can be edited conveniently
using a toolbar. Finaly the movie can be exported to different format of flash files for
Windows, Macintosh and Linux systems. It is also possible to export the frames in
Microsoft Word and can be used to prepare presentation directly. In this project the
demos are exported as .swf files.

- | W) A ORI - Consoe N
B EdE Ve e By -

bl e D, s i

Frngn ||-q_g.|

) rOnG0R T
. .
:;

Figure 24 RoboDemo

5.4. Future work

Collaxa aso provides many other features, which are not explained in details in this paper.
From a developer’s point of view, for example, it is an important strength that the <exec>
activity enables Java/J2EE code to be invoked directly from a BPEL process. There is
another important feature supplying user tasks for management of business processes.
Collaxa provides a built-in user TaskService as a web service, which supports human
intervention in a BPEL process using standard BPEL asynchronous activities: <invoke>
and <recelve>. These are to be further inspected and tested when implementing more
sophisticated orchestration logic.

8 http://www.macromedia.com/software/robodemo/

-38-

http://www.macromedia.com/software/robodemo/

The other vendors also provide powerful software supporting Web Service Choreography
and Orchestration. For example, the Sonic Orchestration Server, integrated with Sonic
ESB (Enterprise Service Bus), seems to be a big competitor of Collaxa. It should be an
interesting topic to compare and evaluate the features of these products along different
dimensions.

-39-

Refer ences

Collaxa BPEL Getting Sarted Guide (2004)
http://www.collaxa.com/pdf/collaxa-d5.pdf

Collaxa BPEL Hello World Tutorial (2003)
http://www.collaxa.com/tutorial 'BPEL -HelloWorldTutorial . pdf

Collaxa Developer’s Guide (2003) Programming BPEL Version 10.15.3
http://www.collaxa.com/pdf/cx-bpel-devel oper-20.pdf

Greenwood M. (March, 2003) Web Services and Process Modeling
http://www.cs.man.ac.uk/ipa/ CS637/W SandPM . pdf

McDonald C. (2003) Orchestration, Choreography and Collaboration
http://java.sun.com/devel oper/onlineT raining/webcasts/pdf/35plus/cmedonal d2. pdf

Peltz C. (July, 2003) Web Service Orchestration and Choreography Web Service Journal
Volume 3 Issue 7

Rhody S. (July, 2003) Dance Lessons Web Service Journal Volume 3 Issue 7

Virdell M. (January, 2003) Business processes and workflow in the Web services world
http://www-106.ibm.com/devel operworks/webservices/library/ws-work.html

Yuan K. (April, 20034 Investigation of BPEL Modelling
http://www.ti 5.tu-harburg.de/publication/2004/Thesis/Yuan04/kai_yuan_projectWork_report.pdf

_40-

http://www.collaxa.com/pdf/collaxa-d5.pdf
http://www.collaxa.com/tutorials/BPEL-HelloWorldTutorial.pdf
http://www.collaxa.com/pdf/cx-bpel-developer-20.pdf
http://www.cs.man.ac.uk/ipg/CS637/WSandPM.pdf
http://java.sun.com/developer/onlineTraining/webcasts/pdf/35plus/cmcdonald2.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-work.html
http://www.ti5.tu-harburg.de/publication/2004/Thesis/Yuan04/kai_yuan_projectWork_report.pdf

