

Master Thesis

Automatic Generation of OpenGIS-compliant

Relational Database from XML Schema

Aivaras Pigaga

Matr. Nr.: 20726

Information and Media Technologies

Technical University of Hamburg-Harburg

Under the supervision of

Prof. Dr. Joachim W. Schmidt

Prof. Dr.-Ing. Erik Pasche

Rainer Marrone

Andreas von Dömming

Hamburg, March 22, 2004

Acknowledgements

Firstly, I wish to express my deep appreciation and sincere thanks to my wife Eleni,

who understood and supported me in all my deeds.

I would like to express my sincere thanks to my advisors Rainer Marrone and

especially Andreas von Dömming who always found time to advice and guide me

during this work.

Many thanks also to my supervisors Prof. Dr. Joachim W. Schmidt and Prof. Dr.-Ing.

Erik Pasche for accepting me to carry out this thesis.

I declare that:

I have carried out this work myself, all literally or content-related quotations from

other sources are clearly pointed out, and no other sources or aids other than the ones

specified are used.

Hamburg, March 2004

Aivaras Pigaga

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 7

Table of Content

1. Introduction.. 13

1.1. Motivation.. 13

1.2. Objectives .. 15

1.3. Structure of the Work ... 16

2. Concepts and Technologies .. 17

2.1. Model-View-Controller (MVC).. 17

2.2. XML Schema ... 18

2.3. OpenGIS .. 22

2.4. Summary of the Chapter ... 25

3. Model for Relational Database Schema Definition Generation from XML

Schema .. 27

3.1. Generic Data Importer .. 27

3.2. Problem Statement ... 30

3.3. Three-Layer Architecture of the Model and Model-View-Controller (MVC)

Design Pattern.. 31

3.3.1. Logic Layer .. 34

3.3.1.1. Model ... 34

3.3.1.2. Container .. 37

3.3.2. Data Layer .. 39

3.3.2.1. Mapping Specific XML Schema to Model objects..................... 39

3.3.2.2. Data Type Mapping .. 44

3.3.2.3. Data Mappers.. 45

3.3.3. Pseudo-Presentation Layer .. 49

3.3.3.1. SQL Builders .. 49

3.3.3.2. SQL Scripts Generation Process.. 51

3.4. Limitations ... 53

3.5. Summary of the Chapter ... 54

4. Implementation of the Model ... 55

4.1. Technologies Used for the Implementation... 55

4.1.1. Java Programming Language .. 55

4.1.2. JDBC technology.. 55

4.1.3. JDOM... 55

4.2. Implementation Specificities... 56

4.3. Example of the Use of the Implemented Model .. 58

4.4. Evaluation of the Implementation ... 61

4.5. Summary of the Chapter ... 61

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 8

5. Conclusions.. 63

5.1. Summary.. 63

5.2. Outlook .. 64

6. ... 68

7. ... 83

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 9

Table Of Appendices

Appendix A. XML Schemas Related to Model... 67

Appendix B. Instances of XML Schemas Related to Model 69

Appendix C. Implementation Related XML Documents... 83

References ... 89

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 10

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 11

Table of Figures

Figure 2.1 Model-View-Controller Design Pattern... 17

Figure 2.2 The Example Dean Schema [GMLv2.1].. 20

Figure 2.3 Key Element Definition... 22

Figure 2.4 Example of a Non-Spatial Feature Dean Definition [GMLv2.1] 24

Figure 2.5 Example of the Geometry Element Declaration [GMLv2.1] 24

Figure 3.1 Dependency Levels of the Three Database Schemas................................ 28

Figure 3.2 Generic Data Importer (Generic Model) .. 29

Figure 3.3 Generic Data Importer... 30

Figure 3.4 Three-Layer Architecture of Relational Database Schema Definition

Generation from XML Schema Model ... 31

Figure 3.5 Relational Database Schema Generation from XML Schema Process

Activity Diagram.. 32

Figure 3.6 Model for Relational Database Schema Generation from XML Schema.

Class Diagram.. 34

Figure 3.7 Model Class Diagram.. 35

Figure 3.8 Container Class Diagram... 38

Figure 3.9 Container Activity Diagram .. 38

Figure 3.10 Elements and Complex Type Definitions Example................................ 40

Figure 3.11 Inline Elements’ and Simple Type Definitions Example 41

Figure 3.12 The Key Element of the XML Schema Example 42

Figure 3.13 The XML Schema for the Reserved SQL Keywords.............................. 43

Figure 3.14 The XML Schema for the Mapping of the Data Types........................... 44

Figure 3.15 Data Mappers Class Diagram .. 46

Figure 3.16 Data Mappers Activity Diagram (Mapping Process).............................. 48

Figure 3.17 SQL Builders Class Diagram... 50

Figure 3.18 PostgisSQLBuilder Activity Diagram.. 52

Figure 3.19 Typical CREATE TABLE and SELECT AddGeometryColumn() SQL

statements in Postgis SQL .. 53

Figure 4.1 The XML Schema for the Configuration File of the Generator 56

Figure 4.2 The XML Schema for the Report File of the Generator........................... 57

Figure 4.3 Example of a Specific XML Schema Document Generated by GeoServer

... 60

Figure 4.4 Example of the Relational Database Schema Definition for Postgis

RDBMS Generated by the Generator (RedGenie) .. 61

Figure A.1 The XML Schema for Storing Reserved SQL Keywords 67

Figure A.2 The XML Schema for Data Type Mapping Definition............................ 67

Figure B.1 The XML Document Defining the Reserved SQL99 Keywords.............. 73

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 12

Figure B.2 The XML Document Defining the Data Type Mapping from XML Schema

Data Type to Java Data Types .. 78

Figure B.3 The XML Document Defining the Data Type Mapping from Java Data

Types to Postgis SQL Data Types .. 81

Figure C.1 The XML Schema for the Configuration File for the Generator

(RedGenie)... 83

Figure C.2 The Configuration File for the Generator (RedGenie) 83

Figure C.3 The XML Schema for the Mapping Process Report Generation 84

Figure C.4 The Report File for the Buenzau_nutzung Relational Database Schema

Definition Generation... 87

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 13

1. Introduction

Scientific and business communities are generating considerably more data than ever

before. The requirements of distributed information systems like Geographical

Information Systems (GIS), Enterprise Resource Planning systems (ERP) or

Business-to-Business (B2B) solutions grow more complex.

Geographical Information System (GIS) [GIS04] is a geographical data combined

with other geographical information, like maps or photos, about the geographical area.

The different geographical information is usually provided in layers and can be used

for various reasons, like catastrophe management or environmental damage analysis.

Such information usually comes from different sources, is collected using different

methods, and is classified using different classification schemes. It is the case very

often, that the information from one source can only be combined with the

information of another source by putting a lot of manual effort. In other words, there

is a lack of schematic and semantic interoperability.

The agencies and organizations, like Cadastre, Town Planning, or Water Management

agencies, which are actively using GIS solutions, are in need of better schematic and

semantic interoperability on the information management level. Those separate

agencies and organizations have very valuable data, but most often they cannot use it

effectively in the established models, like Rainfall Runoff Model for Flood Risk

Management, for the decision-making, since they lack other data that has been

collected and stored by another agency. So it is needed to search for the solutions to

ease the cooperation between those agencies and organizations. Within the European

Water Framework Directive [WFD03] all agencies related to Water Management

must find a solution for schematic and semantic interoperability issue.

One solution that would help in the discussed matter would be to implement the

services defined in the OpenGIS [OGC04] specifications. The implemented services

could provide the schematic and semantic interoperability between different systems

of the different agencies and organizations and enable building of a common web-

based layer over the existing systems and databases, which would provide everyone

with the information regardless of it source.

1.1. Motivation

Several projects defined within the EU Water Framework Directive are in progress in

the Department of River and Coastal Engineering in Technical University Hamburg-

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 14

Harburg (TUHH). They are dealing with the issues of connecting the Rainfall Runoff

Model and the Flood Forecast with the geographical data available in the following

agencies in Hamburg Area:

- Behörde für Umwelt und Gesundheit (BUG) – Department of Environment

and Health;

- Behörde für Bau und Verkehr (BBV) – Department of Civil Engineering

and Transport;

- Landesbetrieb für Geoinformation und Vermessung (LGV) – State

Enterprise for Geo-Information and Survey.

The main issue in these projects is the schematic and semantic interoperability of the

geographical information originating from various sources. The department of River

and Coastal Engineering in TUHH is determined to implement the OpenGIS

specifications, since they provide such interoperability, in Java environment. However

the OpenGIS specifications do not address some important issues, which arose during

the implementation of the OpenGIS specification in the Department.

To enable a more dynamic exchange, archiving, and usage of the data, one has to

provide the lacking functionalities for the importing data to the relational databases

without human intervention in creating or altering relational database schemas for it.

Such functionality would automate many tasks, which are normally performed by

humans in distributed information systems. It would enable more dynamic data

managing and archiving processes. In GIS systems, it would enable to create, remove,

or alter geographical features dynamically without the human intervention in editing

the relational database schema.

There are only two commercial and one open source solutions publicly available that

enable the manipulation of the relational database structures dynamically. The

following solutions, which enable such manipulation by supporting the generation of

the relational database schema definition from XML Schema, are currently available:

Oracle has implemented an integrated feature for such process, which is available in

Oracle 9i [ORCL04], XMLSpy [XSPY04] tool has such ability also, and open source

project xsd2db [XSDB04] implements the discussed generation, which is

implemented in .NET environment [NET04].

One can ask the following question. Why is it needed to analyze, design and

implement the solution for a problem, for which there are already several available

solutions? This question can be answered with the following question and answer. Is

there a solution from the above mentioned ones, which is platform- and RDBMS

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 15

independent? Oracle feature can be used only for the Oracle RDBMS and so it is not

RDBMS-independent. XMLSpy feature can be used only in the environment of the

XMLSpy tool. So it cannot be use as a library or component, which one could

integrate into ones own applications. Both, the Oracle 9i and the XMLSpy features,

are not open source, but high-priced commercial products. The xsd2db tool is slightly

better. It is free, open source product, which supports only several RDBMS now, but

can be easily extended to support any RDBMS. Using its source code, one could reuse

most of it for ones own applications. However, it is based on .NET framework, which

is platform-dependent and is useless in Java-based systems. Moreover, for the

OpenGIS-based projects in the department, there is a need for a component, which

would support the generation of new geographical features defined in Open GIS

[OGC04] Simple Features Specification for SQL [SFSv1.1]. Using such a component

one would be able to create, remove, or alter geographical features dynamically

without any human intervention in editing the relational database schemas in the

persistence layer of the Geographical Information Systems (GIS), which is not only

not available in any implementation of OpenGIS specifications, but also not even

defined in any OpenGIS specification.

There is the lack of a platform-independent component for relational database schema

definition generation from XML Schema, which would be written in Java

environment and would support geographical features as it is defined in Open GIS

Simple Features Specification for SQL [SFSv1.1]. It is intend to fill in this gap with

this thesis.

1.2. Objectives

This thesis concerns itself with the following objectives:

- give an overview of thesis related concepts and technologies: Model-

View-Controller (MVC), XML Schema, OpenGIS Specifications;

- establish a model for generic data importer and relational database schema

definition generation from specific XML Schema;

- implement the established model for relational database schema definition

generation from specific XML Schema;

- evaluate the established model for relational database schema definition

generation from specific XML Schema and its implementation; identify

and point out its limitations;

- summarize the results of this thesis and discuss the outlook on further

development of the established model for relational database schema

definition generation from specific XML Schema and its implementation.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 16

1.3. Structure of the Work

In chapter 2 a short introduction to the concepts and technologies used during this

thesis project is provided.

In chapter 3 a detailed description of the design of the relational database schema

generation from specific XML Schema model is provided and the limitations of the

designed model are identified.

In chapter 4 a description of the implementation of the model, which design is

described in chapter 3, and the qualitative evaluation of this implementation are

provided.

In chapter 5 a summary of the results of this thesis and an outlook in possible further

development of the designed model and of the generic data importer is provided.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 17

2. Concepts and Technologies

In this chapter the basics of the model-view-controller design pattern will be provided.

The knowledge relevant to this thesis about XML Schema standard, and OpenGIS

specifications will also be provided.

2.1. Model-View-Controller (MVC)

Model-View-Controller (MVC) is a software design pattern, which is rather old. It has

been known from the early days of Smalltalk programming language. MVC is a high-

level pattern. It concerns itself with the architecture of the application and tries to

classify different kind of objects.

Figure 2.1 illustrates MVC design pattern. According to MVC there are three types of

objects: model objects (model), view objects (view), and controller objects

(controller). The pattern defines the role for each type of these three and software

engineers design their object classes to fall in one of these three groups. The groups

communicate with each other according to the role each group has in the MVC design

pattern.

Figure 2.1 Model-View-Controller Design Pattern

Model objects serve as the abstraction of some real world process or system. They

encapsulate the information that describes this real world process or system and

provide the functionality to operate this information. So the model objects capture not

only the state of a process or system, but also how it works. A well-designed

application has all its data encapsulated in model objects. Any data that is stored in

files or databases should reside in model objects once the data is loaded to the

application.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 18

View objects know how to display the given data from the application’s model

objects. They should not be responsible for storing the data they are displaying. So the

view objects are responsible for the presentation of the data of from the model objects.

Controller objects act as an intermediary between the application’s view and its model

objects. The logic that controller objects encapsulate is specific to the application.

They are responsible for managing the workflow of the application. For the view

objects they ensure the access to the model objects they need to display. The

controller objects usually notify the view objects when the model objects change their

state.

The three types of objects are separated from each other by abstract boundaries and all

the communication between them is conducted across these boundaries (see figure

2.1). The model is the core of the application and it does not know what kind of views

observe it. The only weak relation that the model might have is the notification of the

views about the change of its state, which could be also done by the controller. By

contrast, the view knows exactly what kind of model does it observe. The view has a

strong relation to the model and it can use all functionality provided by the model. It

might have a weak relation to the controller to submit the requests for information.

The controller has strong relation to both view and the model. Since the controller

defines the behavior of the application, it needs to be able to use the functionalities

provided by both view and model.

Shifting of the application specific code to the controller, the model and view objects

become more general and reusable. Controllers are often the least reusable objects in

an application. The separation of the objects into three types increases the

understandability of the design and the code of the application and ensures easier

extensibility and maintenance of the application.

2.2. XML Schema

XML Schema [XSD04] standard provides the XML constructs to write schemas,

which define the shared vocabularies, the structure of XML documents which use

those vocabularies, and provide links to associate semantics with them. It is an

essential part for XML to reach its full potential. [XSINT01]

The purpose of schema is to define and describe a class of XML documents by using

the constructs provided by XML Schema standard to constrain and document the

meaning, usage, and relationships of the parts of these documents.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 19

The XML Schema specification consists of three parts:

- XML Schema Part 1: Structures [XSDp1]. It proposes methods to describe

structure and constraint the content of an XML Document. It also defines

the rules for schema-validation of documents;

- XML Schema Part 2: Datatypes [XSDp2]. It defines a set of simple data

types, which can be associates with XML element types and attributes;

- XML Schema Part 0: Primer [XSDp0]. It explains what schemas are, how

they differ from DTDs, and how one builds a schema.

The introduction on XML Schema based on XML Schema: Primer [XSDp0]

specification part will be provided further in this section. The introduction will be

provided only on the concepts that are relevant to this thesis: element declaration,

complex and simple type definitions, minOccurs and nillable attributes, substitution

groups, extensions, and key definitions. The term schema will be used to refer to

specific XML Schema further in this section. The schema defines the class of

documents and so the term instance document is used to describe an XML document

that conforms to a particular schema.

Complex Type Definitions, Element Declarations

In XML Schema, there is a difference between complex types, which can contain

elements and attributes, and simple types, that do not allow elements or attributes in

their content. In this section the definition of complex types and the declaration of

elements that appear with them will be discussed.

The example of the Dean schema will be used in this section (see figure 2.2).

New complex types are defined by using a complexType element and they normally

contain a set of element declarations. The declaration is not a type itself, but rather an

association of the name of the element and the constraint defined by its type. Elements

are declared using element element. For example, DeanType is defined as a complex

type, and within the definition of DeanType there are four element declarations. So

every element appearing in the instance of the Dean schema whose type is declared to

be DeanType must consist of four elements as it is defined in the Dean schema. These

elements must be called id, familyName, age, and nickName and must appear in the

same sequence in which they are declared in the schema.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 20

The Dean element declaration is associated with the complex type DeanType. The

result is, that every appearance of the element Dean in the instance document of the

Dean schema will contain four elements as it is defined by DeanType complex type.

So far the example of the element declaration was discussed which is associated with

an existing type definition. Sometimes is preferable to use an existing element rather

than declare a new one, like it is with one element declaration in DeanType complex

type definition, which references the element declaration age using the attribute ref.

Figure 2.2 The Example Dean Schema [GMLv2.1]

The value of the attribute ref must always reference a global element (the element

declared under the element schema). The result of such element declaration using the

attribute ref is, that the element age may appear in the element, which was associated

with the type DeanType in the instance of the Dean schema.

Substitution Groups

The XML Schema provides the mechanism for elements to substitute the other

elements. More specifically, elements can be assigned to a special group of elements

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 21

that are substitutable for a particular named element, which is called the head element.

In figure 2.2, an element called Dean is declared and assigned it to a substitution

group whose head element is _Feature. The Dean element can be used any place

where _Feature element can be used. The element is assigned to a substitution group

by setting a substitutionGroup attribute of an element to the name of the head

element.

minOccurs and nillable

The element is required to appear in the instance of the schema if the attribute

minOccurs is set to 1 or more. The nickName element is optional within DeanType,

because the value of the minOccurs attribute in its declaration is set to 0 (see figure

2.2). The default value of minOccurs attribute is 1.

In some cases it is preferable to have the element appearing in the instance of the

schema, but set to the null value. Such cases can be represented using XML Schema’s

nil mechanism, which enables an element to appear with or without a not-nil value.

To declare an element as being able to appear in an instance of the schema carrying

the nil value, one has to set its attribute nillable in the element declaration to true. For

example, the age element is nillable within the DeanType, because its nillable

attribute is set to true.

Simple Types

Some simple types, such as string or decimal, are build in to XML Schema. You can

see all built-in simple types listed in created data type mapping files in appendix B.

There are also other simple types that are derived from the built-in simple types. For

example, the element familyName in the complex type DeanType is declared in the

association with the simple type, which is derived from a built-in simple type string

using a restriction method (see figure 2.2). So new simple types are defined by

deriving them from existing simple types (built-in or derived). In particular, one can

derive a new simple type by restricting the existing simple type. For example,

narrowing its legal range of values or limiting its length. The simpleType element is

used to define the new simple type. The restriction element is used to indicate the

base simple type and to constrain the range of values or its length using different

facets, depending on the simple type: maxLength, minInclusive, maxInclusive,

minExclusive, maxExclusive, pattern, enumeration, etc. For example, the element

familyName declaration in the complex type DeanType is associated with the simple

type, which is the restriction of the integer built-in simple type. It is restricted using

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 22

the maxLength attribute, which is set to 20. The result of this restriction is, that the

element familyName in the instance of the schema can take strings not longer than 20

characters as values.

Extensions

One can derive the complex types by extension of the base type, which actually means

that the complex type definition inherits the content definition from the base type and

adds its own content definition to it. For example, the DeanType complex type in

figure 2.2 is an extension of AbstractFeatureType complex type.

Key Definitions

Using the key element one can constrain an element to be unique and not nillable. The

name that is associated with the key makes the key able to be referenced from

elsewhere. Keys are defined using the key element as it is illustrated in figure 2.3.

Figure 2.3 Key Element Definition

The key element, which name is idKey declares the element id from the element Dean

as unique and not nillable. One can reference the key element name idKey from

anywhere within the schema definition where it is defined.

2.3. OpenGIS

Modern information systems are distributed, interoperable, integrated, and web-based.

The classical GIS solutions do not conform to any of the mentioned advantages of the

modern information systems. OpenGIS initiative is working on moving the GIS to the

modern information systems level. The vision of the OpenGIS initiative is the

following: a world in which everyone benefits from geographic information and

services made available across any network, application, or platform.

The OpenGIS initiative has released a number of specifications. Only the fragments of

the Open GIS Geography Markup Language (GML) Implementation Specification

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 23

Version 2.1.2 [GMLv2.1] and the Open GIS Simple Features Specification for SQL

Revision 1.1 [SFSv1.1] relevant to this thesis will be introduced.

The GML specification provides the necessary schemas to define the geographical

features to use them in OpenGIS-compliant systems. There are two major schemas:

geometry schema and feature schema. The geometry schema defines geometries, like

Point, LineString, etc. The feature schema defines the structures to declare features

and defines complex feature types, which contain the regular XML Schema elements

and GML geometries defined in the geometry schema. The Open GIS Simple Features

Specification for SQL defines the standard SQL schema that supports the storage,

retrieval, query, and update of simple features. First the geometry list from the

geometry schema will be provided. Then the feature schema will be introduced.

Finally the list of SQL geometry types will be provided.

Geometries

GML provides geometry elements corresponding to the following geometry classes:

Point, LineString, LinearRing, Polygon, MultiPoint, MultiLineString, MultiPolygon,

and MultiGeometry.

Feature Schema

The feature schema models the geometric properties as association classes that link

features with the geometries. Concrete geometric property types such as

PointProperty constrain the geometry to a particular type, such as Point. There are six

geometric properties defined in the feature schema: PointProperty,

LineStringProperty, PolygonProperty, MultiPointProperty, MultiLineStringProperty,

MultiPolygonProperty. All mentioned geometric properties are the restrictions from

the type GeometryProperty.

Defining Features without Geometries

It is not a high possibility that many features will be defined without geometry

properties using GML. However, to understand better the definition of a feature, a

simple example of a non-spatial feature definition is provided in figure 2.5. The Dean

element’s declaration is associated with a complex type DeanType and is declared as a

substitution to the _Feature element from the elements declared by GML, which

makes the Dean element a feature type element. The DeanType complex type

definition is an extension of a type AbstractFeatureType and it inherits all capabilities

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 24

from the base class, like the feature’s capability to be identified using fid attribute or

to use a predefined description property to describe the feature. Every feature type

definition must extend the AbstractFeatureType and every feature element declaration

must substitute _Feature element from GML.

Figure 2.4 Example of a Non-Spatial Feature Dean Definition [GMLv2.1]

Defining Features with Geometries

As it is mentioned above, the feature schema provides the pre-defined set of geometry

properties, by which one can relate geometries of a particular type to features. For

example, in figure 2.5 the example is provided where the DeanType feature definition

has a point property type element declaration called deanLocation. The type attribute

of the deanLocation element is set to the PointPropertyType.

Figure 2.5 Example of the Geometry Element Declaration [GMLv2.1]

Every geometry element declaration must be of a type of one of the pre-defined

geometry properties.

SQL Geometry Types

The geometry types supported in SQL, as it is defined in Open GIS Simple Features

Specification for SQL Revision 1.1 [SFSv1.1], are the following: GEOMETRY,

POINT, CURVE, LINESTRING, SURFACE, POLYGON, COLLECTION,

MULTIPOINT, MULTICURVE, MULTILINESTRING, MULTISURFACE, and

MULTIPOLYGON. It might differ from one SQL implementation to another. For

example, in Postgis implementation, only the following SQL geometry types are

supported: POINT, LINESTRING, POLYGON, MULTIPOINT,

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 25

MULTILINESTRING, MULTIPOLYGON, and additionally

GEOMETRYCOLLECTION, which corresponds to the COLLECTION SQL

geometry type provided by the specification.

2.4. Summary of the Chapter

In this chapter the introduction to the Model-View-Controller design pattern has been

provided. The Model-View-Controller consists of three groups of objects: model,

view, and controller. The introduction to the parts of XML Schema standard relevant

to this thesis has also been provided, namely element declarations, simple and

complex type definitions, element’s attributes nillable and minOccurs, substitution

groups, extensions, and key definitions. Finally the introduction to the thesis relevant

parts of the following two OpenGIS specifications, namely Open GIS Geography

Markup Language (GML) Implementation Specification Version 2.1.2 [GMLv2.1]

and Open GIS Simple Features Specification for SQL Revision 1.1 [SFSv1.1] has

been provided.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 26

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 27

3. Model for Relational Database Schema Definition

Generation from XML Schema

First the introduction to the model of a generic data importer with relational database

schema definition generator will be given. Then the architecture of the relational

database schema definition generation from XML Schema model will be defined. The

overall process within this model will be described. Then the detailed design of the

defined architecture and the detailed processes within the architecture will be defined.

Finally, the limitations of the defined architecture of the model will be identified.

3.1. Generic Data Importer

The following definitions will be used in this section:

- generic data importer is the system responsible for a generation of

relational database schemas and an import of data to those generated

schemas without human intervention in creating or altering those generated

schemas before the actual import of data;

- platform–independent database schema definition is a database schema

definition independent from any database system;

- RDBMS-dependent relational database schema definition is a relational

database schema definition for a specific relational database management

system (RDBMS), e.g. SQL Data Definition Language (DDL) script

[SQL01];

- relational database schema is a relational database table with their

relations and constraints stored in the specific RDBMS on a specific

platform.

For the convenience, the figure 3.1 is provided illustrating the abstraction levels of the

last three definitions provided above. The least dependent schema is the platform-

independent database schema definition, since it does not depend on neither platform

nor database system. The RDBMS-dependent relational database schema definition

depends on the specific RDBMS, but does not depend on the platform. The most

dependent is the instance of the RDBMS-dependent relational database schema

definition. The relational database schema depends on the specific platform and on the

specific RDBMS.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 28

Figure 3.1 Dependency Levels of the Three Database Schemas

Generic data importer should be consisting of the following components (see figure

3.2):

- relational database schema definition generator module responsible for

generating a RDBMS-dependent relational database schema definition

based on given platform-independent database schema definition;

- relational database schema creator module responsible for creating a

relational database schema from the RDBMS-dependent relational

database schema definition;

- data import module responsible for importing data to the relational

database schema created by the relational database schema creator module;

- relational database schema update module responsible for altering the

relational database schema according to the differences between the

platform-independent database schema definition and updated platform-

independent database schema definition.

The process of data import should be executed in the following manner (see figure

3.2). The relational database schema definition generator module takes the platform-

independent schema definition and generates RDBMS-dependent relational database

schema definition from it. The result is then passed to the relational database schema

creation module, which creates relational database schema in the given RDBMS.

After the relational database schema has been created, the data import module can

import data to the created relational database schema. The data import module

validates data against platform-independent database schema definition before the

actual data import occurs. Eventually the platform-independent database schema

definition might change. The data won’t validate against the current platform-

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 29

independent database schema definition any longer. In this case relational database

schema update module must alter the relational database schema, based on the

differences between the current and updated platform-independent database schema

definitions. After the relational database schema has been altered, the data import

module imports the data to the altered relational database schema.

Figure 3.2 Generic Data Importer (Generic Model)

The generic data importer must be platform-, data domain-, and RDBMS-independent

(see figure 3.3). XML [XML04] can be used as a data format. It provides data domain

independence. The system can be then applicable in any domain possible, e.g. it could

archive a procurement process data in a B2B solution or store geographical objects

from GIS system. XML is also platform-independent. The specific XML Schema

[XSD04] can be used as a platform-independent database schema definition.

Moreover, XML technology provides XML data validation against XML Schemas.

For the implementation of components of generic data importer the following

technologies can be used: Java programming language [JAVA04] assuring platform-

independency, JDBC [JDBC04] assuring independency of RDBMS, and the DOM

[DOM04] assuring independency of XML Parser.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 30

Figure 3.3 Generic Data Importer

The generic data importer is a collection of complex components. The detailed

analysis of design and implementation of every component of generic data importer

can be separated into several works. In this thesis the design and implementation of

relational database schema definition generator module will be discussed and

analyzed, since it is the least touched topic in scientific and engineering publications.

3.2. Problem Statement

The model for relational database schema definition generation from specific XML

Schema must be established. This model must be extensible, platform- and RDBMS-

independent, and must support OpenGIS-compliant features as it is defined in Open

GIS Simple Features Specification for SQL [SFSv1.1].

The model for relational database schema definition generation from specific XML

Schema must generate SQL DDL scripts, which would define relational database

schema, from a given XML Schema as it is illustrated in figure 3.3.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 31

3.3. Three-Layer Architecture of the Model and Model-View-

Controller (MVC) Design Pattern

The architecture of the model for relational database schema definition generation

from specific XML Schema is defined as it is depicted in figure 3.4. To define the

architecture of this model the Three-Layer Architecture [MaHu02] has been used.

Figure 3.4 Three-Layer Architecture of Relational Database

Schema Definition Generation from XML Schema Model

The model depicted in figure 3.4, consist of the following layers: data layer, logic

layer, and pseudo-presentation layer. Each layer addresses different responsibilities:

- data layer is responsible for the functionality of platform-independent

database schema definition by using XML Schema standard [XSD04]. It

also encapsulates the Data Mappers, which are responsible for the

functionality for parsing XML Schema and creating Model objects, which

are defined in logic layer. In other words, it is responsible for mapping the

structure definition from XML Schema to the Model objects;

- logic layer encapsulates the Model objects, which capture the relational

database structure and are the core of the architecture. It also encapsulates

the Container, which contains the Model objects and controls their creation

and access to them. Finally, it encapsulates the Main object, which

controls the process flow and the choice of the SQL Builder, which is

defined in pseudo-presentation layer;

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 32

- pseudo-presentation layer encapsulates the SQL Builder, which is

responsible for the generation of the RDBMS-specific SQL DDL scripts

from the Model objects.

In the classical three-layer architecture model one finds a presentation layer instead of

the pseudo-presentation layer. However, since the presentation layer does not provide

any presentation layer functionalities in the sense of the classical understanding and

purpose of this layer, but it is still somehow presenting the data from Model objects as

SQL DDL scripts, it is call pseudo-presentation layer in this particular case.

The relational database schema generation from XML Schema process is illustrated in

figure 3.5. The term user will be used for the application, which initiates the process

by passing the XML Schema to the Main object and at the end receives the SQL DDL

script. The process starts with the passing of the XML Schema to the Main object,

which passes it to the Container, which, on his turn, passes it to the Data Mappers.

The Data Mappers parse the XML Schema and create Model objects based on it. The

Container returns the created Model objects to Main object. The Main object chooses

the right SQL Builder based on the initial input from the user. The chosen SQL

Builder builds the RDBMS-specific SQL DDL script based on the created Model

objects. The Main object returns then the created SQL DDL script to the user.

Figure 3.5 Relational Database Schema Generation

from XML Schema Process Activity Diagram

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 33

The three-layer model was developed also according to a variation of the classical

Model-View-Controller (MVC) pattern [SiSt02] as it is shortly introduced in chapter

2. The following describes the model from the point of view of MVC design pattern:

- controller component. The Main object is getting the input and according

to it chooses the right SQL Builder. It also passes the XML Schema to the

Container, which passes it to the Data Mappers and initiates the creation of

the Model objects. The Container then returns the Model objects to the

Main object. Therefore the Main object with the Container are parts of the

controller component;

- view component. SQL Builder is some kind of view component. SQL

Builder builds the SQL DDL script according to the Model objects. In

other words, it presents the data from Model objects. For the SQL Builder

the term pseudo-view is used, since the SQL Builder does not conform

with the classical understanding of a view component;

- model component. The Model objects capture the structure of the relational

database schema and the Data Mappers define the mapping from XML

Schema structures to the Model objects. Therefore the Model objects with

Data Mappers are parts of model component.

Using three-layer architecture of the model provides the following [MaHu02]:

- easy development and testing;

- scalability;

- easy maintenance;

- better performance, e.g. network load.

Using Model-View-Controller (MVC) pattern provides the following [SiSt02]:

- separation of user input, logic, and presentation logic;

- clean, easy understandable design;

- minimal coupling between components;

- extensibility;

- easy maintenance.

The relational database schema definition generator is designed as it is depicted in the

class diagram in figure 3.6 and described above in this section using figure 3.4 and

figure 3.5. The package model corresponds to the Model definition. The package xml

corresponds to the Data Mappers definition. The package logic corresponds to the

Container definition. The package main corresponds to the Main object definition.

The package sql aggregates all SQL Builder definitions.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 34

Figure 3.6 Model for Relational Database Schema

Generation from XML Schema. Class Diagram

3.3.1. Logic Layer

First the Model will be discussed, since it is the core of the relational database schema

definition generator model.

3.3.1.1. Model

The Model is designed as it is depicted in figure 3.7. The Model corresponds to the

generic relational database schema with the support of geometries as it is defined in

Open GIS Simple Features Specification for SQL [SFSv1.1].

In the Model only simple data types are supported. The nested complex data types in

XML Schema corresponds to the user-defined data types in relational database

schema. Relational database schema’s user-defined data types are not supported in the

Model, since, during the time the design of the model was in progress, no

implementation of OpenGIS specifications did support the XML Schema’s nested

complex data types yet. By the end of this thesis period, it was brought to the

attention, that one of the implementations of OpenGIS specifications: namely degree

[DGREE04], has implemented the support of the nested complex types for several

RDBMSs: Postgis, PointDB, MySQL, GMLDB. However, these implementations are

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 35

not yet stable. So in the Model there is one data type type, namely simple data type,

defined in generic relational database schema and one data type type, namely

geometry data type, defined in OpenGIS Specifications. Therefore two classes are

designed, namely DataType and GeometryType, which extend the abstract class

AbstractDataType with the only property name, which is common for both

extensions. The described hierarchy of three classes captures required data types

structure.

Figure 3.7 Model Class Diagram

The class DataType has the following additional properties: format and size. The

property format is required for the data types, which are specified using patterns or

formats, e.g. DATE can be specified using a pattern “yyyy.mm.dd”. The property size

is required for the data types, which are specified by length in number of characters or

by size in bytes, e.g. the size of VARCHAR can be specified using number of

characters.

The class GeometryType has no additional properties. The class GeometryType has

only the property name, which it inherits from the abstract class AbstractDataType.

In the generic relational database schema there are the following attribute types:

attribute, primary key, and foreign key. The OpenGIS specifications define one more

attribute type, which is geometry. All those four attribute types are defined as classes

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 36

in the Model, namely Attribute, PrimaryKey, ForeignKey, and Geometry, which

extend the abstract class AbstractAttribute with the only property name, which is

common for all four extensions. The described hierarchy of five classes captures

required attributes structure.

The class Attribute has the following additional properties: condition, defaultValue,

extra, null, unique, type. The property condition captures the generic relational

database schema attribute’s unidirectional constraint, which can be most of the cases

defined using a SQL CHECK clause. The property defaultValue captures the default

value of the generic relational database schema’s attribute. The property extra can be

used for any extra information about the generic relational database schema’s

attribute, e.g. automatic increment. The property null is used when defining if the

generic relational database schema’s attribute can be assigned a null value. The

property unique is used when defining if the generic relational database schema’s

attribute is unique. The property type is defining the data type of the generic relational

database schema’s attribute and it is of a type of the class DataType from the Model.

The class Geometry has the following additional properties: dbName, dimension, srid,

type. All these four properties are required for geometry definition as it is defined in

OpenGIS specifications. The property dbName provides the information about the

specific relational database name for which the geometry is defined. The property

dimension defines if 2- or 3- dimensional geometries will be created and stored in the

relational database schema. The property srid provides the id of the spatial referential

system as it was described in chapter 2, which must be used as a base for the relative

coordinates of the each geometry of this class. The property type is defining the

geometry type of the geometry definition and it is of a type of the class GeometryType

from the Model.

The class PrimaryKey has only one additional property extra, which is used for the

same purpose as the property extra of the class Attribute. It is used for any extra

information about the generic relational database schema’s attribute, e.g. automatic

increment. This particular property is very useful in the case when the generic

relational database schema’s attribute is a primary key.

The class ForeignKey has the following additional properties: foreignTable, null,

onCascade. The property foreignTable is of a type of the class Table and captures the

relation between tables defined in the generic relational database schema. It provides

the name of the table, to which the table, which aggregates this foreign key, has a

relation. The property null is used for the same purpose as the property null of the

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 37

class Attribute. The property null is used when defining if the generic relational

database schema’s attribute can be assigned a null value. The property onCascade

captures the SQL FOREIGN KEY clause’s part, where one can define the behavior of

the child table’s records, in the case of deletion of the parent table’s record. For

example, one can define the following behavior: if the parent record is deleted all the

child records must be deleted too.

The class Table captures the structure of the table as it is defined in the generic

relational database schema and it has the following properties: name, attributes,

geometries, foreignKeys, and primaryKey. The property attributes is a list of attributes

of a type of the class Attribute. The property geometries is a list of geometries of a

type of the class Geometry. The property foreignKeys is a list of foreign keys of a type

of the class ForeignKey. The property primaryKey is of a type of the class

PrimaryKey. The multiple primary keys are not supported for the sake of simplicity.

The Model is easily extensible. One can add the support for the user-defined data

types and multiple primary keys any time it is necessary by adding the necessary

classes to the Model.

3.3.1.2. Container

The Container aggregates the Model objects and is responsible for controlling the

mapping of the data structures from XML Schema to the Model objects and for

providing the functionality to access the necessary Model objects. The Container is

designed as follows (see figure 3.8):

- ContainerAnchor class defines the functionality for returning the specific

container upon the request of the user component (the component that is

using the object of a type of the class ContainerAnchor). The class

ContainerAnchor creates all containers and can return any container upon

the request;

- TableContainer class is a typical container class, which when instantiated

contains the specific Data Mapper, in this particular case the object of the

type of the class TableMapper, and the list of specific Model objects, in

this particular case the list of objects of the type of the class Table, for

which the contained TableMapper object defines the mapping from XML

Schema. It also provides the functionality for returning necessary Model

objects.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 38

Figure 3.8 Container Class Diagram

Normally, for each Model class a container class is defined. However, in this

particular case, the TableMapper instance calls other Data Mappers’ instances, which,

in their turn, call other Data Mappers’ instances and so on. So the whole mapping

process runs through after calling only TableMapper instance.

Since the access to the Model objects and Data Mappers’ functionalities are controlled

through the Container, the Model is strongly decoupled from the rest of the

components. Therefore, when extending the Model, the Data Mappers, or the

Container the other components are not influenced.

Figure 3.9 Container Activity Diagram

The process of creating the Model objects is executed as it is illustrated in figure 3.9.

The user component requests the TableContainer object from ContainerAnchor. The

ContainerAnchor, in his turn, returns the requested TableContainer object. Then the

user component requests the lists of Table objects from the received TableContainer,

which, in his turn, calls the TableMapper object to start the mapping process. The

TableMapper object maps the XML Schema structures to the list of Table objects and

returns this list to TableContainer object. The TableContainer object returns the

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 39

received list of Table objects to the user component and the process of creating the

Model objects is finished. Each Table object in the received list of Table objects holds

the full information on specific relational database table definition.

3.3.2. Data Layer

As it was mentioned above, the data layer is responsible for the platform-independent

database schema definition. The XML Schema standard is used to define the

platform-independent database schema. The data layer is also responsible for the

functionality for mapping XML Schema structures to Model objects. The Data

Mappers are responsible for it.

3.3.2.1. Mapping Specific XML Schema to Model objects

The mapping of the structures from the specific XML Schema to the Model objects

method has been developed in this thesis. The developed method will be described. In

this method the following XML Schema structures’ definitions [XSDp1] will be used:

element, complex type, and simple type. The method provides the way to map the

nullability. It also provides the way to map between any data types. It is used, in this

particular case, for mapping XML Schema data types to Java data types.

Element, Complex Type, and Simple Type

The definitions of elements in XML Schema correspond to either a relational database

table definition or a relational database table’s column definition. The element, which

type is a complex type, maps always to a relational database table definition. If its

substitution group is _Feature, as it is defined in OpenGIS Geography Markup

Language (GML) Implementation Specification [GMLv2.1], then the relational

database table definition might include a column definition of the geometry type. If it

has no substitution group, then the relational database table definition will not include

a column definition of the geometry type. Please refer to the example in figure 3.10.

The element with the name Pallas is of the PallasType type (the prefix msc6 only

denotes the target namespace of this specific schema). PallasType is a complex type.

Therefore the element Pallas maps the relational database table with the name Pallas.

The definition of the complex type is illustrated in figure 3.10. Complex type can

define a complex content. The defined complex content is an extension of the base of

AbstractFeatureType [GMLv2.1], if the complex type might contain the element

definition of a geometry type. If the complex type does not define the complex content

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 40

or is not an extension of the base of the AbstractFeatureType, the relational database

table definition will not contain the definition of the column of the geometry type. The

element definitions, found in the model group sequence or the model group all, define

the columns of the relational database table. The element definition, which maps to

the relational database table’s column definition will be describe further in this

section.

Figure 3.10 Elements and Complex Type Definitions Example

The column of the relational database table is defined as an element of the simple type

and can be defined directly in the definition of the complex type (see figure 3.11) or

independently (see figure 3.10). For example in figure 3.10 one can see the definitions

of the elements with the following names: ID, Datum, Uhrzeit, Position, and Ereignis.

They are defined independently of the complex type definition and are referenced

from the complex type definition with the name PallasType using the element’s

attribute ref. Each of these elements defines the column of the relational database

table. Each definition of the element is of the certain data type, which is denoted by

the attribute type. The element with the name Position defines the column of the

geometry type. The definition of the column of the geometry type will be presented

further in this section. In the figure 3.11 the example of the following inline column

definitions of the relational database table geom_test is presented: gid, geom, and

name. The definitions of nullability and data types will be described further in this

section.

The element definition, which defines the column of the relational database table, can

be also of a simple type. The simple type can be defined independently of the

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 41

element’s definition and then referenced using the element’s attribute type. The other

way is to define the simple type in the body of the element’s definition. Such a

definition of the simple type for the element definition name is depicted in figure 3.11.

In the provided example the simple type is a restriction of the XML Schema data type

string.

Figure 3.11 Inline Elements’ and Simple Type Definitions Example

The element definition of the geometry type is recognized by its type attribute. If the

value of the type attribute of the element is from the namespace, under which the

definitions of the geometry types are stored as it is defined in OpenGIS Geography

Markup Language (GML) Implementation Specification [GMLv2.1], this element is

mapped to the column of the geometry type of the specific relational database table.

For instance, the element definition geom in figure 3.11 is mapped to the column of

the Polygon type of the relational database table geom_test. Data type mapping, which

apart from simple data types includes geometry data types, will be explained

explicitly further in this section.

Nullability

The nullability of the element of the complex type is not relevant to this particular

method, since such element maps to the relational database table. The elements of the

simple type, on the other hand, map to the columns of the relational database table.

Therefore the nullability of the elements of the simple type will be discussed.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 42

The nullability of the element can be defined using either the attribute minOccurs or

the attribute nillable of the element definition. If the minOccurs attribute is set to ”0”

or the nillable attribute is set to “true”, the corresponding element must be mapped to

the nullable column of the relational database table. In all the other cases the element

must be mapped to the non-nullable column of the relational database table. If neither

the value of the attribute minOccurs nor the value of the attribute nillable is defined,

the corresponding element is mapped to the nullable column of the relational database

table by default.

In figure 3.11 the example of the use of the attributes nillable and minOccurs of the

element definition is provided. After mapping the resulting relational database table

geom_test definition will have the following columns:

- gid – nullable;

- geom – non-nullable;

- name – nullable.

The attribute maxOccurs of the element is not relevant for this particular method.

Primary Key and Foreign Keys

In this particular method the solution to define the primary and foreign keys of the

relational database table is not provided. However, as you could see in the previous

section, the Model, which includes the definition of the primary and foreign keys, is

provided. It is designed in such a manner to ease the future extensions of the relational

database schema definition generation from the specific XML Schema model.

Figure 3.12 The Key Element of the XML Schema Example

Some suggestions regarding the definition of the primary and foreign keys of the

relational database table will be provided. The primary key of the relational database

table can be defined using the key structure of the XML Schema. The example is

provided in figure 3.12. The name of the key element is not relevant to this particular

method. Therefore it is ignored. The selector element using the means of XPath

[XPATHv1] query language provides the information about the complex type

element, which maps to a relational database table, to which the primary key is

defined in this key element. The field element using the means of XPath [XPATHv1]

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 43

provides the information, which sub-element of the complex type element must be

mapped as a primary key column to the according relational database table. As the

example in figure 3.12 shows, the element gid will be mapped as a primary key

column of the relational database table geom_test.

The issue of foreign key definitions might be slightly more complicated. Therefore it

is suggested to use the XLink [XLINKv1] structures to define links between the

elements and then map it to the foreign key columns of the relational database tables.

More details regarding this issue will not be covered in this thesis.

Naming Issues

There are some naming issues, when using the developed method. The relational

database tables and columns within the table must have unique names. If this is not

preserved during the generation or while defining the specific XML Schema, there

maybe conflicts. The XML Schema preserves the uniqueness of the elements within

the complex type element as long as those elements are in the same namespace. There

also are other naming conventions that might produce conflicts. The issue of the

reserved SQL keywords will be discussed in more detail in the next section.

Reserved SQL Keywords

The XML Schema for the reserved SQL keywords has been defined in this thesis. It

can be used for checking the compatibility of the names of the specific XML Schema

before the generation of the relational database schema definition. If at least one of the

names identify with the reserved SQL keywords, the user receives the warning about

it. The defined XML Schema for the reserved SQL words is illustrated in figure 3.13.

The text view of this specific XML schema you can find in appendix A.

Figure 3.13 The XML Schema for the Reserved SQL Keywords

The XML Schema for the reserved SQL keywords is very simple. The root element is

list and it aggregates the elements reserved. Each element reserved of the element list

defines one reserved SQL keyword.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 44

3.3.2.2. Data Type Mapping

The XML Schema for the mapping of any type of data types has been defined in this

thesis. It is illustrated in figure 3.14. The text view of this specific XML schema you

can find in appendix A. The root element mappers aggregates the elements mapping,

sql, and mapper. The elements mapping and sql appear in each instance of this

schema only once. The mapping element defines the mapping direction, namely

schema2java or java2sql. The mapping direction schema2java implies the mapping

from XML schema data types to Java data types. The mapping direction java2sql, on

the other hand, implies the mapping from Java data types to SQL data types. The sql

element is only required when the mapping element takes the value of java2sql and it

provides the RDBMS name to which data types the java data types will be mapped.

Figure 3.14 The XML Schema for the Mapping of the Data Types

The root element mappers also aggregates the elements mapper. Each of the mapper

elements defines the mapping between different data types. For instance, if the

mapping element takes the value of schema2java, then each mapper element will map

one XML schema data type to one Java data type. The element mapper aggregates

one element from and one element to, which hold the data type names. The data type

denoted by the element from will be mapped to the data type denoted by the element

to. For instance, if the mapping element takes the value of schema2java and the one of

the mapper elements’ element from holds the name of the XML schema data type int,

then the element to of this mapper element holds logically the name of the Java data

type int.

Using this XML schema’s instance, all data types of the left side of the mapping

direction can be mapped to all data types of the right side of the mapping direction.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 45

The mapping of the geometry data types are also denoted in the instances of this

schema together with the simple data types and in the same manner as simple data

types. For instance, if the element from of a certain mapper element holds the name

PolygonPropertyType of the geometry data type, then the element to of the same

mapper element holds logically the name Polygon of the Java data type.

In the appendix B, one can find the text of XML file defining the mapping from XML

Schema data types to Java data types, which also includes the mapping of the

geometry data types.

3.3.2.3. Data Mappers

Data Mappers module performs the actual XML Schema structures to Model objects

mapping process. The class diagram of this module is depicted in figure 3.15. Each

Model class has its Data Mapper, which performs the mapping of the information

specific to this class from the specific XML schema.

The AbstractMapper class is an abstract class, which captures the common

functionality and stores the common information to all Data Mapper classes. The

AbstractMapper class declares two abstract methods, namely doLoad and load, which

must be implemented in a specific Data Mapper class for the information mapping,

specific to the according Model class. The doLoad method returns the List of objects

of the according Model class resulting after the mapping (refer to figure 3.7). The

load method returns the object of the according Model class resulting after the

mapping (refer to figure 3.7). Each specific Data Mapper class extends the

AbstractMapper class and implements two above mentioned methods.

There are the following Data Mappers defined in the Data Mappers module (see

figure 3.15 and figure 3.7):

- TableMapper class defines the mapping of the information relevant to the

Table class;

- AttributeMapper class defines the mapping of the information relevant to

the Attribute class;

- GeometryMapper class defines the mapping of the information relevant to

the Geometry class;

- PrimaryKeyMapper class defines the mapping of the information relevant

to the PrimaryKey class;

- ForeignKeyMapper class defines the mapping of the information relevant

to the ForeignKey class;

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 46

- DataTypeMapper class defines the mapping of the information relevant to

the DataType class;

- GeometryTypeMapper class defines the mapping of the information

relevant to the GeometryType class.

Figure 3.15 Data Mappers Class Diagram

To better understand how the Data Mappers work please refer to figure 3.16, which

illustrates the mapping process. The term user will be used in this section to denote

the module, which uses the services provided by Data Mappers module. The mapping

process starts when the user of the Data Mappers module calls the TableMapper’s

doLoad method. The TableMapper takes one of the relational database table

definitions, which are found in the specific XML Schema passed by the user. The

TableMapper maps the name of the relational database table to the according Table

object’s property.

The TableMapper passes all column definitions, found for this specific relational

database table definition, to the AttributeMapper and calls the AttributeMapper’s

doLoad method. For each column definition received, the AttributeMapper maps its

name and nullability to the according Attribute object’s properties. It also passes each

column’s data type name and the data type restriction definitions to the

DataTypeMapper, which maps the data type name and its restriction to the according

DataType object’s properties. Then DataTypeMapper returns the resulting DataType

object to the AttributeMapper. The AttributeMapper includes it into the Attribute

object and puts the Attribute object to the list of the Attribute objects. After all column

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 47

definitions have been mapped to the Attribute objects and the Attribute objects reside

in the list, the list of the Attribute objects represents all column definitions of the

specific relational database table and is returned by the AttributeMapper to the

TableMapper, where it is saved in the according property of the specific Table object.

The primary key definition of the specific relational database table definition, found in

the specific XML Schema, is then passed to the PrimaryKeyMapper and the

TableMapper calls the load method of the PrimaryKeyMapper. The

PrimaryKeyMapper maps the name of the primary key to the according property of

the PrimaryKey object. This PrimaryKey object is then returned to the TableMapper

by the PrimaryKeyMapper to be saved in the according property of the specific Table

object.

The foreign key definitions of the specific relational database definition, found in the

specific XML Schema, are passed to the ForeignKeyMapper and the TableMapper

calls the doLoad method of the ForeignKeyMapper. For each foreign key definition

for this specific relational database table definition, the ForeignKeyMapper maps the

name of the foreign key and its nullability to the according properties of the

ForeignKey object. The ForeignKeyMapper also maps the referenced table name to

the according property of the ForeignKey object. The specific ForeignKey object is

put to the list of ForeignKey objects. When all ForeignKey objects have been mapped,

the ForeignKeyMapper returns the list of the ForeignKey objects to the TableMapper,

where it is saved in the according property of the specific Table object.

The geometry definitions of the specific relational database definition, found in the

specific XML Schema, are finally passed to the GeometryMapper and the

TableMapper calls the doLoad method of the GeometryMapper. For each geometry

definition of the specific relational database table definition, the GeometryMapper

maps the name of the geometry to the according property of the Geometry object. It

also passes the geometry type name of each geometry declaration to the

GeometryTypeMapper, which maps the geometry type name to the according

GeometryType object’s property. The GeometryTypeMapper returns then the resulting

GeometryType object to the GeometryMapper. The GeometryMapper includes it into

the Geometry object and puts the Geometry object to the list of the Geometry objects.

After all geometry definitions have been mapped to the Geometry objects and the

Geometry objects reside in the list, the list of the Geometry objects represents all

geometry definitions of the specific relational database table and is returned by the

GeometryMapper to the TableMapper, where it is saved in the according property of

the specific Table object.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 48

Figure 3.16 Data Mappers Activity Diagram (Mapping Process)

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 49

Finally all properties of the specific Table object are mapped and the TableMapper

puts the resulting Table object to the list of Table objects by. The TableMapper runs

the described mapping process for each relational database table definition found in

the specific XML Schema and all resulting Table objects are at the end put to the list

of the Table objects. When all relational database table definitions has been mapped

to the Table objects and put to the list, the list of Table objects is representing the

specific relational database schema definition in the specific XML Schema and is then

returned to the user for the further use.

The mapping process executed by the Data Mappers module has been described. It is

illustrated in figure 3.16.

3.3.3. Pseudo-Presentation Layer

As it was mentioned above, the Pseudo-Presentation Layer encapsulates SQL

Builders, which are responsible for the generation of the RDBMS-specific SQL DDL

scripts from the Model objects.

3.3.3.1. SQL Builders

The class diagram of the SQL Builders module is provided in figure 3.17. The

interface SQLBuilder is defined, which declares the methods to create SELECT,

INSERT, UPDATE, DELETE, CONSTRAINT, ALTER TABLE, and CREATE

TABLE SQL statements.

The GenericSQLBuilder class implements the SQLBuilder interface and holds the

names of the SQL keywords in its properties, which are most frequently used in the

mentioned SQL statements. The GenericSQLBuilder class defines the way to build

the most generic SQL structures. For example, it defines the concatenation of strings

that hold SELECT block, FROM block, and WHERE block in the SELECT SQL

statement, but it does not define the pattern of how the table names with their aliases

are arranged in the FROM block. The latter task is left for the vendor-specific SQL

Builders.

The AbtractVendorSQLBuilder abstract class extends the GenericSQLBuilder class. It

declares the methods to build the more vendor-specific parts of the SQL statements

like it was described above. It declares abstract methods for building table name

definition, attribute definition, primary key definition, and foreign key definition for

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 50

the CREATE TABLE SQL statement and table definitions and column definitions for

the SELECT SQL statement. The AbstractVendorSQLBuilder abstract class knows

about the RDBMS vendor type chosen for the mapping and it holds the list of the

reserved SQL keywords. Although the reserved SQL keywords are originally stored

in the XML file, which is an instance of the XML Schema illustrated in figure 3.13,

but the real check of the names used in the relational database table definition is done

in the SQL Builders module by the chosen vendor-specific SQL Builder.

Figure 3.17 SQL Builders Class Diagram

The vendor-specific SQL Builders extend the AbstractVendorSQLBuilder abstract

class and implement all the abstract methods declared in the

AbstractVendorSQLBuilder abstract class. The vendor-specific SQL Builders can also

reload the properties of the GenericSQLBuilder class that differ from the vendor-

specific SQL with the vendor-specific values. The properties of the

GenericSQLBuilder class are inherited by the vendor-specific SQL Builders through

the AbstractVendorSQLBuilder abstract class. This way the vendor-specific parts of

the SQL statements are built in the vendor-specific SQL Builders. In figure 3.17 one

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 51

can find three vendor-specific SQL Builders: PostgisSQLBuilder, OracleSQLBuilder,

and MySqlSQLBuilder. Only PostgisSQLBuilder is fully designed, the others can

easily be finished based on the example of the PostgisSQLBuilder. More vendor-

specific SQL Builders can be easily added by extending the

AbstractVendorSQLBuilder abstract class reloading the vendor-specific properties of

the GenericSQLBuilder class and implementing the vendor-specific methods of the

AbstractVendorSQLBuilder abstract class.

3.3.3.2. SQL Scripts Generation Process

The SQL scripts represent the RDBMS-specific relational database schema definition,

which is the end-result of the designed product. The SQL scripts generation process is

illustrated in figure 3.18 using the PostgisSQLBuilder. The PostgisSQLBuilder is the

only vendor-specific SQL Builder, which has been fully designed in this thesis.

The term user component will be used to denote the component that is using the

PostgisSQLBuilder for the SQL scripts generation. In the process the

PostgisSQLBuilder is using the Model objects, created by other layers, as an

information source about the existing relational database schema definition. The

PostgisSQLBuilder fetches the necessary data from the according Model objects and

performs the data type mapping from the Java data types to the Postgis SQL data

types. It performs the data type mapping in the same manner as it is described in

section 3.2.2.2 Data Type Mapping and uses the XML file, which is the instance of

the XML Schema illustrated in figure 3.14. The example of such file one can find in

the appendix B.

The SQL scripts generation process starts when the user component chooses one of

the vendor-specific SQL Builders. In this particular case, the PostgisSQLBuilder will

perform the generation. The PostgisSQLBuilder takes one of the Table objects from

Model objects and creates Postgis-specific parts of the CREATE TABLE statement.

The typical CREATE TABLE statement is provided in figure 3.19. The Postgis-

specific parts are underlined, namely the name of the table, column definitions

including the data types, primary key name, foreign key name and the referenced

table’s name and column. After the Postgis-specific parts are generated, the generic

CREATE TABLE statement parts are generated using the methods defined in

GenericSQLBuilder and inherited by PostgisSQLBuilder through extension of

AbstractVendorSQLBuilder. The generic CREATE TABLE statement parts in figure

3.19 are the following keywords: CREATE TABLE, PRIMARY KEY, FOREIGN

KEY, the parentheses enclosing the relational database table definition, and the

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 52

symbol “;”. After those are generated from the original or reloaded

GenericSQLBuilder’s properties, the Postgis-specific and generic SQL parts are

concatenated in the proper order, as it is depicted in figure 3.19, and the resulting

CREATE TABLE statement is saved in the list of the SQL scripts.

Figure 3.18 PostgisSQLBuilder Activity Diagram

The PostgisSQLBuilder performs the similar procedure with each Geometry object

from the list found in the property geometries of this specific Table object. The typical

resulting SELECT SQL script can be seen in figure 3.19 and it represents the

definition of the 2-dimensional geometry column geom for the relational database test,

relational database table city, in the referential coordinate system identified by id

4326, of the geometry type POLYGON. The underlined part is Postgis-specific and

the keyword SELECT is a generic SQL keyword. After the SELECT SQL statements

defining all geometry columns are generated and put into the SQL scripts list, the

other Table object is taken from available list of Table objects and the described

process of SQL scripts generation is repeated.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 53

Figure 3.19 Typical CREATE TABLE and SELECT

AddGeometryColumn() SQL statements in Postgis SQL

After all Table objects from the available list of Table objects are processed, the

resulting list of SQL scripts is returned to the user component for the further use.

3.4. Limitations

There are several limitations of the model for relational database schema definition

generation from XML Schema, which have been identified after the design phase.

They are the following:

- there is no support for defining and mapping the uniqueness of the

relational database table’s column. The support must be provided in the

further development of the model;

- there are only suggestions for the definition and mapping of the primary

and foreign key. This issue must still be analyzed and the solution must be

provided in the further development of the model;

- there is no support for the definition and mapping of the user-defined

types. Such support would require nested complex type handling. The

support must be provided in the further development of the model, since it

is already partially supported in one of the implementations of the

OpenGIS specifications (deegree [DGREE04]);

- the support of new RDBMSs is achieved by extending the

AbstractVendorSQLBuilder abstract class, reloading the differing

properties of the GenericSQLBuilder class, and implementing all abstract

methods of the AbstractVendorSQLBuilder abstract class. Although this is

quite flexible, but these responsibilities could be transferred to XML files.

One could define the syntax of the new vendor-specific SQL as an XML

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 54

file and in such particular way support the new RDBMS. It must be

considered in the further development of the model.

3.5. Summary of the Chapter

The model of the generic data importer has been introduced. The problem statement

has been provided and the three-layer architecture of the relational database schema

generation from XML Schema model has been defined to solve the provided problem.

The three-layer architecture is consisting from the following layers: data layer, logic

layer, and pseudo presentation layer. The overall process description within the

defined three-layer architecture has been described. The design decisions that have

been taken have been described and the detailed design of each layer of the defined

architecture of the model has been defined. The processes within each layer of the

defined architecture of the model have also been described. Several limitations of the

defined architecture of the model for relational database schema generation from

XML Schema have been identified. They are the following: no support for

uniqueness, primary key, foreign key, user-defined types (nested complex types), and

limited flexibility in extending for the support of new RDBMS.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 55

4. Implementation of the Model

The list of technologies that will be used for the implementation of the designed

model for relational database schema generation from XML Schema will be provided

with the short description. The specificities of the implementation of this model will

be also described. The example of using the implemented model will be provided and

the qualitative evaluation of the implementation will be presented.

4.1. Technologies Used for the Implementation

The model for the relational database schema from XML Schema generation was

implemented using Java programming language and JDOM [JDOM04] for Java

representation of the XML document. For the use of the implemented component it is

recommended to plug it into the JDBC [JDBC04] enabled component for the dynamic

creation of the specific relational database schemas in chosen RDBMS.

4.1.1. Java Programming Language

Java programming language allows writing components, which can run on various

platforms, since those programs are run on (interpreted by) the Java Virtual Machine

(Java VM) program. So the Java programming language allows writing platform-

independent components. [JAVA04]

4.1.2. JDBC technology

The JDBC technology is an API that provides the cross-DBMS connectivity to a wide

range of the SQL databases. This technology was not used for the implementation of

the designed model, but it is suggested to plug the implemented component into the

JDBC enabled component for the dynamic creation of the specific relational database

schemas in chosen RDBMS. The JDBC allows arranging the API calls to any

database in the common manner. One can specify the RDBMS by choosing the

RDBMS driver. In combination with the implemented component, JDBC Technology

provides a kind of RDBMS-independency. [JDBC04]

4.1.3. JDOM

The JDOM is a Java representation of the XML document. It represents the XML

document for efficient reading, manipulation, and writing. The JDOM has a

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 56

lightweight and fast API, which is an alternative to DOM and SAX [SAX04]. On the

other hand, it integrates with both, DOM and SAX. JDOM is a document object

model that uses XML parsers to build documents. It can use nearly any XML parser

available on the market. By default it uses JAXP parser. So the JDOM provides some

kind of XML Parser independency. [JDOM04]

4.2. Implementation Specificities

Further in this section the term generator will be used to identify the implemented

model for the relational database schema generation from XML Schema.

The generator implements most of the functionalities of the designed model for the

relational database schema generation from XML Schema. The following

functionalities where not implemented in the generator:

- primary key definition generation;

- foreign key definition generation.

The generator as it is implemented satisfies the requirements of the project, in the

area of which the generator was designed and implemented.

The configuration file for the generator was defined as an XML file, which XML

Schema is illustrated in figure 4.1. The text view of this XML schema and the

configuration file example is provided in the appendix C.

Figure 4.1 The XML Schema for the Configuration File of the Generator

The element home specifies the full path to the directory where the generator resides.

The element map_path specifies the path relative to the home element’s value where

the mapping files reside. The element schema2java specifies the mapping file’s name,

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 57

which defines the data type mapping from XML Schema data types to Java data types.

The element java2sql specifies the file name, which holds the reserved SQL keywords

list. The last but not least, the dbs element holds the dbname elements, which specify

the names of the RDBMS, which are supported by the generator. At the same time

each dbname element specifies the mapping file name, which defines the data type

mapping from Java data types to SQL data types of the specific RDBMS.

The extra functionality of the generator was implemented. It generates the report

about the process of the generation. The report XML Schema is illustrated in figure

4.2. The text view of this XML schema and the example of the report file is provided

in the appendix C.

Figure 4.2 The XML Schema for the Report File of the Generator

The report XML Schema’s root element is report, which consists of the sequence of

the table elements. Each table element consists of the following sequence of the

elements: from, to, attribute (multiple appearance), and geometry (multiple

appearance). Element from provides the feature name from the original XML schema.

Element to provides the table name to which the feature name was mapped by the

generator. Each attribute element consists of the following sequence of the elements:

from, to, and dataType. The same sequence of the elements is aggregated by each

geometry element. The geometry elements are optional. The elements from and to

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 58

from the attribute and geometry elements have the same semantics as the elements

from and to from the element table. The element from provides the pre-generation

name of the attribute or geometry and the element to provides the post-generation

name of the attribute or geometry. The element dataType consist of the following

sequence of the elements: schema, java, and sql. It provides the data type mapping

information. The element schema provides the XML Schema data type name. The

element java provides the Java data type name. The element sql provides the SQL

data type name.

The model for relational database schema generation from XML Schema was

implemented as a component, which can be used as an imported library in the Java

code of ones own application by calling the static method process() of the Main object

providing different parameters, or can be called as a executable providing the

parameters in the command line.

The parameters needed for the generation to be executed are the following:

- the specific XML Schema document from which the relational database

schema must be generated (can be provided as a full path to the file in the

file system from the command line or the java.io.Reader object to the

static process() method of the Main object);

- the RDBMS type, which exact possible values are specified in the

configuration file of the generator under the element dbname: e.g. postgis,

oracle, mysql;

- true if the reserved SQL keywords provided in the specific XML file must

be taken into account, false if not;

- true if the report about the generation process, as it is defined by the report

XML Schema illustrated in figure 4.2, must be generated, false if not;

- the name of the relational database for which the relational database

schema will be created;

- spatial reference system id number (srid). There are many standards and

types of spatial reference systems. One needs to specify, in which spatial

reference system the coordinates of the geometries are provided;

- dimension of the geometries. One needs to specify if the geometries are

provided as 2- or 3-dimentional objects.

4.3. Example of the Use of the Implemented Model

As an example, the specific XML Schema document, generated by the OpenGIS Web

Feature Service (WFS) implementation called GeoServer [GEOS04], will be used.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 59

The GeoServer provides the functionality to generate the default specific XML

Schema document from the given data source using the following

DescribeFeatureType [WFSv1.0] request to the GeoServer:

http://troubadix.wb.tu-harburg.de:8180/geoserver/wfs?request=DescribeFeatureType

&typeName=buenz:Buenzau_nutzung.

The GeoServer has generated the XML Schema document, which is depicted in figure

4.3. The original data source was the ESRI Shapefile [SHP98], one of the standard to

store the geographical data (geodata). The document defines the feature

Buenzau_nutzung, which has the following elements:

- the_geom is an element of a geometry type MultiPolygonPropertyType as

it is defined in [SFSv1.1];

- AREA is an element of a simple type double;

- PERIMETER is an element of a simple type double;

- NUTZUNG_ is an element of a simple type int;

- NUTZUNG_ID is an element of a simple type int;

- NS is an element of a simple type int;

- BRD is an element of a simple type int;

- SZENE is an element of a simple type int;

- SPHEROID is an element of a simple type string;

- TKNR is an element of a simple type string;

- NS1 is an element of a simple type int;

- NS2 is an element of a simple type int;

- NS3 is an element of a simple type int;

- NUTZUNG is an element of a simple type string.

All the mentioned elements of the feature Buenzau_nutzung are defined with

attributes nillable set to true and minOccurs set to 0. This specific XML Schema

resides in the file on the files system under the following full path:

/{full_path}/buenzau.xsd.

The generator will be called, which we have named RedGenie (RElational Database

schema GENerator), as an executable from the command line as follows:

java RedGenie.main.Main /{full_path}/buenzau.xsd postgis true true test 31467 2

The parameters have the following meaning accordingly:

- the specific XML Schema resides under /{full_path}/buenzau.xsd;

- generate relational database schema definition for Postgis RDBMS;

- check the keywords of the definition against reserved SQL keywords;

- generate the report file;

- generate the relational database schema definition for database with the

name test;

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 60

- the coordinates of the geometries are provided in the spatial reference

system, which id is 31467;

- the geometries are 2-dimentional objects;

Figure 4.3 Example of a Specific XML Schema

Document Generated by GeoServer

The generated relational database schema definition is provided in figure 4.4. The

report file is provided in the appendix C. The generated relational database schema

definition’s CREATE TABLE SQL statement defines the relational database table

named Buenzau_nutzung with the columns corresponding to the elements defined in

the specific XML Schema provided in figure 4.3. Each data type was mapped as it

was defined in the data type mapping file for Postgis RDBMS. The contents of this

data type mapping file can be found in appendix B. The geometry column is defined

by relational database schema definition’s SELECT SQL statement, which uses the

function AddGeometryColumn() with the following parameters accordingly: test – the

name of the relational database, for which the geometry column is created,

buenzau_nutzung – the name of the relational database table, for which the geometry

column is created, the_geom – the name of the geometry column, 31467 – the id of

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 61

the spatial referential system, MULTIPOLYGON – the data type name of the

geometry, 2 – the dimension of the geometry objects.

Figure 4.4 Example of the Relational Database Schema Definition

for Postgis RDBMS Generated by the Generator (RedGenie)

The resulting SQL scripts (see figure 4.4) must be executed in Postgis RDBMS to

create the relational database schema to be able to populate it with data. One can do it

manually, but it is suggested to integrate the generator to ones own application and

execute the resulting SQL scripts using the JDBC technology. This way one would

automate the process of data import to the relational databases by eliminating the

necessity of human intervention to the process of creation of the relational database

schemas.

4.4. Evaluation of the Implementation

The implementation of the generator was successful. All fully designed features of

the model for relational database schema generation form XML Schema were

implemented. The ones not fully designed were also not implemented, namely

primary key definition and foreign key definition generation. So the generator

(RedGenie) is rather precise implementation of the originally designed model for

relational database schema generation from XML Schema.

4.5. Summary of the Chapter

The list of technologies that have been used for the implementation of the designed

model for relational database schema generation from XML Schema has been

provided, namely Java programming language and JDOM. It has been suggested

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 62

always to use the implemented component together with the JDBC technology, to

automate the data import to the relational databases. The specificities of the generator

have been described. It has been noted, that the functionality of foreign key and

primary key definitions generation was not implemented, since it was not fully

designed. The example of using the generator with the specific XML Schema has

been presented defining the feature Buenzau_nutzung, from which the relational

database schema definition has been successfully created. The evaluation of the

implementation of the generator has been described as rather precise, since all fully

designed functionalities of the original model has been implemented in the generator

(RedGenie).

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 63

5. Conclusions

5.1. Summary

The structures and the vocabulary relevant to this thesis from XML Schema standard

have been introduced, namely element declarations, simple and complex type

definitions, the attributes nillable and minOccurs of the element declaration,

substitution groups mechanism, extension mechanism, and key definitions. The

geometry and feature schemas defined in Open GIS Geography Markup Language

(GML) Implementation Specification Version 2.1.2 [GMLv2.1] have been introduced

and SQL geometry types defined in Open GIS Simple Features Specification for SQL

Revision 1.1 [SFSv1.1] have been provided.

The requirements for the relational database schema generation from XML schema

model have been formulated and the three-layer architecture for the design of the

mentioned model has been defined. The three layers are the following: data layer,

logic layer, and pseudo presentation layer. The model-view-controller pattern has also

been used for the definition of the architecture. The overall process of the relational

database schema generation from the XML Schema description within the three-layer

architecture has been described and the design decisions have been taken.

Furthermore, the detailed design of each layer of the defined three-layer architecture

of the model has been defined and the processes within each of the layers have been

described. Then several limitations of the defined model have been identified: no

support for the uniqueness of the relational database table’s column, primary key,

foreign key, user-defined types (nested complex types), and limited flexibility in

extending the support to more RDBMSs.

A list and short description of the technologies we have used for the implementation

of the designed model for relational database schema generation from XML Schema

have been provided, namely Java programming language and JDOM. It has been

suggested to use the implemented component together with the JDBC technology, to

automate the data import process to the relational databases. The specific

implementation decisions that have been made during the implementation have been

discussed and it has been noted that the support for foreign and primary key

definitions generation has not been implemented, because of the lack of design. The

example case of the relational database schema generation from the geographical

feature definition Buenzau_nutzung has been presented. The relational database

schema definition has been successfully created by the implemented component.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 64

Finally, the implementation has been evaluated as being rather successful, since all

fully designed functionalities have been implemented.

This thesis has shown that there is a lack of components in Java development

environment capable of generic data import to the relational databases with the

relational database schema definition generation from specific XML Schema with a

support for geographical features. One component from such a system has been

designed and implemented, namely a component for OpenGIS-compliant relational

database schema generation from the specific XML Schema. The implemented

component can be used and on demand extended in the projects that are and/or will be

in progress in River and Coastal Engineering Department in Technical University

Hamburg-Harburg.

5.2. Outlook

In the future, the design for the OpenGIS-compliant relational database schema

generation from the specific XML Schema model must be extended towards the

support of the identified limitations. The support for the uniqueness mapping must be

designed as soon as possible. The design of the support for the primary and foreign

key definition generations must be defined on demand, which should increase soon,

since some of the implementations of the OpenGIS specifications are already

announcing the support for the nested complex types. The flexibility regarding the

extension to the support of more RDBMSs is not very limited. The increase of the

flexibility should be considered as “nice to have” feature.

All the future designs should be implemented on the spot for testing and usage.

The report XML document generated by the implemented component can be used and

should be used not only for the overview of the results of the process, but also for the

dynamic configuration of the Geoservices implemented according to OpenGIS

Specifications, e.g. Web Feature Service (WFS) [WFSv1.0]. The mentioned report

XML document contains all necessary information and with the help of XSL

transformations [XSLTv1.0] it can be used for the mentioned configuration.

The other components of the generic data importer described in the introduction of

this thesis should be also implemented, namely relational database schema creation

module, data import module, and relational database schema update module.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 65

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 66

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 67

Appendix A. XML Schemas Related to Model

Figure A.1 The XML Schema for Storing Reserved SQL Keywords

Figure A.2 The XML Schema for Data Type Mapping Definition

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 68

6.

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 69

Appendix B. Instances of XML Schemas Related to Model

<?xml version="1.0" encoding="UTF-8"?>

<map:list
 xmlns="http://troubadix.wb.tu-harburg.de/map"
 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:map="http://troubadix.wb.tu-harburg.de/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://troubadix.wb.tu-harburg.de/map

 http://troubadix.wb.tu-harburg.de/map/java2sql.xsd">
 <!-- reserved SQL words: as it is given in SQL99 -->
 <map:reserved>ABSOLUTE</map:reserved>

 <map:reserved>ACTION</map:reserved>
 <map:reserved>ADD</map:reserved>
 <map:reserved>AFTER</map:reserved>

 <map:reserved>ALL</map:reserved>
 <map:reserved>ALLOCATE</map:reserved>
 <map:reserved>ALTER</map:reserved>

 <map:reserved>AND</map:reserved>
 <map:reserved>ANY</map:reserved>
 <map:reserved>ARE</map:reserved>

 <map:reserved>ARRAY</map:reserved>
 <map:reserved>AS</map:reserved>
 <map:reserved>ASC</map:reserved>

 <map:reserved>ASENSITIVE</map:reserved>
 <map:reserved>ASSERTION</map:reserved>
 <map:reserved>ASYMMETRIC</map:reserved>

 <map:reserved>AT</map:reserved>
 <map:reserved>ATOMIC</map:reserved>
 <map:reserved>AUTHORIZATION</map:reserved>

 <map:reserved>BEFORE</map:reserved>
 <map:reserved>BEGIN</map:reserved>
 <map:reserved>BETWEEN</map:reserved>

 <map:reserved>BINARY</map:reserved>
 <map:reserved>BIT</map:reserved>
 <map:reserved>BLOB</map:reserved>

 <map:reserved>BOOLEAN</map:reserved>
 <map:reserved>BOTH</map:reserved>
 <map:reserved>BREADTH</map:reserved>

 <map:reserved>BY</map:reserved>
 <map:reserved>CALL</map:reserved>
 <map:reserved>CALLED</map:reserved>

 <map:reserved>CASCADE</map:reserved>
 <map:reserved>CASCADED</map:reserved>
 <map:reserved>CASE</map:reserved>

 <map:reserved>CAST</map:reserved>
 <map:reserved>CATALOG</map:reserved>
 <map:reserved>CHAR</map:reserved>

 <map:reserved>CHARACTER</map:reserved>
 <map:reserved>CHECK</map:reserved>
 <map:reserved>CLOB</map:reserved>

 <map:reserved>CLOSE</map:reserved>
 <map:reserved>COLLATE</map:reserved>
 <map:reserved>COLLATION</map:reserved>

 <map:reserved>COLUMN</map:reserved>
 <map:reserved>COMMIT</map:reserved>
 <map:reserved>CONDITION</map:reserved>

 <map:reserved>CONNECT</map:reserved>
 <map:reserved>CONNECTION</map:reserved>
 <map:reserved>CONSTRAINT</map:reserved>

 <map:reserved>CONSTRAINTS</map:reserved>
 <map:reserved>CONSTRUCTOR</map:reserved>
 <map:reserved>CONTINUE</map:reserved>

 <map:reserved>CORRESPONDING</map:reserved>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 70

 <map:reserved>CREATE</map:reserved>
 <map:reserved>CROSS</map:reserved>

 <map:reserved>CUBE</map:reserved>
 <map:reserved>CURRENT</map:reserved>
 <map:reserved>CURRENT_DATE</map:reserved>

 <map:reserved>CURRENT_DEFAULT_TRANSFORM_GROUP</map:reserved>
 <map:reserved>CURRENT_PATH</map:reserved>
 <map:reserved>CURRENT_ROLE</map:reserved>

 <map:reserved>CURRENT_TIME</map:reserved>
 <map:reserved>CURRENT_TIMESTAMP</map:reserved>
 <map:reserved>CURRENT_TRANSFORM_GROUP_FOR_TYPE</map:reserved>

 <map:reserved>CURRENT_USER</map:reserved>
 <map:reserved>CURSOR</map:reserved>
 <map:reserved>CYCLE</map:reserved>

 <map:reserved>DATA</map:reserved>
 <map:reserved>DATE</map:reserved>
 <map:reserved>DAY</map:reserved>

 <map:reserved>DEALLOCATE</map:reserved>
 <map:reserved>DEC</map:reserved>
 <map:reserved>DECIMAL</map:reserved>

 <map:reserved>DECLARE</map:reserved>
 <map:reserved>DEFAULT</map:reserved>
 <map:reserved>DEFERRABLE</map:reserved>

 <map:reserved>DEFERRED</map:reserved>
 <map:reserved>DELETE</map:reserved>
 <map:reserved>DEPTH</map:reserved>

 <map:reserved>DEREF</map:reserved>
 <map:reserved>DESC</map:reserved>
 <map:reserved>DESCRIBE</map:reserved>

 <map:reserved>DESCRIPTOR</map:reserved>
 <map:reserved>DETERMINISTIC</map:reserved>
 <map:reserved>DIAGNOSTICS</map:reserved>

 <map:reserved>DISCONNECT</map:reserved>
 <map:reserved>DISTINCT</map:reserved>
 <map:reserved>DO</map:reserved>

 <map:reserved>DOMAIN</map:reserved>
 <map:reserved>DOUBLE</map:reserved>
 <map:reserved>DROP</map:reserved>

 <map:reserved>DYNAMIC</map:reserved>
 <map:reserved>EACH</map:reserved>
 <map:reserved>ELSE</map:reserved>

 <map:reserved>ELSEIF</map:reserved>
 <map:reserved>END</map:reserved>
 <map:reserved>EQUALS</map:reserved>

 <map:reserved>ESCAPE</map:reserved>
 <map:reserved>EXCEPT</map:reserved>
 <map:reserved>EXCEPTION</map:reserved>

 <map:reserved>EXEC</map:reserved>
 <map:reserved>EXECUTE</map:reserved>
 <map:reserved>EXISTS</map:reserved>

 <map:reserved>EXIT</map:reserved>
 <map:reserved>EXTERNAL</map:reserved>
 <map:reserved>FALSE</map:reserved>

 <map:reserved>FETCH</map:reserved>
 <map:reserved>FILTER</map:reserved>
 <map:reserved>FIRST</map:reserved>

 <map:reserved>FLOAT</map:reserved>
 <map:reserved>FOR</map:reserved>
 <map:reserved>FOREIGN</map:reserved>

 <map:reserved>FOUND</map:reserved>
 <map:reserved>FREE</map:reserved>
 <map:reserved>FROM</map:reserved>

 <map:reserved>FULL</map:reserved>
 <map:reserved>FUNCTION</map:reserved>
 <map:reserved>GENERAL</map:reserved>

 <map:reserved>GET</map:reserved>
 <map:reserved>GLOBAL</map:reserved>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 71

 <map:reserved>GO</map:reserved>
 <map:reserved>GOTO</map:reserved>

 <map:reserved>GRANT</map:reserved>
 <map:reserved>GROUP</map:reserved>
 <map:reserved>GROUPING</map:reserved>

 <map:reserved>HANDLER</map:reserved>
 <map:reserved>HAVING</map:reserved>
 <map:reserved>HOLD</map:reserved>

 <map:reserved>HOUR</map:reserved>
 <map:reserved>IDENTITY</map:reserved>
 <map:reserved>IF</map:reserved>

 <map:reserved>IMMEDIATE</map:reserved>
 <map:reserved>IN</map:reserved>
 <map:reserved>INDICATOR</map:reserved>

 <map:reserved>INITIALLY</map:reserved>
 <map:reserved>INNER</map:reserved>
 <map:reserved>INOUT</map:reserved>

 <map:reserved>INPUT</map:reserved>
 <map:reserved>INSENSITIVE</map:reserved>
 <map:reserved>INSERT</map:reserved>

 <map:reserved>INT</map:reserved>
 <map:reserved>INTEGER</map:reserved>
 <map:reserved>INTERSECT</map:reserved>

 <map:reserved>INTERVAL</map:reserved>
 <map:reserved>INTO</map:reserved>
 <map:reserved>IS</map:reserved>

 <map:reserved>ISOLATION</map:reserved>
 <map:reserved>ITERATE</map:reserved>
 <map:reserved>JOIN</map:reserved>

 <map:reserved>KEY</map:reserved>
 <map:reserved>LANGUAGE</map:reserved>
 <map:reserved>LARGE</map:reserved>

 <map:reserved>LAST</map:reserved>
 <map:reserved>LATERAL</map:reserved>
 <map:reserved>LEADING</map:reserved>

 <map:reserved>LEAVE</map:reserved>
 <map:reserved>LEFT</map:reserved>
 <map:reserved>LEVEL</map:reserved>

 <map:reserved>LIKE</map:reserved>
 <map:reserved>LOCAL</map:reserved>
 <map:reserved>LOCALTIME</map:reserved>

 <map:reserved>LOCALTIMESTAMP</map:reserved>
 <map:reserved>LOCATOR</map:reserved>
 <map:reserved>LOOP</map:reserved>

 <map:reserved>MAP</map:reserved>
 <map:reserved>MATCH</map:reserved>
 <map:reserved>METHOD</map:reserved>

 <map:reserved>MINUTE</map:reserved>
 <map:reserved>MODIFIES</map:reserved>
 <map:reserved>MODULE</map:reserved>

 <map:reserved>MONTH</map:reserved>
 <map:reserved>NAMES</map:reserved>
 <map:reserved>NATIONAL</map:reserved>

 <map:reserved>NATURAL</map:reserved>
 <map:reserved>NCHAR</map:reserved>
 <map:reserved>NCLOB</map:reserved>

 <map:reserved>NEW</map:reserved>
 <map:reserved>NEXT</map:reserved>
 <map:reserved>NO</map:reserved>

 <map:reserved>NONE</map:reserved>
 <map:reserved>NOT</map:reserved>
 <map:reserved>NULL</map:reserved>

 <map:reserved>NUMERIC</map:reserved>
 <map:reserved>OBJECT</map:reserved>
 <map:reserved>OF</map:reserved>

 <map:reserved>OLD</map:reserved>
 <map:reserved>ON</map:reserved>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 72

 <map:reserved>ONLY</map:reserved>
 <map:reserved>OPEN</map:reserved>

 <map:reserved>OPTION</map:reserved>
 <map:reserved>OR</map:reserved>
 <map:reserved>ORDER</map:reserved>

 <map:reserved>ORDINALITY</map:reserved>
 <map:reserved>OUT</map:reserved>
 <map:reserved>OUTER</map:reserved>

 <map:reserved>OUTPUT</map:reserved>
 <map:reserved>OVER</map:reserved>
 <map:reserved>OVERLAPS</map:reserved>

 <map:reserved>PAD</map:reserved>
 <map:reserved>PARAMETER</map:reserved>
 <map:reserved>PARTIAL</map:reserved>

 <map:reserved>PARTITION</map:reserved>
 <map:reserved>PATH</map:reserved>
 <map:reserved>PRECISION</map:reserved>

 <map:reserved>PREPARE</map:reserved>
 <map:reserved>PRESERVE</map:reserved>
 <map:reserved>PRIMARY</map:reserved>

 <map:reserved>PRIOR</map:reserved>
 <map:reserved>PRIVILEGES</map:reserved>
 <map:reserved>PROCEDURE</map:reserved>

 <map:reserved>PUBLIC</map:reserved>
 <map:reserved>RANGE</map:reserved>
 <map:reserved>READ</map:reserved>

 <map:reserved>READS</map:reserved>
 <map:reserved>REAL</map:reserved>
 <map:reserved>RECURSIVE</map:reserved>

 <map:reserved>REF</map:reserved>
 <map:reserved>REFERENCES</map:reserved>
 <map:reserved>REFERENCING</map:reserved>

 <map:reserved>RELATIVE</map:reserved>
 <map:reserved>RELEASE</map:reserved>
 <map:reserved>REPEAT</map:reserved>

 <map:reserved>RESIGNAL</map:reserved>
 <map:reserved>RESTRICT</map:reserved>
 <map:reserved>RESULT</map:reserved>

 <map:reserved>RETURN</map:reserved>
 <map:reserved>RETURNS</map:reserved>
 <map:reserved>REVOKE</map:reserved>

 <map:reserved>RIGHT</map:reserved>
 <map:reserved>ROLE</map:reserved>
 <map:reserved>ROLLBACK</map:reserved>

 <map:reserved>ROLLUP</map:reserved>
 <map:reserved>ROUTINE</map:reserved>
 <map:reserved>ROW</map:reserved>

 <map:reserved>ROWS</map:reserved>
 <map:reserved>SAVEPOINT</map:reserved>
 <map:reserved>SCHEMA</map:reserved>

 <map:reserved>SCOPE</map:reserved>
 <map:reserved>SCROLL</map:reserved>
 <map:reserved>SEARCH</map:reserved>

 <map:reserved>SECOND</map:reserved>
 <map:reserved>SECTION</map:reserved>
 <map:reserved>SELECT</map:reserved>

 <map:reserved>SENSITIVE</map:reserved>
 <map:reserved>SESSION</map:reserved>
 <map:reserved>SESSION_USER</map:reserved>

 <map:reserved>SET</map:reserved>
 <map:reserved>SETS</map:reserved>
 <map:reserved>SIGNAL</map:reserved>

 <map:reserved>SIMILAR</map:reserved>
 <map:reserved>SIZE</map:reserved>
 <map:reserved>SMALLINT</map:reserved>

 <map:reserved>SOME</map:reserved>
 <map:reserved>SPACE</map:reserved>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 73

 <map:reserved>SPECIFIC</map:reserved>
 <map:reserved>SPECIFICTYPE</map:reserved>

 <map:reserved>SQL</map:reserved>
 <map:reserved>SQLEXCEPTION</map:reserved>
 <map:reserved>SQLSTATE</map:reserved>

 <map:reserved>SQLWARNING</map:reserved>
 <map:reserved>START</map:reserved>
 <map:reserved>STATE</map:reserved>

 <map:reserved>STATIC</map:reserved>
 <map:reserved>SYMMETRIC</map:reserved>
 <map:reserved>SYSTEM</map:reserved>

 <map:reserved>SYSTEM_USER</map:reserved>
 <map:reserved>TABLE</map:reserved>
 <map:reserved>TEMPORARY</map:reserved>

 <map:reserved>THEN</map:reserved>
 <map:reserved>TIME</map:reserved>
 <map:reserved>TIMESTAMP</map:reserved>

 <map:reserved>TIMEZONE_HOUR</map:reserved>
 <map:reserved>TIMEZONE_MINUTE</map:reserved>
 <map:reserved>TO</map:reserved>

 <map:reserved>TRAILING</map:reserved>
 <map:reserved>TRANSACTION</map:reserved>
 <map:reserved>TRANSLATION</map:reserved>

 <map:reserved>TREAT</map:reserved>
 <map:reserved>TRIGGER</map:reserved>
 <map:reserved>TRUE</map:reserved>

 <map:reserved>UNDER</map:reserved>
 <map:reserved>UNDO</map:reserved>
 <map:reserved>UNION</map:reserved>

 <map:reserved>UNIQUE</map:reserved>
 <map:reserved>UNKNOWN</map:reserved>
 <map:reserved>UNNEST</map:reserved>

 <map:reserved>UNTIL</map:reserved>
 <map:reserved>UPDATE</map:reserved>
 <map:reserved>USAGE</map:reserved>

 <map:reserved>USER</map:reserved>
 <map:reserved>USING</map:reserved>
 <map:reserved>VALUE</map:reserved>

 <map:reserved>VALUES</map:reserved>
 <map:reserved>VARCHAR</map:reserved>
 <map:reserved>VARYING</map:reserved>

 <map:reserved>VIEW</map:reserved>
 <map:reserved>WHEN</map:reserved>
 <map:reserved>WHENEVER</map:reserved>

 <map:reserved>WHERE</map:reserved>
 <map:reserved>WHILE</map:reserved>
 <map:reserved>WINDOW</map:reserved>

 <map:reserved>WITH</map:reserved>
 <map:reserved>WITHIN</map:reserved>
 <map:reserved>WITHOUT</map:reserved>

 <map:reserved>WORK</map:reserved>
 <map:reserved>WRITE</map:reserved>
 <map:reserved>YEAR</map:reserved>

 <map:reserved>ZONE</map:reserved>
</map:list>

Figure B.1 The XML Document Defining the Reserved SQL99 Keywords

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 74

<?xml version="1.0" encoding="UTF-8"?>
<map:mappers

 xmlns="http://troubadix.wb.tu-harburg.de/map"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:map="http://troubadix.wb.tu-harburg.de/map"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://troubadix.wb.tu-harburg.de/map
 http://troubadix.wb.tu-harburg.de/map/mapping.xsd">
 <map:mapping>schema2java</map:mapping>

 <!--XML Schema data types-->
 <map:mapper>
 <map:from>xs:boolean</map:from>

 <map:to>boolean</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:byte</map:from>
 <map:to>byte</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:short</map:from>
 <map:to>short</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:int</map:from>

 <map:to>int</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:long</map:from>
 <map:to>long</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:float</map:from>
 <map:to>float</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:double</map:from>

 <map:to>double</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:integer</map:from>
 <map:to>java.math.BigInteger</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:decimal</map:from>
 <map:to>java.math.BigDecimal</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:string</map:from>

 <map:to>java.lang.String</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:dateTime</map:from>
 <map:to>java.util.Calendar</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:base64Binary</map:from>
 <map:to>byte[]</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:hexBinary</map:from>

 <map:to>byte[]</map:to>
 </map:mapper>
 <map:mapper>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 75

 <map:from>duration</map:from>
 <map:to>java.lang.String</map:to>

 <!-- weblogic.xml.schema.binding.util.Duration -->
 </map:mapper>
 <map:mapper>

 <map:from>xs:time</map:from>
 <map:to>java.util.Calendar</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:date</map:from>
 <map:to>java.util.Calendar</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:gYearMonth</map:from>

 <map:to>java.util.Calendar</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:gYear</map:from>
 <map:to>java.util.Calendar</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:gMonthDay</map:from>
 <map:to>java.util.Calendar</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:gDay</map:from>

 <map:to>java.util.Calendar</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:gMonth</map:from>
 <map:to>java.util.Calendar</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:anyURI</map:from>
 <map:to>java.lang.String</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:NOTATION</map:from>

 <map:to>java.lang.String</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:token</map:from>
 <map:to>java.lang.String</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:normalizedString</map:from>
 <map:to>java.lang.String</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:language</map:from>

 <map:to>java.lang.String</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:Name</map:from>
 <map:to>java.lang.String</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:NMTOKEN</map:from>
 <map:to>java.lang.String</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:NCName</map:from>

 <map:to>java.lang.String</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:NMTOKENS</map:from>
 <map:to>java.lang.String[]</map:to>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 76

 </map:mapper>
 <map:mapper>

 <map:from>xs:ID</map:from>
 <map:to>java.lang.String</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:IDREF</map:from>
 <map:to>java.lang.String</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:ENTITY</map:from>

 <map:to>java.lang.String</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:IDREFS</map:from>
 <map:to>java.lang.String[]</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:ENTITIES</map:from>
 <map:to>java.lang.String[]</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:nonPositiveInteger</map:from>

 <map:to>java.math.BigInteger</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:nonNegativeInteger</map:from>
 <map:to>java.math.BigInteger</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:negativeInteger</map:from>
 <map:to>java.math.BigInteger</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:unsignedLong</map:from>

 <map:to>java.math.BigInteger</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:positiveInteger</map:from>
 <map:to>java.math.BigInteger</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:unsignedInt</map:from>
 <map:to>long</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>xs:unsignedShort</map:from>

 <map:to>int</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>xs:unsignedByte</map:from>
 <map:to>short</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>xs:QName</map:from>
 <map:to>java.lang.String</map:to>

 <!-- javax.xml.namespace.QName -->
 </map:mapper>
 <!--GML data types-->

 <map:mapper>
 <map:from>gml:Point</map:from>
 <map:to>Point</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:LineString</map:from>

 <map:to>LineString</map:to>
 </map:mapper>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 77

 <map:mapper>
 <map:from>gml:LinearRing</map:from>

 <map:to>LinearRing</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:Polygon</map:from>
 <map:to>Polygon</map:to>
 </map:mapper>

 <!--<map:mapper>
 <map:from>gml:Box</map:from>
 <map:to>Box</map:to>

 </map:mapper>-->
 <map:mapper>
 <map:from>gml:MultiGeometry</map:from>

 <map:to>MultiGeometry</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:MultiPoint</map:from>
 <map:to>MultiPoint</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:MultiLineString</map:from>
 <map:to>MultiLineString</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:MultiPolygon</map:from>

 <map:to>MultiPolygon</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:PointType</map:from>
 <map:to>Point</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:LineStringType</map:from>
 <map:to>LineString</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:LinearRingType</map:from>

 <map:to>LinearRing</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:PolygonType</map:from>
 <map:to>Polygon</map:to>
 </map:mapper>

 <!--<map:mapper>
 <map:from>gml:BoxType</map:from>
 <map:to>Box</map:to>

 </map:mapper>-->
 <map:mapper>
 <map:from>gml:MultiGeometryType</map:from>

 <map:to>MultiGeometry</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:MultiPointType</map:from>
 <map:to>MultiPoint</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:MultiLineStringType</map:from>
 <map:to>MultiLineString</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:MultiPolygonType</map:from>

 <map:to>MultiPolygon</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:pointProperty</map:from>
 <map:to>Point</map:to>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 78

 </map:mapper>
 <map:mapper>

 <map:from>gml:lineStringProperty</map:from>
 <map:to>LineString</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:polygonProperty</map:from>
 <map:to>Polygon</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:multiGeometryProperty</map:from>

 <map:to>MultiGeometry</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:multiPointProperty</map:from>
 <map:to>MultiPoint</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:multiLineStringProperty</map:from>
 <map:to>MultiLineString</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:multiPolygonProperty</map:from>

 <map:to>MultiPolygon</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:PointPropertyType</map:from>
 <map:to>Point</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:LineStringPropertyType</map:from>
 <map:to>LineString</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:PolygonPropertyType</map:from>

 <map:to>Polygon</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:MultiGeometryPropertyType</map:from>
 <map:to>MultiGeometry</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>gml:MultiPointPropertyType</map:from>
 <map:to>MultiPoint</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>gml:MultiLineStringPropertyType</map:from>

 <map:to>MultiLineString</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>gml:MultiPolygonPropertyType</map:from>
 <map:to>MultiPolygon</map:to>
 </map:mapper>

</map:mappers>

Figure B.2 The XML Document Defining the Data Type Mapping

from XML Schema Data Type to Java Data Types

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 79

<?xml version="1.0" encoding="UTF-8"?>
<map:mappers

 xmlns="http://troubadix.wb.tu-harburg.de/map"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:map="http://troubadix.wb.tu-harburg.de/map"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://troubadix.wb.tu-harburg.de/map
 http://troubadix.wb.tu-harburg.de/map/mapping.xsd">

 <map:mapping>java2sql</map:mapping>
 <map:sql>postgis</map:sql>
 <!--JAVA data types-->

 <map:mapper>
 <map:from>int</map:from>
 <map:to>INTEGER</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>short</map:from>

 <map:to>SMALLINT</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>long</map:from>
 <map:to>BIGINT</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>float</map:from>
 <map:to>FLOAT4</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>double</map:from>

 <map:to>FLOAT8</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>byte</map:from>
 <map:to>SMALLINT</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>boolean</map:from>
 <map:to>BOOLEAN</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>char</map:from>

 <map:to>CHAR</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>java.lang.Integer</map:from>
 <map:to>INTEGER</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>java.lang.Short</map:from>
 <map:to>SMALLINT</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>java.lang.Long</map:from>

 <map:to>BIGINT</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>java.lang.Float</map:from>
 <map:to>FLOAT4</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>java.lang.Double</map:from>
 <map:to>FLOAT8</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>java.lang.Byte</map:from>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 80

 <map:to>SMALLINT</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>java.lang.Boolean</map:from>
 <map:to>BOOLEAN</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>java.lang.Character</map:from>

 <map:to>CHAR</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>java.lang.String</map:from>
 <map:to>VARCHAR</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>java.lang.String[]</map:from>
 <map:to>TEXT</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>java.math.BigInteger</map:from>

 <map:to>DECIMAL</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>java.math.BigDecimal</map:from>
 <map:to>DECIMAL</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>java.util.Calendar</map:from>
 <map:to>VARCHAR</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>java.util.Date</map:from>

 <map:to>DATE</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>byte[]</map:from>
 <map:to>TEXT</map:to>
 </map:mapper>

 <!--<map:mapper>
 <map:from>weblogic.xml.schema.binding.util.Duration</map:from>
 <map:to></map:to>

 </map:mapper>
 <map:mapper>
 <map:from>javax.xml.namespace.QName</map:from>

 <map:to></map:to>
 </map:mapper>-->
 <!--GML data types-->

 <map:mapper>
 <map:from>Point</map:from>
 <map:to>POINT</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>Polygon</map:from>

 <map:to>POLYGON</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>LineString</map:from>
 <map:to>LINESTRING</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>LinearRing</map:from>
 <map:to>LINESTRING</map:to>

 </map:mapper>
 <map:mapper>
 <map:from>MultiPoint</map:from>

 <map:to>MULTIPOINT</map:to>
 </map:mapper>

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 81

 <map:mapper>
 <map:from>MultiPolygon</map:from>

 <map:to>MULTIPOLYGON</map:to>
 </map:mapper>
 <map:mapper>

 <map:from>MultiLineString</map:from>
 <map:to>MULTILINESTRING</map:to>
 </map:mapper>

 <map:mapper>
 <map:from>MultiGeometry</map:from>
 <map:to>GEOMETRYCOLLECTION</map:to>

 </map:mapper>
</map:mappers>

Figure B.3 The XML Document Defining the Data Type Mapping

from Java Data Types to Postgis SQL Data Types

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 82

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 83

7.

Appendix C. Implementation Related XML Documents

Figure C.1 The XML Schema for the Configuration

File for the Generator (RedGenie)

Figure C.2 The Configuration File for the Generator (RedGenie)

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 84

Figure C.3 The XML Schema for the Mapping Process Report Generation

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 85

<?xml version="1.0" encoding="UTF-8"?>
<report

 xmlns=http://troubadix.wb.tu-harburg.de/map
 xmlns:xlink=http://www.w3.org/1999/xlink
 xmlns:map=http://troubadix.wb.tu-harburg.de/map

 xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns:gml=http://www.opengis.net/gml
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:buenz=http://wb.tuhh.de/buenz
 xsi:schemaLocation="http://troubadix.wb.tu-harburg.de/map
 http://troubadix.wb.tu-harburg.de/map/report.xsd">

 <table>
 <from>buenz:Buenzau_nutzung</from>
 <to>Buenzau_nutzung</to>

 <attribute null="true">
 <from>buenz:AREA</from>
 <to>AREA</to>

 <dataType>
 <schema name="xs:double" />
 <java name="java.lang.Double" />

 <sql name="FLOAT8" />
 </dataType>
 </attribute>

 <attribute null="true">
 <from>buenz:PERIMETER</from>
 <to>PERIMETER</to>

 <dataType>
 <schema name="xs:double" />
 <java name="java.lang.Double" />

 <sql name="FLOAT8" />
 </dataType>
 </attribute>

 <attribute null="true">
 <from>buenz:NUTZUNG_</from>
 <to>NUTZUNG_</to>

 <dataType>
 <schema name="xs:int" />
 <java name="java.lang.Integer" />

 <sql name="INTEGER" />
 </dataType>
 </attribute>

 <attribute null="true">
 <from>buenz:NUTZUNG_ID</from>
 <to>NUTZUNG_ID</to>

 <dataType>
 <schema name="xs:int" />
 <java name="java.lang.Integer" />

 <sql name="INTEGER" />
 </dataType>
 </attribute>

 <attribute null="true">
 <from>buenz:NS</from>
 <to>NS</to>

 <dataType>
 <schema name="xs:int" />
 <java name="java.lang.Integer" />

 <sql name="INTEGER" />
 </dataType>
 </attribute>

 <attribute null="true">
 <from>buenz:BRD</from>
 <to>BRD</to>

 <dataType>
 <schema name="xs:int" />
 <java name="java.lang.Integer" />

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 86

 <sql name="INTEGER" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:SZENE</from>

 <to>SZENE</to>
 <dataType>
 <schema name="xs:int" />

 <java name="java.lang.Integer" />
 <sql name="INTEGER" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:SPHEROID</from>

 <to>SPHEROID</to>
 <dataType>
 <schema name="xs:string" />

 <java name="java.lang.String" />
 <sql name="VARCHAR" size="128" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:TKNR</from>

 <to>TKNR</to>
 <dataType>
 <schema name="xs:string" />

 <java name="java.lang.String" />
 <sql name="VARCHAR" size="128" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:NS1</from>

 <to>NS1</to>
 <dataType>
 <schema name="xs:int" />

 <java name="java.lang.Integer" />
 <sql name="INTEGER" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:NS2</from>

 <to>NS2</to>
 <dataType>
 <schema name="xs:int" />

 <java name="java.lang.Integer" />
 <sql name="INTEGER" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:NS3</from>

 <to>NS3</to>
 <dataType>
 <schema name="xs:int" />

 <java name="java.lang.Integer" />
 <sql name="INTEGER" />
 </dataType>

 </attribute>
 <attribute null="true">
 <from>buenz:NUTZUNG</from>

 <to>NUTZUNG</to>
 <dataType>
 <schema name="xs:string" />

 <java name="java.lang.String" />
 <sql name="VARCHAR" size="128" />
 </dataType>

 </attribute>
 <geometry dbname="test" srid="31467" dimension="2">

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 87

 <from>gml:the_geom</from>
 <to>the_geom</to>

 <geomType>
 <schema name="gml:MultiPolygonPropertyType" />
 <java name="MultiPolygon" />

 <sql name="MULTIPOLYGON" />
 </geomType>
 </geometry>

 </table>
</report>

Figure C.4 The Report File for the Buenzau_nutzung

Relational Database Schema Definition Generation

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 88

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 89

References

[XML04] Extensible Markup Language (XML). http://www.w3.org/XML/.

Last visited: March 05, 2004.

[XSD04] XML Schema. http://www.w3.org/XML/Schema.

Last visited: March 12, 2004.

[JDBC04] J2EE JDBC Technology. http://java.sun.com/products/jdbc/.

Last visited: March 15, 2004.

[DOM04] Document Object Model (DOM). http://www.w3.org/DOM/.

Last visited: January 20, 2004.

[XSPY04] XMLSpy 2004. Relational Database Integration.

http://www.altova.com/features_database.html.

Last visited: February 23, 2004.

[ORCL04] XML Technology Center. Oracle Technology Center.

http://otn.oracle.com/tech/xml/index.html

Last visited: February 23, 2004.

[NET04] Microsoft .NET. http://www.microsoft.com/net/.

Last visited: February 23, 2004.

[XSDB04] Project: Manage DB Schema using XSD: Summary. SourceForge.net.

http://sourceforge.net/projects/xsd2db/

Last visited: February 23, 2004.

[JAVA04] Java Technology. Products & Technologies. Sun Microsystems.

http://java.sun.com/.

Last visited: March 15, 2004.

[OGC04] Open GIS Consortium (OGC). http://www.opengis.org/.

Last visited: March 18, 2004.

[SFSv1.1] Open GIS Simple Features Specification for SQL Revision 1.1.

OpenGIS Specification 05/99. Open GIS Consortium, Inc. 1999.

http://www.opengis.org/docs/99-049.pdf

[MaHu02] Matthes, Prof. Dr. Florian. Hupe, Parick. Software Architectures.

Layered Architectures and Persistence Management. Lecture Slides.

STS, TUHH. 2002.

[SiSt02] Singh, Inderjeet. Stearns, Beth. Johnson, Mark. Designing Enterprise

Applications with the J2EE Platform, Second Edition. Addison-Wesley

03/02. Sun Microsystems, Inc. 2002.

[XSDp1] XML Schema Part 1: Structures. W3C Recommendation 05/01. W3C

2001. http://www.w3.org/TR/xmlschema-1/

[GMLv2.1] OpenGIS Geography Markup Language (GML) Implementation

Specification Version 2.1.2. OpenGIS Implementation Specification

Automatic Generation of OpenGIS-compliant Relational Database from XML Schema

 90

09/02. OpenGIS Consortium, Inc. 2002.

http://www.opengis.org/docs/02-069.pdf

[XPATHv1] XML Path Language (XPath) Version 1.0. W3C Recommendation

11/99. W3C 1999. http://www.w3.org/TR/xpath

[XLINKv1] XML Linking Language (XLink) Version 1.0. W3C Recommendation

06/01. W3C 2001. http://www.w3.org/TR/xlink/

[DGREE04] Deegree – OpenGIS Specifications implementation initiative. GIS and

Remote Sensing Unit of the Department of Geography, University of

Bonn, and lat/lon. http://deegree.sourceforge.net/

Last visited: February 23, 2004

[SQL01] Melton, Jim. Simon, Alan. SQL:1999 – Understanding Relational

Language Components. Morgan Kaufmann 2001

[JDOM04] JDOM Project. http://www.jdom.org/. Last visited: February 30, 2004

[SAX04] Simple API for XML (SAX). http://www.saxproject.org/.

Last visited: January 20, 2004

[GEOS04] The GeoServer Project. The Open Internet Gateway for Geographic

Data. http://geoserver.sourceforge.net/html/index.php.

Last visited: February 23, 2004

[WFSv1.0] Web Feature Service Implementation Specification Version 1.0.0.

OpenGIS Implementation Specification 09/02. Open GIS Consortium,

Inc. 2002. http://www.opengis.org/docs/02-058.pdf

[SHP98] ESRI Shapefile Technical Description. ESRI White Paper 07/98.

Environmental Systems Research Institute (ESRI), Inc. 1998.

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[WFD03] Introduction to the New EU Water Framework Directive. European

Commission 2003. http://europa.eu.int/comm/environment/water/water-

framework/overview.html

[GIS04] Geographical Information Systems (GIS). http://www.gis.com/.

Last visited: February 30, 2004

[XSINT01] W3C XML Schema Published as a W3C Recommendation. Cover

Pages 05/01. OASIS 2001.

http://xml.coverpages.org/ni2001-05-03-c.html

[XSDp2] XML Schema Part 2: Datatypes. W3C Recommendation 05/01. W3C

2001. http://www.w3.org/TR/xmlschema-2/

[XSDp0] XML Schema Part 0: Primer. W3C Recommendation 05/01. W3C

2001. http://www.w3.org/TR/xmlschema-0/

[XSLTv1.0] XSL Transformations Version 1.0. W3C Recommendation 11/99. W3C

1999. http://www.w3.org/TR/xslt

