

Evaluation of Web Application Development
Frameworks and Object-Relational Mappers:

A Case Study

Student Project

Submitted by:

Sunay YALDIZ
Matriculation Number 22480

16.02.2004

TECHNICAL UNIVERSITY HAMBURG-HARBURG

GERMANY

Supervised by:

Prof. Dr. Joachim Schmidt

Software Systems Department
TECHNICAL UNIVERSITY HAMBURG-HARBURG

GERMANY

Acknowledgements

My special thanks go to Prof. Dr. Joachim W. Schmidt and research assistant Dipl.-Inf.
Patrick Hupe at Software Systems Department of the Technical University of Hamburg-
Harburg and Mr Uwe Langbecker at Germanischer Lloyd for providing the opportunity to
work on this student project, for their essential and kind advice, encouragement and guidance
throughout this student project work.

 i

Contents
1. Introduction.. 1

1.1 Goal of the Work .. 2
1.2 Structure of the report ... 2

2. Requirements Analysis .. 3

2.1 Germanischer Lloyd .. 3
2.2 Analysis ... 3
2.3 The Existing System ... 6
2.4 New Technologies for GL Fleet Online... 6

3. Concepts and Technologies ... 7

3.1 Architecture for Web Applications... 7
3. 2 Architectural Pattern: MVC .. 8
3.3 Java-based realizations of MVC: Model 1, Model 2, Model 2X... 9

3.3.1 Model 1... 10
3.3.2 Model 2... 11
3.3.3 Model 2X.. 11

3.4 Web Development Frameworks.. 12
3.4.1 Struts... 12
3.4.2 OXF.. 15
3.4.3 Cocoon.. 19

3.4.3.1 Basic Mechanisms: Request-Response Cycle... 20
3.4.3.2 Architecture .. 22
3.4.3.3 The Cocoon Abstraction of the Concepts: .. 22

3.4.4 Struts-OXF Integration ... 24
3.4.5 Comparison of the inspected frameworks .. 25
3.4.6 Selection of framework .. 26

3.5 Object-relational (O/R) Mapping ... 26
3.5.1 O/R Mapping Standards ... 27
3.5.2 O/R Mapping Frameworks ... 27

3.5.2.1 Hibernate... 27
3.5.2.1.1 Architecture... 28
3.5.2.1.2 An example for O/R mapping with Hibernate .. 30

3.5.2.2 OJB (ObjectRelationalBridge).. 34
3.5.2.3 Castor JDO.. 35

3.5.3 Comparison of O/R Mapping Frameworks .. 36
3.5.3.1 Technical Aspects ... 36
3.5.3.2 Other criteria used for comparison.. 38
3.5.3.3 Selection of Framework.. 39

4. System Design... 40

4.1 Architecture .. 40
4.2 The Components... 41

4.2.1 Client .. 41
4.2.2 Web application Container ... 41
4.2.3 Persistence Manager ... 41
4.2.4 Presentation/Business Logic... 41
4.2.5 RDBMS.. 42
4.2.6 XML Generator .. 42
4.2.7 Domain Model Classes... 42

 ii

4.3 Sequence Diagrams .. 43
5. Implementation .. 45

5.1 Web Application in Java.. 45
5.2 Deploying the Web Application under Tomcat ... 46
5.3 Deployment descriptor of Fleet Online web application... 47
5.4 Struts Configuration file .. 47
5.5 Struts functionality... 48

5.5.1 Domain Model Classes and Database Tables ... 48
5.5.2 JSPs .. 52
5.5.3 Implemented Struts Actions ... 52
5.5.4 OXF Pipelines .. 53

5.5.4.1 ShowFleetStatus pipeline.. 53
5.5.4.2 ShowSurveyRequest pipeline ... 54
5.5.4.3 Castor XML Mappings ... 55
5.5.4.4 XSL Stylesheets.. 56

5.6 Hibernate Mapping .. 56
5.6.1 Class ShipData.. 56
5.6.2 Class Customer ... 58
5.6.3 Class SurveyItem.. 59
5.6.4 Class OrderedSurveyItem... 60
5.6.5 Class OrderedSurvey .. 61

5.7 Detailed Sequence Diagrams ... 64
5.8 Screenshots.. 67

6. Conclusion... 70

6.1 Summary... 70
6.2 Possible further development .. 70

Appendix .. 73

A1. Web.xml deployment descriptor .. 73
A2. Struts configuration file .. 75
A3. Hibernate mapping files.. 76

A3.1 Ship.hbm.xml.. 76
A3.2 Customer.hbm.xml ... 77
A3.3 SurveyItem.hbm.xml .. 79
A3.4 OrderedSurveyItem.hbm.xml ... 80
A3.5 OrderedSurvey.hbm.xml... 81

References .. 85

 1

1. Introduction

Web application development is not an easy task if we consider web sites for a big company
where dynamic pages are created. It covers much more than showing static html files, images.
A real complex web application for an enterprise is just an interface for the overall tasks of
the enterprise. Operations happening in the background for a web application include all kinds
of enterprise applications, transactions, databases, Content Management Systems, etc.
Operations vs. Systems do not match.

There are many existing web application development frameworks which ease the task of web
application development. Struts [STRT03], Cocoon [CoCoN03] and OXF [OXF03] (Open
XML Framework) are examples for these frameworks. These frameworks provide many
libraries to enable the Web application developers to focus on the business processes
implementation rather than focusing on programming language and environment related
problems. In a way the frameworks suggest the separation of concerns for the development.
The business objects and processes can be more concentrated on by the developers. The
simple static pages’ viewing of a web application is carried on a new platform where most of
the data are dynamic, read from databases, where there exists high interaction of the system
(web sites) with the clients (browsers). Without the frameworks the concept of dynamic page
creation, development of content and business object-dense web sites is of course possible.
But this necessitates very much programming which results in very error-prone sites that are
developed in long time with high project budgets. The help of the frameworks are easier to
realize at this point.

Object-relational mapping (O/R mapping) for persistence is mapping of the object-oriented
world to relational databases where the information is held in relational structures. There is an
impedance mismatch between the both worlds. But mapping is necessary for various reasons.
Nowadays object-oriented languages like Java [Java03], C#, C++ are the mostly used
languages by enterprises for software projects. The application and business data are modelled
in an Object-oriented way. On the other hand, in relational databases the same data is
expressed in relational tables which have columns and rows. In many projects the mapping
from the Object-Oriented world to the relational world is manually coded in the application
programs. This is a safe way but it is also very error-prone and requires a lot of hand-work.
There is a need for automated mapping which abstracts from create, update and delete
operations. There exist frameworks and tools for this automatic mapping task. Classes of the
OO language are mapped to relational tables. Hibernate [HBNT03]; OJB
(ObjectRelationalBridge) [OJB03] and Castor JDO [CJDO03] are some of the examples for
these frameworks.

Germanischer Lloyd (GL) [GL03] is one of the leading classification societies worldwide. It
supervises quality and safety mainly for ships and for maritime installations.
The GL Fleet Online is a service for customers of GL. GL Customers can view the status of
their fleet and survey requests for the ships online. Fleet online makes it possible to get an
access to current information for all GL classed vessels via internet. It supports the process of
survey-planning, ordering and monitoring and provides the opportunity to manage customer
generated items as well. GL Fleet Online service is currently implemented in the C
programming language using CGI (Common Gateway Interface) [CGI03] technology.
Sessions tracking and related online system requirements are manually coded. A move to
current standard OO-Technologies and standards for web application development is planned

 2

for the easier application development and maintenance. Java seems to be preferable as the
development language and runtime environment.

New technologies for web development enable many features to provide for customers of GL.
Mobile clients are used more and more frequently by the customers. There will be service
provision for web-based and mobile clients.

1.1 Goal of the Work

In this student project an analysis of existing frameworks for web development will be done.
Struts, Cocoon and OXF (Open XML Framework) web application development frameworks
will be analysed and compared. The other main task of the work is the analysis of the O/R
mapping tools. The O/R mapping frameworks Hibernate, OJB and Castor JDO will be
analysed and compared. The main purpose for the analysis of the web application frameworks
and O/R mapping frameworks is to implement the GL Fleet Online with current web-
application technologies.

An analysis, design and prototypical implementation of the GL Fleet Online service with the
chosen web development framework(s) and O/R mapping framework will be done. Not all the
requirements identified for GL Fleet Online service will be implemented; the focus is on web
application and O/R mapping tool evaluation.

1.2 Structure of the report

In chapter 2 a brief requirements analysis will be done for GL Fleet Online Service. In chapter
3, basic concepts about web development frameworks and O/R mapping frameworks will be
explained. The web application development models, frameworks and O/R mapping
frameworks will be explained. There will also be comparison of the analyzed web
development frameworks and the analysed O/R mapping frameworks. Chapter 4 will be
architecture for web applications on which the GL Fleet Online service will be realized will
be defined. Short descriptions of the components with their purposes in the system will be
given. In chapter 5, the implementation of the GL Fleet Online service with Struts, OXF,
Hibernate and Castor XML will be explained. Selected implementation details will be given.
Chapter 6 is the Conclusion section.

 3

2. Requirements Analysis

In this chapter requirements analysis for GL Fleet Online service is done. The analysis is
limited to requirements which are relevant for this student project. Before analysing the
requirements, introductory information on Germanischer Lloyd is given.

2.1 Germanischer Lloyd

Germanischer Lloyd is one of the leading classification societies worldwide. As an
independent and impartial society GL supervises quality and safety mainly for ships and for
maritime installations. [GLv03]

GL Marine Services

• classification and certification of ships and offshore systems
• extensive engineering analysis and divisory services
• certification of marine related materials and components
• certification of quality management according to ISO 9000, ISO 14000 and ISM
• certification of maritime training according to STCW
• inspection and certification on behalf of 86 countries

Other GL Services

• evaluation and certification of pipelines, petrochemical plants and industrial
installations

• analysis, testing and certification of materials and joining methods, failure analysis
• basic research, evaluation and certification of wind energy systems
• evaluation and certification of bridges and dams

For more information on GL services please refer to http://www.gl-group.com/.

2.2 Analysis

The Germanischer Lloyd (GL) is a classification society. It surveys ships, industrial plants
and maritime installations with respect to safety. Surveys are done in regular intervals,
normally every 5 years, but can be required more frequently. The time interval for surveys is
provided by the ship classification company. The ship owner requests a survey for a ship from
the classification society near the end of this period.

GL Fleet Online service has a main actor which takes part, the customer. Customer can login
to the system, logoff from the system and inspect the status of the ships he has in the fleet.

Customer logs in GL Fleet Online Service using the username and password. If the login is
successful, the customer can view the information about his ships. This information contains
ship data and surveys data for these ships.

After logon, the customer can view the state of the fleet of the customer. The fleet has the
information of the ships listed and survey data. The customer can choose a specific survey

 4

request for viewing the details. After the survey request is chosen, the customer views the
details for the chosen survey request of his ship.

Figure 2-1 Use Cases for Fleet Online

When the customer finishes his work, he should logoff from the system. If he forgets to log
off, after a timeout it will be automatically done. In Figure 2-1 the main use cases for the GL
Fleet Online System can be seen.

Ships have survey requests. Survey requests for ships are needed for certification. All ships
belonging to the customer need to be certified. The relationships between the customer, ship
and survey and survey items can be seen in Figure 2-2 in conceptual class diagram (The
cardinalities not shown are “1”).

Figure 2-2 Conceptual Class Diagram for Fleet Online

The use cases analysed are the cases which will be implemented in this work. The use cases
not seen like creation of new customers, survey data etc. also exist in Fleet Online system.

 5

Figure 2-3 Use cases-unimplemented

The customers, ships and survey data reside in the main GL database Oracle. The surveys for
ships are created on a rule-based system by GL surveyors.

The GL customers have a registration number. When they register as customer by specifying
their ships information, customer information etc., the data are persisted. These data are then
used by the GL Online Systems; Fleet Online is one of them. For accessing the ships, surveys
data that belong to a customer, the customer should first get a user name and password from
the Fleet Online System. So, the needs to create a Fleet Online System account. To be able to
create an account, he gives the GL registration number and some more information.

The uses cases seen in Figure 2-3 are the unimplemented use cases. These use cases are
necessary for understanding the overall Fleet Online System requirements analysed for this
work. A customer as mentioned before creates a user account for Fleet Online based on his
GL customer information like register number. When a customer does not need to use Internet
access for Fleet Online, he can simply delete his web account. This does not remove his
information in GL main database, only the Fleet Online related data are deleted. Edit
Customer Data use case is also just about editing of the Fleet Online related customer data
like web access properties, whether the customer wants to receive newsletters, etc.

An important use case is the Order Survey for a Ship. By giving the unique id of a ship, a
customer can order a survey for this ship. The survey related data are entered by the customer.

Customer orders a survey and the evaluation of the survey is done in GL by surveyors. Ship
data and related survey data are used to evaluate whether the rules for the survey hold. These
rules are created also by GL surveyors as seen in use case Create Survey Forms.

These use cases are the main use cases of the Fleet Online System. The next section is about
the existing Fleet Online System.

 6

2.3 The Existing System

The existing web application GL Fleet Online service is for customers who have ships with
specific survey requests. The details of the use cases for GL Fleet Online Service will be
given in the next section.

GL Fleet Online Service is a server side web application to serve GL customers. As stated
before in section 1.1, it is implemented with C and CGI (Common Gateway Interface) in an
imperative way, not using Object oriented technologies. CGI for web applications is not an
efficient way of web deployment and execution. For every request coming from the client
browser a new operating system process is created. Process creation for Operating systems is
a resource intensive and slow task. Especially the communication between the processes is
hard and slow. Session tracking and related online system requirements are programmed “by
hand”.

The existing database is Oracle [ORcL9i]. Persistence related functionalities are done by SQL
commands in the C program.

All of the business data for GL Fleet Online System resides in RDBMS There is no business
object model and it is a 2-tier architecture which is not state-of-art.

2.4 New Technologies for GL Fleet Online

A main task in this project is the prototypical implementation of GL Fleet Online Service with
current technologies. The development language and runtime environment is chosen to be
Java [Java03].

The Tomcat Servlet Container [TmCT03] is chosen as web application development and as
servlet container runtime environment. Tomcat is a servlet container which controls the life
cycle of servlets and the overall web application running under it.

Oracle RDBMS used as main productive database for GL enterprise applications will not be
used for testing and development environment. The GL Fleet Online Service database content
will be analysed and re-created in a test environment RDBMS. The chosen database is
MySQL [MySQL03]. It is an open source database which has a very big user base, is tested
very well, can be installed easily. It is even used in performance critical systems. Access to
RDBMS was not available for this student project, only the database schema for GL Fleet
Online Service of the existing system was provided. This necessitated use of a test database.

 7

3. Concepts and Technologies

In this section concepts and technologies about web development frameworks and O/R
mappers will be given and the selected frameworks will be analysed and compared. The
analysis will result in an evaluation and choice of which framework and O/R mapper to use.

In the first section web application development frameworks are explained. For better
understanding of the frameworks, an introductive section is given on a standard architecture
for web applications. This architecture is for development of web applications in Java. There
are two main architectures for web applications, model 1 and model 2. Model 2 is Model-
view-controller architecture for server-side applications which are explained in more detail
below. Another architecture analysed is the Model 2X which is an extension of Model 2
architecture.

In the second section, O/R mappers will be explained. The JDO [JDO03] standard and
ODMG 3.0 [ODMG03] standards will be explained shortly. After this Hibernate, OJB and
Castor JDO are explained.

3.1 Architecture for Web Applications

In this section 3-tier architecture for web applications will be described. The 3-tier
architectures have the tiers: Presentation, Business logic and Database tier. The tiers will be
shortly explained. The tiers can be seen in Figure 3-1.

The purpose of the Presentation tier (Layer) is the visualization of the contents like static and
dynamic HTML [HTML03] pages. Presentation services provide the user interface to the
system. The realization of the Presentation tier of a Java application is separated in two parts:
Web Server for the static content and the Servlets, JSPs, EJB etc. technologies for the
dynamic content creation. This tier presents the business data to be displayed.

Figure 3-1 Tiers of 3-tier architectures

 8

The Business Logic tier is the tier where the business process and Domain Objects modelling
is done. The processes define the interfaces between the user of the system and the system. .
In three-tier architecture, all user access to the data occurs through presentation services,
which communicate with the business logic services.

The Database tier is the persistence tier. This tier provides the data on which the Business
Logic tier work .The business objects are persisted for recovery failure situations. Main
realization technologies for this tier are RDBMS, JDBC, and EJB etc.

Having 3-tier architecture for an application has many advantages as follows:

• Scalability and deployment flexibility - component roles are specialized, improving
maintainability, networking, and I/O overheads.

• Component roles are clearly defined within a 3-tier framework. This provides a good
basis for component-based development and reusability. Components in the business
tier can be shared by any number of components in the presentation tier.

• Infrastructure independence is enhanced by the use of 3-tier architecture. This is
because presentation and data access - areas that are often infrastructure-dependent are
separated from the application's business logic.

• A specific set of skills is required for the development of each tier, so tiers can be
developed independently of each other. For example, the thin presentation tier allows
front-end experts to do their work without being affected by developments taking
place in the business logic tier.

3. 2 Architectural Pattern: MVC

The MVC (Model-View-Controller) [Fowler03] architecture has its roots in Smalltalk, where
it was originally applied to map the traditional input, processing, and output tasks to the
graphical user interaction model. The MVC has three parts:

• Model

Model is the core of the application which maintains the state and data that the application
represents. It knows nothing about the views representing this model.

• View
The view renders the contents of a model. It specifies how the model should be presented. It is
the view's responsibility to maintain consistency in its presentation when the model changes.
There may be several views representing the same model.

• Controller
The controller translates user interactions with the view into actions to be performed by the
model. In a stand-alone GUI client, user interactions could be button clicks or menu
selections, whereas in a Web application, they appear as GET and POST HTTP [HTTP03]
requests. Based on the user interactions and the outcome of the model actions, the controller
responds by selecting an appropriate view.

 9

Figure 3-2 MVC architecture [SunBlue03]

The architectures to be explained in the next sections are based on MVC architecture. MVC
architecture is a general architecture which can be applied to any application. But the models
which will be explained soon are specific for server-side web applications. Specifically Model
2 is an MVC application for server-side web applications.

3.3 Java-based realizations of MVC: Model 1, Model 2, Model 2X

In this section architectural models which are realizations of MVC will be described; namely
the models Model 1, Model 2 and Model 2X. Model 1 and Model 2 are models accepted by
many users, they are defined by Sun according to how JSP are used in the web application.
On the other hand, the Model 2X is not a model defined by Sun. It is not a model accepted
and widely known by many users.

To understand the models some concepts of web development with Java shall be understood.
They will be shortly explained in the following paragraphs.

A specification is developed by Sun Microsystems that defines how Java objects interact. An
object that conforms to this specification is called a JavaBean.

Servlets are the Java platform technology of choice for extending and enhancing Web servers.
Servlets provide a component-based, platform-independent method for building Web-based
applications, without the performance limitations of CGI programs. And unlike proprietary
server extension mechanisms (such as the Netscape Server API or Apache modules), servlets
are server- and platform-independent. This leaves you free to select a "best of breed" strategy
for your servers, platforms, and tools. [SRVT03]

 10

Servlets have access to the entire family of Java APIs, including the JDBC API to access
enterprise databases. Servlets can also access a library of HTTP-specific calls and receive all
the benefits of the mature Java language, including portability, performance, reusability, and
crash protection. [SRVT03]

JavaServer Pages (JSP) technology enables Web developers and designers to rapidly develop
and easily maintain, information-rich, dynamic Web pages that leverage existing business
systems. As part of the Java technology family, JSP technology enables rapid development of
Web-based applications that are platform independent. JSP technology separates the user
interface from content generation, enabling designers to change the overall page layout
without altering the underlying dynamic content. [JSPv03]

JSP technology is an extension of the servlet technology created to support authoring of
HTML and XML pages. It makes it easier to combine fixed or static template data with
dynamic content. [SRVT03]

Enterprise JavaBeans (EJB) technology is the server-side component architecture for the Java
2 Platform, Enterprise Edition (J2EE) platform. EJB technology enables rapid and simplified
development of distributed, transactional, secure and portable applications based on Java
technology. [EJB03]

3.3.1 Model 1

Model 1 JSP page designs encapsulated the View and the Controller parts of the MVC pattern
within the same JSP page (or pages), and the data underlying the application (the Model) was
represented using JavaBeans. Model 1 consists of using JSP to extract data from the HTTP
request parameters, applying the business logic implemented in JavaBeans or directly into the
JSP, and then rendering the result in HTML output. In Model 1 view and controller are
realized in JSP pages, two-tier is more coarse-grain. The concepts model, view and controller
from the MVC pattern are not well separated in this model.

Figure 3-3 Model 1 components

The advantages of this model are that it is fast to implement, there is no overhead for
dispatching requests and all views are in one JSP mixed. The disadvantages of model 1 are
that there is no scalability and extensibility, there is strong coupling of responsibilities, and
JSP page is a mixture of Java code and HTML which means the model and the view mixed.

 11

3.3.2 Model 2

Model 2 is a server-side implementation of the Model View Controller architecture using
Servlets and Java Server Pages (JSP). In Model 2, Servlets control the flow of the Web
application and delegate the business logic to either JavaBeans or EJBs, while JSP pages take
care of producing the HTML (view). This model has a much cleaner separation of business
and presentation logic. This simplifies application development and maintenance.

Figure 3-4 Model 2 components [OxfRef03]

3.3.3 Model 2X

Model 2X architecture is defined by Orbeon company [ORBE]. This model extends the
Model 2 architecture. The only difference between Model 2 and Model 2x can be seen at the
view layer. In Model 2X the views are created by applying XSL Transformations (XSLT)
[XSLT03] stylesheets to XML documents instead of JSPs.

Figure 3-5 Model 2x [OxfRef03]

The difference between Model 2 and Model 2X can be seen in Figure 3-4 and Figure 3-5. As
stated before, the view layer differs in the models.

The view layer of Model 2X enables this model to have very good separation of tiers in
implementation. The business logic and the presentation are completely separated. Applying
XSLT stylesheet to an XML document produces the presentation. In stylesheets there can not

 12

be any business logic implementation. By this, the application programmer can not fall to trap
of mixing business logic and presentation.

3.4 Web Development Frameworks

In the following subsections, the following frameworks for web application development will
be described: Struts, OXF (Open XML Framework), and Cocoon and Struts-OXF integration
framework.

The Struts-OXF integration framework which is an extension of Struts by OXF is provided by
the company offering OXF. Normally integrating two different frameworks in a web
application is either not possible or very difficult.

To understand the framework Struts-OXF integration one should also understand the web
application architectures. This framework applies the architecture Model2X [ORBE].

3.4.1 Struts

Struts [STRTSv03] is a Model-View-Controller (MVC) based framework which is primarily
based on servlets and JSP technology.

Figure 3-6 Struts elements and interaction [OxfRef03]

Struts is an implementation of Model 2 architecture. The Struts elements are explained below
shortly. The Struts implementation of Model 2 layers, Model, View and Controller are to be
seen in Figure 3-6 and Figure 3-7.

 13

The Controller

Struts' main component is a generic controller servlet. The HTTP requests routed to Struts are
handled first by controller. It interprets and dispatches all requests to individual actions
implemented by the developer as subclasses of the Struts Action class. An XML file (struts-
config.xml) that maps request URIs [W3CURI] to actions and form classes configures the
controller servlet.

Figure 3-7 Struts Model 2-summarized [IBMSTR03]

At application start-up, the ActionServlet reads configuration file and initializes
resources to map events to Struts Action classes. ActionServlet which is seen in
Figure 3-8 is a standard implementation of the controller. It is the main dispatcher
(controller). ActionServlet refers to the Controller part of the MVC implementation.
The Controller creates and uses Action, an ActionForm, and ActionForward.

Action is a standard base class for business logic components and adapters; it is a wrapper
of the business logic. The aim of Action class is to map HttpServletRequests to
business logic. The existing actions, i.e. subclasses of Struts Action class, are mapped to
logical names by request processor. Action implements the “Command Pattern”
[GHJV95]: The execute() method is invoked for an incoming request, it can create response
content directly. Typically it returns an ActionForward object to select the resource which
prepares response that will be sent to client browser.

Figure 3-8 UML Diagram of the relationship of the Controller to the Model [IBMSTR03]

 14

The Model

In Struts model layer, many implementation techniques to persist model entities can be used:
JDBC, EJB, and O/R mapping tools with help of the Action class. Action is a business
logic wrapper class which has references to the model elements used. The Action acquires
information from the model and then exposes the information as request/session attributes.
The components of view layer use these attributes for content rendition. It has access to all
web related functionality like HTTPRequest, HTTPResponse classes as well as model beans.

The model takes the form of one or several JavaBeans. Those beans fall into three categories:

• Form beans hold request parameters. For instance, a form bean for a login page could
have two attributes: login and password. Form beans extend the Struts ActionForm
class seen in Figure 3-9. There are two types of Form Beans, ActionForm and
DynaActionForm. ActionForm has a standard JavaBean design pattern.
ActionForm maintains the session state for the Web application. ActionForm is
an abstract class that is sub-classed for each representation of form input.
DynaActionForm is a specialized subclass of ActionForm that allows the creation
of form beans with dynamic sets of properties, without requiring the developer to
create a Java class for each type of form bean. The definition of the property names
and their types are done in struts-config.xml. In addition to properties, form beans
define two standard methods: reset() and validate().The Reset() method resets form
properties to initial value, and validate() method performs attribute-value validations.

• Request beans hold information needed to generate the HTML page. For example, in

the case of a bank account statement page, a request bean would have properties with
information about the account as well as a transaction bean collection detailing the
most recent transactions to display.

• Session beans hold session information that persists between two HTTP requests of

the same user session.

Figure 3-9 UML Diagram of the relationship of the Controller to the Model [IBMSTR03]

 15

In Figure 3-9 a summarized UML class diagram of the org.apache.struts.action
package is shown. It shows the minimal relationships among ActionServlet (Controller),
ActionForm (Form State), and Action (Model Wrapper) classes.

The View

The controller realized as an ActionServlet forwards a request to a JSP implementing
the view. The JSP can access the form, request, and session beans and outputs a result
document (usually an HTML document) which is then sent to the client. Struts provides its
own JSP Standard Tag Libraries (JSTL) [JSTL03] There are 4 JSP Custom Tag Libraries:

• struts-bean.tld – Fundamental bean manipulation and internationalization
• struts-html.tld – “Smart” HTML elements
• struts-logic.tld – Basic conditionals and iteration
• struts-template.tld – Basic layout management

Using the Struts tags in the JSPs helps avoiding use of Java code. Internationalization Support
enables locale-specific applications.

3.4.2 OXF

OXF is an XML transformation framework based on J2EE [J2EE03] technologies. Initially
planned for development of web applications, it now can be used for various applications
including XML-based application data.

OXF is based on some fundamental concepts: XML processors and XML pipelines, the XML
Pipeline Definition Language (XPL), the Web Application Controller (WAC) which are
needed to build an OXF application. These will be explained in the next paragraphs.

XML Processors

 XML Processors are components used to parse, transform, exchange, and present XML
content. Many applications of XML processors exist.

An XML processor is an XML component with XML inputs and XML outputs. An XSLT
transformer is an example for an XML Processor. An XSLT processor transforms an XML
input according to defined stylesheet into a new XML document.

Specification Implementation Purpose
XSLT Apache Xalan, Saxon… General XML transformation language.

Can be used as "template language" to
produce HTML pages.

W3C Schema Sun Multi-Schema Validator Checking XML documents against
standard W3C schema.

XSL-FO Apache FOP Generating PDF documents from XSL-
FO documents.

XForms OXF XForms Processors Form handling.

Table 1 XML Specifications

 16

Figure 3-10 XSLT Transformer as XML Processor

OXF has its own XML Processor API. OXF encapsulates existing components’ API (such as
XSLT transformers). OXF has defined its own XML Processor API. New processors which
implement this API can be written to create new processors.

XML Pipelines and XPL

OXF has its own XML elements defined used to combine several XML Processors, i.e. to
create XML pipelines. In an XML pipeline, the XML Processors defined are applied
sequentially. Consider such a pipeline which first executes an SQL query on a relational
database using some SQL processor, and then transforms that output data to HTML table, and
finally creates web page with a table and a header and a side menu. Figure 3-11 shows this
pipeline.

Figure 3-11 An XML Pipeline [OxfRef03]

Here there are 3 processors in the pipeline, one processor for SQL execution, one for XSL
transformation and the third one for web page creation. The processors have XML inputs and
outputs. All the elements must be in a namespace with the URI
“http://www.orbeon.com/oxf/pipeline”. <config> is the root element of a XPL document and

 17

it defines zero or more input or output parameters to the pipeline with <param> parameters
and the statements to be executed in the pipeline where a statement defines either a processor
with its connections to other processors in the pipeline using <processor> , or a condition
using <choose>. The <param> element defines the inputs and outputs of the pipeline. The
inputs and outputs are for the pipeline, they do not need to be inputs/outputs of the processors
in the pipeline. These elements have also various attributes for specific configurations which
are omitted here. Table 2 shows the XPL definition for the pipeline seen in Figure 3-11.

 <p:config xmlns:p="http://www.orbeon.com/oxf/pipeline">
 <p:processor uri="oxf/processor/sql">
 <p:input name="config">
 <sql:query xmlns:sql="http://orbeon.org/oxf/xml/sql">SELECT * FROM employees</sql:query>
 </p:input>
 <p:output name="data" id="employees"/>
 </p:processor>
 <p:processor uri="oxf/processor/xslt">
 <p:input name="config">...</p:input>
 <p:input name="data" href="#employees"/>
 <p:output name="data" id="employees-table"/>
 </p:processor>
<p:processor uri="oxf/processor/aggregate">
 <p:input name="config">...</p:input>
 <p:input name="data-1" href="#employees-table"/>
 <p:input name="data-2" href="header.xml"/>
 <p:input name="data-3" href="sidebar.xml"/>
 <p:output name="data" id="html-page"/>
 </p:processor>
 </p:config>

Table 2 XPL definition for the SQL pipeline

Once XML pipelines are available, the presentation layer of an application can be instructed
to use XML pipelines for implementing or integrating the business logic of the application.
XML processors can do various tasks like accessing relational databases (SQL Processor),
calling existing EJBs and Web Services (Delegation Processor) and controlling the
application workflow (Web Application Controller). Custom processors can be also
implemented using the OXF Processor Java API [OxfAPI03].

Web Application Controller

The OXF web application controller maps incoming user requests to individual pages and
defines how each page is built out of a model and a view, following the model-view-
controller (MVC) architectural pattern.

The Web Application Controller consists of a workflow engine which enables to define the
entire site navigation logic. With this central page navigation logic, the pages can be
developed independently from each other.

The Web Application Controller encourages separation of concerns in the applications
between site logic, page logic (model in MVC), the page layout (view in MVC), and the site
presentation. Site logic is the web application workflow which defines the navigation
between the pages. Page logic defines the application logic objects and processes. Page layout
defines how the information is displayed and presented to the user. Site Presentation covers
the layout as well as look and feel common to all pages in the Web application or the Web
site.

 18

Figure 3-12 OXF: Presentation and Logic layers [OxfRef03]

As an example, for a ship news page, the site logic can retrieve the list of headlines and pass
this information in an XML format to the view (page layout and presentation). The view
produces an HTML page by creating a table with those headlines, potentially adding a logo at
the top of the page, a copyright at the bottom, and so on.

OXF has a component called “epilogue” which allows defining a common look and feel for
the page presentation. If epilogue feature is used by the application developer, the XML
output for each page is used as input to epilogue which renders all pages with a common look
and feel. The process is shown in Figure 3-13.

Figure 3-13 Epilogue in Controller [OxfRef03]

Finally the structure of the web application controller configuration file will be shown in
Figure 3-14. The configuration file is an XML file composed of various elements as files,
page and view. The files elements list the files that must be sent directly to the client, such as
images or Cascading Style Sheet (CSS) [CSS03] files, i.e. the static content. The page
elements declare pages or groups of similar pages and define the XForms [XForms03] model,

 19

the MVC model, and the MVC view for each page. The view element defines properties that
apply to all the pages [ORBE].

Figure 3-14 Web Application Controller configuration file element structure [OxfRef03]

An example for <config> element structure and <page> element can be seen in the following
tables.

<config>
 <page path-info="/login" model="login/model.xpl" view="login/view.xml"/>
 <page path-info="/search" model="search/model.xpl" view="search/view.xml"/>
 <view epilogue="epilogue.xpl"/>
 </config>

Table 3 Example for <config> element

<page id="view-account" path-info="/view-account" xforms="view-account-form.xml" model="view-
account-get-balance.xpl" view="view-account-view.xsl">
 <action when="/amount != ''" action="view-account-action.xpl">
 <result id="success" when="/success = 'true'" page="anything-else"/>
 <result id="failure" when="/success = 'false'" page="low-balance"/>
 </action>
</page>

Table 4 Example for <page> element

The XML Schema for the Web Application Controller file element structure can be found in
[WAC03].

3.4.3 Cocoon

Apache Cocoon is a web development framework built around the concepts of separation of
concerns and component-based web development. It can be also called “XML Publishing
Engine” because of its nature easing the creation of XML-based output pages, i.e., views. The
processing in any request-response cycle includes mainly XML documents.

Figure 3-15 Separation of Concerns

 20

Cocoon proves separation of concerns by component-wise application development as seen in
Figure 3-15. The business logic, content and the style of the output pages can be completely
separated by using separate components in the pipelines.

Cocoon implements these concepts by using 'component pipelines', in which each component
on the pipeline specializes on a particular operation like generating XML content from the
request or transforming the generated XML structure to another XML structure. In this way
applications can be written by plugging together components into pipelines without any
required programming.

3.4.3.1 Basic Mechanisms: Request-Response Cycle

When a request is sent by the client, it is dispatched to a Generator, which generates a first
XML document. After this, XML transformations take place, documents can be transformed
into another XML document, or any object type through Transformers (SVGs, PDFs).
Aggregation of XML documents can take place through Aggregators, and lastly the rendering
of output of aggregation is done through Serializers. Figure 3-16 shows the overall scenario
for basic mechanisms.

Figure 3-16 Cocoon Request-Response Cycle [COCO03]

This basic mechanism for XML-based web applications can be written as a pipeline defined
in Cocoon, where the pipeline contains specific components for matching URIs, generating
XML documents, transforming them, aggregating XML documents, and finally serializing to
show the page.

 21

Pipeline Dispatching and Invocation

The pipeline dispatching and invocation can be seen in UML Sequence Diagram in Figure
3-17. When the request from the client comes, Cocoon dispatches the request and the control
passes to the SiteMap instance of Cocoon which is explained in more detail later. The
SiteMap selects the corresponding pipeline and then the application control passes to the
Cocoon pipeline which has all the application logic and data processing operations. The
pipeline generates the output and it is sent to client.

Figure 3-17 Sequence of Interactions[COCO03]

A simple sample pipeline is seen in Figure 3-18 .The request is given as input to a
FileGenerator whose output is given to XSLT Transformer processor in the pipeline. The
output of XSLT transformer is serialized into a HTML page by HTMLSerializer component.
The response is sent to the client.

A minimal pipeline requires at least a generator and a serializer, but most pipelines have many
transformers and serializers.

Figure 3-18 A simple sample pipeline [COCO03]

 22

3.4.3.2 Architecture

Cocoon architecture has 4 main layers:

• Core Cocoon is composed of Avalon Framework(for logging, configuration ,
threading, context, etc), caching mechanism, pipeline handling, program
generation, compilation, loading and execution, base classes for generation,
transformation , serialization and components.

• Cocoon Components are generators, transformers, matchers, serializers, etc.
• Built-in Logicsheets are sitemap.xsl, xsp.xsl, esql.xsl, request.xsl, response.xsl, …
• Site specific configuration, components, logicsheets and content is the

customization for the application.S

Figure 3-19 shows the simplified Cocoon architecture.

Figure 3-19 Cocoon Architecture [COCO03]

3.4.3.3 The Cocoon Abstraction of the Concepts:

This section explains how all the concepts mentioned above is implemented.

SiteMap
The sitemap component is the heart of a Cocoon application. The pipelines are defined in the
sitemap configuration file. This is an XML file. It is composed of many elements as
components, views, pipelines, matchers.

Matcher
A matcher attempts to match a URI with a specified pattern for dispatching the request to a
specific processing pipeline. There are two kinds of predefined matchers in Cocoon: wildcard

 23

matchers and regular expression matchers. The programmers can implement and add more
matchers to Cocoon. Matchers help in choosing a specific pipeline for a URI group. In the
Sitemap, the matchers are defined as <matchers> elements and names are given to matchers,
and then they are used in pipelines.

Generator
 A generator is used to create an XML structure from an input document like files, directories,
streams, etc. Examples for predefined generators from Cocoon are file generator, directory
generator, XSP generator, JSP generator, Request generator. Custom generators can be
implemented by application developers. All generators used by web application are defined
in the sitemap, and then they can be used in pipelines.

Transformer
A transformer is a component which maps an XML input document into another XML
document, and returns it as output. Example transformers from Cocoon are the XSLT
Transformer (the main transformer) which applies an XSL stylesheet to an input XML
document, Log Transformer, SQL Transformer, and I18N Transformer. Like for the other
components, programmers can implement and add custom transformers by registering them in
configuration files.

Serializers
A Serializer is used to render an input XML structure into some other format (not necessarily
XML) that is used primarily used for presentation. Examples for predefined serializers from
Cocoon are: HTML Serializer, FOP Serializer, Text Serializer, and XML Serializer. Custom
serializers can be added to Cocoon.

eXtensible Server Pages (XSPs)
An XSP page is an XML page where program logic and presentation can be implemented It
should have language declaration which states in which programming language logic is
implemented. It should also have namespace declaration. XSPs are like JSPs: Logic and view
can be implemented together in an XSP page. An XSP is Cocoon way of mixing program
logic and presentation necessary for simpler projects. The logic and the presentation code can
be together in an XSP file or logic can be defined in logic stylesheets and later on imported to
XSPs. An XSP page is used by a generator to generate an XML document. XSPs enable
dynamic content generation in Cocoon. XSPs can be compared with JSPs.

Logicsheets
A logicsheet is an XSL stylesheet which is the primary mechanism to add program logic to
XSPs. Logicsheets are used by the generator components to transform XML structures before
generating program. The logicsheets can be packaged as a reusable tag library. Logicsheets
enable effective separation of content, logic and management. Cocoon has some built-in
logicsheets as request.xsl, response.xsl , session.xsl which are used to easily access the
request, response and session in logicsheets.

A sample pipeline in sitemap.xmap is shown in Table 5. In this pipeline there are two main
match patterns. In the first one, when there is a request for hello.html by the client, the
generator component generates the page from the XML document specified by
<map:generate> element. The output to be sent to client is serialized to html.

 24

The second match pattern in the pipeline are for image loading. When the client requests an
image with relative URI “images/*.png”, the image is read from the relative path
“resources/images*.png” and sent to client.

<map:pipeline>
<map:match pattern=”hello.html”>
 <map:generate src=”docs/samples/hello-page.xml”/>
 <map:serialize type=”html”/>
 </map:match>

 <map:match pattern=”images/**.png”>
 <map:read src=”resources/images{1}.png” mime-type=”image/png”/>
 </map:match>
</map:pipeline>

Table 5 Sample pipeline definition in Sitemap.xmap
For more information on Cocoon Framework, see [COCO03].

3.4.4 Struts-OXF Integration

With the explanations of OXF and Struts given, the integration framework Struts-OXF
integration will now be explained. OXF can be used in conjunction with Struts in a Struts-
based application. The resulting application has Model 2X. Model 2 can also applied in some
web applications if JSPs are used with XPLs (xml pipelines) as views.

In the integrated framework, Struts controller servlet ActionServlet is the controller of
the web application. The requests are dispatched by Struts. OXF enables addition of xml
pipelines and processing of those pipelines. When a request is mapped to an .xpl file, i.e. a
pipeline, then OXF does the processing and produces the view, i.e., output page.

Figure 3-20 Control Flow of Request-Response cycle in a Struts-OXF application [ORBE]

 25

Figure 3-20 shows the control flow where there are no JSPs as view, only OXF pipeline
outputs producing the output pages, i.e. views. The Struts controller is responsible for
business logic and dispatching to XML pipeline whenever necessary.

A Struts-OXF Web Application contains at least two servlets: the Struts controller servlet and
the OXF processor servlet. The former is the Struts-based servlet, serving all URI, while the
latter is bound to xpl files and other resources served by OXF (images, CSS, etc.). Which
servlet serves which resources is defined in the web application descriptor. (web.xml)

As shown in Figure 3-20, the Struts controller interprets the request and creates form beans
containing the request parameters. It then instantiates and calls the appropriate action class.
The result bean is then set in the request, and the request is forwarded to the OXF processor.
Struts selects the pages to forward just like for JSP forwards. In the following example,
requests for “/hello” relative path are dispatched to first the HelloAction class, and then there
is a forward to “/hello.xpl” relative path invoking the OXF pipeline which is handled by OXF
servlet.

<action path="/hello" type="org.orbeon.oxf.struts.examples.hello.HelloAction" name="hello">
 <forward name="success" path="/hello.xpl"/>
 </action>

OXF has a BeanGenerator component which enables most of the data transfer between Struts
and OXF in the web application. In the OXF pipeline, the BeanGenerator component can
access the beans in the request or session. It is used to serialize these beans into XML
[ORBE].

3.4.5 Comparison of the inspected frameworks

The comparison of the inspected frameworks is based on the following criteria: Support,
architecture/separation of tiers, stability, performance and ease of development.

Support
OXF has a small user community, the developer company ORBEON gives support when
necessary. Cocoon has a big user community, and there are good tutorials and documentation
available. Struts has a large and helpful user community with a big mailing list, very useful
tutorials.

Separation of tiers
In OXF, separation of tiers is very good. OXF and Cocoon are MVC-based frameworks. In
Struts it is also good, but there is still danger of mixing business logic and presentation in
JSPs. In JSPs application programmers can implement both logic (Java code) and presentation
(HTML and Tag Libraries).

Stability and Robustness
OXF is a still maturing technology; there are some bugs and missing features. Cocoon has a
lot of stable features which makes it in total stable. Struts is on the other hand very well tested
and stable framework.

Performance
OXF performance is slow as objects are not cached yet, but other than that, the performance is

 26

good. There is not much documentation of Cocoon performance, caching etc. But both of the
frameworks OXF and Cocoon are not as good as Struts in performance because of XML
processing overhead. The fact that all data are represented in XML brings the need of many
XML transformations and processing steps which is a major performance drawback.
Struts has very good performance, since it does not have XSLT processing, and JSPs are
precompiled with every change.

Ease of Development
OXF can be difficult to use due to incomplete documentation and sometimes poor error
messages, but there is a very good support from Orbeon Company. The difficulty of creating
own XML processors is a drawback, as no Java API exists for writing custom processors. It is
a framework with an XML core, so those who are not very much experienced with XML
processing may have difficulty in learning.

Cocoon has very good separation of tiers, but complexity of the framework and complexity of
sitemap and sub sitemaps navigation (web application controller and pipeline definitions in
sitemaps) can take time to learn.

Struts is easy to learn and to use when the basics of servlets and web applications are known.
The flexibility of Java programming in model (Action classes) makes it very suitable for big
projects. Also it is simple to configure Struts as it uses the standard web application
configuration mechanism. In Struts, JSP tag library is complex.

3.4.6 Selection of framework

If a project does not require the use of XML data, then Struts is the best choice with all of the
available documentation, user base, and tutorials. For the projects where some of the data are
represented as XML and some views are created by XML and XSLT processing, the choice is
the Struts-OXF integration framework. There one has all the flexibilities Struts give for the
development and whenever one needs to produce views from XML content, can be delegated
to the OXF processor. That is why for this work Struts in conjunction with OXF is chosen.

3.5 Object-relational (O/R) Mapping

A major portion of the development of an enterprise application involves the creation and
maintenance of the persistence layer used to store and retrieve objects from the database of
choice. Many organizations resort to creating home-grown, often error-prone, persistence
mechanisms. If changes are made to the underlying database schema, it can be expensive to
propagate those changes to the rest of the application. There is a need to fill this gap,
providing an easy-to-use and powerful object-relational persistence framework for
applications. [HIBEa1]

Object-relational persistence and query tools are frameworks or libraries for Object to
Relational mapping. They offer a higher level API compared to JDBC [JDBC03] for
persistence and querying.

Object-relational mapping is a persistence mechanism which connects objects of an object-
oriented layer to data stored in a relational database.

 27

Using an object-relational mapping tool/framework allows application of object-oriented
analysis, design and programming techniques by hiding the details of RDBMS from the
programmer.

There are commercial and Open Source object-relational mapping tools (ORMs) that comply
with the ODMG 3.0 and JDO standard APIs for object persistence. Programming against such
a mapping API is not different from programming against an object-oriented database.

In the following sections three of the ORM tools/frameworks will be described, they are free
license and open source tools/frameworks. They are compared and evaluated and one will be
chosen for this work.

3.5.1 O/R Mapping Standards

Sun JDO Standard
The Java Data Objects (JDO) [JDO03] API is a standard interface-based Java model
abstraction of persistence, developed as Java Specification Request 12 under the auspices of
the Java Community Process. Application programmers use JDO to directly store their Java
domain model instances into the persistent store (database) [Fowler03].

ODMG Standard
The Object Data Management Group (ODMG) Binding is a standard for O/R mapping of data
objects.

There are several differences and similarities between JDO and ODMG 3.0 standards, but
they will not be described here. These standards will be used in comparing the persistence
tools/frameworks in next sections. Conforming to ODMG and/or JDO standards is a good
criterion for comparison.

3.5.2 O/R Mapping Frameworks

In this section some O/R mapping frameworks will be analysed and compared. They are
Hibernate, OJB and Castor JDO.

3.5.2.1 Hibernate

Hibernate is an O/R persistence and query framework for Java. In addition to persisting
objects, Hibernate provides its own rich query language to retrieve objects from the database,
as well as an efficient caching layer and Java Management Extensions (JMX) support.
Hibernate provides support for collections and object relations, as well as composite types.
User-defined data types and dynamic beans are also supported. [HibeRef03]

Hibernate can be used in standalone applications or it can be used in web application under
servlet containers. The second approach simplifies some of the configurations as the servlet
container takes care of them.

In the following subsections, Hibernate’s architecture will be explained first, and then a
sample mapping with Hibernate will be shown.

 28

3.5.2.1.1 Architecture

In an application interacting with the database, Hibernate is the layer between the application
and the database. Hibernate provides the application automated persistence of the application
objects. For this Hibernate uses properties file where database, connection, etc. properties are
given to Hibernate by the application programmer. The XML mapping files are used for
mapping of the database tables to Java classes. Hibernate uses these mapping files for
persisting the Java objects to database tables.

For providing persistence services to the application, Hibernate uses hibernate.properties and
XML mapping files. The application has an abstraction of the database, for object saving,
creation and queries. The properties file is a file for specifying Hibernate specific properties.
XML mapping files are mappings for persistent objects to database schemas. The class-table
and class field-table field mappings are done in this file.

Hibernate supports several approaches for runtime architecture.
One approach is that the application itself provides its own connections and the transactions.
Hibernate will be used for persistence and query services. Not all the features provided by
Hibernate are used by the application programmer in this approach. Figure 3-22 shows this
approach. SessionFactory and Session are Hibernate classes.

Figure 3-21 Hibernate Architecture [HibeRef03]

In the second approach seen in Figure 3-23, Hibernate does all of the work, from the
connection to transactions. The application does not manage the database connections and
transactions, Hibernate abstracts all of them. Here more classes from Hibernate API are used
by the application: In this approach, the abstractions of database connections, transactions,
and sessions are done by Hibernate classes SessionFactory,
TransactionFactory, Session, Transaction, and ConnectionProvider.

 29

The application uses the Hibernate framework components. Hibernate uses Java Naming and
Directory Interface (JNDI) [JnDI03], JDBC, Java Transaction API (JTA) [JtA03] to do those
abstractions for the application.

Figure 3-22 Hibernate-Light Architecture [HibeRef03]

Figure 3-23 Hibernate-full architecture [HibeRef03]

The elements in Hibernate Architecture Figures

In the above figures Figure 3-22 and Figure 3-23 showing Hibernate architecture, some
elements need to be explained more detailed. Some of them are Hibernate classes,
SessionFactory, Session, TransactionFactory, and Transaction.

 30

SessionFactory (net.sf.hibernate.SessionFactory) is a threadsafe and
immutable cache of compiled mappings. It is used to create Session objects. It is also a client
for ConnectionProvider class.

• Session (net.sf.hibernate.Session) is a short-lived, single-threaded
object representing a session between the application and the database. It wraps a
JDBC connection. It is a Transaction object creation factory. It keeps the
persistent objects as cache.

• Transaction (net.sf.hibernate.Transaction) is also single-threaded

and short-lived like Session. It is used by the application to specify atomic units of
work. It abstracts application from underlying JDBC, JTA or CORBA transaction. A
session may have several transactions living.

• ConnectionProvider(net.sf.hibernate.connection.Connection

Provider) is a factory for JDBC connections. It can pool connections. It abstracts
the application from the DataSource and DriverManager details for the
connection.

• TransactionFactory (net.sf.hibernate.TransactionFactory) is

a factory for Transaction instances.

 In the first approach where the application takes care of connections to data sources, the
classes Transaction, TransactionFactory, ConnectionProvider are not
used. In case of second approach, Hibernate abstracts the connection and transaction details
with those classes. The application uses JTA and JDBC.

3.5.2.1.2 An example for O/R mapping with Hibernate

The objects to be persisted are defined in a mapping document, which serves to describe the
persistent fields and associations, as well as any subclasses or proxies of the persistent object.
The mapping documents are compiled at application start-up time and provide the framework
with necessary information for a class. Additionally, they are used in support operations, such
as generating the database schema or creating stub Java source files. A SessionFactory
is created from the compiled collection of mapping documents. The SessionFactory
provides the mechanism for managing persistent classes, the Session interface. The
Session class provides the interface between the persistent data store and the application.
The Session interface wraps a JDBC connection, which can be user-managed or controlled
by Hibernate, and is only intended to be used by a single application thread, then closed and
discarded.

The examples are taken from [HIBEa1].

The class diagram seen in Figure 3-24 will be persisted to the tables seen in Figure 3-25. The
class Team will be mapped to the table teams and similarly the class Player to the table
players. The keys of the tables will be generated automatically by Hibernate when the objects
are saved to database. The algorithm chosen for generation of keys uses an extra table,
hibernate_unique_key.

 31

Figure 3-24 Class diagrams for Team and Player [HIBEa1]

Figure 3-25 Related Database schema [HIBEa1]

The mapping files are clear enough in most respects. Some parts to explain are <id> element,
<generator> element. <id> element defines the key column for the tables. Every object of the
mapped classes should have unique ids. The <generator> element defines the key generation
algorithm. One can use database specific key generators or write own key generators
implementing generator interface, use the generators provided by Hibernate. There is also an
assigned option where the id fields of the objects should be set in the application program.

In the mapping file, the root element is <hibernate-mapping> element. The element <class>
defines the mapping for a specific Java class. The corresponding table in the database is
provided in the specific attributes. Later on the fields of the Java class are mapped to columns
in the corresponding table.

Although in the example given in Figure 3-24 and Figure 3-25 the classes do not have any
collection fields, it is also possible to map in Hibernate various collection types like arrays,
lists, maps. Relationships between classes like one-to-one, one-to-many, many-to-many can be
also expressed in the mapping files.

 32

<hibernate-mapping>
 <class name=“example.Team“ table=“teams“>
 <id name=”id” column=”team_id” type=”long” unsaved-
value=”null”>
 <generator class=”hilo”/>
 </id>
 <property name=”name” column=”team_name” type=”string”
 length=”15” not-null=”true”/>
 <property name=”city” column=”city” type=”string”
 length=”15” not-null=”true”/>
 <set name=”players” cascade=”all” inverse=”true” lazy=”true”>
 <key column=”team_id”/>
 <one-to-many class=”example.Player”/>
 </set>
 </class>
</hibernate-mapping>

Table 6 Hibernate mapping file for example.Team [HIBEa1]

The tables Table 6 and Table 7 show the mappings for the example.Team and
example.Player classes. The fields id, name and city of example.Team are
mapped to team_id, team_name and city columns of the teams table. The team_id field
in players table references the team_id column of teams table. Persistence of players field
uses the team_id column in example.Player. With the players persisted to players table, the
team’s id to which this player belongs is also persisted. The 1: n relationship between the
teams and players are established in the database schema by the team_id foreign key in
players table.

<hibernate-mapping>
 <class name=“example.Player“ table=“players“>
 <id name=”id” column=”player_id” type=”long” unsaved-value=”null”>
 <generator class=”hilo”/>
 </id>
 <property name=”firstName” column=”first_name” type=”string”
 length=”12” not-null=”true”/>
 <property name=”lastName” column=”last_name” type=”string”
 length=”15” not-null=”true”/>
 <property name=”draftDate” column=”draft_date” type=”date”/>
 <property name=”annualSalary” column=”salary” type=”float”/>

<property name=”jerseyNumber” column=”jersey_number” type=”integer”
 length=”2” not-null=”true”/>
 <many-to-one name=”team” class=”example.Team” column=”team_id”/>

 </class>
</hibernate-mapping>

Table 7 Hibernate mapping for example.Player [HIBEa1]

The fields id, firstName, lastName, draftDate, annualSalary and
jerseyNumber of the example.Player class are mapped to columns player_id,
first_name, last_name, draft_date, salary and jersey_number columns in players table.
As stated the team_id in this table references the team_id in teams table. The field team is
persisted by help of this column.

 33

Creating, Updating and Querying Persistent Objects

After the mappings are written Hibernate system initializes the mappings, in the application
programs persistent Java objects for the mapped classes can be automatically created,
updated, deleted or queried.

In the following code snippet in Table 8 the creation of a team object and saving it to
underlying database can be seen. The created instance should be saved in a Hibernate session
to insert it to database table.

Team team = new Team();
team.setCity(“Detroit”);
team.setName(“Pistons”);

//add a player to the team.
Player player = new Player();
player.setFirstName(“Chauncey”);
player.setLastName(“Billups”);
player.setJerseyNumber(1);
player.setAnnualSalary(4000000f);
Set players = new HashSet();
players.add(player);

team.setPlayers(players);
/open a session and save the team
Session session = SessionFactory.openSession();
Session.saveOrUpdate(team);

Table 8 Creating and persisting objects [HIBEa1]

Similarly as seen in Table 9, objects from database can be automatically loaded in the
application program; Hibernate creates the necessary object(s) for the corresponding row(s) in
the table. In the program, the developer has the object reference provided by Hibernate.

//method 1: loading a persistent instance
Session session = SessionFactory.createSession();
Player player = session.load(Player.class, playerId);

//method 2: loading the Player’s state
Player player = new Player();
session.load(player,playerId);

Table 9 Loading objects from RDBMS with Hibernate [HIBEa1]

Deleting persistent objects from database are also possible as seen in the next code snippet.

//method 1: deleting the Player loaded
session.delete(player);

//method 2: deleting all of the Players with a
//salary greater than 4 million
session.delete(“from player in class example.Player where
player.annualSalary > 4000000”);

Table 10 Deleting objects from RDBMS with Hibernate[HIBEa1]

 34

3.5.2.2 OJB (ObjectRelationalBridge)

ObjectRelationalBridge (OJB) [OJB03] is a mapping framework that allows transparent
persistence for Java Objects against relational databases.

OJB is an open source Apache Licensed O/R mapping framework. It provides persistence for
Java classes.

Architecture

The layers of OJB in an application architecture containing the backends can be seen in
Figure 3-26. Currently some of the components are not implemented.

OTM (Object Transaction Manager) layer is not completed yet. It will contain the common
features of JDO and ODMG APIs.

OJB provides multiple APIs to the application: PersistenceBroker API, JDO API (as a
plugin), and ODMG API. OJB PersistenceBroker API is a minimal API for transparent
persistence. It supports O/R mapping, storing of objects to RDBMS, deleting of objects from
RDBMS, and retrieval of objects with queries. OJB ODMG API is an ODMG 3.0
implementation; it is built on top of the PersistenceBroker API. This OJB implementation is a
full implementation of ODMG 3.0. Transactions are supported; it provided locking for
concurrent threads with isolation levels. The OJB JDO API is provided by a plugin which is
an implementation by ObjectStore.

Figure 3-26 OJB architecture

The not-yet implemented layers from the figure are OTM layer, PB ODBMS implementation,
PB LDAP implementation and PB XML implementation. These layers are surrounded with
broken lines in the figure. They are future to-dos of OJB.

An example mapping for OJB will not be given.

 35

3.5.2.3 Castor JDO

Castor JDO [CJDO] is another O/R mapping framework. It is also an open source project.
Although its name suggests support of the JDO standard, it is not a JDO implementation.
Castor JDO has also its own query language.

Architecture

The Castor persistence engine handles object persistence, object caching, transaction
concurrency and locking. It interacts with the database; it is the interface between the
application and the database. The Persistence Engine uses mapping files and database
properties set in configurations to interact with database.

There exists only one PersistenceEngine instance, a singleton. Persistence engine for an
application may have more than one JDO instance for database interaction. The Java objects
can be persisted with any of the instances in the application.

The persistency of objects is cached. This brings more efficient persistency. In Castor JDO, to
persist the objects, the users do not implement any kind of interface, but if they want to be
notified of the persistency events to implement user-specific actions on save, delete, update
etc., there is an interface Persistent which provides the necessary methods to implement in
case of persistency events. The methods are to be implemented when the application
programmer needs necessary operations when persistency events occur.

Figure 3-27 Castor JDO Architecture [CJDOa1]

The mapping element seen in Figure 3-27 is representing the mappings for the Java classes to
be persisted into database. There are XML documents to define class mappings, also another
XML document to specify the database properties.

 36

Castor JDO has its own query language, Castor JDO OQL [CJDO03] which is not JDO
compliant either.

3.5.3 Comparison of O/R Mapping Frameworks

In the next subsections, there will be a comparison of the inspected frameworks for O/R
persistence. The comparisons help to decide which framework to use for the object
persistence in this work.

3.5.3.1 Technical Aspects

In this section, relationally completeness of the frameworks will be analysed. This
comparison table is based on comparison from [ORTC03].

 Hibernate OJB Castor JDO
Persists arbitrary classes
(no special superclass or
interface required)

Yes

Yes Yes

Requires manual SQL
building

No No No

RDBMS
support/independence

JDBC, special for Oracle,
DB2, Sybase, MS SQL
Server, PostgreSQL,
MySQL, HypersonicSQL,
Mckoi SQL, SAP DB,
Interbase, Progress,
Pointbase

JDBC, special dialect
support for Db2,
Hsqldb, Informix,
MsAccess?,
MsSQLServer, MySQL,
Oracle, PostgreSQL,
Sybase, Sapdb.

DB2,
HypersonicSQL,
Informix,
InstantDB,
Interbase, MySQL,
Oracle,
PostgreSQL, SAP
DB, SQL Server,
Sybase, Generic
(for generic JDBC
support)

EJB support Full support for
stateful/stateless session
beans and BMP entity
beans, JTA, JNDI, JMX
integration

Full support for
SessionBeans and BMP
EntityBeans, JNDI,
JTA & JCA integration

No

Supports relationships
between objects

Yes Yes Yes

Mapping supports grouping
(GROUP BY clause)

Yes Yes No

Mapping supports
aggregate functions
(count(), avg(), etc.)

Yes Yes No

Includes full support of
lazy resolution of all
queries

Yes, object "faults"
(runtime CGLIB bytecode-
generation for proxies),
lazy relationship reading

Yes + dynamic proxies
for all relationships

Yes + dynamic
proxies for all
relationships

Maintains single identities
for objects returned from
queries (aka "uniquing")

yes (in the session scope) Yes Yes

Generates Mapping as well
as the Java Objects
themselves, so one doesn’t

Yes (support for multiple
development models; Java
first, mapping first, table

Yes No

 37

duplicate information in
the Java Objects and the
related mapping
information.

first, Java/XDoclet first)
Jakarta
ObjectRelationalBridge:
Yes

Supports Composite
Primary Keys

Yes (separate primary key
class, or "embedded" key as
subset of object
properties)

Yes Yes

Aggregate Mappings -
Single field maps to
multiple fields in database.

Yes Yes Yes(limited)

Supports both many to
many and one to many
associations

Yes Yes Yes

Supports collections of
Strings, Integers, Dates,
etc

Yes (as an actual table
association, NOT as a
serialized blob)

Yes Yes

Supports inheritance /
polymorphic queries

Yes (all three mapping
strategies: table-per-
hierarchy, table-per-
concrete-class, table-p
per-subclass)

Yes No

Supports one to one
associations

Yes (on primary key or
arbitrary foreign key)

Yes Yes

Can fetch associated
objects using SQL outer
joins

Yes (ANSI and Oracle style
outerjoins)

Yes Yes

Support for optimistic
locking / versioning

Yes (version numbers or
timestamps)

Yes (version numbers or
timestamps)

Yes (timestamps)

Unit of work transactions
support

Yes Yes Yes

Providing a SUN JDO
compliant API

No Yes(with plugin) No

Providing an ODMG
compliant API

Yes (work in progress) Yes(not complete OQL) Yes

Requires "extra" database
tables holding locks,
metadata, etc.

No (Only one of the key
generation strategies
requires it)

No (only for a certain
sequence number
strategy and other
special features)

No

Supports multiservers
(clustering) and
simultaneous access by
other applications without
loss of transaction
integrity

Yes (including clustered
cache)

Yes Not documented

Requires code generation /
bytecode processing

Yes, but at runtime, not
buildtime

No for kernel and
ODMG API, Yes for
JDO Api

No

Requires
RuntimeReflection

No. (but for object
instantiation)

No (user can choose
different property
access strategies)

Yes

Query Caching - Built-in
support (developer writes
no code).

Yes. Hibernate Dual Layer
Cache Architecture -
session level + JVM level
caching + query result set
caching (also

Yes
(PreparedStatement
caching and persistent
instance caching)

Yes (Persistent
instance caching:
count-limited |
time-limited |
unlimited)

 38

PreparedStatement
caching)

Supports sequences and
identity/autoincrement
columns for primary key
generation (Not using the
incorrect SELECT MAX
method!)

Yes. both sequences and
identity columns (also hi/lo,
uuid, etc. as well as user
defined strategies)

Yes. (also has hi/lo,
uuid, and user defined
strategies)

Yes. (also has hi/lo,
uuid, sequence, etc)

Supports ternary
associations

Yes (and quaternary, etc). Yes Not documented

Supports mapping of one
class to multiple tables

No Yes Yes(via extends
relationship)

Supports mapping of
multiple classes to one
table

Yes Not documented No

Supports persistence of
properties through private
fields

Yes Yes No

Supports persistence of
properties through
accessors (get/set
methods)

Yes Not documented Yes

3.5.3.2 Other criteria used for comparison

Support
Hibernate has a very large user base, and very active email lists, newsletters, news groups. It
is already accepted by a big user community. This can’t be said for Castor JDO. Although it is
not a new product, it is not very much supported and used, so it is not yet a mature product.
OJB is out there for relatively long time, still it has not as many users as Hibernate.

Stability
Hibernate is a stable product, used by many users. Castor JDO is not yet complete, even the
documentation of it, this makes the product distant to users. OJB has incomplete
documentation. And although the architecture of OJB has many useful components, they are
not implemented yet. OJB is still a buggy O/R mapping tool.

Ease of Development
This is similar for all the frameworks inspected. They all have XML configuration files for
class-to-database schema mapping. The extra code for object persistence in the Java
application is not complex for any of the frameworks. The fact is that all those frameworks
are targeted at persisting existing Java objects, so one should better think and create the
database schemas according to the java classes. If one has already defined schema which one
should not change and one already designed the Java classes, then using the frameworks are
kind of difficult. The reason is that the frameworks are not flexible enough for many features
when mapping.

In case there is the need to persist the objects of an application, the best is to create the
schemas the way the frameworks suggest. This makes mapping very simple. Hibernate for

 39

example has a schema generator component which can generate database schemas from the
defined mappings.

Other than this, if the tables do not have key columns, using all those frameworks is either not
possible or they do not persist and query objects properly.

Performance
Performance of Hibernate is at most 10% less than the simple JDBC calls; Hibernate performs
caching and optimizations for database connections and queries, which would be very
difficult to program for developers.

Castor JDO has also a cache, it performs caching for persistency actions, but still it is not very
effective. OJB is also not as good as Hibernate in performance.

3.5.3.3 Selection of Framework

After inspecting the frameworks and comparing them, I decided to use Hibernate. The main
reasons are that it has very high performance and has a very large user base, already accepted
by a huge group of users. Hibernate also has very good, detailed documentation. In case one is
stuck in mapping of classes or any other problem, there is a very active user mailing list for
finding the answers to problems. From my view, the only barely seen disadvantage of
Hibernate is that it has its own API both for persistence and querying of the objects. It is not
JDO compliant and it is not ODMG compliant either (although it is in progress). This can be a
big problem for large software projects if one day the persistence is changed from Hibernate
to any other framework. Choosing a JDO compliant tool can be great help.

But one other question is whether JDO or OMDG compliancy is a big advantage and being
implementations of JDO or ODMG is a big disadvantage. JDO still is an immature, flawed
standard, and there are not many free licence implementations of it, and the ones which are
free are generally incomplete. ODMG standard is also a similar standard. Although it tries to
solve the persistency of objects transparently, it can not be called successful. Both JDO and
ODMG standard are kind of unused standards. None of the OO relational mapping vendors
were members of the specification committee. The committee was mostly composed of
ODBMS vendors. This is maybe the main reason that the standards are not used very much.
The requirements were not done by the real “customers”. JDO is not a standard for Java
persistence; rather it’s a standard API for ODBMS [object oriented database management
system]. The standard itself is not supported by any of the major relational database vendors
(i.e. IBM, Oracle, Sybase, etc.).

 40

4. System Design

In this chapter the overall architecture of the system will be explained. Short explanations of
the components will follow with the roles they have in the system.

4.1 Architecture

The system is composed of many frameworks and components: Tomcat Servlet Container,
Struts framework, OXF framework, Hibernate, Castor XML mapping, MySQL database,
Commons DBCP, Commons Pool and web client browser.

The main components of the system are the client browser, servlet container controlling the
life cycle of web application and the database.

Figure 4-1 Architecture of the System

The client is any Web browser to access the Fleet Online application. The servlet container
Tomcat is a container to run the web applications according to Sun’s specifications. The web
application GL fleet online runs as a component in control of Tomcat.
The web application component is composed of many packages, mapping files, static
resources.

In the next subsections the specific components in the architecture will be shortly explained.

 41

4.2 The Components

In the previous section, the overall software architecture of the system is explained. In this
section, the components will be explained more detailed excluding the implementation details.
The tasks and responsibilities of the components in the overall architecture and how they
work together will be made clear.

4.2.1 Client

Client browser is any browser client(user) used to send HTTP requests to login to fleet online,
to log off, to see the status of the fleet belonging to the specific user, and finally to see the
current information about a specific survey.

4.2.2 Web application Container

Tomcat [TmCT03] is the Web application Container which implements the Sun’s
specifications about servlet containers. The Tomcat server is a Java-based Web Application
container that was created to run Servlet and JavaServer Pages web applications. It has
become the reference implementation for both the Servlet and JSP specifications. It provides
many facilities for the web applications other than main life cycle actions. The application
fleet online is a deployed web application running under the Tomcat container. The version of
the Tomcat used is 4.1.24. Tomcat also provides facilities like pooling for database
connections, static resource automatic loading, etc.

4.2.3 Persistence Manager

Hibernate is used for O/R mapping. The tables Fleet Online application related tables in the
database will be mapped to corresponding classes from the domain model of the application.
The database model and the relationships will be shown in the implementation chapter.

4.2.4 Presentation/Business Logic

The presentation and business logic are implemented by components Struts and OXF.

Struts component comprises Struts framework classes and classes implemented/extended by
Struts framework classes.

The business logic actions and the request dispatching for the web application are processed
by this component. This package is composed of many classes implementing Struts
functionality. Struts component has a dependency to Hibernate component in the architecture.
For implementation of business logic business data which resides in RDBMS is used. The
task of database interactions and object persistence functionality is provided by Hibernate.
Hibernate itself uses XML configuration files to map the tables to specific classes of the
application. The details are explained in implementation chapter.

 42

In this architecture, OXF framework is used for HTML views created by XSLT and XML.
When it is necessary, Struts forwards requests to OXF pipeline which is handled by OXF
Processor servlet. OXF pipelines are used in this architecture just for view creation. In this
web application architecture the data transfer between Struts framework and OXF framework
is done by saved objects in HTTPSession. In the OXF pipeline, a processor gets the specified
bean from the current session object and creates the XML document by using Castor XML
mapping framework. The next step in the pipeline is calling the XSLT processor and creating
the views which are HTML pages.

4.2.5 RDBMS

MySQL is used for persistence. Hibernate framework provides classes and interfaces to
access database related resources.

Connections to MySQL are pooled and as said previously. Tomcat Servlet Container uses
Commons DBCP to pool the connections and then through the interfaces provided the
application can have reference to pooled connections.

4.2.6 XML Generator

Castor XML is one of the components in the architecture. Castor XML is used for mapping of
Java objects to XML documents. After XML structure creation with Castor XML, XSL
transformations are applied to the result XML documents to produce the corresponding
HTML views.

In the architecture, OXF component uses the Castor XML. In the OXF pipeline, a processor
gets the Java beans saved under the session for the customer and uses Castor XML to create
the XML documents which will be the input given to the next processor in the pipeline which
is an XSLT processor.

4.2.7 Domain Model Classes

The Domain Model classes exist under the package org.glgroup.survey.model.
Those classes are the heart of the application. They hold the main business data and logic.
In this architecture, because the Persistent classes are persisted by Hibernate, not by
programmer via JDBC calls, some of the Business Data classes are changed. For most cases,
Hibernate can map existing classes to existing tables, but there are special cases where either
the class definition or the table definition lacks necessary properties or columns. In this case,
the client programmer has to change either the database tables or Java Classes. Because the
database tables of Germanischer Lloyd are already being used by existing applications, it was
least desired to change the tables even when they are not good modelled. To enable OO
representation of data residing in database, some Domain Model [Fowler03] classes are
needed to implement specific interfaces of Hibernate framework. The implementation details
will be explained later.

 43

4.3 Sequence Diagrams

The interaction between the various components of the system can be seen in the following
scenarios. In Figure 4-2 the login of the user to the system is shown, and in Figure 4-3
viewing the survey request for a specific ship. Here the main components’ interactions are
shown for login to fleet online and for viewing a selected survey request.

In UML sequence diagram shown in Figure 4-2, the overall interaction between the client,
WAC (Web Application Controller), the web application and RDBMS for login request can
be seen. A client initiates a logon request for fleet online with the fleet online URI, and then
the Tomcat Servlet Container receives the request and executes the corresponding web
application for the request, which is fleet online web application. Then the web application
connects to RDBMS and gets the customer object with the given username and password. The
username and password are sent by client with HTTP request. Then from the RDBMS the
details of the logged in customer are received. The ships and survey requests belonging to the
ships are also retrieved from RDBMS. After this, the web application creates the HTML page
showing the fleet status page for the customer. This page shows the ships and overall details
for the survey requests of the ships. If the customer login action is successful, the session
object for the customer is created which contains the customer data and fleet data for this
customer.

Figure 4-2 Sequence Diagram-Logon to Fleet Online

The next main interaction between client and the web application is viewing the details for a
selected survey request of a selected ship which is seen in Figure 4-3. From the fleet status
page, the client (customer) can select a specific survey request to view the details. The client
selects the survey request and sends the HTTP request. WAC gets the request and selects fleet
online web application to execute. Fleet online application has already a created session

 44

object for the customer which contains the ships and surveys for this client. It does not need to
get the data from the RDBMS again. The HTML page for viewing the details for selected
survey request is created and it is sent to the customer (client) as HTTP response.

Figure 4-3 Sequence Diagram-Show Survey Request

Figure 4-4 Sequence Diagram-Logoff from Fleet Online

The last interaction between client and the web application is the logoff action. The client
wants to logoff from the web site. He sends a logoff request. WAC first gets the request,
executes the web application. The application clears the session object for the customer and
sends the HTTP response to the client. The response page sent is the home page of the fleet
online application. The UML sequence diagram of this interaction can be seen in Figure 4-4.

 45

5. Implementation

In this chapter the implementation details will be presented. The class diagrams, use of Castor
XML, Hibernate, OXF, Struts, etc. will be shown.

5.1 Web Application in Java

With the release of the Java Servlet Specification 2.2, the concept of a web application was
introduced. According to this specification, a "Web Application is a collection of servlets,
html pages, classes, and other resources that can be bundled and run on multiple containers
from multiple vendors." [Servlet03]

At the heart of all web applications is a deployment descriptor. The deployment descriptor is
an XML file named web.xml. It describes configuration information for the entire web
application. The information that is contained in the deployment descriptor includes the
following elements:

• ServletContext Init Parameters
• Localized Content
• Session Configuration
• Servlet / JSP Definitions
• Servlet / JSP Mappings
• Mime Type Mappings
• Welcome File list
• Error Pages
• Security(Authentication)

The application GL Fleet Online service is a web application running in the Tomcat Servlet
Container. As a Java Web application, it comprises many components and elements. The
central connection of all is the deployment descriptor of the Fleet Online web application.

In sections 5.2 and 5.3 the configurations made for deploying the Fleet Online web
application under Tomcat Servlet Container is explained. The Fleet Online web application
uses Commons DBCP [DBCP03] and Commons Pool [CoPool03] components database
connections pooling. To enable Fleet Online to access these resources, they should be
registered in Tomcat’s server.xml configuration file. In section 5.2 details are explained.

In section 5.3 there will be explanation about the deployment descriptor for Fleet Online web
application. Servlets, JSPs and many elements existing under the web application are
specified in this deployment descriptor. Without the deployment descriptor, Tomcat would
not be able to properly serve the Fleet Online web application deployed under it.

In section 5.4 the Struts configuration file (struts-config.xml) details will be explained. This
configuration file is the main component of a Struts-based web application. Through it data
sources, form beans, action mappings and global forwards are defined.
Only the selected details will be presented.

 46

In section 5.4 implementation of the main Struts functionality will be explained. The Struts
Actions, use of OXF pipelines, domain model classes used for Fleet Online and Castor XML
mappings are the main points where implementation will be explained in more detail
.
In section 5.X the Hibernate mappings will be explained. All of the O/R mappings done for
domain model classes will be given in this section. At application start-up the mapping files
are read and the O/R mapping layer is made available to the application program. Hibernate
classes are used/instantiated in Struts Action classes in our architecture.

Finally in this section a detailed sequence diagram will be given in section 5.6. Section 5.7 is
the last section of this chapter where snapshots of the web interface are shown and explained
briefly. Here JSP views and OXF pipeline output views which are created by applying XSL
transformations to XML documents can be seen clearly.

5.2 Deploying the Web Application under Tomcat

The component Commons DBCP should be included in the application to enable efficient
database interactions.

To enable Tomcat use the Commons DBCP component, the following configurations seen in
Table 11 should be done in server.xml configuration file of Tomcat. The elements
<Resource> and <ResourceParams> should be added and configured to context of the Fleet
Online web application. The configurations done in server.xml of Tomcat for Fleet Online
web application can be seen in the Table 11.

<Context path="/fleetonline" docBase="C:\allWebApplicationDevelopment\jakarta-
tomcat\jakarta-tomcat-4.1.24\webapps\fleetonline"
workDir="C:\allWebApplicationDevelopment\jakarta-tomcat\jakarta-tomcat-
4.1.24\webapps\fleetonline\work\org\apache\jsp" reloadable="true"
crossContext="true">
 <Resource name="jdbc/fleetonline" auth="Container" scope="Shareable"
type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/fleetonline">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <!-- DBCP database connection settings -->
 <parameter>
 <name>url</name>
 <value>jdbc:mysql://localhost/gl</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>root</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>pass</value>
 </parameter>
 <!-- DBCP connection pooling options -->
 <parameter>
 <name>maxWait</name>

 47

 <value>5000</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>2</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>4</value>
 </parameter>
 </ResourceParams>
 </Context>

Table 11 Resource Integration in Fleet Online application

5.3 Deployment descriptor of Fleet Online web application

One most important deployment configuration is stating the servlet properties, names, initial
parameters to set and mappings. In this web application, there are two servlets : Struts and Oxf
servlets. Deployment descriptor file can be seen in Appendix.

The Struts servlet serves URIs with those properties: Application root URI or URIs ending
with *.do. Oxf servlet serves static resources like images, CSS, etc., and URIs ending with
“.xpl”. The XML pipelines reside in files ending with “.xpl” as convention.

There are few other configuration properties configured in deployment descriptor for the web
application. Context for the application, data source properties for the application are
examples for them.

5.4 Struts Configuration file

Struts configuration file is used to specify Struts-specific properties and action mappings.
Action mappings are used by Struts controller servlet which is an instance of
org.apache.struts.action.ActionServlet. Its purpose is to control the web
application. In our architecture, not only Struts but also OXF serves some of the URIs. Still,
the controller task is done by Struts. The Struts controller forwards the requests to OXF
servlet whenever there are requests for pipelines for view creation.

Here a snippet of the Struts configuration file is given. The controller is mainly configured by
this snippet. For example if a request is sent for main page of fleetonline, the request is
forwarded to index.jsp. When there is a request to “/logon”, the request is forwarded to an
instance of org.glgroup.fleetonline.struts.LogonAction. For the details of
the configuration file, please refer to the Appendix.

<action-mappings>
 <action path="/" forward="/index.jsp"/>
 <action path="/logon"
 type="org.glgroup.fleetonline.struts.LogonAction"
 name="logonOXFForm"
 scope="request"
 input="logon.jsp">
 <forward name="success" path="/logon.jsp"/>
 </action>

 <!-- Process a user logoff -->

 48

 <action path="/logoff"
 type="org.glgroup.fleetonline.struts.LogoffAction">
 <forward name="success" path="/index.jsp"/>
 </action>

 <action path="/showfleet"
 type="org.glgroup.fleetonline.struts.ShowFleetAction">
 <forward name="success" path="/ShowFleet.xpl"/>
 </action>
 <action path="/showsurveyrequest"
type="org.glgroup.fleetonline.struts.ShowSurveyRequestAction">
 <forward name="success" path="/ShowSurveyRequest.xpl"/>
 </action>
 </action-mappings>

Table 12 A snippet of struts-config.xml showing the action mappings

5.5 Struts functionality

5.5.1 Domain Model Classes and Database Tables

The business logic and business data resides in the Domain Model classes. In GL Fleet Online
Service business logic which is implemented in the student project is not complex. As
analyzed in the chapter 2, login, logoff, view fleet status and view survey request are the main
business logic actions to implement. The class diagram for business objects is in Figure 5-1.

The customer information resides in the class Customer. The attributes like username,
password, name, address, id etc. can be accessed by Customer. The ContactInfo
wrapper class hold the contact information of the customer.

The information for a ship is represented by the class ShipData. The register number, flag,
etc., properties can be found here. The class CustomerShip holds the link between the
customer and his ships. An instance of CustomerShip class holds the customer id and one
of the ship’s ids he has. There is a 1: n relationship between Customer and ShipData.
Customer class holds many instances of CustomerShip.

The SurveyItem class holds information of survey items. The class
OrderedSurveyItem holds a reference to SurveyItem instance and some specific
information about the ordering of the customer as due date, event on, and the state of the
order. There is a 1:1 relationship between an OrderedSurveyItem and SurveyItem.

A survey has a list of survey items. The class OrderedSurvey represents a survey which is
ordered by the customer. The 1:n relationship between the survey and its items can be seen in
the class diagram between OrderedSurvey and OrderedSurveyItem class.

A customer may have many surveys ordered for specific ships of him. So, there is a 1:n
relationship between the customer and his surveys. Customer and OrderedSurvey class
has an 1:n relationship.

An OrderedSurvey will be evaluated by a surveyor. The class Person represents the
main information for a person as name, surname and contact information. An
OrderedSurvey has an instance of Person which represents the surveyor responsible for
the survey. So, OrderedSurvey has a dependency to the Person class.

 49

An owner of a ship is represented by the class Owner. This class has information as owner
company details, contact information details and contact person details. A ship has an owner
and there is composition between these two objects.

The class DateTime is a helper class for O/R mapping of a Java date field which is
represented in the database in a special string format. This brings the need of writing a special
handler for mapping between the Java date object and the database column. As the O/R
mapping framework Hibernate was chosen, a special Java interface class defined for handlers
is implemented, i.e., the interface net.sf.hibernate.UserType. The class
DateTimeType implements this interface and the class DateTime extends the
DateTimeType. DateTime type is a JavaBean-similar class with getters and setters. The
methods to map the objects of type DateTime to database comes from the implemented
class DateTimeType.

Figure 5-1 org.glgroup.survey.model package class diagram

The business objects of Fleet Online are persisted to database. The database tables
representing the Domain Model classes can be seen in Figure 5-2.

 50

The table glis_customer represents the customer information. The dbnr column represents
the unique id for the customer. This column also provides the link between a customer and the
ships he has. The glis_customer table has customer name information, user account
information, number of ships he has etc.

Figure 5-2 Database schema with the relevant tables

The glis_ships table represents a ship’s information. The register_no column of a ship
uniquely defines this ship. The rest of the columns in this table represent additional
information about the ship.

 51

The table glis_custom_ships provides the linkage information between a ship and the
customer having the ship in his fleet. The columns dbnr and register_no provide this
linkage.

The column dbnr of this table, i.e. glis_ships table, references the dbnr column of
glis_customer table. Similarly the column register_no references the register_no column
of glis_ships table. The rest of the columns are representing additional information about this
linkage. This table has a composite key (dbnr, register_no). The dbnr referencing the
customer can exist in more than one row as a customer may have more than one ship.

The table gl_survey_item maps to SurveyItem Java class. The column item_key uniquely
defines a survey item. As mentioned before, an ordered survey item has one survey item and
additional information about the ordering action like due date of the order etc. The table
glis_ordered_survey_item represents an OrderedSurveyItem object. The item_no column
in this table references the column item_key in the table glis_survey_item.

The glis_ordered_surveys table represents an instance of OrderedSurvey. The column
order_number in this table is the key. An ordered survey may have many ordered survey
items. The column order_number in glis_ordered_survey_items table references the
order_number column of glis_ordered_surveys. As stated before a customer may have
ordered many surveys. This information is represented by foreign keys in the database
schema. The column dbnr of glis_ordered_surveys table references the dbnr column of
glis_customer.

Classes in org.glgroup.survey.model
Package

Database Tables

Customer glis_customer
SurveyItem gl_survey_item
OrderedSurveyItem glis_ordered_survey_items
OrderedSurvey glis_ordered_surveys
ShipData glis_ships
CustomerShip glis_custom_ships

Table 13 Class-to-tables mappings

In Table 13 the mappings of the classes to the database tables are summarized. In the database
schema, there are foreign key constraints representing the relations between the tables as
described above. They can be seen in Table 14.

Column Table Referenced

column
Referenced table

dbnr glis_custom_ships Dbnr glis_customer
register_no glis_custom_ships register_no glis_ships
dbnr glis_ordered_surveys Dbnr glis_customer
order_number glis_ordered_survey_items order_number glis_ordered_surveys
Item_no glis_ordered_survey_items item_key gl_survey_item
Register_no glis_ordered_surveys register_no glis_ships

Table 14 Foreign key relations of the fleet online database schema

The tables are designed by [FTEAM03]. In some cases there was the necessity to change the
tables’ definition especially relating the primary keys and foreign keys. In these cases the

 52

tables are slightly changed with the consideration of minimum changes. The most important
change is seen at glis_ordered_survey_items table. Before the changes this table did not
have a key, many rows having the same data could be existing. This is unsuitable for
Hibernate mapping. In Hibernate every business object to be mapped needs a unique id. So,
key column id is added to this table.

5.5.2 JSPs

In this project there are only two main JSP views. As stated before, remaining views are
created by applying XSL transformations to XML documents.

The first JSP view is index.jsp which creates the main entrance page to GL Fleet Online
service. Currently this page is quite simple; there is only a link to login page. The second JSP
view is the logon page. On this login page there is an HTML form which gets the username
and password from the user.

5.5.3 Implemented Struts Actions

An Action is an adapter between the contents of an incoming HTTP request and the
corresponding business logic that should be executed to process this request. The controller
will select an appropriate Action for each request, create an instance (if necessary), and call
perform method of Action.

Figure 5-3 Actions and ActionForm classes

 53

In Fleet Online web application, there are four main requests from the user, they are login to
fleet online, logoff from fleet online, viewing the general fleet status after the user’s logon and
viewing the selected survey request details for a selected ship of the user. For these main
requests, there are 4 action classes implemented. LogonAction, LogoffAction,
ShowFleetAction and ShowSurveyRequestAction classes in package
org.glgroup.fleetonline.struts do the specified actions. The class diagram for
this package can be seen in Figure 5-3.

In this package the class LogonOXFForm is a class which extends the ActionForm.
ActionForm is a class from Struts library to ease the HTML form input handling.
LogonOXFForm class eases the task of retrieving the username and password from a login
form.

5.5.4 OXF Pipelines

There are two OXF pipelines for output creation. The first pipeline creates the fleet status
page and the second the survey request page for a logged-in user whose session already
contains data about the ships in his fleet and the corresponding survey requests.

5.5.4.1 ShowFleetStatus pipeline

This pipeline creates the fleet status page for a logged-in customer. There are two processors
in the pipeline, a bean-generator processor and an XSLT processor. The bean-generator
processor has two inputs and one output. The first input is an instance of
org.glgroup.survey.model.Model for the customer which resides in the session. The second is
the Castor XML mapping file. The output is the XML representation of the model instance.
This XML representation is created by using Castor XML mapping files.

Figure 5-4 ShowFleetStatus pipeline

The second and last processor in the pipeline is XSLT processor. XSLT processor has two
inputs and one output. The first input is the XML structure to which XSL transformation will
be applied, and the second input is the XSL stylesheet to apply. The first input comes from the
previous processor’s output, i.e., from bean-generator processor which is the XML structure

 54

for model object. After applying the transformation, the output page which will be sent to the
customer is created.

Table 15 shows the pipeline expressed in XPL (XML Pipeline definition language).

<p:config xmlns:p="http://www.orbeon.com/oxf/pipeline"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <p:param type="input" name="model"/>
 <p:param type="output" name="data"/>

<!-- bean-generator processor definition -->
<p:processor uri="oxf/processor/bean-generator">

<!-- the first input, the bean object in the session for customer-->
 <p:input name="config" xmlns:p="http://www.orbeon.com/oxf/pipeline">
 <config>
 <attribute>model</attribute>
 <source>session</source>
 </config>
 </p:input>

<!-- the 2nd input, Castor XML mapping file-->
 <p:input name="mapping" href="oxf:/mappingGL.xml"/>

<!-- the output of this processor, XML structure for the model bean in session-->
 <p:output name="data" id="modelSession" debug="modelSession"/>
 </p:processor>

<!-- XSLT processor definition -->
<p:processor uri="oxf/processor/xslt">

<!—the first input which is output of previous processor -->
 <p:input name="data" href="#modelSession"/>
<!—2nd input, xsl stylesheet to apply-->
 <p:input name="config"
 href="oxf:/style\showFleetStatus.xsl">
 </p:input>
<!-- output HTML page created which will be sent to user-->
 <p:output name="data" ref="data" />
 </p:processor>
</p:config>

Table 15 ShowFleetStatus pipeline definition in XPL

5.5.4.2 ShowSurveyRequest pipeline

The second pipeline used in the web application creates the survey request page for a logged-
in user. It has the same processors as the previous pipeline, i.e., bean-generator processor and
XSLT Processor. In this pipeline, only the second input to the XSLT processor is different, it
is not the stylesheet to create fleet status page, but the one used to create the survey request
page for the customer.

 55

Figure 5-5 ShowSurveyRequest Pipeline

The XPL definition for this pipeline will not be given as it is very similar to the previous
definition given in previous section.

5.5.4.3 Castor XML Mappings

Castor XML mappings are used in the OXF pipelines as input for bean-generator processor.
The domain model [Fowler03] classes in package org.glgroup.survey.model are
represented as XML structures. For all the classes in this package an XML representation
mapping is created.

The Model class in this package comprises customer and ships and survey requests of this
customer. When a customer logs in, an instance of Model having information about the
customer and fleet status and surveys information for the customer is created and saved to
session for the customer. Mainly the aim is to have an XML representation for this object
which is instance of the Model class.

Only an example mapping for the Model class will be given, for the mappings of the
remaining classes in org.glgroup.survey.model package, please refer to the
Appendix.

 The mapping for class org.glgroup.survey.model.Model is defined by element <class>. It is
mapped to XML element <Model>. The field customer of this class is mapped to element
<Customer>. The mapping for Customer class is defined by another <class> element
(which is not shown here). The shipWrappers field of Model class which has objects of
type org.glgroup.survey.model.ShipWrapper is mapped to
<ShipSurveyRequests> element. Table 16 shows the mapping for Model class.

<class name="org.glgroup.survey.model.Model" auto-complete="false">
 <map-to xml="Model"/>
 <field name="customer" type="org.glgroup.survey.model.Customer">
 <bind-xml name="Customer" />
 </field>
 <field name="shipWrappers" type="org.glgroup.survey.model.ShipWrapper"
 container="false" collection="arraylist">
 <bind-xml name="ShipSurveyRequests" />
 </field>
</class>

 56

Table 16 Castor XML mapping for class Model

So, the resulting Model class will have such a XML representation:

Figure 5-6 Model instance representation

Model has child elements <Customer> and <ShipSurveyRequests>. Both of the child
elements have their own children and attributes representing their own structure.
<ShipSurveyRequests> element represents a shipWrappers field which is an array list. So, it
has same number of children as it is in the list. The children have all same structure where
only the values of attributes or the elements differ.

5.5.4.4 XSL Stylesheets

There are two main XSL stylesheets used by OXF pipelines, showFleetStatus.xsl and
showSurveyRequest.xsl. Given the XML structure for the model instance for the current
customer (which contains ships and survey requests information), showFleetStatus stylesheet
renders the HTML output showing the fleet status for this customer. ShowSurveyRequest.xsl
renders the HTML page showing the details for a chosen survey of a ship.

5.6 Hibernate Mapping

The purpose of Hibernate is the persistence of application objects, automatic saving/updating
to RDBMS and querying and initializing objects from RDBMS.

Hibernate uses XML mapping files for automatic Java objects saving/updating/retrieving
to/from RDBMS. In the next sections the mappings for the classes to database tables will be
briefly explained.

Please note that in the class diagrams, not-shown cardinalities are 1 and the navigability is not
shown with arrows when both directions are navigable.

5.6.1 Class ShipData

This class maps to glis_ships table in RDBMS. The unique ids for the objects of this class
are set by programmer. The <id> element specifies the unique id for the objects of this class.
It should map to the key attribute of the table. All objects must have unique ids. The
registerNumber field of ShipData represents the unique ids. name, suspended,
csItems, imoNumber, flagId mappings are straightforward, and can be seen in the
mapping document. The mappings of the fields to columns are expressed by <property>
elements in the mapping file as they are of basic types.

 57

Figure 5-7 ShipData relationships

For mapping of classPeriod and dueRemaining fields, <component> element is used.
The <component> element maps properties of a child object to columns of the table of a
parent class. <component> element can map properties which are not instances of simple
data types to columns in the table. The classPeriod field is of type DateRange. The
from field of DateRange maps to ship_in_class column in the table. The
dueRemaining field has type DueRemaining. The overdue field of
DueRemaining class maps to column overdue in the table and the field deadline maps
to deadline column in the table. The relationships of ShipData with DateRange and
DueRemaining classes can be seen clearly in Figure 5-7.

Table 17 shows the mapping definition for ShipData class.

<hibernate-mapping>

 <class name="org.glgroup.survey.model.ShipData" table="glis_ships">

 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="registerNumber" type="string" unsaved-value="" >
 <column name="register_no" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>
 <property name="name" type="string">
 <column name="name" sql-type="varchar" />
 </property>

 <component name="classPeriod" class="org.glgroup.survey.model.DateRange">
 <property name="from" type="date">
 <column name="ship_in_class" sql-type="date"/>
 </property>
 </component>

 <component name="dueRemaining"
class="org.glgroup.survey.model.DueRemaining">
 <property name="overdue" type="boolean">
 <column name="overdue" sql-type="int(1)" />
 </property>
 <property name="deadline" type="string">
 <column name="deadline" sql-type="int" />
 </property>
 </component>

 <property …>
 …
 </property>
 </class>
</hibernate-mapping>

Table 17 Hibernate mapping for ShipData class

 58

5.6.2 Class Customer

In this section the mapping of Customer class is explained. Not all of the mappings will be
shown, but the most important ones. The mappings of selected fields are explained in detail.

Customer class maps to table glis_customer which has primary key dbnr column. In the
Customer class, the field dbNumber maps to dbnr column. Fields userId,
password, accessRights, sidgen, sid, name, logtime,
lastAccess, accessCounter, passwordChanged, shipsAccess,
overdueItems, shipNumber, shipsValid, suspended,
lockUnlockDate, accountLocked map to simple columns in the table.

Figure 5-8 Customer Relationships

The field contact of Customer class is not of a simple type, but of type ContactInfo.
For the time being, only the email of the customer is saved to RDBMS, so email field of
ContactInfo class maps to email column in the table. Figure 5-8 shows the relationships
of Customer class with the classes it has relationships.

Customer class has a field customerShips which is a list. The elements in the list are
of type org.glgroup.survey.model.CustomerShip. The CustomerShip
objects reside in the RDBMS in table glis_custom_ships. This table represents the 1: n
relationship between the customer and ships with additional properties about the relationships.
The column dbnr in glis_custom_ships table references the dbnr column (which is the
primary key) in glis_customer. The column register_no in glis_custom_ships references
register_no (primary key) in glis_ships. Together with dbnr column, register_no column
in glis_custom_ships represents the customer-ships (1: n) relationship. For this a helper
class CustomerShip is used. The field ship of CustomerShip class is of type
ShipData. ShipData is also a class persisted to RDBMS, so a new mapping is not
necessary, the element <many-to-one> does the mapping of ship field to register_no
column (the details of the ship object represented resides in its own table, glis_ships, just the
reference to the row representing that object is saved in glis_custom_ships table, which is as
stated before register_no column). The details represented for this 1:n relationship are
expressed by element <bag>.

Please note that in 5.8 the Customer mappings explained are shown, the full mapping can
be found in the Appendix.

<hibernate-mapping>

 59

 <class name="org.glgroup.survey.model.Customer" table="glis_customer">
 <id name="dbNumber" type="string" unsaved-value="" >
 <column name="dbnr" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>
 <property name="userId" type="string">
 <column name="userid" sql-type="varchar(32)"/>
 </property>
 <property name="password" type="string">
 <column name="passwd" sql-type="varchar(32)" />
 </property>

 <property …>
 …
 </property>

 <component name="contact" class="org.glgroup.survey.model.ContactInfo">
 <property name="email" type="string">
 <column name="email" sql-type="varchar(200)" />
 </property>
 </component>
 <bag name="customerShips" table="glis_custom_ships">
 <key column="dbnr">
 </key>
 <composite-element class="org.glgroup.survey.model.CustomerShip">
 <property name="visibility" type="string">
 <column name="visibility" sql-type="int"/>
 </property>
 <property name="addresseeNumber" type="string">
 <column name="addressee_no" sql-type="int"/>
 </property>
 <many-to-one name="ship" column="register_no"/>
 </composite-element>
 </bag>
 </class>
</hibernate-mapping>

Table 18 Hibernate mapping for Customer class

5.6.3 Class SurveyItem

The class SurveyItem is persisted to table gl_survey_item table which has primary key
item_key column. In this class, all mappings of properties are straightforward; the fields
have basic Java types, or wrapper types. The mapping structure can be seen in table.

<hibernate-mapping>
 <class name="org.glgroup.survey.model.SurveyItem" table="gl_survey_item">
 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="key" type="string" unsaved-value="" >
 <column name="item_key" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 <property ……>
 ………
 </property>

 </class>

</hibernate-mapping>

Table 19 Hibernate mapping for SurveyItem class

 60

5.6.4 Class OrderedSurveyItem

This class is persisted to table glis_ordered_survey_items. As seen in class diagram in
Figure 5-1 and more clearly in Figure 5-9, OrderedSurveyItem and SurveyItem
have a 1:1 relationship. In the OrderedSurveyItem class, this relationship is
represented with a field item of type SurveyItem. In the database tables
glis_ordered_survey_items and gl_survey_item, this is represented by a foreign key to
gl_survey_item table in glis_ordered_survey_items table. This foreign key is the column
item_no which references the item_key column of gl_survey_item table. The element
<many-to-one> represents this 1:1 relationship between the OrderedSurveyItem and
SurveyItem classes.

The field dueRange of OrderedSurveyItem class is of type DateRange. The fields
from and to of this class are persisted to item_due_on_early and item_due_on_late
columns.

Figure 5-9 OrderedSurveyItem relationships

The remaining fields of OrderedSurveyItem which are not explained in this section are
straightforward to map, the details will not be explained. Please note that in 5.9 the
OrderedSurveyItem mappings explained are shown, the full mapping can be found in
the Appendix.

<hibernate-mapping>

 <class name="org.glgroup.survey.model.OrderedSurveyItem"
table="glis_ordered_survey_items">

 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="id" type="string" unsaved-value="" >
 <column name="id" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 <component name="dueRange" class="org.glgroup.survey.model.DateRange">
 <property name="from" type="date">
 <column name="item_due_on_early" sql-type="date" />
 </property>
 <property name="to" type="date">
 <column name="item_due_on_late" sql-type="date" />
 </property>
 </component>

 <many-to-one
 name="item"

 61

 column="item_no"/>
 </class>

</hibernate-mapping>

Table 20 Hibernate mapping for OrderedSurveyItem class

5.6.5 Class OrderedSurvey

In some specific cases, an automatically mapping of Java attributes to database table columns
are not possible or special handling is necessary before persisting them to database and
instantiating them from the RDBMS. In these cases the Java attribute usually is of a custom
type. The interface net.sf.hibernate.UserType should be implemented by the client
programmer. A "type" class is not the actual property type - it is a class that knows how to
serialize instances of another class to and from JDBC. This interface has 7 methods as can be
seen in Figure 5-10.

• public int[] sqlTypes(): Return a deep copy of the persistent state, stopping at
entities and at collections.

• public Object returnedClass() : The class of objects returned by nullSafeGet().
• public boolean equals(Object x, Object y) : Compare two instances of the class

mapped by this type for persistence "equality"
• public Object nullSafeGet(ResultSet rs, String[] names, Object owner) throws

HibernateException,SQLException : Retrieve an instance of the mapped class from
a JDBC resultset

• public void nullSafeSet(PreparedStatement st, Object value, int index) throws
HibernateException, SQLException: Write an instance of the mapped class to a
prepared statement.

Figure 5-10 UserType interface

In the mapping for OrderedSurvey class, the fields estimatedDeparture and
estimatedArrival must be of a custom type. The columns ETD_T and ETD_D tell the
estimated departure’s date and time, in the database represented as strings with a specific date
and time format. In the class, we want estimatedDeparture field to represent date
(from which one can also get the time). estimatedDeparture is of type DateTime.
This class extends the class DateTimeType which implements the interface
net.sf.hibernate.UserType. DateTimeType provides the implementations of
the methods in the interface which are necessary for (manual) persistence. The columns
ETD_T and ETD_D are stored /retrieved by those implemented methods in this interface.
estimatedArrival field of OrderedSurvey has also type DateTime. It is mapped
in a similar way. Figure 5-11 shows the relationships of OrderedSurvey class with other
classes.

 62

Figure 5-11 OrderedSurvey Relationships

The next very important mapping from this class is the mapping of the 1:n relationship
between OrderedSurvey and OrderedSurveyItem classes. An object of type
OrderedSurvey can have many OrderedSurveyItem instances. OrderedSurvey
class has a field orderedSurveyItems which has its elements of type
OrderedSurveyItem. Element <bag> in this mapping specifies the mapping for the list
of ordered survey items to database tables.

There are many <component> element mappings for this class. OrderedSurvey has
components surveyor and agent which are instances of Person, vesselInfo which
is an instance of ContactInfo and company which is an instance of Owner.

A <many-to-one> element in the mapping maps the ship field of OrderedSurvey. ship
is an instance of ShipData class, and in the glis_ordered_surveys table the column
register_no is foreign key referencing register_no in glis_ships table.

Mappings of the remaining fields of OrderedSurvey class can be found in Appendix.

<hibernate-mapping>

 <class name="org.glgroup.survey.model.OrderedSurvey"
table="glis_ordered_surveys">
 <id name="orderNumber" type="string" unsaved-value="" >
 <column name="order_number" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 63

 <property name="estimatedDeparture" type="org.glgroup.survey.model.DateTime">
 <column name="ETD_T" sql-type="varchar"/>
 <column name="ETD_D" sql-type="varchar"/>
 </property>

 <property name="estimatedArrival" type="org.glgroup.survey.model.DateTime">
 <column name="ETA_T" sql-type="varchar"/>
 <column name="ETA_D" sql-type="varchar"/>
 </property>

 <bag name="orderedSurveyItems" inverse="false" lazy="false">
 <!-- order_number in glis_ordered_survey_items table-->
 <key column="order_number"/>
 <one-to-many class="org.glgroup.survey.model.OrderedSurveyItem"/>
 </bag>

 <many-to-one
 name="ship"
 column="register_no"/>

 <component name="surveyor" class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="surveyor" sql-type="varchar" />
 </property>
 </component>

 <component name="agent" class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="agent" sql-type="varchar" />
 </property>
 <component name="contact" class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="agent_tel" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="agent_fax" sql-type="varchar" />
 </property>
 </component>
 </component>

 <component name="vesselInfo"
class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="vessel_tel" sql-type="varchar" />
 </property>
 </component>

 <component name="company" class="org.glgroup.survey.model.Owner">
 <property name="companyName" type="string">
 <column name="company" sql-type="varchar" />
 </property>
 <component name="contact" class="org.glgroup.survey.model.ContactInfo">
 <property name="email" type="string">
 <column name="email" sql-type="varchar" />
 </property>
 </component>

 <component name="contactPerson" class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="name" sql-type="varchar" />
 </property>
 <component name="contact" class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="tel" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="fax" sql-type="varchar" />
 </property>

 64

 </component>
 </component>
 </component>
 </class>

</hibernate-mapping>

Table 21 Hibernate mapping for OrderedSurvey class

5.7 Detailed Sequence Diagrams

The interaction between the components of the system can be seen in the following sequence

diagrams in
Figure 5-12 and Figure 5-13. In

Figure 5-12, login in of a user to the system is shown, and in the second viewing the survey
request for a specific ship.

For a log in to GL Fleet Online web application, a client initiates a logon request. The Logon
request is the logon action in Struts, so the controller dispatches to LogonAction class. In
the LogonAction class, the execute(X) method has a reference to the form bean which
this class uses, i.e., LogonOXFForm bean. LogonOXFForm bean contains the values from
the HTML form which is sent with the user request. It contains username and password fields.
In the LogonAction class, this username and password of the user are retrieved, and these
values are passed to Hibernate query which is used to select the customer object with the
given username and password from the database. If the query is successful, the customer
object is returned to the LogonAction. LogonAction saves the customer object in the
HTTPSession for this customer. The next step in the interaction after successful login is
forwarding the request to Struts’ ShowFleetAction class. ShowFleetAction retrieves
the ships and related surveys for the ships from the database by using Hibernate queries for
the customer session. Then Struts ShowFleetAction forwards the request to OXF
ShowFleetStatus pipeline. This pipeline creates the HTML page that will be sent to the user.
The HTML contains the fleet status of the ships of customer. When Struts
ShowFleetAction forwards the request to ShowFleetStatus, the OXF Processor gets the
request. It selects the corresponding pipeline, and processes it. As a result the pipeline
ShowFleetStatus.xpl creates the output page.

The next interaction of the components to be shown is when the client requests to view the
details of a specific survey for a ship. In this interaction sequence, the client initiates by
request to view the survey status for a specific ship. Struts controller gets the request and
dispatches it to ShowSurveyRequestAction. It checks the session object saved for the
customer. It retrieves the selected survey chosen by customer. It stores this survey in
HTTPSession object for the customer and forwards the request to ShowSurveyRequest
pipeline. OXF Processor gets the forward and executes the pipeline. As a result of this
pipeline the HTML page showing the details for the chosen survey is sent back to client. This
interaction can be seen in Figure 5-13.

 65

Figure 5-12 Interaction Diagram for Login to Fleet Online

 66

Figure 5-13 Interaction Diagram for viewing survey request

 67

5.8 Screenshots

The GL Fleet Online web application has five main views. At the entrance to the site,
currently a simple page is shown with a link to logon page. Figure 5-14 shows this page. This
page is created by a JSP page, index.jsp.

Figure 5-14 Main page-index.jsp output

When the user clicks the link “Log on to FleetOnline” seen in Figure 5-14, the request is
forwarded to login page, and the user views the logon page as response. The logon page can
be seen in Figure 5-15 Logon Page. After the user enters his/her username and password,
he/she sends the HTTP request to the application. If the login is successful, the page with fleet
status for his/her ships is displayed to him.

The fleet status page shown in Figure 5-16 shows mainly short overview information about
the existing ships for the customer and the survey requests for each ship. This page is created
by OXF fleet status pipeline. The customer can select one of the survey requests by clicking
and the details of the survey request will be sent by the application as HTTP response. The
survey request page sent for a specific survey request can be seen in Figure 5-17.

 68

Figure 5-15 Logon Page

Figure 5-16 Fleet status page for a specific customer

 69

Figure 5-17 Survey request page

 70

6. Conclusion
6.1 Summary

Web application development frameworks make the life easier for web development teams.
The existing frameworks Struts, Cocoon and OXF have been analysed and evaluated in the
work. As a result of the analysis, Struts-OXF integration framework was chosen. Struts is an
MVC-based framework, the model, view and controller in Struts are components easy to
understand. The documentation and very large user base and efficiency of Struts make it a
very suitable framework for most web development projects.

OXF is an XML content-based J2EE application development framework. OXF has very
useful concepts like XML pipelines. The company offering OXF also offers an OXF-Struts
integration framework. In this integration framework Struts functionalities as well as main
OXF functionalities are provided to the application programmer. The concept of XML
pipelines and view creation by applying XSL transformations to XML documents are
introduced to Struts. In pure Struts, the views are JSPs. By OXF a new view creation concept
is introduced.

Object-relational mappers ease the mapping of business objects to RDBMS. This task is not a
simple task, because of the different views on data structures in both worlds. Object-oriented
design and languages have concepts like inheritance, polymorphism, classes which do not
exist in relational tables. There are many existing patterns to map the OO classes to relational
tables.

The analysed O/R mapper frameworks in this student project work are Hibernate, OJB
(Object-relational Bridge) and Castor JDO. After analysis, Hibernate is chosen for O/R
mapping. Hibernate is a high-performance O/R mapper for Java with very large user base,
very nice documentation. Hibernate has many features enabling flexible mapping of classes to
relational tables. But it can be said that Hibernate is mostly suitable for mapping existing Java
classes to relational tables. Hibernate provides tools to create the relational tables from the
mapping files of the Java classes.

GL Fleet Online web application which provides online facilities for GL customers is
prototypically implemented with chosen web development framework and O/R mapper. GL
Fleet Online application provides ship owners to inspect the various data about their ships.
The ships should have surveys in specified times. The online application mainly provides the
functionality to view the fleet status and survey request details. For the domain model
persistence, Hibernate has been used.

6.2 Possible further development

The GL Fleet Online service for customers includes many tasks. Some further development
points in this work can be:

 New requirements
 New Design of GL Fleet Online System database schema
 Session management
 Move to Oracle database, the main GL database

 71

GL Fleet Online System offers GL’s customers much functionality. In the project work only
some part of the requirements were implemented. Use cases like registering of new
customers, addition of new ships, processing of survey request data etc. have not been
implemented in this work. The addition of the completing use cases is a main development
point.

The current GL Fleet Online tables are not expressing the business object structures very well.
The tables have missing constraints which can be only seen at application logic level. The fact
that the tables were already being used by existing GL applications made it difficult to change
the existing tables. Other than that it was not desired by GL Fleet Online team to change the
tables. So, in my work other than the very necessary cases, the tables are not changed, only
the type definitions are matched with MySQL. There are some minor SQL type differences
between Oracle DB and MySQL DB. The overall new design of the Fleet Online database
schema is a very important development point.

After logon, necessary customer data for session management are held in customer’s session
object. This object is saved in a session. This object holds all the customer data with his ships
and survey requests data. When the customer has many ships with many survey requests
whose data size is big, the session object will be very big in size. Because this object will be
residing in memory until the customer logs off, it will be additional load (memory usage) for
the Fleet Online server. The future work is to design the class so that the session object for
customer holds only ids for customer, ships and survey requests, not the data itself. When the
data with specific id is requested, then it will be retrieved from database or any other resource
where the data resides.

The last further development point is moving to Oracle database. The implementation and
mappings done for this work have been tested with MySQL database. There is a need to move
to GL’s main database. There will be little changes in mapping file for Hibernate because of
SQL type differences between Oracle and MySQL.

 72

 73

Appendix
A1. Web.xml deployment descriptor

<?xml version="1.0" ?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>

 <context-param>
 <param-name>oxf.resources.factory</param-name>
 <param-
value>org.orbeon.oxf.resources.PriorityResourceManagerFactory</param-value>
 </context-param>
 <context-param>
 <param-name>oxf.resources.webapp.rootdir</param-name>
 <param-value>/WEB-INF/resources</param-value>
 </context-param>
 <context-param>
 <param-name>oxf.resources.priority.1</param-name>
 <param-value>org.orbeon.oxf.resources.WebAppResourceManagerFactory</param-
value>
 </context-param>
 <context-param>
 <param-name>oxf.resources.priority.2</param-name>
 <param-
value>org.orbeon.oxf.resources.ClassLoaderResourceManagerFactory</param-value>
 </context-param>

 <context-param>
 <param-name>oxf.properties</param-name>
 <param-value>oxf:/config/properties.xml</param-value>
 </context-param>

 <servlet>
 <servlet-name>testservlet</servlet-name>
 <servlet-class>org.glgroup.hibernate.mapping.TestServlet</servlet-class>
 <init-param>
 <param-name>load-class</param-name>
 <param-value>
 com.mysql.jdbc.Driver
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet>
 <servlet-name>struts</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>10</param-value>
 </init-param>
 <init-param>
 <param-name>mapping</param-name>
 <param-value>org.apache.struts.action.RequestActionMapping</param-
value>
 </init-param>
 <!-- this package doesnt exist any more, deleted

 74

 <init-param>
 <param-name>application</param-name>
 <param-
value>org.orbeon.oxf.struts.examples.ApplicationResources</param-value>
 </init-param>
 -->
 <init-param>
 <param-name>locale</param-name>
 <param-value>true</param-value>
 </init-param>

 <init-param>
 <param-name>load-class</param-name>
 <param-value>
 com.mysql.jdbc.Driver
 </param-value>
 </init-param>

 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet>
 <servlet-name>oxf</servlet-name>
 <servlet-class>org.orbeon.oxf.servlet.ProcessorServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

<!-- Action Servlet Mapping -->

 <servlet-mapping>
 <servlet-name>testservlet</servlet-name>
 <url-pattern>/testing</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>struts</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

 <!--
 <servlet-mapping>
 <servlet-name>struts</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 -->

 <servlet-mapping>
 <servlet-name>oxf</servlet-name>
 <url-pattern>*.xpl</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>oxf</servlet-name>
 <url-pattern>*.css</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>oxf</servlet-name>
 <url-pattern>*.js</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>oxf</servlet-name>
 <url-pattern>*.gif</url-pattern>
 </servlet-mapping>

 75

 <servlet-mapping>
 <servlet-name>oxf</servlet-name>
 <url-pattern>*.png</url-pattern>
 </servlet-mapping>

<!-- Application Tag Library Descriptor -->
 <taglib>
 <taglib-uri>/WEB-INF/app.tld</taglib-uri>
 <taglib-location>/WEB-INF/app.tld</taglib-location>
 </taglib>

 <!-- Struts Tag Library Descriptors -->
 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>

<resource-ref>
 <res-ref-name>jdbc/fleetonline</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

A2. Struts configuration file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>
 <form-beans>

 <form-bean name="logonOXFForm"
type="org.glgroup.fleetonline.struts.LogonOXFForm"/>

</form-beans>

<global-forwards>
 <forward name="mainpage" path="/index.jsp"/>
 <forward name="logon" path="/logon.jsp"/>
 <forward name="logoff" path="/logoff.do"/>
 <forward name="showFleet" path="/ShowFleet.xpl"/>
 <forward name="showFleetStruts" path="/showfleet.do"/>
 <forward name="showSurveyRequestStruts"
path="/showsurveyrequest.do"/>
 <forward name="showSurveyRequest" path="/ShowSurveyRequest.xpl"/>
 </global-forwards>
 <action-mappings>

 76

 <action path="/" forward="/index.jsp"/>
 <action path="/logon"
 type="org.glgroup.fleetonline.struts.LogonAction"
 name="logonOXFForm"
 scope="request"
 input="logon.jsp">
 <forward name="success" path="/logon.jsp"/>
 </action>

 <!-- Process a user logoff -->
 <action path="/logoff"
 type="org.glgroup.fleetonline.struts.LogoffAction">
 <forward name="success" path="/index.jsp"/>
 </action>

 <action path="/showfleet"
 type="org.glgroup.fleetonline.struts.ShowFleetAction">
 <forward name="success" path="/ShowFleet.xpl"/>
 </action>

 <action path="/showsurveyrequest"

type="org.glgroup.fleetonline.struts.ShowSurveyRequestAction">
 <forward name="success" path="/ShowSurveyRequest.xpl"/>
 </action>

 </action-mappings>
 <message-resources
 parameter="org.glgroup.fleetonline.struts.ApplicationResources"/>

 <message-resources

parameter="org.glgroup.fleetonline.struts.AlternateApplicationResources"
 key="alternate">
 </message-resources>

<!-- this does not exist any more
<message-resources
parameter="org.orbeon.oxf.struts.examples.ApplicationResources"
 null="false" key="messages" />
-->
 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property property="pathnames" value="/WEB-INF/validator-
rules.xml,
 /WEB-
INF/validation.xml"/>
 </plug-in>
</struts-config>

A3. Hibernate mapping files

A3.1 Ship.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping
DTD//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

 77

<hibernate-mapping>

 <class name="org.glgroup.survey.model.ShipData" table="glis_ships">

 <id name="registerNumber" type="string" unsaved-value="" >
 <column name="register_no" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>
 <property name="name" type="string">
 <column name="name" sql-type="varchar" />
 </property>

 <component name="classPeriod"
class="org.glgroup.survey.model.DateRange">
 <property name="from" type="date">
 <column name="ship_in_class" sql-type="date"/>
 </property>
 </component>

 <component name="dueRemaining"
class="org.glgroup.survey.model.DueRemaining">
 <property name="overdue" type="boolean">
 <column name="overdue" sql-type="int(1)" />
 </property>
 <property name="deadline" type="string">
 <column name="deadline" sql-type="int" />
 </property>
 </component>
 <property name="suspended" type="boolean">
 <column name="suspended" sql-type="int(1)" />
 </property>

 <property name="csItems" type="string">
 <column name="csitems" sql-type="int" />
 </property>
 <property name="imoNumber" type="string">
 <column name="imo_no" sql-type="varchar" />
 </property>
 <property name="flagId" type="string">
 <column name="flag_id" sql-type="int(6)" />
 </property>
 </class>

</hibernate-mapping>

A3.2 Customer.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping
DTD//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class name="org.glgroup.survey.model.Customer" table="glis_customer">
 <id name="dbNumber" type="string" unsaved-value="" >
 <column name="dbnr" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 78

 <property name="userId" type="string">
 <column name="userid" sql-type="varchar(32)"/>
 </property>
 <property name="password" type="string">
 <column name="passwd" sql-type="varchar(32)" />
 </property>

 <property name="accessRights" type="string">
 <column name="rights" sql-type="int" />
 </property>
 <property name="sidgen" type="string">
 <column name="sidgen" sql-type="int" />
 </property>
 <property name="sid" type="string">
 <column name="sid" sql-type="int" />
 </property>
 <property name="name" type="string">
 <column name="name" sql-type="varchar(50)" />
 </property>
 <property name="logtime" type="string">
 <column name="logtime" sql-type="int" />
 </property>

 <property name="lastAccess" type="date">
 <column name="last_access" sql-type="date" />
 </property>

 <property name="accessCounter" type="int">
 <column name="access_counter" sql-type="int" />
 </property>

 <property name="passwordChanged" type="date">
 <column name="passwd_changed" sql-type="date" />
 </property>
 <property name="shipsAccess" type="date">
 <column name="ships_access" sql-type="date"/>
 </property>

 <property name="overdueItems" type="boolean">
 <column name="overdue" sql-type="int(1)"/>
 </property>
 <property name="shipNumber" type="int">
 <column name="ships_number" sql-type="int"/>
 </property>
 <property name="shipsValid" type="boolean">
 <column name="ships_valid" sql-type="int"/>
 </property>
 <property name="suspended" type="boolean">
 <column name="suspended" sql-type="int(1)"/>
 </property>
 <property name="lockUnlockDate" type="date">
 <column name="lock_unlock_date" sql-type="date"/>
 </property>
 <property name="accountLocked" type="boolean">
 <column name="account_locked" sql-type="int"/>
 </property>
 <component name="contact"
class="org.glgroup.survey.model.ContactInfo">
 <property name="email" type="string">
 <column name="email" sql-type="varchar(200)" />
 </property>
 </component>

 79

 <bag name="customerShips" table="glis_custom_ships">
 <key column="dbnr">
 </key>
 <composite-element
class="org.glgroup.survey.model.CustomerShip">
 <property name="visibility" type="string">
 <column name="visibility" sql-type="int"/>
 </property>
 <property name="addresseeNumber" type="string">
 <column name="addressee_no" sql-type="int"/>
 </property>
 <many-to-one name="ship" column="register_no"/>
 </composite-element>
 </bag>

 </class>

</hibernate-mapping>

A3.3 SurveyItem.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping
DTD//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class name="org.glgroup.survey.model.SurveyItem"
table="gl_survey_item">

 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="key" type="string" unsaved-value="" >
 <column name="item_key" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 <property name="comment" type="string">
 <column name="comment" sql-type="text" />
 </property>
 <property name="description" type="string">
 <column name="description" sql-type="varchar(100)" />
 </property>
 <property name="name" type="string">
 <column name="name" sql-type="varchar(32)" />
 </property>
 <property name="chapterKey" type="string">
 <column name="chapter_key" sql-type="varchar(20)" />
 </property>
 <property name="type" type="string">
 <column name="item_type" sql-type="varchar(1)" />
 </property>
 </class>

</hibernate-mapping>

 80

A3.4 OrderedSurveyItem.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping
DTD//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class name="org.glgroup.survey.model.OrderedSurveyItem"
table="glis_ordered_survey_items">

 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="id" type="string" unsaved-value="" >
 <column name="id" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 <property name="orderNumber" type="string">
 <column name="order_number" sql-type="int"/>
 </property>
 <property name="lastDate">
 <column name="item_event_on" sql-type="date" />
 </property>

 <property name="dueDate">
 <column name="item_due_on" sql-type="date" />
 </property>
 <property name="checked" type="boolean">
 <column name="checked" sql-type="int" />
 </property>
 <property name="state" type="string">
 <column name="item_state" sql-type="int" />
 </property>

 <component name="dueRange"
class="org.glgroup.survey.model.DateRange">
 <property name="from" type="date">
 <column name="item_due_on_early" sql-type="date" />
 </property>
 <property name="to" type="date">
 <column name="item_due_on_late" sql-type="date" />
 </property>
 </component>
 <many-to-one
 name="item"
 column="item_no"/>

 </class>

</hibernate-mapping>

 81

A3.5 OrderedSurvey.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-
mapping-2.0.dtd">

<hibernate-mapping>

 <class name="org.glgroup.survey.model.OrderedSurvey"
table="glis_ordered_surveys">

 <!-- A 32 hex character is our surrogate key. It's automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="orderNumber" type="string" unsaved-value="" >
 <column name="order_number" sql-type="int" not-null="true"/>
 <generator class="assigned"/>
 </id>

 <property name="estimatedDeparture"
type="org.glgroup.survey.model.DateTime">
 <column name="ETD_T" sql-type="varchar"/>
 <column name="ETD_D" sql-type="varchar"/>
 </property>

 <property name="estimatedArrival"
type="org.glgroup.survey.model.DateTime">
 <column name="ETA_T" sql-type="varchar"/>
 <column name="ETA_D" sql-type="varchar"/>
 </property>

 <property name="dbNumber" type="string">
 <column name="dbnr" sql-type="int"/>
 </property>
 <property name="userType" type="string">
 <column name="userType" sql-type="int" />
 </property>

 <property name="orderDate" type="date">
 <column name="order_date" sql-type="date" />
 </property>
 <property name="surveyDate" type="date">
 <column name="survey_date" sql-type="date" />
 </property>

 <property name="orderConfirmation" type="string">
 <column name="order_confirmation" sql-type="int" />
 </property>

 <property name="portOfSurvey" type="string">
 <column name="port_of_survey" sql-type="text" />
 </property>

 <property name="berthOfSurvey" type="string">
 <column name="berth_of_survey" sql-type="text" />
 </property>

 <property name="surveyState" type="string">
 <column name="survey_state" sql-type="int" />
 </property>

 <property name="remarks" type="string">
 <column name="remarks" sql-type="text" />
 </property>

 82

 <property name="emailConfirmation" type="boolean">
 <column name="email_confirmation" sql-type="int" />
 </property>

 <!--
 <property name="orderedSurveyItemList"
type="org.glgroup.survey.model.OrderedSurveyItemList">
 <column name="order_number" sql-type="int" />
 </property>
 -->

 <component name="surveyor" class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="surveyor" sql-type="varchar" />
 </property>
 <!--
 <property name="firstName" type="string">
 <column name="???" sql-type="varchar" />
 </property>

 <component name="contact"
class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="tel" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="fax" sql-type="varchar" />
 </property>

 <property name="email" type="string">
 <column name="email" sql-type="text" />
 </property>
 </component>
 -->
 </component>

 <component name="agent" class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="agent" sql-type="varchar" />
 </property>
 <!--
 <property name="firstName" type="string">
 <column name="????" sql-type="varchar" />
 </property>
 -->
 <component name="contact"
class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="agent_tel" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="agent_fax" sql-type="varchar" />
 </property>
 <!--
 <property name="email" type="string">
 <column name="????" sql-type="varchar" />
 </property>
 -->
 </component>
 </component>

 <component name="vesselInfo"
class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="vessel_tel" sql-type="varchar" />
 </property>
 <!--
 <property name="fax" type="string">

 83

 <column name="???" sql-type="varchar" />
 </property>
 -->
 </component>

 <component name="company" class="org.glgroup.survey.model.Owner">
 <property name="companyName" type="string">
 <column name="company" sql-type="varchar" />
 </property>
 <component name="contact"
class="org.glgroup.survey.model.ContactInfo">
 <!--
 <property name="phone" type="string">
 <column name="???" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="???" sql-type="varchar" />
 </property>
 -->
 <property name="email" type="string">
 <column name="email" sql-type="varchar" />
 </property>
 </component>

 <!--ORDERING PERSON INFO-->
 <component name="contactPerson"
class="org.glgroup.survey.model.Person">
 <property name="name" type="string">
 <column name="name" sql-type="varchar" />
 </property>
 <!--
 <property name="firstName" type="string">
 <column name="???" sql-type="varchar" />
 </property>
 -->
 <component name="contact"
class="org.glgroup.survey.model.ContactInfo">
 <property name="phone" type="string">
 <column name="tel" sql-type="varchar" />
 </property>
 <property name="fax" type="string">
 <column name="fax" sql-type="varchar" />
 </property>
 <!--
 <property name="email" type="string">
 <column name="email" sql-type="text" />
 </property>
 -->
 </component>
 </component>
 </component>

 <many-to-one
 name="ship"
 column="register_no"/>

 <bag name="orderedSurveyItems" inverse="false" lazy="false">
 <!-- order_number in glis_ordered_survey_items table-->
 <key column="order_number"/>
 <one-to-many class="org.glgroup.survey.model.OrderedSurveyItem"/>
 </bag>

 </class>

</hibernate-mapping>

 84

 85

References

[CJDO03] Castor JDO framework

 http://castor.exolab.org/jdo.html/; 2003

[CGI03] Common Gateway Interface
http://www.w3.org/CGI/; 2003

[COCO03] Cocoon Framework

http://cocoon.apache.org/2.1/; 2003

[CSS03] Cascading Style Sheets
 http://www.w3.org/Style/CSS/; 2003

[CoCoN03] The Apache Cocoon Project

http://cocoon.apache.org/; 2003

[CoPool03] The Apache Jakarta Commons Pool Component
 http://jakarta.apache.org/commons/pool/; 2003

[CRAIG03] Craig McClanahan, Building Web Applications with the Struts Framework

http://www.apache.org/~craigmcc/apachecon-2002-struts.ppt; 2003

[DBCP03] The Apache Jakarta Commons DBCP Component
 http://jakarta.apache.org/commons/dbcp/; 2003

[EJB03] Enterprise JavaBeans Technology

http://java.sun.com/products/ejb/index.jsp; 2003

[Fowler03] Patterns of Enterprise Application Architecture

Martin Fowler; March 2003

[FTEAM03] The Germanischer Lloyd Fleet Online Team
 https://www.gl-group.com/fleetonline/login_team.html; 2003

[GHJV95] Design Patterns

by Erich Gamma (Author), Richard Helm (Author), Ralph Johnson (Author),
John Vlissides (Author); 1995

[GL03] Germanischer Lloyd Homepage
 http://www.gl-group.com; 2003

[GLv03] GL description briefly
 http://www.gl-group.com/cgi-bin/w/w3red?SET=HOME&SUB=1; 2003

[HBNT03] Hibernate Object Relational Mapping Framework
 http://www.hibernate.org/; 2003

 86

[HibeRef03] Hibernate, O/R mapper framework for Java, documentation

http://www.hibernate.org/hib_docs/reference/html/; 2003

[HIBEa1] Introduction to Hibernate
www.systemmobile.com/articles/hibernate_intro.php; 2003

[HTML03] HTML Technology
http://www.w3.org/MarkUp/; 2003

[HTTP03] Hypertext Transfer Protocol
 http://www.w3.org/Protocols/; 2003

[IBMSTR03] Struts, an open-source MVC implementation
 http://www-106.ibm.com/developerworks/library/j-struts/?dwzone=java; 2003

[J2EE03] Java 2 Platform, Enterprise Edition
 http://java.sun.com/j2ee/; 2003

[Java03] Java Technology
 http://java.sun.com/; 2003

[JaXP03] Java API for XML Processing
 http://java.sun.com/xml/jaxp/; 2003

[JDBC03] JDBC Technology

http://java.sun.com/products/jdbc/;2003

[JDO03] Sun Java Data Objects

http://java.sun.com/products/jdo/; 2003

[JnDI03] Java Naming and Directory Interface
 http://java.sun.com/products/jndi/; 2003

[JSP03] Java Server Pages Technology

http://java.sun.com/products/jsp/; 2003

[JSPv03] JSP Technology Overview
http://java.sun.com/products/jsp/overview.html; 2003

[JSTL03] JavaServer Pages Standard Tag Library
 http://java.sun.com/products/jsp/jstl/index.jsp; 2003

[SerJSPa03] A tutorial on Java Servlets and Java Server Pages

http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/; 2003

[JtA03] Java Transaction API
 http://java.sun.com/products/jta/; 2003

 87

[LCoCoN03] Learn to create a simple Cocoon sitemap
http://builder.com.com/5100-6387-5055241.html ;2003

[MySQL03] MySQL Database Server
 http://www.mysql.com/; 2003

[ODMG03] Object Data Management Group, The Standard for Storing Objects

http://www.odmg.org/; 2003

[OJB03] The Apache DB Project : Object Relational Bridge
 http://db.apache.org/ojb/; 2003

[OJBa1] OJB presentation

www.ajug.org/meetings/download/ojb.pdf;2003

[ORBE] OXF User Guide
http://www.orbeon.com/oxf/doc/; 2003

[ORcL9i] Oracle Database
 http://www.oracle.com/ip/deploy/database/oracle9i/;2003

[ORTC03] Object Relational Tool Comparison

http://c2.com/cgi-bin/wiki?ObjectRelationalToolComparison; 2003

[OXF03] OXF-The XML Platform
 http://www.orbeon.com/oxf/; 2003

[OxfRef03] OXF- The XML Platform Official Documentation
 http://www.orbeon.com/oxf/doc/; 2003

[OxfAPI03] OXF Processor Java API
 http://www.orbeon.com/oxf/doc/reference-processor-api; 2003

[SaX03] Simple API for XML
 http://www.saxproject.org/; 2003

[Servlet03] Java Servlet Technology
 http://java.sun.com/products/servlet/; 2003

[SRVT03] Servlets Technology Overview

http://java.sun.com/products/servlet/overview.html; 2003

[STRT03] The Apache Struts Web Application Development Framework
http://jakarta.apache.org/struts/; 2003

[SunBlue03] Model view controller-java.sun.com

http://java.sun.com/blueprints/patterns/MVC-detailed.html;2003

[TmCT03] Apache Tomcat Servlet Container

http://jakarta.apache.org/tomcat/; 2003

 88

[W3CDoM] Document Object Model
 http://www.w3.org/DOM/; 2003

[W3CHTTP] Hypertext Transfer Protocol
 http://www.w3.org/Protocols/; 2003

[W3CURI] Web Naming and Addressing, URIs, URLs
 http://www.w3.org/Addressing/; 2003

[W3CXML] Extensible Markup Language
 http://www.w3.org/XML/; 2003

[W3CXSLT] XSL Transformations
 http://www.w3.org/TR/xslt ;2003

[WAC03] Web Application Controller Reference
 http://www.orbeon.com/oxf/doc/reference-controller; 2003

[XForms03] XForms - The Next Generation of Web Forms
 http://www.w3.org/MarkUp/Forms/; 2003

[XSLT03] XSL Transformations
 http://www.w3.org/TR/xslt; 2003

