Recommending Values for Parameter Sets in
Simulation Applications

Diplomarbeit von Dirk Bachle

Technische Universitat Hamburg-Harburg
Softwaresysteme
Prof. Dr. Ralf Moller

14. Januar 2005

Contents

1 Introduction

2 Design considerations

2.1 Basic problem
2.2 Example rule

2.3 Additional requirement: editable rules
2.4 Common approaches
2.4.1 Artificial Intelligence Lo
2.4.2 Artificial neuronal nets L.
243 Fuzzylogico
2.4.4 Productionrules
2.5 Cognitive psychological aspects
2.6 Derived structure oL
3 Implementation
3.1 Ruleengine Lo
3.2 Rules. e
3.3 List of rules for a parameter
3.4 Ordering ofrules L.
3.0 Parameter
3.6 Stack processor
3.6.1 Converting Infix to Postfix
3.6.2 Evaluating postfix expressions
3.7 Rule expression language (REL)
3.7.1 Computational operators
3.7.2 Equational operators Lo L.
3.7.3 Coercions

3.7.4 Boolean

operatorso

3.7.5 Unary operators.
3.7.6 Operator precedence
3. 7.7 Grammar
4 Examples
4.1 Basicexampleruleo

4.2 Baking a cake

5 Conclusion

24
25
27
28
29
31
32
32
34
35
35
35
36
36
36
37
37

39
39
43

46

1 Introduction

Over the last 20 years, simulation applications of various kinds have gained
their respected places in the areas of science and economy. In physics—and
many other fields like genetics or electronics—, engineers design and model
experiments on the computer before the real tests are carried out. Opera-
tion parameters can be optimized at low cost and arising problems may be
detected in an early stage. The ability to model and test software prototypes
has cost-effectively enabled manufacturers to design and build everything
from sophisticated aircraft and automobiles to electronic products. Simulat-
ing product performance reduces development expenses, time-to-market and
warranty costs, positively impacting customer profitability.

Following the advice of DESCARTES, the part or system being investigated
is decomposed to smaller pieces most of the time. For example, in the ap-
proach widely known as Finite Element Method (FEM) the component under
duty gets replaced by a set of interconnected elements. Forces, or strains in
general, attack at these elements and automatically lead to a mathematical
model that can be evaluated by an appropriate equation solver in each in-
cremental step. Optimized for speed and generality instead of comfort, these
solvers offer a large number of parameters that have to be adjusted properly.
Otherwise, the simulation might stop after a few increments—which may
well equal a computation time of several hours. Apart from the inputs for
a single step in time, there exists a vast count of variables for controlling
the analysis in general. Both together can drive the inexperienced to despair
easily and result in a very steep learning curve for the beginner.

Up to now, the existing simulation applications try to remedy this situation
by offering a nice Graphical User Interface (GUI). This makes entering the
parameters a lot easier, but the important relations between certain input
fields remain veiled. A lot of time is lost by trying to start a simulation again
and again, in order to find a set of input parameters that allow a ‘successful’
analysis. Here, ‘successful’ only means that all increments can be processed
without interruption and the simulation is carried out to the end. It does not
imply that the results are reasonable in any sense, so additional tweaking of
variables might be required.

Picking a single parameter like the element size, a lot of circumstances have
to be regarded. This input variable is a gauge for the average length of
node connections and it is quite tempting to try and deduce a value for it
from the dimension of the object. A simple formula that delivers a set of
approximately 500 polygons—or polyeders for a three-dimensional analysis—
per object, the so-called mesh, can suffice in not too complex cases. But if
the process leads to a fold in the material, the input mesh might be too

coarse and will probably fail. This plain example illustrates that an answer
to the question “How small is small enough?” can not easily be derived by a
single linear function. It is still the task of the responsible engineer to meet
the fine line between creating a model as realistic as possible and spending
too much time—or resources in general—on a minute granularity that does
not yield better results.

Based on his experiences with former simulation jobs of a similar kind, he will
take into account several specific criteria and come up with a reasonable value
quite easily. This applied methodology is commonly known under the term
‘rule of thumb’. It allows a quick knowledge exchange between two persons
by trading rules like: “If your process has the features A and B, then 200 is
a good starting value for input parameter C'.” The bold-faced words outline
the resemblance of this rule to a well-known computer language construct.
Immediately the thought about implementing the expertise of specialists in
a piece of software arises and delivers the starting point for the rest of this
thesis.

The aim of this work is to develop a special rule engine. It can be thought
of as a monolithic object that is controlled by the user interface of the appli-
cation. Upon new user entries, the current data input window employs the
rule engine in order to validate data ranges and to detect relations between
the given parameters. For this, it operates on an internal set of parameters
complemented by the so called rules, a set of arithmetic expressions.

Once a range violation or the possible application of a ‘rule of thumb’ has
been detected, it can be fetched by the GUI. The input window then may
inform the user about the conflict and its causes and ask how he wants to
proceed.

For this, a reusable object is developed that consists of several parts. Two
special lists manage the parameter set, as well as the rules for describing the
relations among them. A simple language—the so called Rule Ezpression
Language (REL)—is defined for all evaluation tasks. The stack processor,
as another integral part of the rule engine, is able to interpret and compute
arithmetic expressions.

Main features of the rule engine are:

e The set of rules and the set of parameters can be changed at the runtime
of the supervising application.

e The language defining the rules is easy to understand and learn, such
that the addition of rules to the system is simple and can be accom-
plished in a straightforward manner.

e The rule engine does not require an external expert system shell or li-
brary but comprises an independent and complete recommender system
on its own.

e Documentation for the single parameters and the rules may be stored
in the rule engine and can be requested by the application.

The structure of this thesis is as follows: section 2 specifies the problem
that is about to be solved. Different common methodologies are discussed
and the final approach is selected. Then, section 3 outlines the development
and implementation of the single subparts and the rule expression language.
A few simple examples for GUI dialogs and their interaction with the rule
engine are shown in section 4. Finally, section 5 revises the done work and
provides some basic ideas for further improvements.

2 Design considerations

In this section the basic design for the rule engine is laid out. First, a more
abstract look at the problem to be solved is taken. From the vast field of
Artificial Intelligence some of its common practical approaches are picked and
get discussed. A simple rule example helps in clarifying to which extent each
of these methods can be applied and where difficulties might arise. Then,
the final choice is made and a sketch of the recommender system is derived.

2.1 Basic problem

In order to derive a basic structure of the rule engine it seems advisable
to take a close look at the intended usage scenario and try to get a more
abstract view on it.

Some application requires the user to enter various parameters. These input
values can be reduced to basic data types like strings, integers or floating-
point numbers. They are used to control another object, but not in the
sense of real-time supervision. Here, control refers to the basic setup of a
simulation that can be compared to a physical experiment. Once everything
is setup and the experiment is started, only two possibilities exist: either the
experiment finishes up to the end or it stops somewhere in the middle, due
to a setup failure.

All parameters have a direct impact on the behaviour of the carried out
experiment. Unfortunately, the inexperienced user does not know how to
set them in order to get it right in his first try. He is not aware of certain
relations that exist between those parameters. Relations that enable an
experienced person—someone who has carried out this, or a very similar,
experiment /simulation before—to see difficulties arise from the selected input
values. Thus, these experts are able to correct mistakes before the actual
experiment is started and can help to save a lot of time. This is especially
true for the area of FEM simulations, where a single analysis can take days
or weeks to finish.

What basically happens is that the expert looks at the current set of param-
eters. By using some internal knowledge about the values and its relations
he devises a new set of parameter values that is probably more successful.
At a very high level of abstraction this setup can be described by the math-
ematical model of Constraint Satisfaction Problems (CSP):

A constraint satisfaction problem is a triple < V, D, P > consist-
ing of

e aset V={vy,...,v,} of variables;

4

e a set of sets D = {Dy,...,D,}, such that each D; is the
domain of possible values for the corresponding variable v;;
and

e aset P={Py,...,P,} of constraint relations, where each
P; refers to some subset of variables in V, and every v; in V
appears in some P; in P.

A simple algorithm for solving CSPs named CSP-Solver creates all possible
combinations < xzi,...,x, > of values of the variables in V, tests these
against each constraint and returns all assignments that passed the check (see
[17, p. 82]). Since the search space is very large in general, this procedure has
a high complexity in time. Numerous other CSP algorithms try to be more
intelligent in picking the assignments that should be tested by using advanced
methods like heuristics, logic programming, neural networks or constraint
propagation.

The rule engine in this work does not have to solve a complete CSP. Its task
can be compared to performing the single step of testing an assignment—
entered by the user—against the given restrictions. The ‘algorithm’ for find-
ing the parameter sets to test, is carried out by the user himself, so to speak.
If the parameter set contains errors and the check fails, the system does not
stop with an error but recommends better values if possible.

So the general layout of the system that is to be built is as follows:

Some kind of black box is able to store parameters. Upon request,
the box checks the made parameter settings and corrects values
where needed. Then, the corrected values may be read out again
and can be processed further. Apart from recommending values,
the system is also able to store default values and warn about
range violations.

Section 2.4 gives a short introduction to some common approaches for de-
riving values in systems that show this or a similar kind of “intelligent be-
haviour”. For a better comparison of the single applicable methods and
systems a simple example rule from the area of FEM simulation will be used.

2.2 Example rule

A number of approaches exist to simulate the friction stresses between two
bodies that are in contact and move relative to each other. From the discus-
sion by SCHAFSTALL in [25, pp. 50], the model of CHEN and KOBAYASHI in
(7] is selected now to describe the friction between a workpiece and a die as

tool. Their approach via an arctan function, takes into account the influence
and relations of the three parameters tool velocity, relative sliding velocity
and friction coefficient. A general friction model is implemented in the cur-
rent version of the simulation program MSC SuperForm, but the user has
to set all three values by himself. Since he normally does not know about
this formula and its theoretical background, he often enters disadvantageous
values.

The example rule tries to offer some advice to the user by recommending a
value for the relative sliding velocity r. To make it as simple as possible, the
arctan function is linearized for smaller tool velocities and a certain range of
the friction coefficient. It delivers an approximation for r as follows:

“If the tool velocity v is less than 20™™ and the friction coefficient
f greater than 0.3, then a reasonable value for the relative sliding
velocity r can be approximated by the linear function r = 5-107*-

7

v.
which could be translated to a more computer language like syntax as:

if ((v < 20) AND (f > 0.3))
then recommend(5e-4x*v)

This single rule has two input parameters and a recommended output value
for the relative sliding velocity r. What makes it somewhat tricky is the
fact that only one of the inputs—the tool velocity v—is used to compute the
actual output. The friction coefficient f merely decides whether the rule gets
applied or not.

2.3 Additional requirement: editable rules

Of course, these kind of simple rules can be easily implemented in a GUI
environment by hard-coding them as appropriate functions at the time of
program development. After reading the necessary parameters, each check
function is called and returns a recommendation value if needed. The GUI
could then ask the user how to proceed or fix the error by setting the recom-
mended value automatically.

However, in this work a system is to be built whose behaviour can be ad-
justed by the user or a developer without having to change source code and
recompiling the GUI program. It is an essential requirement that the rules
are kept in some form of external database.

This unusual approach offers two main advantages:

1. Ease of development: An external set of rules is easier to maintain,
test and develop—assuming all the required interface functions between
the database and the program exist. Rules can be changed or added at
remote sites without the need to install a complete IDE and the source
code. An exchange or update of a database is possible by exchanging
or overwriting one (or several) files, no recompilation of the application
is necessary.

2. Customization: A single simulation application is normally used for
a broad range of process types by the users. This makes it difficult,
if not impossible, to find a single set of recommendation values that
can suffice the demands of all customers. Especially larger companies
will sooner or later ask for a customized version that is tailored for
their needs and sets the parameters to the default values they use in
daily practice. The separation of the rule database from the rest of the
program, means less effort while meeting the customer’s requests. No
complete software release has to be created, shipped and installed. A
simple exchange of files does the trick.

2.4 Common approaches
2.4.1 Artificial Intelligence

The field of Artificial Intelligence (Al) emerged from the three branches of
mathematical logic, algorithm theory and computer technic in the fifties.
Back then, this new academic discipline was founded by the collaboration
of different research groups in order to isolate the key features of intelligent
behaviour. Its development until today can be roughly divided into three
time sections.

The first of these eras from about 1950 to the middle of the sixties was
mainly influenced by research in the two fields of game theory and logical
deduction. It could be shown that both problems can be attacked by the same
approaches, since both consist of a start state, possible transformations of
this state and one or more dedicated end states. Several strategies for the
search of the solution in the problem space emerged:

1. Generate and test, where solutions are created randomly—driven by
heuristics most of the time—and then tested for correctness.

2. Forward chaining, where the system tries to find a list of transforma-
tions that transfers the start state to a valid end state.

3. Backward chaining, where the system tries to find a way from the end
state through all possible transformations back to the start state.

While designing systems that can play chess or are able to deduce a given
hypothesis from a set of axioms, numerous fundamentals for the later research
in Al were developed. Among them the symbolic programming language
LISP, introduced by MCCARTHY in 1958.

The next era up to the middle of 1970 focused on the understanding of natural
language. Several systems like SHRDLU successfully interpreted commands
from the user that were input as normal sentences. The research was mainly
influenced by linguistics and the work of CHOMSKY and MINSKY. Its results
had a large impact on todays human-computer interfaces. A second major
breakthrough occurred in the area of pattern and object classification as
systems were able to identify objects and to categorize them automatically,
according to their properties.

The last section is dominated by the development of the so-called expert
systems. They represent a new way of intelligence by storing knowledge in a
separate database. Instead of using a single conventional algorithm to solve
a task, expert systems manage their database separate from the machine or
system that operates on the data. This flexible approach makes even large
problems track-able. The main methods for storing data in the knowledge
base are: rules, logical expressions, frames and semantic nets.

Today, Artificial Intelligence is a vast field of interdisciplinary research. It
has become clear that the implementation of truly ‘intelligent behaviour’ is
still not at reach within the next 10 or 20 years. Thus, instead of trying
to find a holistic approach, current work concentrates on single aspects of
intelligence.

Referring to LUNZE in [19, pp. 10] a number of different goals can be specified
for nowadays Al:

Problem solving and theorem proving Finding the solution to a prob-
lem by searching the problem space or reducing the theorem to known
basic theorems.

Natural language understanding Transferring naturally spoken lan-
guage to the computer and understand its semantics.

Image processing and vision Recognizing objects and groups of objects
within images.

Learning Automatically acquiring knowledge in order to improve the pro-
gram /system.

Expert systems Storing and processing of expert knowledge.

Qualitative reasoning Representing and analyzing physical systems by us-
ing qualitative descriptions.

Robotics Creating and programming intelligent roboters that can plan and
perform tasks on their own.

AT hard- and software Creating specialized hard- and software for the
support of AT applications.

Different methods and organizational forms of information processing exist
to achieve these goals. They can be split in two main complexes. The first
is based on symbolic representations of data and is mainly used in fields like
the Qualitative Reasoning and Natural language understanding.

The second division of methods from which a few are introduced and dis-
cussed in the following sections, try to apply numeric calculations. Since the
problem of value recommendation does not require any special knowledge
about the objects that they characterize, this work concentrates on these
practical numeric approaches only.

2.4.2 Artificial neuronal nets

Prerequisites Artificial neuronal nets (ANN) try to simulate intelligent
behaviour, by mimicking the atomic parts of our brain and their interactions.
Single neurons and their information exchange via electrical signals (stimuli)
are rebuilt by means of software and mathematical descriptions.

Going back to the work of McCuLLOCH and PITTS in [20], a single neuron
is represented by a scalar product of the form

Zo
z=w'z = (wo,..., W, 1)

Tp—1

(see [3]). Here x is the input vector, w” contains their weights and z is the
so called inner activity of the neuron. If a threshold for the latter value is
introduced, the resulting equation

c=wlaz =T

can be interpreted as an (n — 1)-dimensional hyperplane, dividing the n-
dimensional input space. Thus, a single neuron is able to decide whether the
input vector x is located in the upper (z > 0) or the lower half (z < 0).

9

. 1

Figure 1: A single neuron

When combining several neurons to a net (fig. 2), they are usually organized
in layers. The first layer to the left (j = 0) gets a set of input vectors z*o,
where ky = 2 is the number of its neurons. The outputs z¥-1 of each layer
j — 1 provide the inputs 2%/ for the successive layer j.

Figure 2: Two connected neuronal layers

This way, even very complex functions can be realized and also the problem
of linear separability for the XOR problem may be overcome as NAUCK shows
in [22, pp. 46].

Neuronal nets are widely used for pattern recognition and similar tasks, where
the relations between the input parameters and the output can not exactly be
specified. Instead, the weights of the ANN are adjusted by extensive training
and eventually converge to a settled state.

A number of different architectures for ANN are in use today. Very common
for pattern classification is the multi-layer perceptron, a neuronal net that can
be seen as a single processing unit with many inputs but only one output.
Other useful architectures are Hopfield networks, Boltzmann machines and
feature maps (SOM) that are discussed in detail by NAUCK in [22].

Implementation of the example rule Now, a possible implementation
for our example rule from section 2.2 is considered. Figure 3 shows a single

10

neuron, with the input parameters f and v. It realizes the computation of the
new value for 7, using the appropriate weights w = (0,10~%). It is assumed
that a preceding check made a recommendation necessary.

N
e

Figure 3: A single neuron computing the new value of r

f

Here, a first drawback of ANNs gets obvious. It is possible to use a neu-
ronal net for implementing the AND function that decides whether the rule
is applied or not. Also the single neuron from above can compute a recom-
mendation for r, but both steps can not be combined into a single neuronal
net. This would require to multiply the output ¢ in figure 4 with v again.
Unfortunately, the combination of two input parameters in a single neuron
is not supported with the standard model.

Figure 4: A first drawback: neurons can not combine their inputs

Pros and Cons

+ ANNSs are well suited for vague or unknown relations between the single
parameters.

+ No expert knowledge for the design of the rules—i.e. the weights—is
necessary.

— ANNSs show a typical black-box behaviour. They decide based on the
input and their internal weights, but there is no way to extract and
provide a concrete explanation for the decision process.

11

— The weights largely depend on the used training examples, so the test
samples have to be selected with great care.

— Usually a large training set is needed to achieve an acceptable level
of accuracy. In pattern recognition tasks, numbers of more than 2000
examples are used where the first half trains the ANN and the second
is used for testing the final system. This is not feasible for simulation
applications, where each analysis may need from an hour to several
weeks of computation time.

— In simulation applications the problem may change only slightly but
then a completely different parameter set is required. This behaviour
is difficult to realize with the weight model of the ANNs, which always
realizes a scalar product as a continuous function.

Conclusion The various drawbacks show that neuronal nets can be very
time-consuming in setting up the single rules and in maintaining them. The
expressiveness of an ANN is restricted to a polynomial function of the input
variables, which makes the combination of several nets mandatory to imple-
ment a single rule that is more complicated than the basic example from
above. All together, ANNs might be useful for detecting relations that have
been unknown so far, but for a simple implementation of existing rules they
do not seem to be a good choice.

2.4.3 Fuzzy logic

Prerequisites Fuzzy logic is a mathematical concept for modeling vague
statements and was introduced by ZADEH in 1965 (see [29]). It is based on
fuzzy sets and its according operators as an extension to the usual mathe-
matical (sharp) sets.

Fuzzy sets generalize the concept of a characteristic function in Boolean logic.
They can be used to represent vague statements like “x is small” —referring to
a person’s height x—by using a so-called fuzzy membership function pa(z) €
[0, 1].

For each input x this function delivers a possibility value between 0 and 1.
A value of 0 means that the height is not small at all, while a 1 means that
the person is definitely small. The possibility value 0.7 expresses that the
height is small with a possibility of 0.7 on a scale 0 to 1. Here, it is important
to not confuse the possibility or membership with a probability measure.
The characteristic functions for the different predicates are often described
by building blocks like an up-ramp, a down-ramp (as in figure 5) or a triangle

12

-
L

0 150 170 cm

Figure 5: Membership function for “A persons height of x is small”

(A function). This greatly simplifies the storing of the single shapes because
only some key points are needed. However, general functions are also possible
and a large range of applications use B-splines or radial basis functions (RBF)
for example (see [10]).

For the usage of a Fuzzy system, e.g. in an adaptive controller system, the
following three basic steps are needed (see fig. 6):

1. Fuzzyfication: The output variables of the plant are transformed into
fuzzy sets, which each represent a linguistic variable.

2. Inference: Based on a knowledge base that consists of if-then rules, the
new plant input is computed.

3. Defuzzyfication: The linguistic output variables are transferred back
to a real-valued control signal, that can be passed to the plant.

The inference step relies on an internal set of if-then rules that use the basic
fuzzy operators AND and OR. Each rule of the form

IF angle == Z AND velocity == Z THEN current ==

is evaluated and then a common fuzzy set for the result is derived by com-
bining all intermediate results with the fuzzy OR operation.

Since the fuzzy AND and OR are a generalization of their boolean coun-
terparts, various functions exist, that can serve as an AND or OR in fuzzy
logic. Basically, every function f can be used as a fuzzy AND if it satisfies
the following t-norm axioms:

A function f :[0,1]> — [0,1] is a t-norm, if

13

Knowledge
Base
Y
Inference
Engine
Fuzzyfication Defuzzyfication

Figure 6: Basic fuzzy logic setup

(1) fla;1) =a
(i) a<b= f(a,c)<(bc)
(i) f(a,b) = f(b,a)
() fla, f(b;c)) = f(f(a,b),c)

For the fuzzy OR function g, a similar set of t-conorm axioms has to hold:

A function g : [0,1]*> — [0,1] is a t-conorm, if

(4) 9(a,0) =

(i) a<b= g(a, c) (b, c)
(4i7) g(a,b) = g(b,a)

(i) g(a,g(b,c)) = g(g(a,b),c)

N N N N N
co
~— N N N

Each t-norm (fuzzy AND) and t-conorm (fuzzy OR) can be expressed in

terms of each other using the logical dualism:

fla,0) =1—g(1 —a,1—0)

A table containing some important pairs of t-norm and t-conorm was com-

piled by ZEIDLER and can be found in [30, p. 22].

14

Main application areas for fuzzy systems are the fuzzy control (adaptive
controllers), sensors and the decision support based on data analysis. Most
systems are implemented by means of software but some microprocessors,
e.g. the 68HC12 by Motorola, also offer generic support for fuzzy logic.

Implementation of the example rule For implementing our example
rule using fuzzy logic, each input value would have to be split into a number
of ranges which are also called terms. To simplify a little, the terms small,
medium and large are used for both parameters in the following. Figure 7
depicts their membership functions, normalized to the largest X value.

y

Figure 7: Membership functions for the input values

While the friction coefficient f has a maximum value of 1, for the tool velocity
v a 1 corresponds to a speed of 100mm/s.

For the inference step, usually the so-called Mamdani controllers are used
where also the output variables are separated into single terms along the X-
axis. Here, the Sugeno model seems to be more appropriate, since the result
values for the single rules can be specified as independent functions:

medium then r = f1(usma11(U);Mmedium(f))
large then r = f2(ﬂsmall(v)7ularge(f))

Like in [16, pp. 146] the MIN operator is used for the fuzzy AND function.
For an input of v = 15mm/s and f = 0.65, the possibility values would be

if v == small and f
if v == small and f

Hsman(v) =1,
Mmedium(f) - 075 and
Mlarge(f) = (0.25.

15

Applying the MIN operator to these values, yields the weight factor for each
rule:

wy = min(1,0.75) = 0.75
wy = min(1,0.25) = 0.25

Remapping these weights back to the actual signal r could be done by com-
puting the weighted sum

k

r= ij FD) D w;

=1

where k is the number of rules that can be applied. By modeling the sin-
gle functions f; a good approximation of the wanted linearization could be
achieved.

Refer to NAUCK in [22, pp. 269] for a further discussion of Mamdani and
Sugeno controllers and their implementations.

Pros and Cons

+ Like ANNSs they are designed to deal with un-precise information, here
in the form of un-sharp input variables.

+ The knowledge is stored in simple rules and can be easily maintained
and extended.

— Different rules for the same parameter influence each other.

— The membership functions and the defuzzyfication method have to be
designed very carefully since minor changes can have a great impact on
the output variables. Hence, like for ANNs, a lot of analysis examples
might be needed to get useful results.

Conclusion Compared to the ANNs, fuzzy systems appear to be much
easier to maintain. Once the system is set up, single rules can be added or
changed with ease. Here, the composition of the single membership functions
and the defuzzyfication are major drawbacks. The outputs of all rules for
a parameter are weighted and accumulated to be transferred back to a real
variable by the defuzzyfication step. This means that the final result always
depends on all single rule outputs. As a consequence, the weights w; and the

16

remap functions f; for all previous rules might have to be changed in order
to get similar results as before, if a single rule is added to a working system.
This behaviour makes it difficult to predict the outcome of an added or
changed rule. It aggravates the maintenance of the whole system and thereby
lowers the attractiveness of fuzzy logic as a solution to the given problem.

2.4.4 Production rules

Prerequisites Production rules usually have the following form:
<condition> —> <action>

They basically consist of a left-hand side (LHS) that specifies the condi-
tion upon which the rule gets active. The equivalent right-hand side (RHS)
describes the action that should be taken once the condition is true.
Production rules are mainly used by inference-based systems like expert or
recommender systems. An inference-based system is built by assembling a
knowledge base which is then interpreted by a separate program or module
called inference engine. The end user of the application interacts with the
inference engine, which uses the data put in the knowledge base to answer
questions, solve problems, or offer advice.

Inference—-based system

Inference Knowledge
engine base

User

A
Y

Developer

Figure 8: Basic structure of an inference-based system

The typical inference-based system carries one or more of the following fea-
tures:

e Can represent and manipulate knowledge data.
e Is able to effectively solve problems by using inference.
e Can justify its decisions, to a certain extent.

e Extends its knowledge automatically or at least supports the acquisi-
tion.

17

e Offers a user-friendly interface.

Inference-based systems are used for a wide range of tasks like diagnosis,
configuration and construction. For example for expert systems, HELBIG
has compiled a more or less complete list of application areas that can be
found in [11, pp. 245].

At the start of the inference process a number of facts/conditions are set that
represent the start state. Then the inference engine starts to look for rules
that match their conditions and can be ‘fired’, i.e. activated. The actions of
a rule may set new conditions or remove unneeded ones and so the inference
engine continues until no further rule can be activated. Finally, the end state
of the inference engine represents the answer/decision of the system.

Rule systems can be processed using forward chaining—like described
before—or backward-chaining. The former is mainly used for diagnosis and
simulation tasks, while the latter is important for planning and configuration
problems.

For very large and complex tasks, rule-based knowledge systems are some-
times complemented by factual knowledge about the objects, using frames,
semantic nets or predicate logic. A detailed description and discussion of

these data representation techniques was done by HELBIG and can be found
in [11].

Implementing the example rule Implementing the basic rule from sec-
tion 2.1 with a rule-based inference system can be done straightforward. As
an example, the syntax of the expert system CLIPS (see [14] for a short
introduction) is selected that would specify the example rule as follows:

(defrule basic_example
(ToolVelocity ?v)
(FrictionCoefficient 7f)
(test (and (< ?v 20)
(> ?f 0.3)))
=>
(modify (RelSlidingVelocity (* ?v 0.0005)))

It is assumed that the necessary facts ToolVelocity, FrictionCoefficient
and RelSlidingVelocity have been assigned using the CLIPS command
assert. The left-hand side above the => ensures that the necessary condition
is met, while the action below modifies the relative sliding velocity according
to the example rule. The prefix syntax of CLIPS is a little bit unusual
and may be hard to read at first sight. Nevertheless, in a similar manner

18

additional rules could be specified and existing ones could be changed or even
removed, with the desired results.

Pros and Cons
+ The rules of the knowledge base are easy to maintain.

+ A large variety of rules of thumb can be implemented, regarding the
available arithmetic expressions.

— The task of data acquisition requires an expert that is needed for cre-
ating the rules.

— A special interpreter for the rules is needed.

— Added rules may be ill-formulated, e.g. lead to circular dependencies,
and affect the overall performance of the system.

Conclusion From all the three discussed methods, the production rules
are the best approach. Since they are represented by arbitrary arithmetic
expressions—Ilimited only by the capabilities of the used interpreter—a large
set of recommendation needs can be covered.

The rules can directly be ‘cast’ into the database and are processed as speci-
fied. This high transparency—between the input in form of the rules and the
output in form of the recommended values—is certainly the most appealing
advantage.

2.5 Cognitive psychological aspects

As the latest research in the area of cognitive science shows, providing a
functional system is sometimes not enough. In the past, numerous systems
were developed that cared about all the intricate technical details but for-
got an important point: the user. The human-computer interface (HCI) is
what the user sees when he works with the system. His interpretations and
expectations, probably based on former experience with similar programs,
determine whether the system is useful to him and he will continue to work
with it.

Some points of HCI are discussed by CARROLL and ROsSON in [6]. Their
early work focuses on people that are absolutely new to computers, learn-
ing to use them like typewriters. The situation of these newbies and their
confusion may be well compared to a learner of FEM software. CARROLL
and ROSsSON carried out several tests to find out how the learning success

19

of single persons could be improved. They detected that a lot of existing
interfaces—this includes the program’s manuals and online help—make sig-
nificant errors:

1.

Similarities and metaphors like “A computer is a super-typewriter” may
help, but sometimes lead to wrong conclusions. Hence, they must be
used wisely and points where the comparison breaks need to be clearly
specified.

. Beginners have little desire in trying out new functionality. They try

to avoid reading lengthy manuals and stick to old methods as long as
they can, even if the application of theses methods leads to a decrease
of overall efficiency. This also holds for advanced users that try to get
every job done with the basic expert knowledge they acquired ‘acciden-
tally’. Very seldom they refer to the manual to detect new functions
that could help them in solving their tasks more quickly.

. Restricting the functionality of a program or interface greatly helps

the beginners to focus on the basic tasks only. They make less errors
and learn faster how to perform daily routine work. The knowledge is
better portioned and does not overwhelm the user. Since he has less to
digest at once he is better motivated for the next ‘baby step’ towards
expertise.

Some of the above mentioned points are picked up by SUH and SuH in [28]. In
their article they discussed the reasons for the failure of several large expert
systems and summarized them as follows:

a.)

b.)

User neglect: The user does not accept the new technology, mainly
because he does not like the idea of being replaced or overruled by a
‘machine’.

Bad application domain: The case in which the expert system is used,
could be solved better and more efficiently by a different approach.

Mismatch of procedure: Management and the workers have a different
view on the working procedure that is to be supported by the expert
system.

Poor knowledge acquisition: The tedious task of collecting knowledge
is delayed, either because no expert user is available or the transfer to
the knowledge base is difficult to accomplish.

20

They proposed to improve expert systems by taking a closer look at the
mentioned points and to counteract where it is possible.

Although some time has past and research in the area of HCI progressed,
most of the points above are still the foundation for state-of-the-art HCI
methods and approaches (see [8, chap. 5,7]).

They are not directly connected to the implementation of the rule engine,
but they influence some of the following design decisions. Basically, the
rule engine is an independent object that does not know much about its
environment. On the other hand, it is embedded in a certain GUI context,
which requires the rule engine to offer the needed interfaces for supporting
its parent application.

Apart from item 3, which is already covered by the general approach of this
work, the following design directives are taken into account:

e Additional help about the rules and parameters should be offered at
the fingertip of the user and not in manuals (item 2). In a first ap-
proach, text descriptions should be available for rules and parameters,
respectively.

e The rule engine should show a passive behaviour, i.e. it does not start
any actions like setting parameters or displaying recommendations on
its own but on request only. The user should be integrated to the
decision making process as much as possible such that he still feels to
be ‘in control’ (item a).

e The language for the rule engine and the database format should be
kept simple, such that adding rules is not too complicated (item d).

2.6 Derived structure

Now that the final decision fell for production rules as the most promising
approach, an attack plan for the implementation is to be derived.

A survey of existing expert systems revealed that none of them can be directly
applied. They are designed for a variety of purposes like biotechnological
process control [27], diagnosis [5], construction [15, 13, 4] and configuration
[21, 23, 18]. Together with the general expert systems like CLIPS or Jess,
they are based on true inference, where new facts can be added during pro-
cessing. In our case only the data values of the facts (= parameters) change
at runtime. Additionally, this work mainly leans upon the development of the
two programs MSC SuperForm and MSC SuperForge that are implemented
in C++. For interfacing an existing system to their GUIs a lot of extra effort
would be required anyway.

21

As a result, an independent system is implemented from scratch that can
be easily integrated into an existing C++ GUI application and is not over-
fraught with unneeded functionality. By introducing two simplifications that
do not restrict the functionality of the rule engine, the implementation is
kept simple:

1. For the condition and the action of a rule, only functions as arithmetic
expressions are used. This means that they can always be reduced to
a single value, which is of the type bool for the condition.

2. Since the arithmetic expressions for a rule may use other parameters,
a dependency graph is implicitly given. It contains all parameters as
vertices, while each directed edge from a vertex u to v denotes that
parameter u has to be computed before v. For this graph no cyclic de-
pendencies are allowed, i.e. it has to be a directed acyclic graph (DAG).
Such a DAG always has at least one schedule (see [24]) which is an
important property regarding the ordering of parameters in 3.4.

Figure 9 shows the general operation of the rule engine as a whole.

— ™ Rule engine =

Figure 9: General operation of the rule engine

P is the parameter set, R the rule set. Both are read by the rule engine that
interacts with the user/application (I) and suggests better values. After the
user accepts the made changes, the set P of corrected parameters may be
read out. The available data types of parameters get restricted to bool,
double and integer for now. The C++ type double might also stand for
any other floating point data type (like REAL in PASCAL).

A rule, like in most production-rule systems, consists of two parts, namely the
condition (if-clause) and the production (then-clause). The rule engine checks
whether the condition is true and then computes a single value that can be
recommended to the user. The rules are used to store expert knowledge in

22

the form of single statements like our introductory example from section 2.2.
In the following, two variants of the rule concept are used that only differ in
the way their result value is interpreted:

o A recommendation rule is used to compute a better value for a parame-
ter. This value may be returned on request by the application. Usually,
the user decides when a recommendation should be given and also has
the choice to neglect the recommended value.

e A rule can be defined as ‘critical’. Critical rules are stored separately
and can be used to detect range violations for the single parameters.
Everytime a parameter changes by a user entry, the rule engine should
be employed to check all of its range rules. If one of them ‘fires’, the
application should warn the user about the range violation and enforce
proper correction of the mischosen value. This feature is very beneficial
for the cross-platform GUI library Qt, since it does not provide its own
special method for the range-checking of parameters as the MFC does
with its DDX mechanism.

If several rules are defined for a parameter, it is often the case that more
than one could be applied. For this frequent occurrence, some form of conflict
resolution has to be provided. The rule engine uses two of the many strategies
described by JACKSON in [14, pp. 85]:

1. Priority (salience): By setting an explicit priority value a single rule
can be fired first, independent of the number of dependencies. The
higher priority value wins, the default value is zero. If several rules
have the same priority, the complexity of the rules decides.

2. Complexity: A rule with more parameter dependencies is preferred to
one that has lesser values it depends on.

If neither of these give a clue, the decision is based on the appearance order
of the single rules in the input file.

For storing the rules and parameters in external files, a simple XML format
will be used. This flexible format makes the addition of new data fields
much easier and its well-formed structure, based on single tags, facilitates
the parsing. Additionally, a lot of commercial and free XML editors like
Jaxe or Pollo exist, that can be used to maintain the rule databases.
Figure 10 already shows a more detailed view on the parts that the rule engine
consists of. The two lists for parameters and rules are complemented by a
small stack processor. This class is responsible for evaluating the current

23

rules and, if necessary, calculating a recommendation value.
subparts can be accessed via the rule engine that connects them to the world

outside.

Parameter List

> Stack Processor

All of these

Rule List

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 10: Interaction of the single parts

The Widget and the Helper Dialog are depicted with dashed box lines because

their concrete implementations are not really part of this work.

From this basic design, a working prototype has been devised, whose imple-

mentation is described in the following section.

3 Implementation

This section introduces the internal design of the rule engine in greater detail.
It concentrates on the parts and interfaces that are required for its basic work
and leaves out the minor details. At the end, the used language for arithmetic
expressions is specified, while putting an emphasis on the available operators

and their properties.

24

3.1 Rule engine

To the world outside, the RuleEngine is a monolithic object but it is built
by several cooperating classes as the UML (Unified Modeling Language)
diagram in figure 11 shows.

RuleEngine
1 0..*
StackProcessor ParameterRuleList
0..* Lk
Parameter Rule

Figure 11: UML overview of the RuleEngine

Each RuleEngine has a single instance of the class StackProcessor. The
StackProcessor is responsible for evaluating the arithmetic expressions
of rules. For this, it keeps track of the available Parameters by storing
them in a list. A RuleEngine also holds a list of ParameterRuleLists.
In a ParameterRulelList all Rules—recommendations as well as range
violations—for a single parameter are combined.

The basic interface of the RuleEngine is depicted in figure 12.

An application that employs the rule engine, can command it to read in data
from an external file and Parameter values can be set or read out.

While reading a RuleEngine XML file it is usually assumed that the single
rule entries are unsorted, regarding their precedence. Thus after all data was
read, the parameter rule lists are sorted by the algorithm described later in
section 3.4. For efficiency reasons this step can be omitted by setting the
variable Precompiled to true.

The additional variable Postfix serves a similar purpose. The arithmetical
expressions for the rules are usually entered in infix notation. During the
read-in process they get converted to postfix once because this is the only
format the StackProcessor can evaluate. For speedup or for the benefit of
users that are used to RPN (Reverse Polish Notation), Postfix can be set

25

RuleEngine

-s: StackProcessor

-prList: vector<ParameterRuleList>
-Postfix: bool

-Precompiled: bool

+readXml()

+getParameter()
+setParameter()
+UpdateRecommendations()
+getRecommendCount()
+getCriticalCount()
+getRecommendation()
+getCiritical()

Figure 12: Basic interface of the RuleEngine

to true and the conversion is skipped.

The most important method is UpdateRecommendations, which loops
through the rules and tries to detect new range violations or recommen-
dations. If this update is successful the ‘fired’ rules are marked and can be
retrieved with either getRecommendation or getCritical.

For a ‘recommendation update’ a number of basic steps are performed. At
start, the shadow values for all parameters are reset to the current value of
each parameter (see section 3.5 for further explanations). Then in a loop all
ParameterRuleLists are processed: At first, the critical rules are scanned.
As soon as the condition of a critical rule for a parameter is found to be
true, the index of the rule is stored and the loop stops. The update process
then continues with the next ParameterRuleList. Rules whose condition
can not be evaluated—an undefined parameter or a division by zero might
be reasons—are simply skipped. If no range violation for a parameter could
be found, the recommendation rules are checked in a similar manner.

Like this, a single parameter can have either a range violation or a rec-
ommendation at maximum, but not both. The total number k of recom-
mendations can be retrieved by the functions getRecommendedCount and
getCriticalCount. Via the indices 0—(k — 1) the single rules may then be
addressed with the functions getRecommendation and getCritical.
Finally, the syntax for a valid RuleEngine XML file is given:

<RuleEngine>
[<Name></Name>]
[<Precompiled></Precompiled>]
[<Postfix></Postfix>]

26

<Parameters>
List of parameters
</Parameters>
<Rules>
List of parameter rule lists
</Rules>
</RuleEngine>

Tags that are enclosed in brackets are optional, the lists of parameters and
rules may have an arbitrary length both—including the zero.

3.2 Rules

The class Rule is simply a container for all its describing data (see fig. 13).

Rule

+Type: int

+Priority: int

+Condition: string
+Recommendation: string

Figure 13: Basic interface of a Rule

Via the Priority parameter, a rule can be prejudiced against others. Rules
with higher numbers are processed first within a ParameterRuleList, the
default priority value is 0.

If two rules have the same priority, then the dependencies of the Condition
and Recommendation expressions regarding other parameters decide which
of them comes first. They are measured by the in-degree of the parameter
vertex in the precedence DAG, i.e. the number of incoming edges—the self-
reference does not count. A rule that uses four other parameters is always
preferred against one that refers to only three.

During read-in, critical rules are distinguished from normal recommendations
by the Type field. It has to be set to Critical for a range violation, which
ensures that the rule is added to the right list in the ParameterRulelList.
The XML syntax for a Rule is:

<Rule>
[<Name></Name>]
[<Type></Type>]

27

[<Priority></Priority>]

[<Description></Description>]

[<Condition></Condition>]

<Recommendation></Recommendation>
</Rule>

3.3 List of rules for a parameter

The class RuleParameterList keeps track of all rules for a single parameter.
As the interface (see fig. 14) shows, the rules are divided into critical ones
that signal range violations and normal recommendations.

ParameterRuleList

+Name: string

+Hidden: bool

-Critical: vector<Rule>
-Recommend: vector<Rule>

+updateCritical()
+updateRecommend()
+getCiriticalRule()
+getRecommendRule()

Figure 14: Basic interface of a ParameterRuleList

Each RuleParameterList needs to have the name of the Parameter assigned
that the rules are applied to. Within each of the rule lists Recommend and
Critical, the entries are sorted as described in the previous section 3.2. The
first rule that is processed has the highest priority and the most dependencies
to other parameters.

It will often be the case that several rules are defined for a Parameter, using
the same subexpressions. For example, the two Conditions

(temp <= 20) AND (FE
(temp <= 20) AND (FE

TRUE) AND (friction < 0.3) /x 1 %/
TRUE) AND (friction >= 0.3) /% 2 x/

share the expression (temp <= 20) AND (FE = TRUE).

In this case, the processing speed and the readability in the XML file can
be enhanced by defining the subexpression as a ‘hidden’ parameter. Its
Condition is left empty and the Recommendation is set to the subexpression.
Setting the Hidden field to TRUE, marks the parameter as internal and avoids
that it gets listed in the recommendations after an update.

28

Assuming the new internal parameter is named ‘coldFE’, the two conditions
could be rewritten as:

c0ldFE AND (friction < 0.3) /*x 1 %/
c0ldFE AND (friction >= 0.3) /% 2 %/

This way, rule sets can be optimized—either manually or by an external
program that issues an appropriate algorithm, like the Rete algorithm by
FoORrayY (see [9]) that is used in OPS5 and CLIPS for example.

In XML, a ParameterRuleList is specified as follows:

<Parameter>
<Name></Name>
[<Hidden></Hidden>]
List of rules
</Parameter>

Again, the list of rules may have an arbitrary length or be empty.

3.4 Ordering of rules

As has already been stated in section 2.6, the rules have to be ordered just
once after they are read in. The goal of this process is that the rules can
be evaluated in the order they are stored in memory, which speeds up the
evaluation. For this, all the necessary information has to be drawn out of the
Conditions and Recommendations of the single rules, that implicitly define
the directed acyclic graph (DAG) of dependencies for the parameters.

As a first step towards a correct ordering, each ParameterRuleList gets his
set of dependencies updated. This is achieved by processing the single rules
one after the other. For each Condition and Recommendation, a special
function of the StackProcessor parses the arithmetic expressions and re-
turns the set of used parameters. This set is then added to the internal list
of dependencies for the parameter. In the same step, the number of depen-
dencies for the single rule is updated, which is important for their ordering
within a ParameterRuleList (see 3.2).

Once all single parameters have an updated set of their dependencies, the
problem is to get them in the right order. Here a common graph problem
called topological sorting is encountered. It arises as a natural subproblem in
most algorithms on directed acyclic graphs. Topological sorting orders the
vertices and edges of a DAG in a simple and consistent way and hence plays
the same role for DAGs that depth-first search does for general graphs. It can

29

be used to schedule tasks under precedence constraints and any topological
sort (also known as a linear extension) defines an order to do these tasks such
that each is performed only after all of its constraints are satisfied.
The problem can be stated in a more mathematical way as follows:

Input: A directed, acyclic graph G = (V, E) (also known as a
partial order or poset).

Problem: Find a linear ordering of the vertices of V' such that
for each edge (i,7) € E, vertex i is to the left of vertex j.

Figure 15: The problem of topological sorting

The usually applied basic algorithm (see [2, pp. 497] for example) performs a
depth-first search of the DAG to identify the complete set of source vertices,
where source vertices are vertices without incoming edges.

At least one such source must exist in any DAG. Note that source vertices can
appear at the start of any schedule without violating any constraints. After
deleting all the outgoing edges of the source vertices, new source vertices are
created, which can sit to the immediate right of the first set. This is repeated
until all vertices have been accounted for.

The problem is that the DAG for the RuleEngine is given only implicitly by
the rules. Instead of creating one first, the algorithm is slightly modified and
operates on two sets. A set of already accounted vertices A and a set R for
the rest.

At the start of the algorithm, A is empty while R is initialized with all
ParameterRuleLists. Then it loops over the entries in R and tries to find
a parameter rule list whose dependencies are met by A. If an element has
been found, it is removed from R, added to A and gets the current list index
assigned. This is repeated until R is empty or no more elements can be
added. The latter is an indicator for a cyclic dependency in the precedence
graph. In this case all further elements of R are deleted, i.e. the according
parameter rule lists are removed.

30

Once the algorithm has finished, the list of ParameterRuleLists is sorted
with a less-than operator, based on the assigned list index only.

3.5 Parameter

A Parameter basically consists of a Name and its two data values (see fig. 16).

Parameter

+Name: string
+Value: REValue
+ShadowValue: REValue

+setValue()
+getValue()

Figure 16: Basic interface of a Parameter

All parameters keep track of their actual value as it is currently set in the
GUI. Additionally, the shadow value is used to store the recommended value.
At the beginning of an update for all recommendations, the shadow value
is set to the actual value for all parameters. This step is necessary because
during the update process only the shadowed values are read and written
while evaluating the rules. It provides a kind of ‘latch’, since it is allowed for
a parameter to refer to itself in a rule (reflexivity).

Values are encapsulated in their own class REValue, which is a simple con-
tainer that stores the type (integer, double or boolean) and the data itself.
Parameters are usually set by the GUI, whenever the user has entered a
new value for it. After a recommendation update, either the current or the
shadow value can be fetched for further comparisons or display purposes like
for the example in section 4.2.

The XML syntax for a Parameter is:

<Parameter>
[<Name></Name>]
<Value>
<Type></Type>
<Data></Data>
</Value>
</Parameter>

The Name has to start with a letter, followed by an arbitrary combination
of letters and digits (see 3.7.7). With the variable Type the data type of

31

the value can be specified. Accepted get Int, Bool and Double for integer,
boolean and floating-point data, respectively. The field Data is used to set
the default value for the parameter.

3.6 Stack processor
The class StackProcessor has three main tasks:
e [t directly manages the list of Parameters,
e converts infix expressions to postfix during the read-in process and

e evaluates postfix expressions.

The basic interface as depicted in figure 17 lists the names of the according
functions.

StackProcessor

-vector<Parameter>

+getParameter()
+setParameter()
+convertInfixToPostfix()
+evaluatePostfixExpression()
+getTOSValue()

Figure 17: Basic interface of the StackProcessor

After an expression has successfully been computed with
evaluatePostfixExpression, the function getTOSValue returns the
result from the top of the stack (TOS).

3.6.1 Converting Infix to Postfix

With ‘paper and pencil’ one can convert infix to postfix very easily. The
steps to perform are:

1. For each operator symbol in the expression, put a pair of parenthesis
around the operator and operands. The resulting expression is called
fully parenthesized.

2. For each operator symbol find its right parenthesis in the fully paren-
thesized form. Replace that right parenthesis by the operator.

32

3. Remove all of the left parentheses from the expression.
This algorithm converts the complicated expression
a/b~c+d*e-ax*c
to its postfix equivalent
abc”~/dex+ac*-

The second rule indicates that the only things that ‘move’ are the operator
symbols and the right parenthesis tells where to move them. Thus, the
operands in the postfix form occur in the same order as they do in the infix
form. In converting infix to postfix, only the operator symbols are of major
interest, the operands can just be copied from the infix string to the postfix
string.

To handle the operators correctly, they are pushed onto a stack until the
‘location of the correct right parenthesis’ is found. To do it right, each
operator needs to be assigned two precedence values—one when it is on the
infix expression string (the ‘in-coming precedence’) and one when it is on the
stack (the ‘stack precedence’). Usually an operator will carry the same value
for both, but the left parenthesis is an exception. It gets the highest possible
value for incoming and the lowest for stack precedence.

The reason for this special assignment gets clear while looking at the pseudo-
code for the used algorithm:

Stack s;
Token t;
while (!endOfInput())
{

getNextToken(t) ;

if (t == operand)

cout << operand;
else if (t == rightParen)

{
while (s.top != leftParen)
{
cout << s.top;
s.popQ);
}
s.pop();
}
else

33

{
while (StackPrec(s.top) >= InPrec(t))

{

cout << s.top;
s.pop();
}
s.push(t);
}
}

while (!s.empty)
{
cout << s.top;
s.pop();
}

While parsing a string, the scanner is built by a single function getNextToken
that returns the next token in the input. Encountered operands—numbers
as well as variable identifiers—are directly output. On a right parenthesis
all stacked operators, up to the left matching parenthesis, are popped from
the stack. Before a new operator is pushed, all stack members that have a
higher precedence are popped. At the end of the input, the stack is cleared
by popping the operators that remained.

If the left parenthesis would have a non-zero stack precedence, it could be
popped from the stack by another operator that comes in and has a higher
precedence. This has to be avoided; a left parenthesis may only be removed
whenever a matching right parenthesis is found.

Due to the algorithm, all operators are left-associative (see [1, p. 30]), i.e. the
expression

2-4-5
is evaluated as
(2-4)-5

3.6.2 Evaluating postfix expressions

For the evaluation of postfix expressions, the same scanner function
getNextToken is used. This time, not the operators but the operands are
put on a stack.

34

If an unary or binary operator is encountered one or two values are popped
from the stack, respectively. They are combined, according to the requested
operation, and the result is put on the stack again.

If a variable identifier is found in the input, the value of the corresponding pa-
rameter is fetched from the internal list of Parameters. The StackProcessor
always uses the shadow values, representing the last recommendation for this
parameter.

3.7 Rule expression language (REL)

Now, the set of allowed operators and expressions for the REL is introduced in
detail. The operators are grouped, according to what parameters they expect
and their output. Eventually, the operator precedences and the grammar for
the arithmetic expressions in infix notation are described.

3.7.1 Computational operators

Computational operators are the four normal binary operators for addition,
subtraction, multiplication and division. They get complemented by the
MIN and MAX function for returning the lowest and highest of two values,
respectively. They all map a 2-tuple to a single scalar.

The data type type may stand for a double or an int in the following. For
example, an addition between a double and an int is supported as well as
an addition between two ints. The result for the first will be a double, while
the latter gives an int again.

compop: type X type — type

Available: +,—, -, /,MIN, MAX

3.7.2 Equational operators

Equational operators map two type values to a bool value. Like for the
computational operators, an int value is automatically coerced to a double
if the other operand is a floating point number.

equivop: type x type — bool

Available: <> =,#,>.<

35

3.7.3 Coercions

For the two preceding operator types, coercions are performed automatically
as soon as one of the two operands is a double. The result of the operation
is then coerced to a double, too.

The normal coercion chain can be broken by the following explicit coercions,
that are unary and cast the given double to an int again:

e ROUND : Normal rounding operation
e FLOOR : Rounds to the greatest int that is smaller than the double

e CEIL : Rounds to the smallest int that is greater than the double
coerceop: double — int

Available: ROUND, FLOOR, CEIL

3.7.4 Boolean operators

In order to combine single logical terms, the REL supports the usual boolean
operators AND and OR. They map two values of type bool, to a single one.

boolop: bool x bool — bool

Available: AND, OR

3.7.5 Unary operators

So far only a subset of the usual functions like tanh, arccos or x¥ have been
implemented. These are the SIN and COS function, the natural logarithm
LOG as well as the e” function EXP. The NEG operator changes the sign of the
current number and can also be applied to integer values.

unaryop: double — double

Available: SIN, C0S, LOG, EXP, NEG

Apart from the functions that operate on double values, the boolean NOT
maps a bool to a bool.

boolnot: bool — bool

AR

It can be replaced by a single exclamation mark ‘!” in the input.

36

3.7.6 Operator precedence

Now that all the operators have been introduced, the question about their
priorities in relation to each other arises. Which have a higher precedence
than others? The answer can be partly derived from the REL grammar that
is given in the following section. For the sake of completeness, table 1 shows
the precedences of the single operator groups—from high priority at the top
to the lowest precedence.

Precedence | Operators

16 C,0)

15 ‘NEG’

14 ‘MIN’, ‘MAX’, all unary ops
13 R

12 R

10 =700 =00
9 =l ==

8 ‘NOT’

7 ‘AND’

6 ‘OR’

Table 1: Operator precedences

The higher the precedence is, the stronger surrounding operands are bound
to the operator. This means that the expression

A <=4 AND 6 + 3 *x 2 I=B
for example is evaluated as
(A <= 4) AND ((6 + (3 * 2) != B)

3.7.7 Grammar

The grammar for the infix format of the REL follows the PASCAL syntax
for arithmetic expressions (see [12]). It got enhanced by the unary operators
C0S, SIN a.s.o., the boolean values TRUE and FALSE and the MIN and MAX
functions that were appended to the non-terminal factor.

expression : simple_expr
| simple_expr relop simple_expr

simple_expr : term_list

37

| °+’ term_list
| -’ term_list

term_list : term
| term ’+’ term_list
| term ’-’ term_list
| term ’0OR’ term_list

term : factor
| factor ’*’ term
| factor ’/’ term
| factor ’AND’ term

factor : varldentifier

signlessConstant

>(’ expression ’)’

’NOT’ factor

unaryOperator factor

binaryFunction ’(’ expression ’,’ expression ’)’
’>TRUE’ | ’FALSE’

unaryOperator : ’SIN’ | ’C0s’
| ’EXP’° | °LOG’
|) _ |)NEG)
| °ROUND’ | ’FLOOR’ | °CEIL’

binaryFunction : ’MIN’
| *MAX?

relop : ’<’

varIdentifier : letter [letter|digit]*

signlessConstant : signlessDouble
| signlessInt

signlessDouble : signlessInt ’.’ signlessInt

| signlessInt ’.’ signlessInt exponent
| signlessInt exponent

38

exponent : ’E’ signlessInt
| ’E’ ’+’ signlessInt
| ’E> °-’ signlessInt

signlessInt : digit
| digit signlessInt

digit : [?0°-’9’]

letter : [’a’-’z? ’A’-°Z’]

As can be easily derived from the grammar, a variable identifier
varIdentifier always starts with a letter, followed by an arbitrary number
of letters or digits. It is important to note that this syntactical restriction
also applies to parameter names.

Since usual XML editors will be the preferred source for RuleEngine files,
the StackProcessor is able to cope with the replacements &1t; and >
for < and >, respectively.

Finally, a few examples for correct syntax:

(A < B) AND NOT ((2*D) >= F)
2%3.1415
4xcutLength + (2.5/cutWidth) * 27.0 / 5.0

as well as incorrect expressions:
(A << B)

(A < B) AND NOT ((2#D >= F)
4 Examples

This section roughly sketches the development and usage of two example
dialogs that employ the RuleEngine in different ways. Both examples were
created using the C++GUI library Qt under Linux.

4.1 Basic example rule

The first example implements the basic rule from section 2.2. Figure 18
shows the initial setup of the dialog.

39

0| RELTest
— Friction coefficient (0-1)

0.2

— Tool velocity (mm/s)
| 50

— Relative sliding velocity (0-1)
|0.003

— Recommended sliding velocity

Accept hint CK

Figure 18: Initial dialog setup

Apart from the needed entry fields for the parameters, the hint and the OK
button, a button has been added that accepts the current recommendation
as the new relative sliding velocity.

While the user changes values, the rule engine is continuously employed to
compute a better value for the relative sliding velocity, if possible. In figure
19 the user has changed the friction coefficient to 0.5 and the tool veloc-
ity to 5, which means that the example rule gets active. Consequently, a
recommendation is displayed in the text field at the bottom.

If the user clicks the ‘Accept hint’ button, the recommended value is set as
new parameter value within the rule engine and the dialog itself. Figure 20
shows the dialog after the suggestion for the sliding velocity was accepted.
To reach this functionality, only a few changes to the original code were
necessary. In the following code snippets they are enclosed by an ‘#ifdef
USE_RULE_ENGINE’ construct. First an instance rEngine of the RuleEngine
was added to the dialog, that reads the data from an external file in the
constructor of the dialog class:

/** Constructor for the \a basicruledlg class. */
basicruledlg: :basicruledlg(QWidget *parent, QString name)
: QDialog(parent, name, true)
{
#ifdef USE_RULE_ENGINE
ifstream f("BasicRuleExample.xml");
if (f)

40

— Friction coefficient (0-1)

los

— Tool velocity (mm/s)

E

— Relative sliding velocity (0-1)

|0.003

— Recommended sliding velocity

|0.0025

Accept hint I [8].4 |

Figure 19: A recommendation is available...

— Friction coefficient (0-1)

los

— Tool velocity (mm/s)

B

— Relative sliding velocity (0-1)

|0.0025

— Recommended sliding velocity

Accept hint CK |

Figure 20: ... and got accepted.

41

rEngine.readXml (f) ;
#endif

QBoxLayout *vb = new QVBoxLayout(this);

Whenever a text field changes, a special function is called that gets the new
string as argument. Such a function exists for each of the three parameters
and checks whether the string does not contain any invalid characters. These
functions were complemented by a few lines to support the rule engine in its
task:

void basicruledlg::slotFrictionChanged(const QString &text)
{
if (text.isEmpty())
return;

bool success = false;
double frictionNew = text.toDouble(&success);

if (true == success)
{
friction = frictionNew;

#ifdef USE_RULE_ENGINE
rEngine.setParameterValue("FrictionCoefficient", friction);
rEngine.UpdateRecommendations() ;
updateRecommendation() ;

#endif

}

else
{
// Restore old value
leFriction->setText (QString: :number (friction));
}
}

After checking the input as before, the new value for the friction is set in
the rule engine. Then the function UpdateRecommendations is called that
processes the rules, stored in rEngine. The function updateRecommendation
checks whether a recommendation value for the parameter sliding velocity is
available. If yes, it displays the value in the fourth text field:

42

#ifdef USE_RULE_ENGINE
void basicruledlg: :updateRecommendation()

{
REValue curVal;
REString curString;

if (true == rEngine.hasRecommendation("SlidingVelocity"))

{
REValue curVal;
REString curString;

curVal = rEngine.getParameterShadowValue("SlidingVelocity") ;
curVal.toString(curString) ;
leRecommended->setText (curString.c_str());
}
else
{
leRecommended->setText ("");
}
}
#endif

Whenever the ‘Accept hint” button is clicked the function

slotAcceptRecommendation is called that sets the recommended value, first
for the RuleEngine and then in the GUI:

void basicruledlg::slotAcceptRecommendation()
{
// Accept the made recommendation
rEngine.acceptRecommendedValue ("SlidingVelocity") ;
if (leRecommended->text() != "")
leSlidingVelocity->setText (leRecommended->text());

4.2 Baking a cake

The second example asks the user to enter some main ingredients for a dough
recipe (see figure 21)

Apart from the text entries and the OK button that accepts the made set-
tings, the lower left of the dialog offers a ‘Rule info’ button. It changes its
appearance, depending on whether recommendations are available or not.
The basic behaviour of the dialog and the necessary changes in the source
code are similar to the previous example. Upon each change of a text field

43

— Eggs
E

— Milk (ccm)
|50

— Flour g)
| 250

— Salt (g)
|2

' oK

] Lo 1

Figure 21: Initial dialog setup

the RuleEngine processes all rules and computes new recommendations. In
figure 22 the user has entered a new value for the number of eggs, which
leads to a number of recommendations as is signaled by the little symbol on
the ‘Rule info’ button.

If the user presses this button, another dialog comes up that delivers further
infos about the recommendations. The evoked dialog is shown in figure 23.
It was designed as a kind of simple ‘recommendation browser’ that informs
the user about which values should be set and why. With the upper line
of ‘arrow buttons’ he may step back and forth in the list of fired rules or
jump to the first and last entry, respectively. The affected parameter, as
well as its current and recommended value, are displayed in the ‘Info’ text
field. Additionally, the description of the rule is shown and tries to justify
the decision. In the bottom line, the user can select to accept all necessary
changes or only the current recommendation.

Finally, figure 24 shows how the separation between normal recommendations
and critical rules can be exploited. Following an invalid entry of -3 eggs by
the user, a ‘stop’ sign is displayed in the lower left.

If the user clicks the ‘Rule info’ button again, the same browser dialog is
shown as for normal recommendations. The only difference is that the word
‘Recommendation’ in the ‘Info’ field is replaced by ‘Range violation’.

44

— Eggs
E

— Milk {ccm)
|50

— Flour g)
| 250

— Salt g)

|2
&2 OK |

Figure 22: Recommendations are available

o ety

< - | o< | b=

— Rule info

Recommendation 1/3

Parameter: Milk
Current value: 50
Recommended value: 75

— Description

Milkk and Eggs need to have the right relation of
28ccm Milk per Egg.

Accept all Accept current (8].4
= ~[\—~}

Figure 23: A simple ‘recommendation browser’

45

— Eggs
E

— Milk (ccm)
|50

— Flour g)
| 250

— Salt (g)
|2

£ OK

] Lo 1

Figure 24: A range violation was detected

5 Conclusion

In this work a small rule engine system was designed and built. Its task
is to deliver recommendation values for a set of parameters, based on rules
that express certain relations between them. Written in C++ and providing
a useful set of interface functions, it can be fitted into existing applications
without a lot of extra work.

It manages two separate lists of rules and parameters, that are read in from an
external text file in XML format. Right at the start, all rules are reordered
such that they can be processed in a row without hurting any precedence
constraints. Upon request, the conditions for the single rules are checked,
based on the current parameter settings. These conditions—as well as the
formulas for calculating the corrected value—are specified in the Rule Ex-
pression Language (REL), a simple language for arithmetic expressions. If
single rules ‘fire’ and recommendations are available the corrected parameter
values can be read out. Apart from normal recommendations, the rule en-
gine also knows the so-called ‘critical’ rules that can be used to detect range
violations.

The rule engine is not able to process rule sets with cyclic dependencies
between the single parameters. It is expected that the given precedence
graph—derived from the relations between the single parameters—is cycle-
free. This implies that some hierarchy for the watched parameters has to be
provided.

46

By adding a rule engine to an existing application the different parameters
of a dialog can be watched. If the user sets an inappropriate value and a
defined rule gets ‘activated’ a better setting can be recommended. Keeping
the rules in an external ‘knowledge base’ helps the developer and the ardent
user to adjust the rule set if needed. For this, no recompilation of the whole
program is required.

This functionality outdoes the range checking of existing GUI frameworks
like the DDX mechanism of the MFC. There, values can only be checked to
lie in a specified interval, which is established at compile-time. The added
features of the rule engine can help the inexperienced user to set reasonable
values for special parameters in his first try. In addition, the rule system is
able to tell the user why this setting is reasonable. The possibility to request
descriptions of parameters and rules can have a positive learning effect on
the newcomer.

So far, a working prototype of the rule engine is provided, together with a
simple external check program called RuleChecker (see Appendix B) that
can be used to verify the integrity of rule sets. The defined rule expres-
sion language (REL) is powerful enough to cover a large range of arithmetic
expressions. Nevertheless, there is still room for some improvements:

1. The set of operators for the rule expression language could be enhanced
by additional functions like x¥, arcsin or tanh.

2. A set of special comments or sub-tags for the descriptions of parame-
ters and rules could be introduced—delimiting a link to a parameter,
for example. Combined with a properly designed browser dialog they
would enable the user to skim through the internal structure of the
loaded rule set.

3. Based on the rule engine and the RuleChecker program, a special GUI
application for designing and testing rule sets would be helpful.

The simple examples from section 4 show that the rule engine can be easily
molded into an already existing GUI environment. As a next step, a version
of the recommender system is planned to be integrated to the development of
the FE-FV simulation application MSC SuperForge in cooperation with the
Femutec GmbH, Hamburg. This practical test will hopefully deliver some
good results as well as further insights and help to support and guide the
current and future users of the program.

47

References

1]

2]

3]

[10]

[11]

[12]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Prin-
ciples, Techniques and Tools. Addison Wesley, second edition, 1988.

Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science.
Addison Wesley, 1995.

Riidiger Brause. Neuronale Netze. FEine Einfihrung in die Neuroinfor-
matik. Leitfaden und Monographien der Informatik. Teubner Stuttgart,
1991.

Thorsten Breitfeld. Entwicklung von FExpertensystemen zur Un-
terstutzung konstruktionsbegleitender Finite-Elemente Berechnungen.
PhD thesis, Institut fiir Statik und Dynamik der Luft- und Raum-
fahrtkonstruktionen, Universitat Stuttgart, 1999.

Bruce G. Buchanan and Edward H. Shortliffe. Rule-Based Fxpert Sys-
tems: The MYCIN Experiments of the Stanford Heuristic Programming
Project. Addison-Wesley, 1849.

J. Carroll and M. Rosson. Paradox of the active user. In Interfacing
Thought: Cognitive Aspects of Human-Computer Interaction. Bradford
Books/MIT Press, 1987.

C.C. Chen and S. Kobayashi. Rigid-plastic finite element analysis of ring
compression. Appl. Num. Method. Form. Proc. ASMFE AMD, 28:163,
1978.

Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human-
Computer Interaction. Pearson Education Limited, third edition, 2004.

C.L. Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artificial Intelligence, 19(1):17-37, 1982.

Chris J. Harris, Jonathan M. Roberts, and P. Edgar An. An intelligent
driver warning system. In L.C. Jain, R.P. Johnson, Y. Takefuji, and

L.A. Zadeh, editors, Knowledge-based Intelligent Techniques in Industry,
pages 1-51. CRC, 1999.

Hermann Helbig. Kinstliche Intelligenz und Wissensverarbeitung. Ver-
lag Technik, Berlin, 2 edition, 1996.

Rudolf Herschel. Standard-Pascal : Systematische Darstellung fir den
Anwender nach DIN 66256. Oldenbourg, Miinchen, 1991.

48

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Volker Hirsch. FEin Ezpertensystem als Konstruktionswerkzeug zur ak-
tiven Gerauschminderung an Getriebegehausen. PhD thesis, Fachge-
biet Maschinenelemente und Maschinenakustik, Technische Universitat
Darmstadt, 1998.

Peter Jackson. Introduction to Expert Systems. Addison Wesley, third
edition, 1999.

Thomas Jiittner. Der Entwurf adaptiver Regler durch FEinsatz eines
Expertensystems. Number 672 in 8: Mef-, Steuerungs- und Regelung-
stechnik. VDI, 1997.

Dimitris Karagiannis and Rainer Telesko. Konzepte der Kiunstlichen
Intelligenz und des Softcomputing. Lehrbiicher Wirtschaftsinformatik.
Oldenbourg, 2001.

Benjamin Kuipers. Qualitative reasoning: modeling and simulation with
incomplete knowledge. MIT, 1994.

Chung-Yu Liu, C.R. Emerson, and K. Srihari. An expert system ap-
proach to surface mount pick-and-place machine selection. pages 303—
320. Chapman & Hall, 1994. Structures and Rules.

Jan Lunze. Kinstliche Intelligenz fir Ingenieure, volume 1. Oldenbourg,
1994.

Walter McCulloch and Walter Pitts. A logical calculus of ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133,
1943.

P. Mertens, L. Ludwig, and Th. Wedel. Knowledge-based parameter con-
figuration in MRP packages. In Singh and Travé-Massuyes [26], pages
355-360. Proceedings of the IMACS International Workshop on De-
cision Support Systems and Qualitative Reasoning, Toulouse, France,
13-15 March, 1991.

Detlef Nauck, Frank Klawonn, and Rudolf Kruse. Neuronale Netze und
Fuzzy-Systeme. Computational Intelligence. Vieweg, 1996.

Sisir K. Padhy and Suren N. Dwivedi. Pcaad — an object-oriented
expert system for assembly of printed circuit boards. FEzpert Systems,
9(1):11-23, February 1992.

J. K. Pearson and P. G. Jeavons. A survey of tractable constraint sat-
isfaction problems. Technical Report CSD-TR-97-15, 1997.

49

[25]

[26]

[27]

28]

[29]
[30]

Hendrik Schafstall. Verbesserung der Simulationsgenauigkeit aus-
gewahlter Massivumformuverfahren durch eine adaptive Reibwertvorgabe.
PhD thesis, Universitat der Bundeswehr Hamburg, 1999.

M. G. Singh and L. Travé-Massuyes, editors. Decision Support Systems
and Qualitative Reasoning. IMACS, 1991. Proceedings of the IMACS
International Workshop on Decision Support Systems and Qualitative
Reasoning, Toulouse, France, 13-15 March, 1991.

J-Ph. Steyer, J-B. Pourciel, D. Simoes, and J-L. Uribelarrea. Quali-
tative knowledge modeling in a real time expert system for biotechno-
logical process control. In Singh and Travé-Massuyes [26], pages 387
393. Proceedings of the IMACS International Workshop on Decision

Support Systems and Qualitative Reasoning, Toulouse, France, 13-15
March, 1991.

Chang-Kyo Suh and Eui-Ho Suh. Using human factor guidelines for
developing expert systems. Ezpert Systems, 10(3):151-156, August 1993.

L. Zadeh. Fuzzy sets. Information and Control 8, pages 338-353, 1965.

Jens Zeidler. Unscharfe Entscheidungsbdume. PhD thesis, Technische
Universitat Chemnitz, Fakultét fiir Informatik, 1999.

20

Appendix A: XML file for the basic rule ex-
ample

<RuleEngine>

<Name>Basic Rule Example</Name>

<Parameters>

<Parameter>
<Name>FrictionCoefficient</Name>
<Value>
<Type>Double</Type><Data>0.2</Data>
</Value>

</Parameter>

<Parameter>
<Name>ToolVelocity</Name>
<Value>
<Type>Double</Type><Data>50</Data>
</Value>

</Parameter>

<Parameter>
<Name>SlidingVelocity</Name>
<Value>
<Type>Double</Type><Data>0.003</Data>
</Value>

</Parameter>

</Parameters>

<Rules>
<Parameter>
<Name>SlidingVelocity</Name>
<Rule>
<Name>Basic Rule Example</Name>
<Description>Approximation for the sliding velocity
by Chen/Kobayashi.</Description>
<Condition>(FrictionCoefficient > 0.3) AND (ToolVelocity < 20) AND
((SlidingVelocity < 0.0005*ToolVelocity*0.9) OR
(SlidingVelocity > 0.0005%ToolVelocity#*1.1))</Condition>
<Recommendation>0.0005*ToolVelocity</Recommendation>
</Rule>
</Parameter>
</Rules>
</RuleEngine>

o1

92

Appendix B: CD

This CD contains the source code for the RuleEngine and the Qt example, as
well as the Windows executable for the latter. It also provides the program
RuleChecker—a command-line tool, based on the rule engine classes—that
can be used to check the integrity of rule sets.

23

o4

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dafl ich meine Diplomarbeit “Recommending
Values for Parameter Sets in Simulation Applications” selbstandig ohne
fremde Hilfe angefertigt habe und daf} ich alle von anderen Autoren wortlich
iibernommenen Stellen, wie auch die sich an die Gedanken anderer Autoren
eng anlehnenden Ausfithrungen meiner Arbeit besonders gekennzeichnet und
die Quellen nach den mir vom Priifungsamt angegebenen Richtlinien zitiert
habe.

Hamburg, den 14.01.2005

(Unterschrift)

95

