

Enterprise Services Architecture and Composite

Application Framework

Master Thesis

Mariusz Chechelski

Information and Media Technologies

Hamburg-Harburg University of Technology
Germany

Supervised by
Prof. Dr. J.W. Schmidt

Prof. Dr. V. Turau

Supervised by
Klaus-Georg Lemke

Rudi Grom

Hamburg, April 2005

Declaration

Hereby I declare that I am the author of this thesis, titled “Enterprise Services
Architecture and Composite Application Framework“. All literally or content related
quotations from other sources are clearly pointed out and no other sources rather than
the ones declared are used.

Mariusz Chechelski

Hamburg, April 25, 2005

Acknowledgement

I would like to thank Professor Schmidt and Rainer Marrone of Software System
Group for supervising this thesis and giving valuable feedback for continuously
enhancing the scope of this work. Thanks also to Professor V. Turau for being the
co-supervisor of this thesis. Furthermore, I am very grateful to Klaus Lemke and
Rudi Grom for offering the opportunity to work closely with HP SAP Center of
Expertise and giving continuous support. Furthermore, I am very grateful to Mario
Herger of SAP AG for offering the opportunity to work closely with CAF team in
Walldorf.

- Enterprise Services Architectures and Composite Application Framework -

Contents

1 INTRODUCTION..7

1.1 Objectives of this thesis..8

1.2 Structure of this thesis..8

2 CONCEPTS AND PHILOSOPHIES...10

2.1 Web Services..11

2.2 SOA – Service Oriented Architecture ..19

2.3 ESA – Enterprise Services Architecture..25
2.3.1 PCA - Packaged Composite Applications ...27
2.3.2 ESA and SOA ..31

2.4 Summary...32

3 SAP NETWEAVER TECHNOLOGIES...33

3.1 SAP Web Application Server ..36

3.2 SAP Exchange Infrastructure ...39

3.3 Composite Application Framework (CAF)...42
3.3.1 CAF Architecture ...44
3.3.2 Services Layer ...49
3.3.3 UI Layer ...54
3.3.4 Process Layer..60
3.3.5 CAF landscape ..62

3.4 Summary...63

4 CUSTOM COMPOSITE APPLICATION ..64

4.1 Customer master data at HP...64
4.1.1 Model ...68
4.1.2 Configuring User Interfaces...71

4.2 Summary...76

5 STATUS AND FUTURE OF ESA ..77

6 CONCLUSION ...84

7 GLOSSARY ...87

8 BIBLIOGRAPHY..90

 4

- Enterprise Services Architectures and Composite Application Framework -

List of Figures

FIGURE 1 EVOLUTION OF IT INFRASTRUCTURES LEADED THROUGH ROI DEMAND 10
FIGURE 2 WEB SERVICES CONCEPT. ... 12
FIGURE 3 WEB SERVICES ARCHITECTURE (W3C)... 13
FIGURE 4 A SAMPLE CONVERSATIONS BETWEEN A CLIENT AND A WEB SERVICE. 16
FIGURE 5 WS-COORDINATION PROTOCOL .. 17
FIGURE 6 WS-TRANSACTION PROTOCOL .. 18
FIGURE 7 WEB SERVICES BASIC ARCHITECTURE ... 20
FIGURE 8 SERVICE-ORIENTED ARCHITECTURE .. 21
FIGURE 9 BPEL4WS LOGICAL VIEW... 23
FIGURE 10 ESB ARCHITECTURE .. 24
FIGURE 11 OVERVIEW OF ENTERPRISE SERVICES ARCHITECTURE.. 26
FIGURE 12 ESA PLATFORM STACK.. 27
FIGURE 13 ENTERPRISE SERVICES ARCHITECTURE ... 27
FIGURE 15 ORDER-TO-CASH SCENARIO .. 30
FIGURE 16 ORDER-TO-CASH SCENARIO WITH ESA ... 31
FIGURE 18 OVERVIEW OF SAP NETWEAVER.. 34
FIGURE 19 ARCHITECTURE OF SAP XAPPS ... 35
FIGURE 20 THE ARCHITECTURE OF SAP WEB AS ... 37
FIGURE 21 WEB SERVICES FRAMEWORK .. 38
FIGURE 23 ARCHITECTURE OF INTEGRATION DIRECTORY... 40
FIGURE 24 BUSINESS PROCESS WITHIN BUSINESS PROCESS ENGINE ... 41
FIGURE 25 SCENARIO WITH SAP XI.. 42
FIGURE 26 CAF AND PATTERNS.. 43
FIGURE 27 CAF ARCHITECTURE... 44
FIGURE 28 CAF: WORKFLOW OF BUILDING COMPOSITE APPLICATIONS .. 45
FIGURE 29 CAF: PROGRAMMING MODEL.. 46
FIGURE 31 MAPPING BETWEEN DIFFERENT BACKEND SYSTEMS .. 48
FIGURE 32 SYNERGY WITHIN COMPOSITE APPLICATIONS. ... 49
FIGURE 33 ARCHITECTURE OF SERVICE MODELER ... 50
FIGURE 34 SAP NETWEAVER DEVELOPER STUDIO. ... 50
FIGURE 35 EXTERNAL SERVICES... 51
FIGURE 36 COMPLEX ATTRIBUTE .. 52
FIGURE 37 ATTACHMENT PATTERN .. 55
FIGURE 38 CLASSIFICATION ASSIGNMENT PATTERN... 56
FIGURE 39 FLEXTREE PATTERN.. 56
FIGURE 40 HISTORY LOG PATTERN... 57
FIGURE 41 KM FILE SELECT PATTERN ... 57
FIGURE 42 SEARCH BAR PATTERN.. 58
FIGURE 43 USER ASSIGNMENT PATTERN .. 58
FIGURE 44 OBJECT EDITOR PATTERN.. 59
FIGURE 45 OBJECT SELECTOR PATTERN – RUNTIME ... 59
FIGURE 46 SAP GP - PHASES.. 60
FIGURE 47 GUIDED PROCEDURES - LIFECYCLE ... 61
FIGURE 48 SAP GP PROCESS STRUCTURE – EXAMPLE... 61
FIGURE 49 SAP CAF LANDSCAPE... 62
FIGURE 50 CUSTOMER MASTER DATA FLOW .. 65
FIGURE 51 UNIFIED VIEW ON CUSTOMER MASTER DATA ... 66
FIGURE 52 PROTOTYPE ... 67
FIGURE 53 PHASES 1&2 OF PROTOTYPE.. 68
FIGURE 54 THE CUSTOMER DATA... 69
FIGURE 55 SIMPLIFIED MODEL OF CUSTOMER DATA... 69
FIGURE 56 CAF SIMPLIFIED METAMODEL .. 70
FIGURE 58 UI PATTERNS CONFIGURATION - OVERVIEW .. 72
FIGURE 59 OBJECT EDITOR PATTERN – CONFIGURATION.. 73
FIGURE 60 PROPERTY EDITOR PATTERN - CONFIGURATION .. 73
FIGURE61 OBJECT EDITOR PATTERN - RUNTIME ... 74
FIGURE 62 ORGANIZATIONAL STRUCTURE FOR THE ESA.. 78
FIGURE 63 FROM TRADITIONAL SERVICES TO ENTERPRISE SERVICES ... 80

 5

- Enterprise Services Architectures and Composite Application Framework -

FIGURE 64 PROCESS-BASED MODELING WITH SAP CAF... 81
FIGURE 65 ENVISIONED ACTION MODEL .. 82
FIGURE 66 ARCHITECTURE OF SAP GP WITH ACTIVE FORMS.. 83

 6

- Enterprise Services Architectures and Composite Application Framework -

1 Introduction

“It’s not the strongest of the species that
survives, nor the most intelligent; but the one most responsive to change”

- Charles Darwin

The fragmented world of data and software would really not be much of a problem
if business conditions remained constant, as they did in the early 1990s before the
arrival of the Internet as a primary force of making business. Back then, most
companies were self-contained units, impenetrable to the outside world, and IT
systems were an internal affair. Information was essentially "dis-integrated"
among various systems. Very often these systems defined the same business
concepts like Customer in a Human Resource Management System (HRMS)
application, Payroll application, and Benefits application, thus creating dissonance
between these systems.

At the present time the network has brought suppliers and customers right inside
that infrastructure. Customers frequently use computer interfaces to enterprise
systems, often through the Internet. This computer-mediated interaction with
customers applies not just in a few industries and contexts, like customers
interacting with a bank through an ATM or with an airline reservations system
through a web site, but it spread out to almost every company.

At the business-to-business (B2B) level, creating the most efficient supply chain
involves opening up the core systems of the company and integrating them with
vendor’s systems at key points. Therefore there is a pressure on business to
expose their internal systems to the outside world as services. IT systems are
thus no longer an internal affair. There is a shift under way in the role of
information technology (IT) in the enterprise. It’s an evolution in how IT will enable
companies to become truly adaptive, flexible, and able to both respond to and
take advantage of change on a business market. IT organizations try to adopt
step-by-step approach to evolve their current IT infrastructures so that it can
deliver services, reliability and stability, speed and agility, and to achieve a better
return on investment (ROI).

IT organizations must cope with the growing scope of services and its change
needed to support a variety of business initiatives – information security,
application integration, the development and deployment of services (web
services) – while at the same time supporting vital everyday business needs
ranging from compliance with regulatory changes to mergers and acquisitions, to
changes in supply chain. In the quest to increase efficiency and gain competitive
business advantage, IT organizations have embraced numerous methodologies
and technologies over the past two decades. One among them, which aspire to
address all of these above-mentioned challenges, is Enterprise Services
Architecture (ESA) concept.

 7

- Enterprise Services Architectures and Composite Application Framework -

1.1 Objectives of this thesis

Enterprise Services Architecture (ESA) is being developed to address business
drivers such as flexibility of IT systems, computer-mediated interaction
(interoperability) with consumers, suppliers, regulators, financial institutions etc. in
order to enable business innovation while lowering total cost of ownership (TCO).

Therefore, the aims of this thesis are to identify the major changes concerning the
organizational and implementations methodologies when using the ESA’s
approach and to identify the areas that might give business benefits using the new
approach of interfacing with Package Composite Applications. This thesis will
concentrate on methodologies that enable to build process-based applications like
package composite applications that try to reflect business processes within a
company. Furthermore, there will be executed an investigation in order to position
and find out about technical aspects for enterprise services, which are brought
with ESA concept.

In order to accomplish the aims, the objective of this thesis is the following:

• To build an application with a Web Service Interface with an application of
SAP NetWeaver and SAP xApps technologies those are SAP’s technical
foundations for Enterprise Services Architecture concept

• To discuss ESA concepts regarding the Service-Oriented Architecture
(SOA) approach

1.2 Structure of this thesis

This thesis is organized as follows:

Chapter 2 will present important and related concepts aimed to organize business
functions and IT infrastructure in order to increase efficiency and to gain
competitive business advantage of an enterprise taken up by IT organizations
over the past two decades. This chapter will look briefly at the Web Services
concept, which as a first technology brought a piece of functionality taken from a
company's business processes or infrastructure and made it accessible over the
Internet. Then this chapter will look briefly also at the Service-Oriented
Architecture (SOA), which goes beyond Web Services concept and not only
expose single services over a network but also focuses on organizing business
systems as reusable components, not fixed processes. In some depth this chapter
will introduce Enterprise Services Architecture that is an application of a service-
oriented architecture and sound principles of object-oriented design applied to the
current heterogeneous world of IT architecture focused by economic reality. This
chapter also presents a comparison of SOA and ESA concepts. Finally, the
Package Composite Applications (PCAs) concept as part of ESA will be
described. PCAs reflect a certain process that exist within enterprise infrastructure
and presents it as new business applications.

 8

- Enterprise Services Architectures and Composite Application Framework -

Chapter 3 contains the most relevant technologies and techniques applied for this
thesis. This chapter will describe the application of Enterprise Services
Architecture with the latest SAP Technology named SAP NetWeaver that is
designed to integrate the current legacy applications and to build package
composite applications called SAP xApps (Collaboration Cross Applications) with
a use of the SAP Composite Application Framework (CAF).

Based on a real life business scenario for maintaining the customer master data at
Hewlett-Packard Company, chapter 4 describes the design of a custom composite
application with the SAP Composite Application Framework (CAF). This chapter
will outline the technical aspects of designing package composite applications with
the SAP NetWeaver technology that offers a new design approach for user web
interfaces.

Chapter 5 contains a discussion about the results obtained during the research
phase of this project. It will be described the major changes concerning the
organizational and implementations technologies while using the ESA approach.
Among others things it will be discussed a new Web services paradigm, namely
Enterprise Services that want to enhance Web services technology in order to
support enterprise-level business functionality.

Finally, this thesis ends with a conclusion in chapter 6, providing conclusion
remarks, summarizing the key results of the presented thesis with regard to
Enterprise Services Architecture as a service-based architecture.

 9

- Enterprise Services Architectures and Composite Application Framework -

2 Concepts and Philosophies

“Ancient civilizations made three
principal contributions to the development of architecture. One was the
perfection of two structural systems, the post and lintel and the arch, and
their use as decorative as well as structural elements. Another was a
multitude of decorative forms and patterns, many of which passed into the
architectural heritage of Western Civilization and are still in use today. The
third was the concept of orderly planning… the most important of these
contributions is perhaps the last, a plan is fundamental in architecture”

- Joseph Watterson

In the first chapter it was underlined that companies (IT organizations) are
becoming aware that IT should help by automating and optimizing the processes
of a business. As a result, IT infrastructures (enterprise applications) have evolved
from mainframe systems that offered rock-solid stability and reliability to
client/server systems that emphasis speed since companies began automating
front office towards partners and customers because of the Internet and
cooperation with them through the network.

This chapter presents the concepts and philosophies (Figure 1) taken up by IT
organizations over the past two decades that aim to establish a tight partnership
between business and IT, and in turn delivers greater business agility and a
greater return on investments of an enterprise. Also this chapter will focus
primarily on Enterprise Services Architecture, which at the present time is
regarded by most enterprises and software vendors as the more promising
approach for future enterprise applications. Therefore, in this chapter will be
described the general principles, advantages and drawbacks of Enterprise
Services Architecture.

(www.hp.com/adaptive)

Figure 1 Evolution of IT infrastructures leaded through ROI demand

 10

- Enterprise Services Architectures and Composite Application Framework -

2.1 Web Services

This section outlines basis of Web Service technology and its contribution to
evolution of IT technologies against business values.

The main concept of this technology is the redefinition of a software component as
a Service. The World Wide Web Consortium (W3C) defines:

“A service is an abstract resource that represents a capability of performing tasks
that represents a coherent functionality” [W3C].

Web Services represents a new platform on which developers can build the same
distributed applications they have always built, but this time with interoperability as
the highest priority. Interoperability has always been a major concern for
organizations, but over the past decade it has become a much bigger priority
across the industry. There are two main areas where interoperability is a
significant challenge: Enterprise Application Integration (EAI) and Business-to-
Business Integration (B2Bi).

EAI represents the challenge most enterprises face in integrating their various
applications with each other. B2Bi represents the business interactions between
different enterprises. If one business wants to purchase supplies from another,
they have to interact and exchange information—and they rarely happen to be
using the same technology suites. Many organizations want to extend their reach
to users, so interoperability becomes an even bigger challenge than ever before.

Protocols for connecting enterprise applications have been around for quite some
time, but developers have typically encountered obstacles when designing
according to these models. Proprietary protocols force developers to think in a
product-specific way and learn special programming APIs in order to achieve
interoperability. Therefore, there was a force on IT to provide a standardized way
for connecting enterprise applications that should be on wide world scale adopted
by all IT organizations, software vendors and so on. Web services have met
unexpectedly in comparison with other technologies like RFC, CORBA/DCOM this
requirement over the past few years and have been standardized in committees
including WS-I1 and W3C2.

Web Services allow the integration of multiple software platforms and any types of
networks. This is due to the fact that Web Services are based on a standardized
set of technologies, such as: eXtensible Markup Language (XML), Simple Object
Access Protocol (SOAP), Web Service Description Language (WSDL) and Hyper
Text transport Protocol (HTTP). The usage of widely spread and platform
independent XML format and SOAP protocol offers the possibility of accessing
enterprise applications through services, which are requested by web clients from
wherever in the world (i.e. interoperability). While traditional applications
interacting with services in the Internet know those services deductively and need

1 The Web Services Interoperability Organization (WS-I) is an open, industry organization chartered
to promote Web services interoperability across platforms, operating systems, and programming
languages. http://www.ws-i.org/
2 The World Wide Web Consortium (W3C) develops interoperable technologies (specifications,
guidelines, software, and tools) to lead the Web to its full potential. W3C is a forum for information,
commerce, communication, and collective understanding. http://www.w3.org/

 11

- Enterprise Services Architectures and Composite Application Framework -

to be pointed to them manually, Web services let applications find Web services in
a standardized directory structure and bind to the services with minimal human
interaction. Figure 2 presents the Web Services concept.

Figure 2 Web Services concept.

In the Web services concept, providers and consumers of services represent the
world. The Web Service provider develops a Web service in a certain
programming language and deploys it to its own server runtime environment. The
service is described in the Web Services Description Language (WSDL) using
special XML tags. The service description is published in a common service
directory. Web Services directories are generally organized following the UDDI3
specification. A developer on the Web Service client (consumer) side can browse
the UDDI directory and look for applicable services. The client (consumer) may
then download the WSDL document of a selected Web service and trigger the
execution of the Web service over the communication link that is established
between the client and the provider. Web service invocations are standardized
using SOAP, while SOAP request contains the name of the Web service plus its
actual parameters. A SOAP response contains the result parameters based on
the signature that is exposed in the WSDL. It is worth to note that in a Web
service scenario, the use of the service directory is optional; if client knows where
a Web service runs and client obtains the description directly from the Web
service provider as a result client can invoke the Web service without using the
service directory.

3 Universal Description, Discovery, and Integration (UDDI) is a protocol for registration and discovery
of Web services. http://www.uddi.org

 12

http://www.uddi.org/

- Enterprise Services Architectures and Composite Application Framework -

The goal of Web services is to achieve universal interoperability between
applications by using Web standards. So far, we have described the Web services
concept and its most related standards like XML, SOAP, WSDL, and UDDI. Figure
3 presents a Web services architecture that involves much more layered and
interrelated technologies. The most important standards like services coordination,
transactions or security in the context of building distributed systems will be
presented in the following part of this section.

Figure 3 Web Services Architecture (W3C)

Let’s have a look at a small practical Web Service example and how WSDL works
with SOAP. Assume you are the client behind the imaginary company snowboard-
info.com, a snowboarding industry database providing a service that allows others
to query endorsements from snowboard manufacturers. You can as a client send
a request which professional snowboarder endorses the K2 FatBob model.
(SOAP 1.1 message – Listing1) to retrieve this information from a server.

POST /EndorsementSearch HTTP/1.1
Host: www.snowboard-info.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 261
SOAPAction: "http://www.snowboard-info.com/EndorsementSearch"
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-info.com">
<manufacturer>K2</manufacturer>
<model>Fatbob</model>
</m:GetEndorsingBoarder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope> Listing 1

 13

- Enterprise Services Architectures and Composite Application Framework -

In response, the server can send the SOAP 1.1 response (HTTP header)
message for the foregoing request as shown in Listing 2. In natural language, it
encapsulates the simple string response "Chris Englesmann" who is the
professional snowboarder that endorses the K2 FatBob model.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetEndorsingBoarderResponse xmlns:m="http://namespaces.snowboard-info.com">
 <endorsingBoarder>Chris Englesmann</endorsingBoarder>
 </m:GetEndorsingBoarderResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Listing 2

Now the overall structure of requests, the relevant data types, the schema of the
XML elements used, and other such matter are left to the trading partners by the
SOAP specification itself. The communications between these trading partners
can be described in structured way with use of WSDL standard. WSDL document
provides a standard for service specification that unites the types of requests and
the requirements needed to process them (Listing 3). Its meaning is as follows:

• The <document> element describes a set of related services.
• The <types> element allows the specification of low-level data-typing for

the message or procedure contents.
• The <message> element defines the data format of each individual

transmission in the communication.
• The <portType> element groups messages that form a single logical

operation. For instance, in our case, we can have an EndorsingBoarder
request which triggers an EndorsingBoarder response, or in case of error
or exception, an EndorsingBoarderFault.

• The <binding> element is the bit that firmly provides the connection
between logical and physical model.

• The final element, <service>, defines a physical location for a
communication end-point. It uses the port type and binding specified
earlier, and basically gives the Web address or URI for a particular
provider of the described service.

 14

- Enterprise Services Architectures and Composite Application Framework -

 15
Listing 3

<?xml version="1.0"?>
<definitions name="EndorsementSearch"
 targetNamespace="http://namespaces.snowboard-info.com"
 xmlns:es="http://www.snowboard-info.com/EndorsementSearch.wsdl"
 xmlns:esxsd="http://schemas.snowboard-info.com/EndorsementSearch.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://namespaces.snowboard-info.com"
 xmlns="http://www.w3.org/1999/XMLSchema">
 <element name="GetEndorsingBoarder">
 <complexType>
 <sequence>
 <element name="manufacturer" type="string"/>
 <element name="model" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="GetEndorsingBoarderResponse">
 <complexType>
 <all>
 <element name="endorsingBoarder" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="GetEndorsingBoarderFault">
 <complexType>
 <all>
 <element name="errorMessage" type="string"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>
 <message name="GetEndorsingBoarderRequest">
 <part name="body" element="esxsd:GetEndorsingBoarder"/>
 </message>
 <message name="GetEndorsingBoarderResponse">
 <part name="body" element="esxsd:GetEndorsingBoarderResponse"/>
 </message>
 <portType name="GetEndorsingBoarderPortType">
 <operation name="GetEndorsingBoarder">
 <input message="es:GetEndorsingBoarderRequest"/>
 <output message="es:GetEndorsingBoarderResponse"/>
 <fault message="es:GetEndorsingBoarderFault"/>
 </operation>
 </portType>
 <binding name="EndorsementSearchSoapBinding"
 type="es:GetEndorsingBoarderPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetEndorsingBoarder">
 <soap:operation
 soapAction="http://www.snowboard-info.com/EndorsementSearch"/>
 <input>
 <soap:body use="literal"
namespace="http://schemas.snowboard-info.com/EndorsementSearch.xsd"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://schemas.snowboard-info.com/EndorsementSearch.xsd"/>
 </output>
 <fault>
 <soap:body use="literal"
namespace="http://schemas.snowboard-info.com/EndorsementSearch.xsd"/>
 </fault>
 </operation>
 </binding>
 <service name="EndorsementSearchService">
 <documentation>snowboarding-info.com Endorsement Service</documentation>
 <port name="GetEndorsingBoarderPort"
 binding="es:EndorsementSearchSoapBinding">
 <soap:address
location="http://www.snowboard-info.com/EndorsementSearch"/>
 </port>
 </service>
</definitions>

- Enterprise Services Architectures and Composite Application Framework -

The basic Web services infrastructure with standards such as XML, SOAP, HTTP,
and WSDL suffices to implement simple interactions as that one in the example
presented above. In particular, it supports interactions where the client invokes a
single operation on a Web service. In real business applications, interactions are
typically more complex than single, independent invocations. Using a particular
service typically involves performing sequences of operations in a particular order.
Sometimes, these sequences of operations might even involve more than one
Web service. For example, consider a supplier Web service where clients can
connect to buy certain items. As part of the purchasing procedure, clients typically
have to identify themselves, request a quote for prices and delivery time, place the
order according to the quote received, and submit the payment (Figure 4). All of
these operations are necessary and they must be performed in a given order.

Customer

(Client)

Figure 4 A sam

This presented simple
realized by Web servic
of Web services must b
additional requirements
be supported through d
coordination, transactio
a prime technology for
progress specification
transactions and securi

• WS-Coordinatio
• WS-Transaction
• and WS-Securit

The primary goal of W
coordination protocols.
will govern specificatio
transactional coordina
coordination service (or

• An Activation se
create a coordin

• A Registration s
register for coor

• A coordination ty

1: requestQuote
 Supplier

(Web service) 2: orderGoods
3: makePayment
ple conversations between a client and a Web service.

 scenario addresses important features that must be
es technologies. Firstly, the coordination among a number
e assured through introduction of additional protocol. Than
 for consistency i.e. transactions and security feature must
efinition of new protocols. Adoption such new protocols for
ns and security may leverage web services technology to
e-business commercial application. Currently there are in
that initially propose standards for a coordination,

ty of web services, namely

n protocol
s protocol
y protocol

S-Coordination is to create a framework for supporting
In this regard, it is intended as a meta-specification that
ns that implement concrete forms of coordination e.g.

tion. This specification describes a framework for a
 coordinator) which consists of these component services:

rvice with an operation that enables an application to
ation instance or context.
ervice with an operation that enables an application to
dination protocols
pe specific set of coordination protocols.

16

- Enterprise Services Architectures and Composite Application Framework -

Figure 5 WS-Coordination protocol4

... Coordination
Protocol Y

Coordination
Protocol X

COORDINATOR

Activation
Service

RegisterCreateCoordinationContext

Registration
Service

Applications use the Activation service (Listing 4) to create the coordination
context for an activity. Once a coordination context is acquired by an application, it
is then sent by whatever appropriate means to another application. The context
contains the necessary information to register into the activity specifying the
coordination behavior that the application will follow. Additionally, an application
that receives a coordination context may use the Registration service of the
original application or may use one that is specified by an interposing, trusted,
coordinator. In this manner an arbitrary collection of web services may coordinate
their joint operation.

Listing 4

ACTIVATION SERVICE:

<wsdl:portType name="ActivationCoordinatorPortType">
 <wsdl:operation name="CreateCoordinationContext">
 <wsdl:input message="wscoor:CreateCoordinationContext"/>
 </wsdl:operation>
 </wsdl:portType>

 RESPONSE ACTIVATION SERVICE:

<wsdl:portType name="ActivationRequesterPortType">
 <wsdl:operation name="CreateCoordinationContextResponse">
 <wsdl:input message="wscoor:CreateCoordinationContextResponse"/>
 </wsdl:operation>
 <wsdl:operation name="Error">
 <wsdl:input message="wscoor:Error"/>
 </wsdl:operation>
 </wsdl:portType> Listing 5

WS-Coordination addresses several fundamental issues in coordination among
Web services:

• It defines SOAP extensions that are necessary to achieve coordination
• It defines meta-protocols for creating coordination context (Activation) and

for binding coordinators and participants context (Registration)

4 [WebServices-Alonso]

 17

- Enterprise Services Architectures and Composite Application Framework -

Similar forms of coordination are specified in traditional middleware systems such
as CORBA. For example, the coordination scheme in WS-Coordination is very
similar to the one described for CORBA’s OTS.

WS-Transaction defines a set of protocols that require coordination among
multiple parties. Therefore, it naturally builds upon the WS-Coordination
framework (Figure 6). This specification provides the definition of two coordination
types including their respective protocols for:

• An atomic transaction (AT) is used to coordinate activities having a short
duration and executed within limited trust domains. They are called atomic
transactions because they have an "all or nothing" property. The Atomic
Transaction specification defines protocols that enable existing transaction
processing systems to wrap their proprietary protocols and interoperate
across different hardware and software vendors. Atomic Transaction
protocol is built out of five protocols: Completion, 2PC,
ComplietionWithAck, PhaseZero, and OutcomeNotification.

• A business activity (BA) is used to coordinate activities that are long in
duration and desire to apply business logic to handle business exceptions.
The long duration prohibits locking data resources to make actions
tentative and hidden from other applications. Instead, actions are applied
immediately and are permanent. The Business Activity specification
defines two protocols: BusinessAgreement and
BusinessAgreementWithComplete that enable existing business process
and work flow systems to wrap their proprietary mechanisms and
interoperate across trust boundaries and different vendor implementations.

COORDINATOR A

COORDINATOR B

Registration
Service

Activation
Service

WS-Transaction
Protocol

Coordination
Protocol Y

Coordination
Protocol X

Registration
Service

Activation
Service

Figure 6 WS-Transaction protocol

Web services technology can enable building loosely coupled applications that
can be assembled from a set of web services that are distributed over a
connected infrastructure. The distributed nature of service-oriented applications
addresses security concerns as critical success factor. The primary concern is to
establish an interoperable framework that enables security for services,
applications, and users in a trusted environment and complies with established
corporate policies. Since a security paradigm is a wide range area this thesis only
will outline the ongoing security standards for web services security issues.

WS-Security is an OASIS standard. WS-Security describes enhancements to
SOAP messaging to provide message integrity, message confidentiality, and
message authentication. WS Security uses XML Signature to provide message
integrity and message authentication and uses XML Encryption to provide
confidentiality. WS Security also provides a general-purpose mechanism for
associating security tokens with messages. Examples of security tokens are X.509

 18

- Enterprise Services Architectures and Composite Application Framework -

certificate, SAML assertion. JSR 183 (Web Services Message Security APIs)
defines a standard set of APIs for web services message security.

XML Encryption is a W3C recommendation. It ensures confidentiality of XML
information transfers. XML Encryption allows the parts of an XML document to be
encrypted while leaving other parts open. WS Security provides processing rules
for using XML Signature for SOAP messages. JSR 106 (XML Digital Encryption
APIs) defines a standard set of APIs for XML digital encryption services.
XML Signature is a W3C recommendation. It ensures message integrity and
authentication. WS Security provides processing rules for using XML Signature for
SOAP messages. Signature can be applied over parts of an XML document. JSR
105 (XML Digital Signature APIs) defines a standard set of high-level
implementation-independent APIs for XML digital signature services.

Having presented Web Services concept, let’s have a discussion how both
business and IT departments can potentially benefit from it in terms of ROI. Web
Services have brought a simplified mechanism to connect enterprise applications
regardless of the technology. Thus, web services potentially improve business
process efficiency by reducing cost and particularly time to connect enterprise
applications i.e. they enable remote access to core source of information (real
time business). Also, Web services can reduce the high cost of private networks,
coupled with the cost of proprietary EDI/B2B solutions and as a result small,
medium companies can enter a business market on the network (globalization).
Since today organizations use different technologies for distributed computing,
EAI, EDI, B2B, Websites, Portals so this results in n-times products, tools, skills
and cost. Web Services provides an opportunity to radically reduce this by
supporting these different scenarios with the same basic protocol stack thus IT
benefits in cost savings through consolidation. Whilst Web Services remove many
of the technology constraints of communication between applications providing
flexibility at the implementation layer, the business agility that is promised is more
a factor of service design than protocol adoption. Therefore, IT organizations has
started a quest for a regulation by which we ensure that services (web services)
are the right services, delivered at appropriate levels of granularity, abstraction
and generality that makes sense to both Service Provider and Service Consumer,
reduces the effort (particularly on the client) to use a set of services to perform a
particular objective. The new approach is known as Service-Oriented Architecture
(SOA) and the following section 2.2 will present it.

2.2 SOA – Service Oriented Architecture

This section outlines basis of Services-Oriented Architectures (SOA) concepts
and its contribution to evolution of IT technologies against business values. Since
SOA is ongoing research how to align IT infrastructure with business demands, in
this section it will be made endeavor to describe SOA concepts as a layered
architecture.

A service-oriented architecture is a style of design that guides all aspects of
creating and using business services throughout their lifecycle (from conception to
retirement). An SOA is also a way to define and provision an IT infrastructure to
allow different applications to exchange data and participate in business

 19

- Enterprise Services Architectures and Composite Application Framework -

processes, regardless of the operating systems or programming languages
underlying those applications.

SOA is the architectural style that supports loosely coupled services to enable
business flexibility in an interoperable, technology-agnostic manner. SOA consists
of a composite set of business-aligned services that support a flexible and
dynamically re-configurable end-to-end business processes realization using
interface-based service descriptions.

In contrast, earlier approaches to building IT systems tended to directly use
specific implementation environments such as object orientation, procedure
orientation, and message orientation to solve business problems, resulting in
systems that were often tied to the features and functions of a particular execution
environment technology such as CICS, IMS, CORBA, J2EE, and COM/DCOM.

Service-oriented development, which SOA enables, is an evolutionary software
engineering approach enabled by component-based and object-oriented
development. The concepts behind SOA are not new. The idea of separating an
interface from its implementation to create a software service definition has been
well proven in J2EE, CORBA, and COM. But the ability to more cleanly and
completely separate a service description from its execution environment is new.
This ability is part of what Web concepts and technologies bring to Web services.
The traditional implementations of the interface concept might not have
considered such a "loose" separation because the performance implications are
negative. However, in many cases, the performance issue is less important than
the ability to more easily achieve interoperability, something the industry has long
strived for but only partially achieved until now.

The major advantages of implementing an SOA using Web services are that Web
services are pervasive, simple, and platform-neutral. As shown in following figure,
the basic Web services architecture consists of specifications (SOAP, WSDL, and
UDDI) that support the interaction of a Web service requester with a Web service
provider and the potential discovery of the Web service description. The provider
typically publishes a WSDL description of its Web service, and the requester
accesses the description using a UDDI or other type of registry, and requests the
execution of the provider's service by sending a SOAP message to it.

Figure 7 Web services basic architecture5

5 http://www.sys-con.com/webservices/

 20

http://www.sys-con.com/webservices/

- Enterprise Services Architectures and Composite Application Framework -

The major components of an SOA are:
• Services portfolio: Describes the business services in SOA. This includes a

list, classification and hierarchy of services defined through the technique
of service-oriented analysis and design.

• Components: Provide the functional realization of the services.
• Service providers, service consumers, and optionally, the service

broker(s): With their service registries where service definitions and
descriptions are published.

• SOA layers: Where software components and services reside.

Figure 8 illustrates the Service-Oriented Architecture (Services layer, Business
Process layer, Presentation layer).

Figure 8 Service-Oriented Architecture 6

Operational Systems Layer describes operational systems. This layer contains
existing systems or applications, including existing CRM and ERP packaged
applications, legacy applications, and (non-) object-oriented system
implementations, as well as business-intelligence applications. The composite
layered architecture of an SOA can leverage existing systems, integrate them
using service-oriented integration.

Component Layer uses container-based technologies and designs in typical
component-based development. Today, component-based technologies such as
Enterprise Java Beans (EJB), .NET and CORBA are effective ways of
implementing and managing software components.

Services Layer presents enterprise-scale components, business unit specific
components, and in some cases project-specific components and provides
services through their interfaces. The interfaces get exported out as service
descriptions in this layer, where services exist in isolation or as composite
services.

6 http://www.sys-con.com/webservices/

 21

http://www.sys-con.com/webservices/

- Enterprise Services Architectures and Composite Application Framework -

 Business Process Layer is an evolution of service composition into flows or
choreographies of services bundled into a flow to act as an application. These
applications support specific use cases and business processes. Here, visual flow
composition tools (e.g. SAP XI Integration Builder) can be used for design of
application flow and thus process-based application can be build.

Presentation Layer is usually out of scope for an SOA. However, it is depicted
because some recent standards such as Web Services for Remote Portlets
version 2.0 may leverage Web services at the application interface or presentation
level. It is also important to note that SOA decouples the user interface from the
components.

Integration Architecture Layer enables the integration of services through the
introduction of reliable and intelligent routing, protocol mediation, and other
transformation mechanisms, described as the Enterprise Service Bus.

The last layer ensures quality of service through sense-and-respond mechanisms
and tools that monitor the reliability, security of SOA applications, including the all-
important standards implementations of WS-Management.

SOA leverages the Web Services technology. The SOA design approach focuses
on organizing business systems as reusable components and not as fixed
processes, as it is in the case of Web Services. Business processes in SOA are
defined in the Business Process layer.

In the context of Service-Oriented Architectures, business process specifies the
potential execution order of operations from a collection of Web services, the data
shared between Web services, which partners are involved and how they are
involved in the business process, joint exception handling for collections of Web
services, and other issues involving how multiple services and organizations
participate. Business processes in a Web services world can be described by
Business Process Executive Language for Web Services (BPEL4WS). It is an
initiative of the industry leaders BEA Systems, Microsoft, IBM, SAP AG and Siebel
Systems to drive and ensure interoperability for description and communication of
business processes based on Web services. Processes in BPEL4WS are
exported and imported functionalities through using Web services exclusively.
BPEL4WS is layered on top of several XML specifications:

• WSDL 1.1
• XML Schema 1.0(XSLD)
• XPath 1.0

WSDL messages and XML Schema type definitions (XSLD) provide the data
model used by BPEL4WS processes. XPath provides support for data
manipulation. All external resources and partners are represented as WSDL
services. BPEL4WS provides extensibility to accommodate future versions of
these standards, specifically the XPath and related standards used in XML
computation.

 22

- Enterprise Services Architectures and Composite Application Framework -

The BPEL4WS model is built upon a number of layers, with each layer building on
the facilities of the previous. This is shown in Figure 9.

Figure 9 BPEL4WS logical view7

Figure 9 shows the fundamental components of the BPEL4WS architecture, which
consists of the following:

• A means of capturing enterprise interdependencies with partners and
associated partner links;

• Message correlation layer that ties together messages and specific
workflow instances;

• State management features to maintain, update, and interrogate parts of
process state as a workflow progress;

• Scopes where individual activities (workflow stages) are composed to form
actual algorithmic workflows.

Service-Oriented Architecture also enables a new managing way of a
heterogeneous IT infrastructure. It introduces the Enterprise Service Bus (ESB)
that is a Web Services aware reincarnation of traditional Enterprise Application
Integration (EAI) solutions. The architecture of an ESB (Figure 10) is centered on
a bus. The bus provides message delivery services. The services might be based
on open standards such as SOAP, HTTP, and Java™ Messaging Service (JMS).
The ESB enables the use of multiple protocols (such as synchronous and
asynchronous) and performs transformation and routing of service requests. The
ESB enables services to interact with each other based on the quality of service
requirements of the individual transactions.

Components types that can connect to ESB are:

• Custom applications like for instance web applications based on standards
like J2EE and Struts, which plug into the ESB to provide a user interface to
enterprise services.

• Service orchestration engine, which hosts long running business
processes, based on standards like Business Process Execution
Language for Web Services (BPEL4WS).

• Adapters that can be with Java Connector Architecture (JCA) or .NET
Connector specification enable integration with a wide variety of enterprise
applications.

7 http://www.sys-con.com/webservices

 23

- Enterprise Services Architectures and Composite Application Framework -

• Presentation and portals enable the creation of personalized portals that
aggregate services from multiple sources.

• Data services which provides real time view of data from heterogeneous
data sources.

• Web services provide a standard means of connectivity to legacy and
proprietary integration technologies.

Figure 10 ESB architecture8

In conclusion, SOA provides benefits in three basic categories: reducing
integration expense, increasing asset reuse, increasing business agility, and
reduction of business risk.

Service-Oriented Architecture Benefits
• Reducing Integration

Expense
• loosely-coupled integration reduces the

complexity and hence the cost of
integrating and managing distributed
computing environments.

• Increasing Asset
Reuse

• One of the most important benefits of
SOA is that users can create new
business processes and composite
applications from existing services. In
other words, service reuse becomes the
major formula rather than application
integration.

• Increasing Business
Agility

• Through Service-Oriented Process,
companies can delegate parts of their
overall business process flows to
different parts of the organization, each
of which have direct and immediate
control of the actual operation of the
business

8 IBM source

 24

- Enterprise Services Architectures and Composite Application Framework -

2.3 ESA – Enterprise Services Architecture

This section describes concepts of Enterprise Services Architecture (ESA) and its
contribution to evolution of IT technologies against business values. Also this
chapter compares SOA and ESA and presents the Package Composite
Applications concept. Package Composite Applications as a part of ESA concept
are core of this thesis. Chapter 3 will present a particular technical architecture of
software products that enable to realize ESA and PCAs concepts.

Service-Oriented Architecture is one of the fundamental concepts at the root of
the ESA. The crux of this concept is that computing resources can be defined as a
set of services that encapsulate the functionality of underlying applications and
allow access to that functionality through a relatively simple interface. Properly
defined, the services should be able to be loosely coupled; that is, they should be
able to be combined over and over again to solve different problems in a way that
avoids dependencies between services or unintended side effects from invoking a
service.

Enterprise Services Architecture (ESA) differs from concepts like Service-Oriented
Architecture in two important ways. Firstly, business concerns are always
fundamental. ESA is not a goal to be achieved for its own sake or a methodology
to be applied everywhere without a concern for costs or results. Second, ESA
assumes the starting point is an existing base of enterprise applications, platform
component systems, and customized legacy applications, where IT infrastructure
entirely is reconstituted into a set of components. The communication between
systems components is based on services interoperability. Finally, package
composite applications, which reflect a certain process, are offered by ESA
concept.

The goal of the Enterprise Services Architecture is to break current enterprise
applications into components and services so that user interfaces are no longer
linked to the silo of current monolithic applications and Package Composite
Applications can be assembled from these services to bring functionality to new
groups of users and to extend automation further into the company. Thus, the
functionality of current enterprise applications can be more effectively reused.
Enterprise Services Architecture aims to extend Web services to Enterprise
services. Enterprise services borrow the syntax and standards of Web services to
implement business-level requirements, such as scalability, robustness, security,
and manageability to fulfill all enterprise requirements. Thus, enterprise services
are high-level components that aggregate Web services into reusable elements
with business value 9.

Figure 11 presents the layers of Enterprise Services Architecture. The bottom
layer presents existing systems such as ERP systems, CRM applications, SCM
applications and all enterprise applications. The middle layer is the ESA platform.
It is an application and integration platform. The major task of ESA platform is to
provide a unified, homogenized view of the enterprise in order to enable building
new process-based applications such us Packaged Composite Applications. The
highest layer presents a business process as an software application. Package
Composite Applications are a new breed of business applications that consume
services and data, and are orchestrated to reflect new business processes.

9 [ESA-Woods]

 25

- Enterprise Services Architectures and Composite Application Framework -

Figure 11 Overview of Enterp

Packaged
 Composite Applications

s

Process delivered as a package composite
application

 Functionality

ESA platform as integration and applicatio
the application stack. The application stac
functionality that exist in most software pro

The user interface layer

This is the part of the software
Here, are included also Content- a

The process layer
 The part of the software that autom
 users from one step to another as
 the execution of underlying service
 Process Management

The services layer

 The part of the software that
transformations, calculations, and o

 of the application.

The object layer

The data of the application and the
 perform basic manipulations on th
 forth between the object and persi
 included are here.

The persistence layer
Usually it is a database, although
many other ways.

10 [ESA-Woods]

Enterprise Service
rise Services Architecture

ESA platform

Existing Systems

Functionality
presented as
 service

 Service composition

n platform can be seen from the idea of
k is the name for the different layers of
grams10. The layers are:

that controls interaction with the users.
nd Knowledge Management Systems.

ates business processes, moving end
 they complete tasks and coordinating
s. This layer presents Business

 contains the logic to perform the
ther required processing to do the work

 associated service functions that
e data and move the data back and
stence. Component-based platforms

 it is possible to store or persist data in

26

- Enterprise Services Architectures and Composite Application Framework -

Figure 12 ESA platform stack

User Interface

Processes

Services

Objects

Persistence

ESA
 platform

Figure 13 presents the complete Enterprise Services Architecture overview.

Figure 13 Enterprise Services Architecture

User Interface

Package Composite
Applications

Existing systems

Processes

Services

Objects

ESA
 Platform

Persistency

2.3.1 PCA - Packaged Composite Applications

This section presents a concept of Packaged Composite Applications (PCAs)
which are brought with ESA concept. It will be described what the reason for
building new composite applications is. I will define demands that must be met by
a development environment for composite applications.

Nowadays, many companies are faced with challenge of quickly reacting to their
customer’s needs – not only locally but around the whole world. This situation
forces companies to improve communication and collaboration in order to
guarantee improved decision-making and increased productivity. Therefore
current enterprise applications should:

• Serve business processes that cross multiple functions, meaning new
applications are able to drive end-to-end business processes not only
across different applications, but also across heterogeneous IT systems
and organizations. (cross-functionality)

 27

- Enterprise Services Architectures and Composite Application Framework -

• Target multiple users across the enterprise, what plays a great role in
ensuring vital business processes and in facilitating decision-making
(collaboration)

• Integrate all of company’s generic applications and systems in compliance
with company’s strategy. Should the strategy change, the company can
easily reconfigure its processes (composition)

Existing enterprise applications can no longer keep up with above-mentioned
demands as they are designed for specific functions and users. They are
designed for:

• Fit and fulfill particular generic business functions or processes
• Fulfill a generic need, such as managing, storing and creating documents,

sending messages or searching for information
• integration process (EAI approach) of them is to expensive and still

provides native API approach

Composite applications that are built on top of existing applications and
heterogeneous systems can fulfill the needs for cross-functionality, collaboration
and composition. Packaged Composite Applications (an example of composite
applications) are applications that are built on top of existing applications and
heterogeneous systems (cross). Thus, can consume services and data from
existing sources (functionality) and can orchestrate them to fulfill a particular
business process (composition). The service composition takes place in ESA
platform. ESA platform acts as a point-to-point connector between participating
applications. Package Composite Applications rely upon underlying existing
systems and cannot function as applications on their own11 (Figure 14).

Packaged
 Composite Applications

ESA platform

Enterprise Application

 Process delivered as application

 Functionality

Enterprise Application

 Functionality

Figure 14 Concept of Package Composite Applications

11 [PCA-Woods]

Functionality
presented as
 service
Service composition
28

- Enterprise Services Architectures and Composite Application Framework -

ESA concept includes the PCA concept itself. The ESA platform must enable a
point-to-point connection through adapters between existing applications. Also
ESA platform must provide integration of collaborating systems and orchestrate
their services in order to build a business process that can be delivered as a
package composite application. Such requirements create a need to provide a
unified development environment within ESA platform that addresses them and
enables building package composite applications.

Such a unified development environment must reflect changes in building
business applications that introduces service-based architecture like ESA. In ESA
concept communication between all collaborating systems is based on services.
Package Composite Applications cannot function as application on their own. As a
result, Package Composite Applications must be build by grabbing various
services and exposing them to end users.

Also the first major requirement for a new unified development environment for
PCA is to import services from existing systems and expose them as user
interface to users that participate in a business process presented by a PCA.
Moreover, it must enable a creation of additional new services for business
objects.

Furthermore, in a context of application development, package composite
applications already are provided with functionality and data encapsulated as
services. Therefore, while building package composite applications the designers
are freed from data modeling and have to coordinate their functionalities to solve
business problems. Thus, the user interface designers must focus on the end user
needs. The user interface must support end users with a task and process-based
user interface to center him in a process. This can be achieved by introducing
workflow tools that from user interface level enable end users to define a specific
process. Moreover, repeated across many UIs user interface interactions can be
defined as UI patterns. Below are once again summarized needs and challenges
to be considered while building a unified development environment for packaged
composite applications are summarized.

Integration of
heterogeneous system
landscapes

• separate business objects from
persistency

• remote data access to backend systems

Leverage user interface
development

• encapsulate user interface from application
data

• introduce user interface common patterns

Leverage process
 development

• define workflow tools
• introduce workflows patterns

 29

- Enterprise Services Architectures and Composite Application Framework -

Having discussed the ESA concept let’s consider the following Order-to-Cash
scenario and analyze the impact of this approach.

Figure 15 Order-to-Cash scenario12

In the past the order-to-cash process involved interaction of different software
components such as ERP, CRM where the orders are stored (Figure 15). Usually
this process required human intervention to process and forward information
manually. The Enterprise Services Architecture aims to provide a concept to
automate and coordinate this Order-to-Cash scenario. Using service interfaces
users and existing systems are integrated to one composite application that
defines and manages the respective integration. As a result the process is more
flexibly adaptable to changes based on future business requirements (Figure 16).

12 SAP source

 30

- Enterprise Services Architectures and Composite Application Framework -

Figure 16 Order-to-cash scenario with ESA13

2.3.2 ESA and SOA

Enterprise Services Architecture concept is very similar to Service-Oriented
Architecture paradigm since SOA is the crux of ESA. Both concepts (re)-use
functionalities (components) of existing systems that are encapsulated into
services. The communication between system components is based on services
interoperability. Also, SOA enables services integration within its landscape that is
based on the reconstituted traditional EAI approach called Enterprise Services
Bus (ESB). The bus is a centralized place for routing and transformation of
services. In both concepts services are orchestrated in order to reflect business
processes within enterprises. ESA concept introduces an additional layer Package
Composite Applications that represent a process delivered as a product (solution).
Package Composite Applications are itself a concept as well. PCA is a new type
of business applications that consume services and data from service-based
architectures like SOA or ESA and orchestrate them to reflect a process. The
table below summarizes differences and similarities between ESA and SOA.

13 SAP source

 31

- Enterprise Services Architectures and Composite Application Framework -

Similarities

Differences

Services play major role in reuse
functionalities of existing systems
and interoperability between
heterogeneous systems.

In ESA, particular process
delivered as a software solution
(PCAs)

Business processes are
composed of services, process-
centric approach

For ESA the web services
paradigm is crucial, but
technologies like traditional EAI
and APIs are vital features as
well14.

2.4 Summary

Chapter 2 presented some important and related concepts aimed to organize
business functions and IT infrastructure in order to increase efficiency and to gain
competitive business advantage of an enterprise taken up by IT organizations
over the past two decades. In particular, in this chapter it was described
Enterprise Services Architecture and SOA. Both are at present most promising IT
solutions for lowering TCO. Chapter this concentrated was as well as on
Packaged Composite Applications concept and definition of challenges for a
development environment in the context of composite applications.

As already outlined, the goal of Enterprise Services Architecture is to break the
monolith applications into services so that user interfaces are no longer linked to
the monolith applications and packaged composite applications can be assembled
from these services to bring functionality to new groups of users and to extend
automation further into the enterprise.

The Enterprise Services Architecture concept has its roots in Service-Oriented
Architectures. However, for ESA the Web services paradigm is no crucial,
technologies like traditional EAI and APIs are vital features as well. Reason for
that are immatureness standards for such features like transactions, security, and
guaranteed delivery.

The ESA concepts are technically realized as SAP xApps (packaged composite
applications) and SAP NetWeaver platform (ESA platform) technologies. These
technologies enable a company to make progress toward an architecture that
embodies Enterprise Services Architecture principles. These technologies will be
a subject for the next chapter 3. Briefly, it will be presented the architecture of
SAP NetWeaver integration platform. The major focus will be on SAP’s vision how
to build and develop composite applications such as SAP xApps with a use of
Composite Application Framework.

14 [ESA-Woods]

 32

- Enterprise Services Architectures and Composite Application Framework -

3 SAP NetWeaver Technologies

According to Merriam-Webster Dictionary15, one of the many descriptions defines
a technology as “the practical application of knowledge especially in a particular
area” or as “a manner of accomplishing a task especially using technical
processes, methods, or knowledge”, and methodology as “the analysis of the
principles of inquiry in a particular fields”. When executing an investigation
project, both technologies and methodologies are required to curry out it with the
aim to discover and interpret potential benefits and drawbacks of practical
applications.

This chapter describes the important technologies and methodologies required for
this master thesis. The section describes SAP NetWeaver platform that is SAP’s
blueprint of Enterprise Services Architecture concept. In particular, it will be
described SAP NetWeaver solutions that enable to realize the Package
Composite Applications concept.

The ESA concept is technically realized as a SAP NetWeaver platform and SAP
xApps Technology (Figure 17). SAP NetWeaver presents the technical realization
of ESA platform concept. SAP xApps (Collaborative Cross Applications) are
SAP’s product that embodies the Package Composite Applications concept.

Figure 17 SAP ESA blueprint

SAP NetWeaver is the technical foundation of Enterprise Services Architecture
and its ESA platform. It combines SAP's experience in enterprise applications with
the flexibility of Web services and other open standards. Simply putting, SAP
NetWeaver is a set of capabilities that are provided by many different SAP
products constructed to work with each other to make applications work together,
build new applications on top of existing enterprise applications, and lower the

15 Merriam-Webster is America's foremost publisher of language-related reference works.
http://www.m-w.com

 33

http://www.m-w.com/

- Enterprise Services Architectures and Composite Application Framework -

total cost of owning applications16. Figure 18 presents overview of SAP
NetWeaver platform with notation of products that enable building Package
Composite Applications. SAP distinguish two kinds of PCAs: SAP xApps are
package composite applications that are delivered by SAP AG and its partners
and custom composite applications can be built by customers with application of
Composite Application Framework, which is the unified environment for building
PCAs in SAP NetWeaver platform.

Figure 18 Overview of SAP NetWeaver17

Within SAP NetWeaver technical software components that are used to build and
run custom composite applications as well as SAP xApps application on top of
other business applications are:

• SAP Web Application Server (SAP Web AS) on which runs all SAP
NetWeaver solutions. This is the application platform.

• Composite Application Framework (CAF) that provide development
infrastructure (design time) and tools to build PCAs. Also CAF is a runtime
for PCAs.

• SAP Exchange Infrastructure (SAP XI) forms the basis for the integration
of business processes. SAP XI provides a technical infrastructure for
XML-based message exchange to enable the integration of SAP systems
with other systems.

• SAP Enterprise Portal (SAP EP) unifies enterprise applications,
information, and services from SAP and non-SAP sources into one
system to support business processes. Hence, SAP EP is the user-
interface layer for all SAP´s and non-SAP`s applications.

16 www.sap.com/netweaver
17 www.sap.com/netweaver

 34

- Enterprise Services Architectures and Composite Application Framework -

Figure 19 presents the simples landscape (without SAP XI) of SAP xApps that can
function on top of existing systems and run on SAP NetWeaver platform.

 Client Web browser

SAP NetWeaver

SAP Web AS

Legacy

Backend systems

SAP R3

Composite Application
Framework

SAP xApp

SAP Enterprise Portal

http

Figure 19 Architecture

In the context of SAP xApps, Composite A
major role as a unified environment for d
applications. CAF itself is a development e
AS. Services from backend systems can b
RFC, and BAPIS interfaces. Within CAF are
new functionalities as services can be adde
be integrated within SAP Enterprise Portal
all users participating in a process pre
Following chapters will describe arch
Framework, SAP Web AS, and SAP Exchan

SAP and SAP xApps partners provide alre
that drive specialized processes across a va

• SAP xApps Cost and Quotation Man
business expertise and supplier rela

• SAP xApps Resource and Portfolio
improve ability to manage enterprise

• SAP xApps Product Definition (SAP
innovation

• SAP xApps Emissions Management
consuming and carbon dioxide-pr
environmental regulations

18 [xApps-Herger]

RFC/WSDL
Non-SAP systems

 of SAP xApps18

pplication Framework (CAF) acts the
esigning and running such composite
nvironment that is a part of SAP Web
e imported to CAF via web services,
 integrated collaborating systems and
d as well. SAP xApps application can

 content management system to bring
sented by a particular SAP xApps.
itecture of Composite Application
ge infrastructure.

ady packaged composite applications
riety of industries like:

agement (SAP xCQM) – helps to turn
tionships into revenue
Management (SAP xRPM) – helps to
 wide project portfolios
 xPD) – helps to translate ideas into

 (SAP xEM) – helps to enable energy-
oducing businesses to comply with

35

- Enterprise Services Architectures and Composite Application Framework -

• SAP xApps Global Trade Services (SAP xGTS) – helps to drive regulatory
compliance for international trade

3.1 SAP Web Application Server

SAP Web Application Server (SAP Web AS) is an open, scalable, and high-
availability infrastructure for developing dynamic and company-wide Internet
applications. It provides a full support for platform-independent Web services,
business Web applications, and open standards-based development built on
J2EE and ABAP technologies. As a result, customers can leverage existing
technology assets while building and deploying new dynamic e-business
applications19.

 As figure 20 depicts SAP Web AS like a typical web application server is build out
of a connectivity layer, presentation layer, business layer, integration layer, and
persistence layer. The connectivity layer represented by the Internet
Communication Manager ensures TCP/IP connection to the outside world. A
variety of standardized protocols such as HTTP, HTTPS, SOAP and SMTP are
supplied as standard. The presentation layer creates the graphical user interface
(GUI). SAP Web AS contains two personalities: ABAP and J2EE. These
complementary environments produce the options available for developing user
interfaces either with Business Server Pages (BSPs) for ABAP applications or
JSPs, Java Servlets, and JSP tag libraries for Java-based web applications. The
business layer provides the necessary business logic of a web application.
Depending on the personality, the business logic is implemented in either the
ABAP world or the J2EE world and Enterprise Java Beans. The integration layer
ensures access to business functionalities from external sources. This is done
using various interfaces, connectors, communication protocols, and support for
general data exchange formats like XML. The SAP Web AS provides necessary
mechanisms for connecting the SAP world like RFC, BAPI, IDoc and the non-SAP
world via a variety of connectors like Java- and .NET-connectors, WSDL. Finally,
the persistence layer uses a general valid abstracted database interface to ensure
a maximum level of database-independence and efficiency of access to datasets.
Open SQL interface is used by ABAP world for integration various databases. The
Java side provides database-specific links to different databases using JDBC.

19 www.sap.com/netweaver

 36

- Enterprise Services Architectures and Composite Application Framework -

Figure 20 The architecture of SAP Web AS20

The SAP Web Application Server implements the basic Web services standards
eXtensible Markup Language (XML), SOAP, Web Service Definition Language
(WSDL) and Universal Description, Discovery, and Integration (UDDI) by providing
web services framework (Figure 21). Software components can be developed in
both the ABAP and J2EE personality. Such components can be encapsulated to
services via such open standard like web services. On the SAP Web Application
Server session beans are the preferred kind of J2EE component for an
implementation of a Web service. Using the Web service framework, any session
bean can be easily transformed into a Web service, for simple ones it is not
necessary to write code. In addition, all functionality that is available through
BAPIs can be provided as Web services. In the ABAP personality, each remote-
compatible function can be released as web service.

Access to external web services is also supported for both personalities. A
uniform SOAP framework and a proxy generator are available for this purpose.
The proxy classes use the SOAP framework for communication via web services.
Here the SOAP Framework provides an object-oriented framework for the
Integration Engine. The Integration Engine carries out the low-level
communication via the Internet Communication Manager.

20 [WPWAS-Rau]

 37

- Enterprise Services Architectures and Composite Application Framework -

Figure 21 Web Services Framework21

The SAP Web AS supports the WS-Security 1.0 standard. Regarding security
SAP Web AS provides additionally support for security standards like Secure
Sockets Layer (SSL) on the basis of HTTP (HTTPS). Certificates (X.509, SAML),
tickets, and cookies are used for authentication purposes. Therefore, SAP Web
AS supports the single-sign-on (SSO) authorization and can be integrated into
SSO environments as well as can itself create SSO environments. Open
standards for web services coordination and transaction (WS-Coordination, WS-
Transaction) are not supported.

Interoperable Web services are key to integration in SAP application and a key
component of the ESA vision. As mentioned above, all of existing core interfaces,
RFC, BAPIs, and IDocs, are available as Web services. In addition to peer-to-peer
connectivity between SAP and non-SAP applications using Web services. SAP
Exchange Infrastructure (SAP XI) provides additional mechanisms on top of pure
technical connectivity, for example, logical addressing, message mapping,
business process modeling, and execution. SAP XI also supports other protocols
by means of adapters, for example, Java Message Service (JMS), Java DataBase
Connectivity (JDBC), and RosettaNet Implementation Framework (RNIF).
Therefore, in the following chapter it will be presented architecture of SAP XI.

21 [WPWAS-Rau]

 38

- Enterprise Services Architectures and Composite Application Framework -

3.2 SAP Exchange Infrastructure

SAP Exchange Infrastructure (SAP XI) forms the basis for the integration of
business processes. SAP XI provides a technical infrastructure for XML-based
message exchange to enable the integration of SAP systems with each other on
the one hand, and SAP and non-SAP systems on the other hand. Furthermore,
SAP XI provides a set of integrated tools for creating and managing all integration-
relevant information into business process with use of BPEL4WS. SAP Exchange
Infrastructure (XI) is a product that is positioned in the Enterprise Application
Integration (EAI) area. Figure 22 presents SAP XI architecture.

Figure 22 Architecture of SAP XI.22

SAP XI has the following components:

• Integration builder (IB)
o Integration repository (IR)
o Integration directory (ID)

• System landscape directory (SLD)
• Integration server (IS)
• Central monitoring

The system landscape directory is directory of the technical information about the
programs (software or applications) and computers (technical or business
systems) being connected by SAP XI as a central information provider.

Central monitoring monitors and assess whether the messages are successfully
flowing between systems. This centralized access point gives a view of the whole
integration scenario and presents the constrains, the technical end-to-end
monitoring, and everything you need so that you can see the path that messages
take.

22 SAP source

 39

- Enterprise Services Architectures and Composite Application Framework -

Integration Builder (IB) is the central development environment for the following:
o Development of all design objects in the Integration Repository at design

time
o Definition of all configuration objects in the Integration Directory at

configuration time

In the Integration Repository (IR) we can define following objects through the
graphics design tools

o Define data, message type and interfaces with an interface editor
o Create rules using the condition editor
o Define mapping rules between two different message formats with the

mapping editor
o Define the cross component Business Process management (ccBPM) with

the process editor
o Knit all objects we need for one business scenario in the scenario editor

The Integration Directory is where the message types and processes described in
the integration repository are connected to the real word. All metadata that
describe all connections are stored in the integration directory, for example, the
business systems and applications involved in the business scenario and the
routing rules for the systems. Thus, in Integration Repository business processes
are defined. Figure 23 presents the architecture of Integration Directory. In the
collaboration profile you document the technical options available to the
communications parties for exchanging messages. You specify the potential
senders and receivers of messages and the technical details for communication
path. In routing rules you define the flow of messages in a system. In
collaboration agreements you define the technical details for message processing
like adapter configuration or security settings for senders and receivers.

Figure 23 Architecture of Integration Directory.23

23 SAP source

 40

- Enterprise Services Architectures and Composite Application Framework -

The Integration Server works as a brain where it comes all together at runtime.
The message is processed here based upon the information what is configured in
the Integration Directory. Inside Integration Server, the Integration Engine is the
runtime of Exchange Infrastructure that receives processes and transfers XML
messages. Adapter Engine connects the Integration Engine to SAP and external
systems. Various adapters convert XML and HTTP-based messages to the
specific protocol and format required by these systems.

Figure 24 presents how the business process with Business Process Engine is
integrated into Exchange Infrastructure.

Figure 24 Business process within Business Process Engine24

Figure 25 presents a scenario of where client sends a request (Web service) to a
banks system. The request performs a credit limit check and contains the amount
as one of the input parameters. Based on a routing rule in SAP XI, the Web
service request is directed to an SAP R/3 system (for small amounts) or to a .NET
application (for larger amounts).

24 SAP source

 41

- Enterprise Services Architectures and Composite Application Framework -

Figure 25 Scenario with SAP XI25

3.3 Composite Application Framework (CAF)

The SAP Composite Application Framework (SAP CAF) as one of the building
blocks of SAP NetWeaver platform is an environment for a development and
running package composite applications (PCAs) such as SAP Collaborative Cross
Applications (xApps) based on Enterprise Services Architecture.

The SAP CAF is a SAP’s vision how to build future business transactional
enterprise applications like SAP xApps in the SAP landscape. The Composite
Application Framework uses SAP NetWeaver to encapsulate the functionality of
the current generation of enterprise applications as components and services.
These components and services are described in metadata and implement
standard frameworks for application layers, such as the user interface and
process control. The combination of functionality abstraction, standard services
and metadata descriptions enable the application designer to assemble an
application primarily through modeling rather than through programming. The
modeling technique is leveraged further through the identification and reuse of
patterns that are common to many application scenarios. As presents the Figure
26, the Composite Application Framework supports developers and business
analysts with patterns, in particular, with patterns for user interfaces as well as
process workflow patterns.

25 SAP source

 42

- Enterprise Services Architectures and Composite Application Framework -

Figure 26 CAF and Patterns

Composite Application Framework includes:

• Model-driven architecture – supports model-driven application
composition, so applications can be built with as little programming as
possible. That means reduced development time for new applications
and business-pattern-oriented integration.

• Services access layer – the services layer decouples repositories of
underlying systems from business objects and processes. Thus, SAP
xApps can access any existing system landscape. The service access
layer is a central interface that controls communication with participating
systems via Web Services and SAP Exchange Infrastructure. SAP
xApps do not need to know whether service is provided by another SAP
NetWeaver component or an external service provider. Tools such as
service modeler allow creating back-end-independent object models for
SAP xApps.

• Collaborative business context – a service framework allows relating
any service of SAP NetWeaver components with any business object.
Collaboration objects such as task, document and meeting are
accessible within the service access layer. Hence, all composite
applications based on SAP CAF can have built-in collaboration
functionality.

• User interface patterns and Guided Procedures – these tools accelerate
application design and collaborative process execution through
reusability and automatic configuration. Guided Procedures are like
best practices patterns, with an easy-to-use, design user interface and
run-time process visualization. The business objects and services of
SAP CAF are foundation for the design of Guided Procedures.
Predefined workflow patterns support the process definition of Guided
Procedures. Users can make ad-hoc modifications to the business
process.

 43

- Enterprise Services Architectures and Composite Application Framework -

3.3.1 CAF Architecture

Figure 27 CAF Architecture26

The Composite Application Framework is a development as well as a runtime
environment for packaged composite applications. Thus, the CAF architecture is
split into two parts Design Time and Runtime.

The Design Time
The Design Time part is used to model services and/or map external services
(i.e. web services, RFC, BAPI). Also to assemble user interfaces from UI
patterns as well as to assemble a process workflow. The Design Time is
provided within SAP NetWeaver Developer Studio.

The Runtime
The Runtime part, so called CAF-Runtime is running on the SAP Web AS
J2EE Engine. It includes:

• The Business Intelligence Meta Model Repository (BI MMR) as
storage for metadata. Metadata are XML-files which describe
attributes and relations of services modeled in the CAF design time

• CAF libraries that are responsible for authorization, logging and
tracing, and many others system processes

The Design Time and the Runtime, both access the same metadata layer
(metadata repository) where metadata of services, user interfaces (UI), and
processes are stored.

26 Training materials from Workshop “SAP Composite Application Framework / SAP NetWeaver” at
SAP AG in Walldorf

 44

- Enterprise Services Architectures and Composite Application Framework -

The architecture of the Composite Application Framework (CAF) consists of three
layers: Service Layer, UI layer, and Process layer.

Service Layer
An abstraction layer which exposes business objects that exist within an
enterprise to the outside world as services. CAF provides the following kinds
of services;

• application services for implementation of application’s business logic,

• entity services describe existing business objects in a company

• external services that provide access to external services like remote
 function call (RFC) or web services.

UI Layer

An abstraction layer that allows users to access services through user
interfaces. User interfaces are built based on the Model-View-Control concept
from generic predefined UI patterns and/or foundation Web Dynpro
applications.

Process Layer
The Process layer is an abstraction layer that defines step-by-step
collaboration workflow patterns (guided procedures) for composite
applications in order to create specific process within a company.

The following figure presents steps in designing package composite applications
with Composite Application Framework.

Model (services)

 Metadata

Integration with
backend

Assemble composite
application

Figure 28 CAF: Workflow of building composite applications

 45

- Enterprise Services Architectures and Composite Application Framework -

Step 1
From a modeling tool level a model based on services is created. This model
includes services that describe business objects that will present data needed by
a composite application. New business objects are defined as entity services.
Composite applications’ business logic is represented through application services
that can be published and reused as web services. Application services are used
by user interface framework to show functionalities to users involved in a process.
Technically, currently application and entity services are modeled as a session
bean according to the EJB (Enterprise Java Bean) 2.0 specifications. Following
figure presents programming model available in CAF framework.

Figure 29 CAF: Programming model

Step 2
From metadata automatically is generated code of java classes, tables and data
dictionary components.

 46

- Enterprise Services Architectures and Composite Application Framework -

Figure 30 CAF-Metamodel27.

27 [xApps-Herger]

 47

- Enterprise Services Architectures and Composite Application Framework -

Step 3
The 3rd step comprises of an integration of backend systems through mapping
dependencies between entity services and external services.

Figure 31 Mapping between different backend systems28

Step 4

Assemble composite application from user interfaces patterns, services and
process workflows. Here, we configure UI patterns and define process applying
CAF-web based tools. Following figure presents synergy of composition within
Composite Application Framework. External services are mapped to entity
services or directly used by user interfaces framework.

28 SAP training materials

 48

- Enterprise Services Architectures and Composite Application Framework -

Figure 32 Synergy within composite applications29.

3.3.2 Services Layer

The Service layer is an abstraction layer which exposes business objects that
exist within a company to the outside world as services. Such services afterward
show data of business objects through user interfaces (UI) to the end users or to
other services.

The Service Modeler is used to model and generate services i.e. application
services, entity, and external services. Following figure presents architecture of
Service Modeler. The Service Modeler consist of Object Access Layer (OAL)
Design time and OAL Runtime components. OAL Design time is build from
Composite Application Services component which is a plug-in for SAP NetWeaver
Developer Studio (figure 34). It includes a set of modelers for entity and
application services, and Metadata API component. In the Generator Framework
for modeled services are generated EJB session beans, web services, tables, and
data-dictionary.

29 SAP training materials

 49

- Enterprise Services Architectures and Composite Application Framework -

Figure 33 Architecture of Service Modeler30

Figure 34 SAP NetWeaver Developer Studio.

30 [sap-caf-ug]

 50

- Enterprise Services Architectures and Composite Application Framework -

In SAP NetWeaver Developer Studio you can model the external, entity
and application services.

External Services

Within CAF, functionality of backend systems can be imported to composite
applications as services either through Remote Functional Calls (RFCs) or web
services (WSDL). Such imported services are called External Services. External
services cannot be changed during Design Time or Runtime in CAF. Currently
there is one restriction that web services must have one namespace only. The
definition of an external service technically specifies operations with arguments,
argument types, and return type as well as remote system and its type. External
services can be either reused by an entity service and/or application services or
directly connected to UI patterns in order to access and expose data of business
objects to end users. Following figure presents steps to import a service from
external systems.

 Step 1: Select an RFC

Step 2: Import definition

Figure 35 External Services31

Entity Services

Entity Services are models of simple business objects that exist in a company.
They are used to store and access data of a business object. Theses data can be
stored in a local backend system such as R/3 system. An example of an entity
service can be a customer, invoice, address, document business object, etc. An
Entity service is the basic part of an application.

31 SAP training materials

 51

- Enterprise Services Architectures and Composite Application Framework -

 The definition of an Entity Service technically specifies:
• Table(s) – attributes and relations
• Lifecycle methods (CRUD) – Create, Read, Update, and Delete
• Mappings – proxy or external services
• Special modeling – language dependencies, attribute properties
• Special functions – logging, tracing, permission checks, and interfaces.

For an entity service you can specify the following properties:

• General
• Attributes
• Operations
• Persistency
• Data source
• Permissions
• Implementation

General property displays and allows changing some general administrative
information of an entity service. Here are defined five standard simple attributes
that cannot be changed or deleted:

• Key (GUID) • lastChangedAt (timestamp)
• createdAt (timestamp) • lastChangedBy (User)
• createdBy (User)

Attributes property maintain attributes and their properties of an entity service.
Three types of attributes can be created: simple attribute, complex attribute that is
build from at least two simple types, and entity service attribute that is a relation to
another entity service.

Figure 36 Complex attribute32

32 SAP Training materials

 52

- Enterprise Services Architectures and Composite Application Framework -

Operations property has findBy-operations for an entity service. CAF distinguish
between default operations and custom operations. Default operations are
lifecycle methods (CRUD) and findByPrimaryKey. Custom operations are any
other findBy-operations. If an attribute is set as key or as mandatory, it will be an
argument in the CREATE-method.

Persistency property displays tables and allows changing local persistency
settings for an entity service. Tables are created as follows. One table is created
for language dependent attributes. Tables are created for each complex attribute
as well as for each entity service attribute. Per default, the persistency is always
set to “Local Persistency”. In order to change that the checkbox has to be
unchecked and on the tabstrip “Datasource” and external service has to be
assigned to the corresponding methods.

Datasource property displays all mappings to a remote persistency of an entity
service. Here are defined the corresponding external services for each operation-
type, field-mappings for each operation, and parameters to be passed.

Permissions property defines permissions settings for an entity service.
Permission check means whether a user is allowed to see data presented by an
entity service. Permissions on instance level are checked for every instance of an
entity service. The Permission settings have an effect on the coding, as
permission check calls to the User Management Engine (UME) will be executed.

Implementation property displays the coding. This coding is purely generated and
cannot be manually changed. It can only be changed from changing the
definitions and properties on the other properties of the Entity Service while
modeling.

Application Services

The flexibility of being able to code for specific applications needs (business logic)
is supported by Application Services. Application services use both entity and
external services in an application and present their data to the user interface.
Application services can also become itself services (web services).

The definition of an application service technically specifies:

• State full or stateless session bean (EJB)
• Web service enabled or disabled
• Dependencies to other application, entity and external services
• Custom operations and custom code

Application Service has the following properties:

• General
• Dependencies
• Operations
• Implementation

General property specifies standard information for identifying the application
service. You can gather information about the service creation date, global unique
identifier, or when the object was last changed. Here you can determinate whether
an application service will be stateful or stateless service and enable it as web
service.

 53

- Enterprise Services Architectures and Composite Application Framework -

Dependencies property is used to maintain dependencies to external, entity and
other application services. Dependencies are necessary to be able to use the
operations of those services.

Operations property tab page is used to create operations in application services.
Only operations with return parameters and arguments can be created in
application services. There are 6 operations-types

• CREATE
• READ
• UPDATE
• DELETE
• FINDBY
• CUSTOM

Depending on the type chosen, the operation requires certain input parameters,
return-types and exceptions. The operations-wizard supports a developer in doing
this.

Implementation property displays the generated and implemented coding used in
an application service. You can change or manipulate coding of an application
service, however only in designed areas – between custom tags.

3.3.3 UI Layer

 User Interface (UI) Layer is an abstraction layer that consumes all services and
its data, and exposes them to the end user through user interfaces. Within CAF,
user interfaces can be built by applying generic UI patterns and/or by
implementing foundation Web Dynpro applications. Such user interfaces can
afterward be combined through workflow-patterns (Guided Procedures) in order to
create a specific business process within a company.

User interface (UI) components are key elements in the development of user
interfaces for browser-based business applications. UI components are the
cornerstones in creating reusable user interface patterns in Web Dynpro
technology.

The UI development environment for SAP, Web Dynpro technology, has a model-
driven approach that minimizes coding and uses visual tools to design and reuse
UI components. It ensures a clear separation of user interfaces and backend
services, and gives developers a full control of the generated code at all stages of
the development process.

User interface (UI) patterns are configurable templates designed to simplify the
creation of screen layouts in Web Dynpro technology. The use of UI patterns
supports the uniform layout and navigation paradigms of user interfaces and can
be individually configured for use in different applications as per the intentions of
developers or users. By reusing existing patterns, developers take advantage of
already configured functions without needing additional coding. This pattern-
based approach is therefore ideal for user interface generation.

 54

- Enterprise Services Architectures and Composite Application Framework -

There are two types of user interface patterns:

• Component patterns

• Page patterns

A component pattern is a UI pattern that is fully embedded in a Web Dynpro
application. Component patterns are embedded for use in various other UI
patterns such as page patterns. Page patterns provide a user interface layout of
combined component patterns. Page patterns are themselves composite
applications, which contain interfaces that plug into other components. Below are
listed all available UI patterns

Component patterns Page patterns

Attachment Object Editor

Classification Assignment Object Selector

FlexTree

History Log

Knowledge Management File Select

Object Browser

Search Bar

User Assignment

The Attachment pattern can be used to attach any type of a document or file to a
business object instance. These documents are stored in Knowledge Warehouse.
The Attachment pattern is a UI component pattern that can be embedded in any
composite application.

Figure 37 Attachment Pattern

The Classification Assignment pattern can be used to add classification values to
an object’s instance. It is a UI component pattern that can be embedded in any
composite application. It can be configured at implementation time to display
classification taxonomies assigned to an object.

 55

- Enterprise Services Architectures and Composite Application Framework -

Figure 38 Classification Assignment Pattern

The FlexTree pattern enables developers to display lists of data in a table
according to predefined hierarchical levels. The table uses data from different
application services to populate the table. The data can appear as text, hyperlinks,
graphics, or icons.

Figure 39 FlexTree Pattern

History Log Pattern enables developers to display additional comments about an
entity service during application runtime. Comments are read-only and displayed
in chronological order. As a result, developers can see information about any
entity without having to look into the entity service itself.

 56

- Enterprise Services Architectures and Composite Application Framework -

Figure 40 History Log Pattern

The KM File Select pattern can be used to select directories and data files from
the KM repository. It is a UI component that can be embedded in any composite
application.

Figure 41 KM File Select Pattern

The Search Bar pattern can be used to perform simple searches for specified
objects. It can be embedded into any composite application and used in
combination with other UI patterns. The Search Bar pattern is also embedded into
the Object Selector and Object Browser UI patterns.

 57

- Enterprise Services Architectures and Composite Application Framework -

Figure 42 Search Bar Pattern

The User Assignment pattern can be used to assign users to specific roles. The
data basis for the users is the User Management Extension (UME). Generic user
information is retrieved by the UME API.

Figure 43 User Assignment Pattern

The Object Editor Pattern can be used to design, create, or edit objects attributes
within an application. The resulting editor, whose components are provided as
component interface implementations for interface definitions in the Object Editor,
contains the Attachments and Classification Assignment patterns.

 58

- Enterprise Services Architectures and Composite Application Framework -

Figure 44 Object Editor Pattern

The Object Selector pattern can be used to search for and list aspect attributes of
an object. The pattern is a complete user interface layout, which encompasses the
component patterns; the Search Bar and the Object List. The Object Selector
pattern uses the Search Bar to search for single objects from a list of items based
on specific search criteria. You can use the Object List pattern to list objects in
either a tabular form or list layout. The resulting layout can be used to create new
or edit existing objects.

Figure 45 Object Selector Pattern – runtime

 59

- Enterprise Services Architectures and Composite Application Framework -

3.3.4 Process Layer

The Process Layer is an abstraction layer that defines step-by-step collaboration
workflow patterns (guided procedures) for composite applications in order to
create specific business processes within a company.

SAP Guided Procedures (SAP GP) are not released to clients. The following
material comes from SAP marketplace and it does not cover the practical aspects
of process framework within CAF environment.

SAP Guided Procedures (SAP GP) framework is designed to implement
workflows with greater ease and speed across multiple applications. It enables
users to easily set up and execute collaborative processes by seamlessly
integrating backend system transactions and services into the process context.
SAP GP differentiates between process templates and process instances. The
process templates can be multiply instantiated, the process instances can be
started with set parameters. Processes in SAP GP consist of phases and steps.

Figure 46 SAP GP - Phases

Phases are sequential – one phase must have been completed before a new one
is started. A step is defined by the action assigned to it. This action describes
which application or service the application calls, for example a Web Dynpro
component, an iView or a form. In addition, input and output parameters are
transferred and the context-dependent, ad-hoc actions are determined. Actions
can be reused in various process steps. Every process has a process context.
This context consists of the input parameters (resources) and output parameters
(deliverables) of the individual steps. This ensures that the output parameters of
preceding steps are taken into consideration as input parameters of subsequent
steps. The actions can also access the process context and read data. At process
design time, the user defines how the context is mapped. The design time, the
configuration part of SAP GP, is a Web-based tool for modeling processes by
editing predefined templates or by creating new templates. The part of SAP GP
that supports the execution of business processes is called runtime. Lifecycle of
Guided procedures is presented below.

 60

- Enterprise Services Architectures and Composite Application Framework -

Create Process
Templates

Create Action

Guided Procedures - Design Time

Instantiate
Process

Run + Track
Process Instance

Guided Procedures - Runtime

Figure 47 Guided Procedures - Lifecycle

SAP GP, which is a Web application (Web Dynpro application) running on the
SAP Enterprise Portal (SAP EP), can describe a collaborative business process
as a thread of tasks that need to be performed by the processors (that is, the end
users) in a certain order to obtain the overall process goal. Some tasks, however,
may be more complex than others and contain a series of subordinate tasks.
Thus, in order to maintain a clear outline of the process flow, business analysts
need a higher structure level which bundles associated subtasks under an upper-
level task. To meet these requirements, Guided Procedures (GP) models
business processes out of phases and steps. Once business analyst has
designed and published a process template, authorized users can initiate process
instances that need to be completed by the users or user groups assigned. It can
be run several process instances of the same type independently. The following
figure illustrates how a GP process can be structured.

Figure 48 SAP GP process structure – example

 61

- Enterprise Services Architectures and Composite Application Framework -

3.3.5 CAF landscape

Following figure presents landscape of Composite Application Framework. On a
client side must be installed SAP NetWeaver Studio and Composite Application
Services plug-in for designing services model as well as Web browser in order to
work with CAF-Web tools to configure user interfaces in order to present data to
end users. On the side of SAP Web AS the Composite Application Framework
must be installed. Additionally, the SAP Guided Procedure framework must be
installed for implementing workflows between different applications. In SAP
Enterprise Portal are all applications integrated through iViews.

 Figure 49 SAP CAF landscape

 62

- Enterprise Services Architectures and Composite Application Framework -

3.4 Summary

Chapter 3 presented the most important and related technologies for this master
thesis. The SAP NetWeaver integration and application platform is a technical
foundation for the ESA platform. SAP NetWeaver supports open standards like
Web services technologies as well as RFC, BAPI, IDoc interfaces. Therefore,
services play a major role to provide interoperability between SAP NetWeaver
platform and other systems. SAP Web AS provides Web Services Framework that
offers the basic web services standards like XML, SOAP, WSDL. Also, Web
Services Framework supports the WS-Security 1.0 standard. SAP Exchange
Infrastructure (SAP XI) forms the basis for the integration of business processes.
SAP XI provides a technical infrastructure for XML-based message exchange to
enable the integration of all systems to SAP systems. Furthermore, SAP XI
provides a set of integrated tools for creating and managing all integration-
relevant information into business process with use of BPEL4WS standard. The
SAP xApps technology is a blueprint for the package composite applications
paradigm. This thesis, presents in detail the SAP Composite Application
Framework. It is a unified environment for a development and running package
composite applications. It encapsulates the functionality of current enterprise
applications as components and services (WSDL, and RFC/BAPI). These
components and services are described in metadata and implement standard
frameworks for application layers such as user interface and process control. It
offers the model-driven architecture so an application developer assembles an
application primarily through modeling rather than through programming. The
modeling technique is leveraged further through the identification and reuse of
patterns that are common to many application scenarios. Below you can find
summary of supported open standards by SAP NetWeaver platform that are
relevant for this thesis.

SAP NetWeaver and open standards

SAP Web AS • XML, SOAP, WSDL, UDDI
• RFC, BAPI, IDoc
• JMS, JDBC, JCO, .NET Connector

SAP Exchange
Infrastructure

• BPEL4WS
• RosettaNet Implementation Framework (RNIF)

CAF • WSDL, RFC, BAPI

 63

- Enterprise Services Architectures and Composite Application Framework -

4 Custom Composite Application

“Most problems have already been solved in this world; we just
keep forgetting the solutions”

- Melissa A. Cook
 Hewlett-Packard Company

This chapter outlines technical aspects of a development of custom composite
applications with a use of the SAP Composite Application Framework. Firstly, it
will be presented a scenario that makes it possible to apply composite
applications concept as a practical solution. In the second part, it will be evaluated
a methodology and practical development aspects that are offered by the
Composite Application Framework. The developed model of composite application
is a contribution to overall first assessment of SAP CAF product as a part of the
Restricted First Customer Shipment program that is SAP’s initiative.

4.1 Customer master data at HP

One of the most important values of HP is its customers. HP is a worldwide
company and has a vast number of customers, which are divided in different
categories such as those purchasing direct from HP its products, those
purchasing its products through some agents/brokers etc. Moreover, HP provides
a great number of products, which are produced by independent HP business
units (PSG, IPG). As a result over the time, there have been developed many
order-management IT systems for HP business units in order to proceed the
information regarding the customers of HP (Figure 48).

 64

- Enterprise Services Architectures and Composite Application Framework -

Figure 50 Customer Master Data flow

WWCISys is the common platform, used by all the HP business, to store the
information regarding the customers of HP. In fact, WWCISys means World Wide
Customer Information System.

The Customer Reference Server CRS supports enterprise-wide sharing of
customer information required for the end-to-end Order Fulfillment processes
(quote to collections) and HP's goal of improving customer relationship
management. This is done through the definition of business processes and data
standards, as well as through the implementation of a mechanism, which supports
timely distribution of customer information to those sites where that information is
required. The business processes and mechanism work together to ensure the
quality and consistency of customer information.

SAP Fusion instance is used to generate the transaction in US$ but converting it
into EURO before sending it to HPFO systems (conversion using the finance valid
exchange rate). The Fusion program enables SAP Fusion for Value Order
Management to obsolete the legacy platform (WWOMS, Tiger, PIM) within the
Value Solution Order Management Environment. The main benefits are the
elimination of a dual process environment and associated overhead in cost for
training and support along with improvement in order entry times in defined areas.

Globalizations effects and today’s business collaboration between HP and the
customers indicates that there is a need to be addressed, namely a seamless,
comprehensive view on the customer data among various HP business units

 65

- Enterprise Services Architectures and Composite Application Framework -

(thus, among numerous IT storage systems as well). The one comprehensive
view should allow for sharing, updating, synchronization-replication of the
customer data irrespectively of HP business units (thus, IT storage systems as
well).

These needs for the current IT storage systems could be fulfilled through building
composite applications that reside upon existing already applications. Composite
applications called “apps on apps” allow for an aggregation of loosely-coupled
various components of different systems. Therefore, composite applications can
provide a common view of the customer data through consuming services (Figure
51).

Composite application

WWWCISys

CRS

SAP Fusion

Customer Master Data

SAP SAIL

Figure 51 Unified view on customer master data

At HP the customer data mostly are processed in SAP’s landscape. Since around
two years SAP promotes its new brand technologies SAP NetWeaver, which allow
creating custom composite applications upon existing applications. The SAP
NetWeaver platform provides the Composite Application Framework (CAF) that
facilitates the creation of composite applications. Therefore, SAP CoE33 at HP has
taken up an initiative to build a prototype of a custom composite application with
use of SAP CAF product. Such a custom composite application should present a
comprehensive view on the customer data at HP business units, in particular
among WWCISys, CRS, SAP Fusion and SAP SAIL storage systems (Figure 52).

33 SAP CoE – SAP Center of Expertise department is responsible for a research and analyze of the
latest SAP technical solutions. Additionally, SAP CoE executes a number of pilot projects with
regard to the researches. Based on acquired knowledge and experiences, SAP CoE teams support
afterward technical teams at HP in an implementation of IT-solutions.

 66

- Enterprise Services Architectures and Composite Application Framework -

W

W
W

C
ISys

C

R
S

SAP

Fusio

SAP
SAIL

SAP NetWeaver04

SAP Web AS 6.40

C
ustom

 com
posite

application

t

F
S

A
P

 E
P

 6.0

Figure 52 Prototype

Figure 52 presents a technical architecture of composite applications fo
prototype. A communication between SAP R/3 systems and SAP NetW
platform is based on BAPIs interfaces. With application of Composite Applic
Framework tools the customer data between collaborating systems are integ
through a model that describes the customer data. From CAF the customer
can be accessed through web services from outside world. The Comp
application can be integrated within a content management system (SAP EP
and available thus for external users through a web browser.

Firstly, I started with installation of all SAP NetWeaver components whic
needed to run and develop composite applications on SAP NetWeaver platfo

• SAP Web AS 6.40
• Composite Application Framework SP 2.0

Implementation of custom composite application is foreseen in two scenarios

• SAP CAF framework with own repository (test phase)
• SAP CAF connected with backend systems (integration phase)

In the first scenario it will be implemented a custom composite application
enables maintaining Customer Data and store them in a local persistent sy
(CAF Repository System) (Figure 51). The Customer Data will be describe
service model (entity service “customer” and one “customerAS” application e
that exposes data through user interfaces to end users. Feed data that repr
General Customer Data will be provided from plain text file or in an XML-fo
The User Interface of the custom composite application will be defined wi
application of available UI patterns within SAP CAF framework. Initially, fo
prototype we wanted to provide basic functionalities for creating and search
customer data. Therefore, the goal is not to build a composite application w
reflects processes while working with customer data. As a result, I will desig
model and configure user interfaces patterns to build a user interface. Pro
model with an application of SAP Guided Procedures will not be executed fo
prototype.

Clien

 Customer Master Data
M
S

 Internet E
xplorer
RFC/BAPI
 WSDL
CA
r our
eaver
ation
rated
 data
osite
 6.0)

h are
rm

.

 that
stem
d by
ntity)
esent
rmat.
th an
r the

ing of
hich

n the
cess
r this

67

- Enterprise Services Architectures and Composite Application Framework -

 User Interface

 Business Logic

 Business Data
 Objects&Integration

 Backend

CAF

Phase 1

PHASE1

CAF Repository

UI
UI

BL

BE

BAPI mapping

Phase 2

customer

customerAS

WF
(workflow)

Figure 53 Phases 1&2 of Prototype

In the second scenario, the model of custom composite application will switch to
the original scenario with backend-systems integration through BAPIs. A reason
for that was that I wanted firstly to identify the factual capabilities of SAP CAF.
Therefore, I defined simplified model for business objects of Customer Master
Data. After identification of factual capabilities of SAP CAF and modeling the
suitable service model the integration to backend systems should be performed.

According with the CAF concept I have started with modeling of model. This
required from me to analyze business objects of all four participating systems and
make an attempt to create a unified model of customer data.

4.1.1 Model

A simplified Customer Master Data view from all involved systems can be defined
as (Figure 54):

• General Data – the General Data applies to one customer in all Company
Codes and all Sales Areas. Example of General Data is address,
information with transportation zone, general control data, and unloading
points.

• Sales Area Data – the Sales Data applies to one customer only within a
specified Sales Area. Example of Sales Data are pricing control data,
shipping preferences, billing data, payment terms, partner functions.

• Company Code Data – the Company Code Data applies to one customer,
only within a specified Company Code. Example of Company Code Data;
account management, payment transactions.

 68

- Enterprise Services Architectures and Composite Application Framework -

• Other Data – the Other Data applies to one customer, only within a
specified Company Code. Example of Other Data; sales organization data,
division data, distribution channel.

Figure 54 The Customer Data

At the very beginning, I have modeled one application service “customerAS”. It
represented the business logic for creating and searching data of customer data.
The application service “customerAS” presents the customer data to end users
through user interface. It was also enabled as a Web service that exposed the
customer data to other systems. The service “customer” with a use of other entity
services describes all business objects that present the Customer Master Data.
Underneath you will find the first designed simplified service model of Customer
Master Data.

Figure 55 Simplified model of Customer Data

 69

- Enterprise Services Architectures and Composite Application Framework -

CAF framework based on the model generates metadata for EJB session beans,
database tables, dictionary data-types. A simplified CAF-Metamodel for
“CustomerAS” application service is depicted below. Also figure this explains how
the basic business logic for CRUD-methods is implemented in Application
Service. Within CRUD-methods of Application Service we call the CRUD-methods
of Entity Service.

Figure 56 CAF simplified Metamodel

 70

- Enterprise Services Architectures and Composite Application Framework -

Presented model of business objects on figure 55 has resulted in incapability
within UI patterns offered by SAP CAF framework which cannot present services
which reference level is more than one, for example it cannot be showed data of
entity service “Address”. The UI patterns can have embedded several component
patterns (e.g. Object Editor pattern can have at maximum 8 component patterns).
Component pattern works only with one service. Thus, we have this limitation of
entity services dependencies.
As a result, I have redesigned the service model of customer data. I have
abandoned the “customer” entity service. In the new model, “CustomerAS”
application service has dependencies to “GeneralData”, “SalesData”, “OtherData”,
and “CompanyCodeData” entity services. Beneath you can find the new customer
data model with entity services and its attributes. The business logic for creating
and searching within data was implemented in application service “CustomerAS”

Figure 57 Final model of the customer data

4.1.2 Configuring User Interfaces

After a definition of a model of business objects, the next step in a development of
the custom composite application is a definition of user interface. Here, as I
implemented second scenario with CAF Repository, I did not defined mappings to
backend systems. As we already know, in SAP CAF framework we can model
user interfaces through an application of generic UI patterns and/or foundation
Web Dynpro applications. As far as the investigation of the SAP CAF product is
concerned, I have concentrated firstly only on a (re)-use of UI patterns.

Since the scope of this custom composite application is to provide functionalities
for creating/modifying and searching of customer data the following UI patterns
were of our interest.

 71

- Enterprise Services Architectures and Composite Application Framework -

Functionality of
custom composite

application
UI patterns

Object Editor Pattern – page pattern used to design, create, or
edit attributes of entity services for General Customer Data,
Sales Data, Company Code Data, and Other Data.

Creating/modifying of
customer data

Property Editor Pattern – component pattern used to create
and edit attributes of entity services. This pattern can be
embedded within Object Editor Pattern and give access to data
of referenced entity patterns of an entity pattern which works
with Object Editor Pattern

Object Selector Pattern – page pattern used to search for and
list of customer data presented by entity service “customer”.

Searching for
customer data

Search Bar Pattern – component pattern used to search for
within customer data. This patterns enables simple text
searching for specified objects(services). This pattern can be
embedded within Object Selector Pattern

other

Navigation Pattern – enables to build a navigation menu within
custom composite application i.e. navigation within
configurations of Object Editor Pattern and Object Selector
pattern.

In order to build our custom composite application at the beginning we have
started with configurations of Object Editor and Property Editor Patterns. A
presentation of Customer Master Data we have defined as four Object Editor
pattern configurations for General Data, Company Code Data, Sales Data, and
Other Data. Each Object Editor configuration embeds a configuration of Property
Editor Pattern that enables to work with dependent entity services. Figure 58
presents UI patterns configurations.

 Figure 58 UI patterns configuration - overview

 72

- Enterprise Services Architectures and Composite Application Framework -

Below it is presented a detailed view of configuration of Object Editor Pattern for
General Data and a configuration of Property Editor Pattern for “Address”,
“Communication”, and ”Control” entity service (see Figures 59 and 60). The
runtime view of UI patterns configurations for entity service “general data” is
presented on the figure 61.

Figure 59 Object Editor Pattern – configuration

Figure 60 Property Editor Pattern - configuration

 73

- Enterprise Services Architectures and Composite Application Framework -

Figure61 Object Editor Pattern - runtime

All four configurations of Object Editor pattern for General Data, Company Code
Data, Sales Data, and Other Data finally should be put into the Navigation Pattern.
Hence, from a context menu an end user should be able to switch his/her view
between all sorts of the customer data.

As far as SAP CAF SP2 is concerned configurations of UI patterns do not provide
full functionalities. For instance, the combination of Object Editor and Property
Editor Pattern cannot save inputted data for entity services presented through the
Property Editor pattern. The Navigation Pattern is foreseen to provide its
functionality from release SP3. In conclusion, SAP CAF SP2 provides immature
UI patterns that forces developers to use still foundation Web Dynpro applications.

Concerning experiences while developing custom composite applications with a
use of SAP CAF SP2 we encountered a number of obstacles. The summary in a
table below presents general overview of SAP CAF framework.

 Area Advantages Disadvantages
 - SAP CAF is not a part of SAP Web

AS, it needs to be installed additionally
 - At runtime SAP CAF is unstable and

requires JVM memory parameter
settings on the SAP Web AS site Software

Installation - SAP NetWeaver Developer Studio and
plug-in for services development needs
patching in order to enable services
modeling

Application
development -
Service modeling

- Modeling process fully
automated (Java EJB
session beans code and
web services are
generated) thus application
development is accelerated

- If UI patterns are used, service
modeling depends on knowledge of UI
patterns in advance. This obstacle can
be avoid while developing foundation
Web Dynpro application. Also this
requires additional skills in Web Dynpro
development.
- web services WSDL with only 1
namespace can be integrated within
CAF

Application
development –
UI modeling

- UI patterns provided thus
application development
can be accelerated

- At runtime not all UI patterns
configurations provide full functionality

 74

- Enterprise Services Architectures and Composite Application Framework -

To begin with, the primary installation of SAP NetWeaver Developer Studio on a
local computer does not provide full functionalities. While modeling entity services
or application services the “Implementation” tab page could not provide view of a
generated source code, we could not specify data types and exceptions handling
for entity attributes. Therefore, we could not design services. Reason for that was
that some CAF libraries were not provided with the primary installation. The first
patches for CAF runtimes we received, forced us to reinstall the CAF runtime on
the SAP J2EE engine. Unfortunately, despite the fact that the above mentioned
problems were solved with this new CAF installation, we encountered further
troubles while deploying our services models on the SAP J2EE engine. The CAF
subprojects for metadata and Web Dynpro could not be deployed successfully on
the SAP Web AS. The reason for that were inconsistencies in a package
com.sap.ip.mmr.ant of SAP NetWeaver Developer Studio installation. Also we were
provided with a patch for this subject. It took us approximately seven weeks to
solve these above-mentioned problems and to be able to design and to deploy
services within CAF environment.

After modeling services the next step was to model user interfaces within an
application of UI patterns. Firstly, we started with an initiative to familiarize
ourselves with CAF runtime tools. We wanted to test our modeled services with
available tools and then implement user interfaces. Within these activities we
experienced some obstacles as well. The test tools do not provide possibility to
test defined operations (methods) of application services. You can only test entity
services functionalities. Initial configuration of Object Editor and Object Selector
patterns were done. But they did not work. After an investigation and knowledge
exchange with SAP Developers it turned out that meanwhile SAP has change
internal mappings (operations mappings between operations of application and
entity services) for metadata of services. In principle, application services should
have defined all CRUD methods with the same names like in entity services. This
matter forced us to redesign our services model from scratch. However, after that
some problems with UI patterns still remained. For instance, configuration of
Object Editor Pattern with Property Editor Pattern does not work i.e. referenced
entity services cannot be referenced during runtime. In case of Object Selector
Pattern the functionality of “Edit” or “New” buttons that call configurations of
another patterns (Object Editor Pattern) resulted in runtime errors too. According
to SAP claims, mentioned UI patterns configurations problems are solved with
SP3 patch level. As a result, we performed an upgrade to CAF SP3. With the new
CAF installation initially you have still problems with building CAF projects within
SAP NetWeaver Developer Studio (NWDS). There is a need to patch the following
package com.sap.tc.ap of NWDS. What is more, with SP3 the NWDS must be
upgraded to SP10. Unfortunately, exported CAF projects from NWDS SP9 could
not be successfully imported to NWDS SP10; therefore services model had to be
implemented manually from a scratch once again.

At present SAP Guided Procedures is not a part of the CAF environment. It is a
standalone workflow tool. Moreover, SAP GP currently does not provide capability
of binding UI pattern configurations within it in order to build a process. Therefore
SAP Guided Procedures was out of scope in this project.

Last but not least, we have also learned that additional settings for Java Virtual
Memory on the SAP J2EE engine suite need to be done in order to be able to
work with CAF web-based tools which launch UI patterns configurations. In
particular, a parameter for permanent space has to be increased. The permanent
space is responsible for a handling of java packages and its memory allocation.

 75

- Enterprise Services Architectures and Composite Application Framework -

4.2 Summary

The SAP Composite Application Framework (SAP CAF) is a unified environment
for a development and running of package composite applications (PCAs) such as
SAP xApps based on Enterprise Services Architecture. In general, SAP CAF
offers a methodology for building composite applications that will be the future
business applications in the SAP landscape. The composite application
framework uses SAP NetWeaver to encapsulate the functionality of the current
enterprise applications as components and services. These components and
services are described in metadata and implement standard frameworks for
application layers, such as the user interface and process control. The
combination of functionality abstraction, standard services and metadata
descriptions enables the application designer to assemble an application mainly
through modeling rather than programming (model-driven technology). But the
real advantage that CAF brings is that the modeling technique is leveraged further
through the identification and reuse of patterns for user interfaces as well as for a
business processes workflow. (Figure 26)

Based on experiences acquired while developing the prototype for customer
master data with the Composite Application Framework, it must be underlined that
the SAP CAF as software product is in the very early stage of a development and
therefore it is not yet a mature product. Firstly, CAF currently is a separate add on
to the SAP Web AS. Also CAF provides a support only for J2EE Technology. In
the future releases the CAF will be expanded to support ABAP stack and .NET
Technology. The Process Layer of the Composite Application Framework is
implemented as SAP Guided Procedures (SAP GP). Currently SAP GP is not a
part of CAF architecture and therefore does not have a connection to underling
CAF layers. It is a standalone workflow tool that will be integrated into CAF in the
future releases. The user interfaces (UI) layer provides 10 generic patterns that
can be assembled in order to build composite applications. There is also a
possibility to integrate foundation Web Dynpro applications if the generic UI
patterns do not offer enough functionality. In fact, at present some UI patterns
configurations can be only launched. Therefore, in order to build composite
applications developers are forced to implement foundation Web Dynpro
applications. Furthermore, we have found out that while doing services modeling,
knowledge of UI patterns in advance is required. The Service Layer turned out to
be the most mature part of the SAP CAF architecture. It is integrated in SAP
NetWeaver Developer Studio as Composite Application Services tools. It gives
developers the possibility of reusing/importing functionalities of already existing
services through external services. Also it enables developers to implement new
services through specification of entity services. The business logic, which is
required to implement checks and transformation of an application, is provided
through application services.

 76

- Enterprise Services Architectures and Composite Application Framework -

5 Status and future of ESA

In this thesis, the aim was to identify the major changes concerning the
organizational and implementation technologies when using an approach of the
Enterprise Services Architecture (ESA). This thesis was first focused on the
Packaged Composite Applications that are build out of different services with SAP
Composite Application Framework. This chapter will highlight the organizational
impact of Enterprise Services Architecture for a company. Furthermore, there will
be discussion about a new web services paradigm – enterprise services which will
be brought with the ESA. Enterprise services are Web services that provide
enterprise-level business functionality34. Enterprise services are used to compose
service-oriented applications like composite applications that reflect a business
process within a company.

The Enterprise Services Architecture (ESA) is a high-level blueprint for how a
customer can build a service-oriented landscape, benefiting from Web services
technology to increase the value of the IT platform while dramatically reducing the
total cost of ownership. However, the introduction of the ESA brought with it the
introduction of various types of Web services and the ESA also blurs the lines
between individual applications and between services producers and providers. In
the Enterprise Services Architecture are two important kinds of services:

• Enterprise Services – an enterprise service corresponds to a
business event, independent of any applications. The business
event is described in business terms and is typically stable over a
very long time. Example: receiving an order from a customer is a
business event that can be described using terms such as
“customer”, “order”, “product” etc.

• Application Services – an application service is a service offered by
an application, i.e. calling it corresponds to events inside the
application. The application service is described using exact
software terms such as data elements and state transitions and it
changes when the application changes. Example: creating a
customer order in an application is an application service that uses
data elements such as “customerID”, “orderID”, “productID” etc.

Moving towards the Enterprise Services Architecture creates the need for new
roles and responsibilities within the IT organization, to some extent requiring new
skills profiles compared to what is common in many traditionally organized IT
departments. These some new roles and associated skills are presented on the
figure 62. [paper-vandeLoo]

34 [ESA-Woods]

 77

- Enterprise Services Architectures and Composite Application Framework -

Figure 62 Organizational structure for the ESA

The enterprise services architect is working with the business units to identify the
most important business events to be supported by enterprise services. He
decides on the appropriate sets of services needed to support certain business
scenarios and on the granularity and interfaces of these services. He also defines
the enterprise data standards that will allow integration across heterogeneous
systems. The enterprise services architect must be characterized by a good
understanding of business processes and the ability to extract process and
service models from information given by business experts.

The enterprise services developer is the person who actually implements the
enterprise services and creates all the integration logic necessary to map them to
the underlying application services. This requires skills in using the tools of an
integration platform (SAP NetWeaver) such as SAP Composite Application
Framework/SAP Guided Procedures, SAP Exchange Infrastructure and
understanding of the specific of the underlying applications and the technical
possibilities and limitations for integrating to them.

In many cases the underlying applications will not provide the services needed by
the enterprise services developer. This is a task of an application services
developer to develop the missing services.

A development of new user interaction components meaning everything from fairly
simple UI components to complete composite applications is conducted by the
interaction component developer. The skills needed are focused on selection and
use of the appropriate UI technologies, which could range from web page
development tools and highly graphics tools such as Macromedia Flash to
professional UI development tools like SAP Web Dynpro or Microsoft Office
technologies. Ideally, the interaction component developer is working very closely
with one or more professional user interaction designers.

Organizationally, the enterprise services architect and developer should be part of
a central enterprise architecture team reporting to business departments. They
are owners of the integration knowledge and primarily responsible for the
alignment of IT with the needs of the business. The application services developer
may be part of the organization that owns the respective application. The
interaction component developers have to be very close to the end users, so it is
often advisable to place them in local IT departments. In that case, they need
architectural guidance from the central architecture team. The SAP Composite

 78

- Enterprise Services Architectures and Composite Application Framework -

Application Framework as a unified environment for development composite
applications will provide suitable tools for definition of application services and
enterprise services.

Another important topic to be investigated for the purposes of this thesis was to
position and find out about technical standards for enterprise services. The
investigation focused on aspects as technical requirements, designing and
standardization for enterprise services. These all aspects are very important for IT
departments, which want to start implementing ESA, since enterprise services are
the core of the Enterprise Services Architecture.

As already given in this thesis, the Enterprise Services Architecture (ESA) is a
high-level blueprint for how a customer can build a service oriented landscape,
benefiting from Web services technology to increase the value of the IT platform
while dramatically reducing the total cost of ownership. The introduction of the
ESA brought with it the introduction of various types of Web services, namely
application and enterprise services.

Web services are an ideal option for automating complex business processes,
since they are not bound to a specific platform or programming language, and –
more importantly – they provide the potential for worldwide collaboration across
systems and companies based on the Internet. In order to handle enterprise-level,
business-scale processes Web services also need to be as reliable, maintainable,
and secure as current business software. Also to keep maintenance costs down,
web services must achieve the right level of scalability and reuse. As a result,
there are already discussions about “enterprise services” that do have all the
features mentioned-above.

Enterprise Services are web services that will provide enterprise-level business
functionality. They can be simple lookup services (like finding a company’s
location or product offerings) or complex and composite services. What do they
have in common is that they are integrated into process or application. Typically
enterprise services are high-level components that take more granular Web
services and aggregate them into reusable elements with business value. [ESA-
Woods]

 79

- Enterprise Services Architectures and Composite Application Framework -

Figure 63 From traditional services to Enterprise Services35

As far as technical requirements for Enterprise Services are concerned, they must
be as robust and reliable as business applications that rely on their own set of
exclusive and local data sources. Technically, Enterprise Services must be built
on established and emerging Web service standards for the big benefit of
openness and interoperability. They must cope with requirements in terms of
scalability to support thousands or even millions of calls and in terms of security to
provide authentication as well as end-to-end message integrity and data
confidentiality which are features generally not granted on the Internet.
Furthermore, when any problems arise, an infrastructure must be in place to
analyze and debug what will almost certainly be a multitude of interconnected
components. This is where Enterprise Services Architecture and Enterprise
Services Repository comes in. [paper-Fritz]

While designing Enterprise Services, an important thing to remember about the
Enterprise Services Architecture is that it attempts to build a platform out of a
number of independently designed applications. Hence, it cannot be assumed that
all applications are applications of a particular software vendor or even that the
applications have been designed to work together. This fact has a significant
impact how the services have to be defined and gives some criteria to be
considered. Therefore, Enterprise Services should cover a complete business
event and only use business terms in its interface so that it can be called from any
application. Moreover, when designing Application Services, an application
service should perform a specific business function, i.e. avoid for example a
generic “change” interface, and use only such data elements that can be mapped
to business terms, i.e. avoid data elements that are specific to the particular
application. While designing Enterprise Services, it is very important to understand
that enterprise and application services are not mutually exclusive. Application
service can be very well enterprise service. This is a case as soon as the
application service covers all aspects of a business event that are relevant for a
particular company. This may often be the case for comprehensive services
offered by large, integrated applications such as mySAP CRM. However, whether
an application service is an enterprise service or not depends on the system
landscape within each enterprise. An application vendor cannot “build” enterprise

35 [paper-Fritz]

 80

- Enterprise Services Architectures and Composite Application Framework -

services; it can only strive to build application services that will exactly match
customer's enterprise services. If the underlying applications offer a wide array of
application services well suited to be promoted to enterprise services, the
definition of enterprise services is a fairly straightforward task. When enterprise
services cannot be created by simply promoting application services, they will
have to be composed out of several application services, provided by one or more
applications. As a result, it is imperative for the success of the Enterprise Services
Architecture that the composition of enterprise services on one hand is easy to
perform and maintain, and on the other hand results in adequate performance,
stability, reliability, security etc. The major challenge is to define and provide web
service standards as well as tools for composing enterprise services.

As already presented in this thesis the Composite Application Framework is a
unified environment for designing and running composite applications. Composite
applications are applications that consume services like enterprise services and
orchestrate them to reflect new business processes within a company. The
Composite Application Framework offers a really important user benefit through
the fact that the interface layer of composite applications is constructed from
process-based perspective. The process-based perspective shows the flow of
work through the steps of a process as the work proceeds from task to task and
user to user. As figure 64 presents, with process-based modeling, the process is
at the top of the tree. The main container for the process in the SAP CAF is a
business scenario, which has procedures, actions, and services as its
components. The idea is that some applications should be described with a set of
steps, each with components, with several levels of containment. A business
scenario could represent a process for product lunch or project to be managed.
Then, the specific processes are the next level, with the lowest level representing
steps in a process.

Figure 64 Process-based modeling with SAP CAF

The SAP Composite Application Framework provides SAP Guided Procedures
framework for defining processes. A guided procedure includes a collection of
steps called phases. Each phase might have several actions, steps such as filling
out an evaluation form or performing a specific unit of work. Behind each action is
an enterprise service that performs some sort of a function. An envisioned action
model is presented underneath.

 81

- Enterprise Services Architectures and Composite Application Framework -

Figure 65 Envisioned Action Model36

At present there is no a technical description standard for enterprise service.
Instead the SAP Composite Application Framework and guided procedures
propose currently a composite scenarios technique and interactive forms.
Composite scenarios orchestrate the behavior of many different applications that
have not been made available as services. In this technique, a guided procedure
moves a user from one user-interface screen to another. The user has impression
of a single workflow, even though the screens are provided by different
applications. Sometimes a process can be effectively automated as a path
through several different applications without modifying them. This approach has
its limits. The screens do not really know that they are participating in the
composite scenario, data may be inconsistent across each screen, and
implementing a composite scenario in an environment with many different vendors
is difficult. The biggest limitation may be the assumption that the business logic of
each application has to be accepted as is. With composite scenario, you have no
chance to modify the applications.

Interactive forms are another way that guided procedures communicate with the
outside world. Interactive forms are standalone documents build to collect
information offline from a user. The form is then submitted to a guided procedure,
which processes the information. They transfer the data back and forth from the
guided procedure by using XML. Interactive forms solve an important piece of the
automation puzzle because they provide a mechanism for collecting data that can
be used anywhere, on many devices such as phones, PDAs regardless of
connectivity.

36 Training materials from Workshop “SAP Composite Application Framework / SAP NetWeaver”
at SAP AG in Walldorf

 82

- Enterprise Services Architectures and Composite Application Framework -

Figure 66 Architecture of SAP GP with active forms37.

37 SAP marketplace source

 83

- Enterprise Services Architectures and Composite Application Framework -

6 Conclusion

This thesis investigates the major changes concerning organizational and
modeling methodologies when using the Enterprise Services Architecture
approach that aims to enable a business innovation for a company while lowering
total cost of application ownership. Through a development of the custom
composite application prototype, this thesis also makes a contribution to the
subject of proving business benefits while using the new approach of a web
service interfacing with composite applications. Finally, this thesis investigates the
new web services paradigm called enterprise services that provide enterprise-
level business functionality for a company. And as a result, gives a
comprehensible answer of this subject for IT departments that want to use
Enterprise Services Architecture approach in the future.

The goal of the Enterprise Services Architecture is to break a silo of current
enterprise applications into services so that user interfaces are no longer linked to
the silo and composite applications can be assembled from these services to
bring functionality to new groups of users and to extend automation further into
the company. Thus, the functionality of current enterprise applications can be
more effectively reused. The most persuasive arguments for the Enterprise
Services Architecture are specific to a particular business. The Enterprise
Services Architecture is most compelling when the executive team has a shared
vision of a business strategy that will crush the competition and make customers
joyfully send in more orders. The core assumptions of the ESA are that:

• Conscious design of a comprehensive architecture is based on
enterprise’s current needs and predictions about future business
conditions

• Current systems are used as a foundation
• Flexibility is created where we need it using loosely coupled components

and services as the fundamental building blocks
• The resulting architecture will decrease the cost of change, which will in

turn expand tactical and strategic possibilities that should enable business
advantage.38

This thesis clearly states that Enterprise Services Architecture is an example of
Service-Oriented Architecture. The Enterprise Services Architecture (ESA) as a
high-level blueprint for how a customer can build a service-oriented landscape
benefiting from Web services technology introduces various types of Web
services like Enterprise services (description of business functionalities). As a
result, moving towards the Enterprise Services Architecture creates the need for
new roles and responsibilities within the IT organization, to some extent requiring
new skills profiles compared to what is common in many traditionally organized IT
departments. These some new roles and associated skills are presented on the
figure 62. [paper-vandeLoo]

As for companies organizationally ESA approach imposes that the enterprise
services architect and developer should be part of a central enterprise architecture
team reporting to business departments. They are owners of the integration
knowledge and primarily responsible for the alignment of IT with the needs of the
business. The application services developer may be part of the organization that
owns the respective application. The interaction component developers have to be

38 [ESA-Woods]

 84

- Enterprise Services Architectures and Composite Application Framework -

very close to the end users, so it is often advisable to place them in local IT
departments. In that case, they need architectural guidance from the central
architecture team.

Another investigated subject for the ESA is the modeling approach for future
business applications that consume services and build user web interfaces that
reflect a particular business process within a company. Such new applications are
called composite applications. Composite applications as a new breed of
applications endeavor to; serve business processes that cross multiple functions,
target multiple users even across inter-enterprise boundaries, and integrate
functions that are currently supported by independent generic applications.
Composite applications are built on top of the company’s heterogeneous
technology landscape, thus enabling cross-functional business processes and
securing existing software investments. By integrating all of a company’s
applications and systems, cross applications help to maximize the value of the
existing IT investments. Composite applications are content-driven also they
enhance business processes by relating knowledge and structured information.
As a result, business can be run with corporate-wide business intelligence instead
of disaggregated information.

The SAP Composite Application Framework (SAP CAF) offers a methodology for
building composite applications which will be the future business applications in
the SAP landscape. The Composite Application Framework uses SAP NetWeaver
to encapsulate the functionality of the current enterprise applications as
components and services. These components and services are described in
metadata and implement standard frameworks for application layers, such as the
user interface and process control. The combination of functionality abstraction,
standard services and metadata descriptions enables the application designer to
assemble an application mainly through modeling rather than programming
(model-driven technology). But the real advantage that CAF brings is that the
modeling technique is leveraged further through the identification and reuse of
patterns for user interfaces as well as for business processes workflows. The SAP
CAF as a solution proposes an approach to build composite applications through
assembling three layers: service layer, user interfaces UI layer, and process layer.
The service layer is an abstraction layer where data models of business objects
are build or imported from existing systems, and exported to the outside world as
services. Such services are consumed by UI layer that represents its data to end
users through user interfaces. User interfaces are built based on the Model-View-
Controller concept from generic predefined UI patterns and foundation Web
Dynpro applications. Such defined user interfaces are used in the process layer to
define a collaboration workflow in order to reflect a specific business process
within a company.

Through a development of the prototype of a custom composite application for
customer master data it must be underlined that the Composite Application
Framework as a software product is in the very early stage of a development and
therefore it is not yet a mature product. The Service layer turned out to be the
most mature part of the SAP CAF architecture. It enables a software developer to
reuse applications functionalities by importing existing services. Also gives the
possibility to extend composite application by new services. The UI layer provides
currently about 10 generic UI patterns and also a possibility to integrate
foundation Web Dynpro applications if the generic UI patterns do not offer enough
functionality. At present some UI patterns configurations can be only launched.
Therefore, in order to build composite applications with complex user interfaces,
developers are forced to implement foundation Web Dynpro applications.

 85

- Enterprise Services Architectures and Composite Application Framework -

However, in a scope of the prototype we did not work with the Process Layer
implemented as SAP Guided Procedures (SAP GP), our investigation determined
that currently SAP GP is a standalone workflow tool and do not provide possibility
to create Enterprise services. Moreover, the investigation points out that there are
no technical description standards for Enterprise services. Instead at present the
SAP Composite Application Framework and guided procedures propose a
composite scenarios technique and interactive forms. Composite scenarios
orchestrate the behavior of many different applications that have not been made
available as services. In this technique, a guided procedure moves a user from
one user-interface screen to another. The user has impression of a single
workflow, even though the screens are provided by different applications. The
limitation of this approach is that screens do not really know that they are
participating in the composite scenario, data may be inconsistent across each
screen, and implementing a composite scenario in an environment with many
different vendors is difficult. Another way that guided procedures use to
communicate with outside world are interactive forms. Interactive forms are
standalone documents build to collect information offline from a user. The form is
then submitted to a guided procedure, which processes the information. They
transfer the data back and forth from the guided procedure by using XML.

 86

- Enterprise Services Architectures and Composite Application Framework -

7 Glossary

ABAP Advanced Business and Application Programming is a programming
language for developing SAP applications.

Application
Service

Application Services contain the business logic of the application and
provide an interface to other services e.g. interface to end users
through user interfaces.

BAPI A Business API is an interface to one of SAP’s R/3 applications. It
enables third-party developers to write enhancements that interact with
the R/3 modules. Technically a BAPI is a RFC-enabled Function
Module (RFM) that follows the rules defined in the SAP BAPI
Programming Guide and is defined as a method in the SAP Business
Object Repository.

BI mySAP Business Intelligence enables a complete view of all business
operations and information. It provides the tools to use information to
make the right decisions, set strategy, and measure the results of
business tactics.

BMP If Bean-Managed-Persistence is used methods to find, create and
delete EJB objects have to be implemented by the developer and are
not provided by the EJB container.

CAF Composite Application Framework is a unified environment for a
development and running package composite applications PCAs such
as SAP xApps based on Enterprise Services Architecture. The CAF
uses SAP NetWeaver to encapsulate the functionality of the current
enterprise applications as components and services. These
components and services are described in metadata and implement
standard frameworks for application layers, such as the user interface
and process control.

CMP If Container-Managed-Persistence is used the EJB container provides
persistence mechanisms to store entity beans in a database.

EJB Enterprise JavaBeans can be described as a component software
architecture from Sun that is used to build Java applications that run in
the server. It uses a container layer that provides common functions
such as security and transaction support and delivers a consistent
interface to the applications regardless of the type of server. CORBA is
the infrastructure for EJBs, and at the wire level, EJBs look like CORBA
components. EJBs are the backbone of Sun’s J2EE platform, which
provides a pure Java environment for developing and running Web-
based applications.

Entity Service Entity Services contain the life-cycle methods and table definitions for
defining business objects. Entity Services expose business objects data
to application services.

ESA Enterprise Services Architecture (ESA) outlines a disciplined and
structured approach to understanding how today’s enterprise
applications will make use of web services. ESA is an application of
service-oriented architecture applied to the current heterogeneous
world of IT architecture.

External Service External services only contain metadata information and provide access
to external services such as web services and remote function call
(RFC).

J2EE The Java 2 Platform, Enterprise Edition is a platform from Sun for
building Web-based enterprise applications. J2EE services are
performed in the middle tier between the user’s browser and the
enterprise’s databases and legacy information systems. J2EE
comprises a specification, reference implementation and set of testing
suites. Its core components are EJBs, JSPs and Java Servlets as well
as a variety of interfaces for linking to the information resources in the
enterprise.

 87

- Enterprise Services Architectures and Composite Application Framework -

Master Data Data that remains unchanged for an extended period. It contains
information that is frequently required for use in the same way.

Metadata Data describing other data. Metadata are data definitions normally
stored in a data dictionary.

MVC Model-View-Controller is a design pattern to efficiently relate a user
interface to underlying data models in object-oriented programming
languages. The Model represents the underlying, logical structure of
data in a software application and the high-level class associated with it.
A View is a collection of classes representing the elements in the user
interface A Controller represents the classes connecting the model and
the view, and is used to communicate between classes in the model
and view.

mySAP The mySAP.com e-business integration platform is a family of software
and services that empowers customers, partners, and employees to
collaborate successfully. It delivers content to the user based on their
role in different business areas like customer relationship management,
supply chain management, e-procurement, business intelligence,
product lifecycle management, human resources, or finance.

PCA Packaged Composite Applications (PCAs) sit on top of an Enterprise
Services Architecture layer, a software product that creates components
out of existing enterprise applications. PCAs represent a new
architectural paradigm for enterprise applications. Using web services,
they combine new functionality with services from existing applications
to enable flexible cross-functional automation.

RFC A transactional Remote Function Call (tRFC) calls a function module in
R/3 indirectly using a transactional interface in R/3. If an error occurs,
the RFC client program has to reconnect to R/3 later and repeat the call
with a specific transaction ID. A queued RFC (qRFC) guarantees that
data is transferred immediately. In case of an error the changes aren’t
lost but put in a queue until the data is transferred correctly.

SAP Service
Marketplace

Worldwide information and communication network from SAP AG.

SAP xApps Collaborative Cross Applications (xApps) are SAP’s fulfillment of the
PCA vision. xApps are products focused on solving specific business
problems that build on existing systems to provide new functionality,
automating cross-functional processes.

SOAP The Simple Object Access Protocol is a lightweight message-based
protocol using HTTP for accessing services on the Web and for the
exchange of information in a decentralized, distributed environment. It is
an XML based protocol that consists of an envelope that defines a
framework for describing what is in a message and how to process it, a
set of encoding rules for expressing instances of application-defined
data types and a convention for representing remote procedure calls
and responses.

UDDI Universal Description, Discovery and Integration is a XML-based
specification using the SOAP protocol. It provides a registry designed to
enable software to automatically discover services on the Web and to
integrate with them by providing the necessary translations.

URL The Uniform Resource Locator defines the route to a file on the Web or
any other Internet facility. It contains the protocol prefix, port number,
domain name, subdirectory names and file name.

WAS The SAP Web Application Server is the e-business platform for
mySAP.com solutions. It provides Web services through platform-
independent, easy-to-maintain business Web applications and
technologies, including key support for J2EE and ABAP.

Web Service A Web Service is a self-contained, modularized functionality, which can
be published, discovered, and accessed across a network using open
standards.

 88

- Enterprise Services Architectures and Composite Application Framework -

WSDL The Web Services Description Language is a language to describe the
capabilities, the protocols and formats used by a Web service. WSDL
descriptions can be housed in a UDDI directory and they are always
independent from the used protocol (SOAP, XML) and coding (MIME).

XML The eXtensible Markup Language is an open standard for describing
data from the W3C. It is used for defining data elements on a Web page
and business-to-business documents. It uses a similar tag structure as
HTML; however, whereas HTML defines how elements are displayed,
XML defines what those elements contain. HTML uses predefined tags,
but XML allows tags to be defined by the developer of the page. Thus,
virtually any data items, such as product, sales rep and amount due,
can be identified, allowing Web pages to function like database records.
By providing a common method for identifying data, XML supports
business-to-business transactions and is expected to become the
dominant format for electronic data interchange.

 89

- Enterprise Services Architectures and Composite Application Framework -

8 Bibliography

Introduction Literature:

[xApps-Herger] “SAP xApps und das Composite
Application Framework”

Jo Weilbach,
Mario Herger

Galileo Press, 2005

[NWfD-Woods] “SAP NetWeaver for Dummies” Dan Woods, Jeffrey

Word
Wiley Publishing,
2004

[ESA-Woods] “Enterprise Services Architecture” Dan Woods O’Reilly, Sep. 2003

[PCA-Woods] “Packaged Composite Applications” Dan Woods O’Reilly, Jun. 2003

[WPWAS-Rau] “Web Programming with the SAP
Web Application Server”

Frederic Heinemann,
Christian Rau

SAP PRESS, 2003

Service-oriented computing: Introduction M. P. Papazoglou,

D. Georgakopoulos
Communications of
the ACM, Volume 46,
Issue 10 ;2003,

Adoption Challenges in Migrating to Web Services Scott Tilley, John

Gerdes, Terrance
Hamilton,

IEEE Proceedings
Fourth International
Workshop on Web
Site Evolution
(WSE'02); 2002,

[WebServices-Alonso] “Web Services, concepts,
architectures and applications”

Gustavo Alsonso Springer, 2004

[mySAPT-Farber] “mySAP Technology” Günter Farber, Julia

Kirchner
Galileo Press, 2002

Papers:

[paper-vandeLoo] “Organizational impact of Enterprise Services Architecture” by Kaj van de Loo
 December 21, 2004
http://www.sdn.sap.com
[paper-Varhol] “SOA: Get it Right the First Time” by Peter Varhol May 24, 2004
http://www.ftponline.com/weblogicpro/2004%5F05/magazine/features/pvarhol/

[paper-Mattern] “Build a Services-Based Infrastructure that enables Business
 Change while containing costs” by Thomas Mattern, SAP AG;
 October, 2004
http://www.sapinsideronline.com/spijsp/article.jsp?article_id=40097&volume_id=5427

[paper-Fritz] “When Does a Web Service Become an Enterprise Service?” by
 Dr. Franz-Josef Fritz, SAP AG; April 2004
http://www.sapinsideronline.com/searchspi/search.htm?page=article&query_text=base&key=37906

[paper-SAP-NW] “SAP NetWeaverTM” by SAP AG
http://www.sap.com/solutions/netweaver/pdf/BWP_NetWeaver_Overview.pdf

[paper-Eisenberg] “Service-Oriented Architecture: The Future is Now” by Robert Eisenberg,
REassociates.Net;
http://www.intelligenteai.com/print_article.jhtml?articleID=18900111

 90

http://www.sdn.sap.com/
http://www.ftponline.com/weblogicpro/2004%5F05/magazine/features/pvarhol/
http://www.sapinsideronline.com/spijsp/article.jsp?article_id=40097&volume_id=5427
http://www.sapinsideronline.com/searchspi/search.htm?page=article&query_text=base&key=37906
http://www.sap.com/solutions/netweaver/pdf/BWP_NetWeaver_Overview.pdf
http://www.intelligenteai.com/print_article.jhtml?articleID=18900111

- Enterprise Services Architectures and Composite Application Framework -

SAP documentation:

[sap-caf-ug] SAP Composite Application Framework User Guide Release 1.0
[sap-caf-gp] Guided Procedures (CAF – GP) Release 1.0

Online documentation:

[sap-doc-nw] http://service.sap.com/netweaver
[sap-doc-xapps] http://service.sap.com/xapps
[sap-doc] http://help.sap.com
[grid-doc] http://gridcafe.web.cern.ch/gridcafe/

 91

http://service.sap.com/netweaver
http://service.sap.com/xapps
http://help.sap.com/
http://gridcafe.web.cern.ch/gridcafe/

	Introduction
	Objectives of this thesis
	Structure of this thesis

	Concepts and Philosophies
	Web Services
	SOA – Service Oriented Architecture
	ESA – Enterprise Services Architecture
	PCA - Packaged Composite Applications
	ESA and SOA

	Summary

	SAP NetWeaver Technologies
	SAP Web Application Server
	SAP Exchange Infrastructure
	Composite Application Framework (CAF)
	CAF Architecture
	Step 2
	Step 3
	Step 4

	Services Layer
	Entity Services

	UI Layer
	Process Layer
	CAF landscape

	Summary

	Custom Composite Application
	Customer master data at HP
	Model
	Configuring User Interfaces

	Summary

	Status and future of ESA
	Conclusion
	Glossary
	Bibliography

