
Consistency and Transformation Rules in the
MDA-based Modeling of an

Enterprise Software Architecture

Tejas Doshi

Masters Thesis

submitted in partial fulfillment of the requirements for the degree
Masters of science in Information and Media Technologies

supervised by

Prof. Ralf Möller
Prof. Dieter Gollmann

Miguel Garcia

Software Technology and Systems (STS)
Technical University of Hamburg-Harburg (TUHH)

Krisztián Szitás

CORYX Software GmbH

Hamburg, December 2005

Thanks to

My Parents
For helping me start off with a good education,

from which all else springs…

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Abstract
'Consistency checking' and 'Transformation of models' are some of important links in
MDA process, but because of immaturity of technology and lack of interest many
MDA tools had overlooked them. Extending the existing MDA based tools for making
them more mature and advance in MDA sense is the target of this thesis. Prototype
of Extended Coryx Platform Technology (CxPT) and Extended Octopus (an open
source MDA based tool) has been described in this thesis followed by the study of
different techniques and tools in this area.

STS – Technical University of Hamburg-Harburg (TUHH) i

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Declaration
I declare that:

this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, 4th December 2005.

(Tejas Doshi)

STS – Technical University of Hamburg-Harburg (TUHH) ii

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Content
At a Glance

Table of Contents.. iv
List of Figures... vi

1 Preface... 1
2 MDA Basics... 3
3 Problem Definition.. 8
4 Consistency in MDA.. 10
5 Transformation in MDA... 23
6 CxPT – A matured MDA tool Prototype.. 36
7 Extending Octopus... 58

Appendix A... 73
Bibliography... 76

STS – Technical University of Hamburg-Harburg (TUHH) iii

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Table of Contents
Preface.. 1
 Acknowledgments... 2

1 MDA Basics... 3
 1.1 Introduction... 3
 1.1.1 Platform Independent Models (PIMs) and Platform Specific
 Models (PSMs)... 3
 1.1.2 Automation of Transformations.. 4
 1.2 MDA Building Blocks... 4
 1.2.1 Models.. 5
 1.2.2 Modeling Languages... 5
 1.2.3 Transformation Tools.. 6
 1.2.4 Transformation Definitions... 6
 1.3 MDA Benefits... 6
 1.4 MDA, The Silver Bullet ?.. 7

2 Problem Definition... 8
 2.1 Context... 8
 2.1.1 Generation by Templates (MDA Light ?!)............................. 8
 2.2 Missing Links... 9
 2.3 Purpose of this Thesis... 9

3 Consistency in MDA.. 10
 3.1 Introduction... 10
 3.2 Consistency Classification.. 11
 3.2.1 Syntactic vs. Semantic Consistency.................................... 12
 3.2.2 Static vs. Dynamic Consistency.. 12
 3.2.3 Intra-model vs. Inter-model Consistency............................. 12
 3.3 Introduction to OCL.. 14
 3.3.1 Types of expressions... 14
 3.3.2 Types of constraints.. 14
 3.3.3 The context of an OCL expression....................................... 14
 3.3.4 Invariants on attributes... 15
 3.3.5 Invariants on associations... 16
 3.3.6 Collections of objects.. 16
 3.3.7 Pre- and postconditions... 16
 3.3.8 Derivation rules... 16
 3.3.9 Initial values.. 17
 3.3.10 Body of query operations... 17
 3.3.11 Broken constraints.. 17
 3.4 Requirements for OCL tools... 18
 3.4.1 Functional requirements.. 18
 3.4.2 GUI requirements... 19
 3.5 Related Work... 19
 3.5.1 Dresden OCL ToolKit for OCL2.0... 19
 3.5.2 USE – UML based Specification Environment........................ 19
 3.5.3 OCLE 2.0 – Object Constraint Language Environment........... 21
 3.5.4 Octopus.. 21

STS – Technical University of Hamburg-Harburg (TUHH) iv

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

 3.5.5 MMT... 22

4 Transformation in MDA... 23
 4.1 Introduction... 23
 4.1.1 Metamodeling.. 23
 4.1.2 The Four Modeling layers of the OMG.................................. 24
 4.2 Metamodeling and Transformation... 27
 4.3 Model Transformation Categories... 27
 4.4 Model Transformation Approaches... 28
 4.4.1 Visitor-based Approaches.. 28
 4.4.2 Template-based Approaches.. 28
 4.4.3 Direct Manipulation Approaches... 29
 4.4.4 Relational Approaches... 29
 4.4.5 Graph-transformation-based Approaches............................. 30
 4.4.6 Structure-driven Approaches... 30
 4.4.7 Hybrid Approaches... 31
 4.4.8 EMF Ecore model based Approaches.................................... 32
 4.4.9 Other Model-to-Model Approaches...................................... 33
 4.5 ATLAS Transformation Language.. 34
 4.5.1 Introduction... 34
 4.5.2 ATL execution engine architecture...................................... 34
 4.5.3 Available developing tools for ATL...................................... 35

5 CxPT – A matured MDA tool Prototype... 36
 5.1 CxPT – CORYX Platform Technology.. 36
 5.1.1 CxPT Framework.. 36
 5.1.2 Structure of the generated service artefacts......................... 38
 5.1.3 Benefits.. 40
 5.1.4 Missing Links... 41
 5.1.5 Impose constraints on CxPT specification............................. 42
 5.1.6 Integrating ATL with Octopus... 53
 5.1.7 ATL queries and generation of Text..................................... 56

6 Extending Octopus... 58
 6.1 OctopusUML to XSD transformation.. 58
 6.1.1 Representing Associations... 60
 6.1.2 Representing Association classes.. 61
 6.1.3 Associations – Limitations... 62
 6.1.4 Mapping of Generalization... 62
 6.1.5 Further mapping issues... 62
 6.1.6 Transformation Rules.. 63
 6.2 Proof of Concept... 71
 6.2.1 Java Reflection API... 71
 6.2.2 Java XML Binding (JAXB)... 71
 6.2.3 Extended Octopus – using strong typed XML reader/writer.... 72

Appendix A... 73
Bibliography... 76

STS – Technical University of Hamburg-Harburg (TUHH) v

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

List of Figures
Figure 1.1 The relationship between PIM, PSM and code................................. 4
Figure 1.2 The MDA Framework... 5

Figure 2.1 MDA Light Implementation... 8
Figure 2.2 Basic concept of the CxPT.. 9

Figure 3.1 Class diagram with OCL constraints for LoyaltyAccount.................... 14
Figure 3.2 General view of the USE approach.. 20

Figure 4.1 Relation between Model, Modeling language, and Metalanguage....... 24
Figure 4.2 The four modeling layers of the OMG... 25
Figure 4.3 The extended MDA framework, including Metalanguage................... 27
Figure 4.4 Comparison of four main kind of transformation approaches............ 33

Figure 5.1 Basic concept of the CxPT.. 36
Figure 5.2 Enterprise system architecture generated by CxPT.......................... 37
Figure 5.3 Generated service structure (java file listing)................................. 38
Figure 5.4 Navigator view... 49
Figure 5.5 Object detail view... 50
Figure 5.6 Broken invariants view.. 51
Figure 5.7 Extended CxPT prototype... 57

Figure 6.1 Existing Octopus generated artefacts using weak typed XMLs........... 59
Figure 6.2 Extended Octopus with UML/OCL mapped to XSD/XQuery................ 60
Figure 6.3 Example relation between two classes... 60
Figure 6.4 Royal and Loyal class diagram.. 64
Figure 6.5 AST view of Package... 65
Figure 6.6 AST view of Class, Attribute and Association.................................. 66
Figure 6.7 AST view of Enumeration... 68
Figure 6.8 AST view of Association class... 69
Figure 6.9 Extended Octopus using strong typed XML reader/writer.................. 72

STS – Technical University of Hamburg-Harburg (TUHH) vi

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Preface
Enterprise software systems are often complex systems. They are not complex only
because they are distributed but also because they are systems that evolve quickly in
time, implemented by different technologies, and possibility of integration with the
legacy systems. Many technologies such as Electronic data interchange (EDI),
Transaction processing monitors, Distributed components (e.g., .NET/Enterprise Java
Bean components) and recently webservices too, have supported such complex
systems development. Technology never last long, but business logic does.
Protecting the investment done for the software development from obsolescence is
very important goal. On the other side enterprise software systems are and will
continue to be developed using multiple technologies, so integration and
harmonization between different technologies for the development of such systems is
another important goal.

Few years back, Model Driven Architecture (MDA) has been proposed to support such
large and complex software system development. MDA proposes an architecture
where software systems can evolve and different technologies can be integrated and
harmonized. To get the full out of Model driven development we need to take care of
some issues like checking constraints on models, mapping definition between related
metamodels and defining transformation rules.

In the rest of the work these issues will be discussed with the review of available
tools which supports to solve the same, followed by the real implementation in the
MDA based enterprise software system CxPT from CORYX Software GmbH. We will
also see the extension of an open source MDA based tool called Octopus.

STS – Technical University of Hamburg-Harburg (TUHH) 1

Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Acknowledgments

I, hereby take an opportunity to express my gratitude towards courtesy extended to
me by assigning the masters thesis, Consistency and Transformation Rules in the
MDA-based Modeling of An Enterprise Software Architecture.

Prof. Ralf Möller and Prof. Dieter Gollmann, Technical University of Hamburg-Harburg
and Herr Uwe Schenk, CORYX Software GmbH, for believing in me and keeping faith
in my work, for giving me an opportunity to work on the project under their
supervision.

Miguel Garcia, for taking his precious time out of his busy schedule to discuss the
real-time problems, and also for explaining me the insight of the existing and
ongoing work of the project throughout this project development, for giving me a
freedom to introduce my ideas and apply them, for discussing problems and
exploring the way out, for guiding me throughout the development period towards
the goal.

Krisztiàn Szitàs, who gave me support to persevere through what seemed like a
totally overwhelming and never-ending task, for giving me an inspiration and
courage to work in the project. I couldn’t have done it without him.

Aravind Alagia Nambi, Stefan Huth and Gregor Härty for giving me support
throughout the project in parallel design, development, and testing.

I also appreciate all the people of this project; I have left out the names of some of
the people who helped me. For that I am sorry but nonetheless grateful for the many
hearts and hands that made this project possible. Thank you for them, for their
vision, their caring, their commitment and their actions.

And at last, I would like to thank my beloved problems which occurred on site for
directing me to the goal of the complete solution.

Tejas Doshi
tejas.doshi@tuhh.de

STS – Technical University of Hamburg-Harburg (TUHH) 2

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

1 MDA Basics
1.1 Introduction
Technology never last long, but business logic does. Causes of change in technology
are: Programming languages, middleware, operating system, hardware platforms,
networks and more. “You must preserve your software investment as the
infrastructure landscape changes around it” [1].

Model-Driven Development (MDD) attempts to solve the above mentioned problem.
MDD raises the level of abstraction by which software and systems engineers carry
out their tasks. This is done by emphasizing the use of models - i.e., abstractions - of
the artifacts that are developed during the engineering process. Models are
representations of phenomena of interest, and in general are usually easier to
modify, update, and manipulate than the artifact or artifacts that are being
represented. Models are expressed using a suitable modeling language; one of them
is UML, which is a widely used.

MDD is not a development method or process; it can be implemented in a number of
ways. The key element in MDD is the construction and transformation of models that
are fit for the purposes of the project development. The languages and processes
used in construction and transformation will vary from project to project.

The Model-Driven Architecture (MDA) is an initiative of the Object Modeling Group
(OMG), aimed at providing a standard approach for MDD. While MDD does not
prescribe the use of specific process or sequence of steps to follow, MDA requires the
use of a standard meta-steps that should be followed in the development of models
and systems.

1.1.1 Platform Independent Models (PIMs) and Platform
Specific Models (PSMs)

Key to MDA is the importance of models in the software development process. Within
MDA, the software development process is driven by the activity of modeling your
software system. The MDA process is divided into three steps:

1. Build a model with a high level of abstraction, which is independent of any
implementation technology. This is called a Platform Independent Model
(PIM).

2. Transform the PIM into one or more models that are tailored to specify your
system in terms of the implementation constructs that are available in one
specific implementation technology; e.g., a database model or an EJB

STS – Technical University of Hamburg-Harburg (TUHH) 3

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

(Enterprise Java Beans) model. These models are called Platform Specific
Models (PSMs).

3. Transform the PSMs to code.

Because a PSM generally fits its target technology very closely, the PSMs to code
transformation is straightforward. The complex step is the one in which a PIM is
transformed to a PSM. The relationships between PIM, PSM, source code, and the
transformations between them, are depicted in following figure 1.1.

Figure 1.1 The relationship between PIM, PSM, and code

1.1.2 Automation of Transformations
Another key element of MDA is that the transformations are executed by tools. Many
tools have been able to transform a platform-specific model to code; there is nothing
new about that. What's new is that the transformation from PIM to PSM is automated
as well. This is where the obvious benefits of MDA lie. In the field of software
development developer spends a lot of time on tasks that are more or less routine.
For example, building a database model from an object-oriented design, or building a
COM (Common Object Model) component model or an EJB component model from
another high-level design. The MDA goal is to automate the cumbersome and
laborious part of software development.

1.2 MDA Building Blocks
The MDA framework consists of a number of highly related parts. To understand the
framework, you must understand both the individual parts and their mutual
relationships. Therefore, let's take a closer look at each of the parts of the MDA
framework: the models, the modeling languages, the transformation tools, and the
transformation definitions, which are depicted in following figure 1.2.

STS – Technical University of Hamburg-Harburg (TUHH) 4

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Figure 1.2 The MDA Framework

1.2.1 Models
The first and foremost element of MDA is formed by models—high-level models
(PIMs) and low-level models (PSMs). The whole idea of MDA is that a PIM can be
transformed into more than one PSM, each suited for different target technologies. If
the PIM were to reflect design decisions made with only one of the target
technologies in mind, it could not be transformed into a PSM based on a different
target technology; the PIMs must truly be independent of any implementation
technology.

A PSM, conversely, must closely reflect the concepts and constructs used in the
corresponding technology. In a PSM targeted at databases, for instance, the table,
column, and foreign key concepts should be clearly recognizable. The close
relationship between the PSM and its technology ensures that the transformation to
code will be efficient and effective.

All models, both PSM and PIM, should be consistent and precise, and contain as
much information as possible about the system. This is where Object Constraint
Language (OCL) [51] can be helpful, because models alone do not typically provide
enough information.

1.2.2 Modeling Languages
Modeling languages form another element of the MDA framework. Because both PIMs
and PSMs are transformed automatically, they should be written in a standard, well-
defined modeling language that can be processed by automated tools. Before a
system is built, only humans know what it must do. Therefore, PIMs must be written
to be understood and corrected by other humans. This places high demands on the
modeling language used for PIMs. It must be understood by both humans and
machines.

STS – Technical University of Hamburg-Harburg (TUHH) 5

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The PSMs, however, will be generated, and the PSM needs to be understood only by
automated tools and by experts in that specific technology. The demands on the
languages used for specifying PSMs are relatively lower than those on the language
for PIMs. Today, there are a number of so-called profiles for UML, define UML-like
languages for specific technologies, e.g., the EJB profile. Other modeling languages
includes xml based modeling languages, e.g., Eclipse Modeling Framework (EMF) .

1.2.3 Transformation Tools
Transformation tools implement the central part of the MDA approach, thus
automating a substantial portion of the software development process. Many tools
implement the PSM-to-code transformation. Today, only a few implement the
execution of the transformation definitions from PIM to PSM. Most of the PIM-to-PSM
tools are combined with a PSM-to-code component.

1.2.4 Transformation Definitions
Another vital part of the MDA framework is formed by the definitions of how a PIM is
to be transformed to a specific PSM, and how a PSM is to be transformed into code.
Transformation definitions are separated from the tools that will execute them, in
order to re-use them, even with different tools. It is not worthwhile to build a
transformation definition for one-time use. It is far more effective when a
transformation can be executed repeatedly on any PIM or PSM written in a specific
language.

Some of the transformation definitions will be user-defined, that is, written by the
developers that work according to the MDA process. Preferably, transformation
definitions would be in the public domain, perhaps even standardized, and tunable to
the individual needs of its users. Some tool vendors have developed their own
transformation definitions, which unfortunately usually cannot be adapted by users
because their use is not transparent, but hidden in the functionality of the tools and
moreover is not reused with different tools.

1.3 MDA Benefits
This section describes some of the advantages of MDA [2]:

1. Portability, increasing application re-use and reducing the cost and
complexity of application development and management, now and in the
future. MDA brings us portability and platform independence because the PIM
is indeed platform independent and can be used to generate several PSMs for
different platforms.

STS – Technical University of Hamburg-Harburg (TUHH) 6

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

2. Productivity, by enabling developers, designers, and system administrators
to use languages and concepts they are comfortable with, while still
supporting seamless communication and integration across the teams. A
productivity gain can be achieved by using tools that fully automate the
generation of code from a PSM, and even more when the generation of a PSM
from a PIM is automated as well.

3. Cross-platform interoperability, using rigorous methods to guarantee that
standards based on multiple implementation technologies all implement
identical business functions. The promise of cross-platform interoperability
can be fulfilled by tools that not only generate PSMs, but also the bridges
between them, and possibly to other platforms as well.

4. Easier maintenance and documentation, as MDA implies that much of the
information about the application must be incorporated in the PIM. It also
implies that building a PIM takes less effort than writing code.

1.4 MDA, The Silver Bullet ?
When explaining the MDA to software developers, one get a sceptical response: "This
can never work. You cannot generate a complete working program from a model. You
will always need to adjust the code." Is MDA just promising another silver bullet ?

At OOPSLA 2003, Dave Thomas of Pragmatic Programming fame virtually flayed MDA
alive, and even Microsoft has questioned MDA’s underpinnings. Why the criticisms?
We’ve seen similar visions fail miserably in the past. Also, many correctly believe
that MDA could take IT organizations seriously off track if they don’t navigate the
software process waters effectively. [3]

STS – Technical University of Hamburg-Harburg (TUHH) 7

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

2 Problem Definition

2.1 Context
In the enterprise whenever basic internal conditions change must be communicated
in the enterprise. Because new standards are defined, new technologies and products
come on the market, updating systems accordingly is difficult. Enterprises cannot
react always fast, purposefully and above all flexibly to the constantly changing
conditions. At the same time it requires to keep cost lower for the same.

The answer of the CORYX software GmbH to these requirements is the CxPT (CORYX
Platform Technology). CxPT is defined as a model-driven and generative platform
which is based on J2EE for software development, the one row of Architecture
patterns for applications of business, by means of Frameworks, Design Patterns,
standard components and code generators. Thus the complex technical concepts of
the J2EE details shielded for developers and high-quality, scalable J2EE applications
produced. That means: With CxPT, systems become more efficient, flexible, platform
independent and thus more futurable.

2.1.1 Generation by Templates: (MDA Light?!)
One of the beginnings for the practical conversion of the MDA (we call it times MDA
light) is based on the use of Plug-ins. The platform-independent model is jumped
over as source code is generated directly from the PSM, which is very specific to J2EE
technology. With this MDA light, one can describe many details of the specialized
logic in specification instead in source code. Predivide the business logic will make
system technologically flexible. The investments into specialized models live longer -
much longer than the technology, with which one has implemented these models.

Figure 2.1 MDA Light implementation

STS – Technical University of Hamburg-Harburg (TUHH) 8

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The concept of the Model Driven Architecture makes a modeling possible of
middleware solutions for the different technology platforms. High degree is given to
the reusability, since the same model of the application of business can be used with
different implementation technologies. With this proceeding more time can be
invested into the modeling of the business processes, without thinking over the
details of the implementation on the technology platform. The "service generator" of
the CxPT support the beginning of the MDA to generate J2EE based middleware
solution from the XML based specification and offer a comfortable possibility to
convert that concept of the MDA into the practice. Basic concept of CxPT can be seen
in the figure 2.2.

Figure 2.2 Basic concept of the CxPT

2.2 Missing Links
There are some missing links in CxPT as an matured MDA tool. Links where
consistency must be checked at the PIM level and then application of transformation
rules to transform PIM to PSM, which then can be used to generate J2EE based
middleware solution as before in CxPT. Filling this gap will make CxPT more
consistent, time effective, more maintenable and stable in development of its
solutions.

2.3 Purpose of this Thesis
The purpose of this thesis is to explore areas: consistency checking and
transformation of models in MDA, exploring related tools and design a prototype
solution for the CxPT. Purpose also includes to solve some of the generic problems in
this area like integrate different tools or standards and transformation between
them.

STS – Technical University of Hamburg-Harburg (TUHH) 9

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3 Consistency in MDA
3.1 Introduction
In MDA based development environment Modeling Languages are used for software
design and modeling. The main strength of a modeling language lies in its ability to
express many facets of design, ranging from structural (ex: class diagram in UML) to
behavioral (ex: interaction and state machine diagrams in UML), using a single
integrated formalism. This language comes with a set of syntactic and semantic rules
that derives the understanding and interpretation of models written in this language.
Some of the rules that are deemed necessary are formally expressed in the
specification to assert the well-formedness of models. Others, mainly semantic rules,
are informally defined in the specification to give more flexibility and expressive
power to designs at different levels of abstraction, by different modeling
methodologies or for different application domains. Such syntactic and semantic
rules are needed to keep the model consistent as per the specification for which it is
targeted.

The motivation for model consistency are:

Correctness : Usually, consistency problems reveal design problems or misuse of
modeling language. When those problems are discovered early in the design process,
it is easier and more cost effective to fix than if they were discovered at a later
stage.

implementability, which usually involves translating a platform independent model
into a platform specific model (e.g. Programming language), a usually precise and
unambiguous notation.

Without consistency analysis, it would be hard to evolve the model and ensure that
the collaborative effort is coherent. The notion of consistency, or lack of, has its roots
in formal methods. To assert that something is consistent, you have to declare what
it is consistent with. Any language has its own unique syntax and semantics. The
syntactic correctness or well-formedness of a model is usually a prerequisite to any
further consistency analysis. Syntax is what makes the model readable and hence
verifiable.

Failing to maintain the well-formedness of a model often leads to ambiguity. Another
source for ambiguity is the existence of incomplete semantics. Usually a model goes
through a series of refinement transformations before finally getting translated into
code, an inherently formal language. While syntax helps readability, semantics is
what gives meaning to language constructs. While consistency at the semantic level
is generally a desired property to ensure the integrity of a model, it is mostly needed
when transforming a model into a formal notation.

Consistency is either intra-model (also called horizontal), which is a property of a
model asserting its syntactic and semantic conformance, or inter-model which is
between different models related together by one or more transformation

STS – Technical University of Hamburg-Harburg (TUHH) 10

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

relationships. In general, most of the work in this area tends to focus on ensuring
that these transformations are consistency-preserving. Another consistency
classification distinguished between static and dynamic constraints. A static
constraint is one that can be verified statically without running the model, while a
dynamic constraint cannot be verified until runtime.

Defining inconsistency is one task; detecting it is another. Consistency assertion or
inconsistency detection falls within three main categories. The first category tries to
complete the meta-model to allow for easier accessibility from a model element to all
its associated elements. The second category tries to enhance the language used for
expressing constraints on the meta-model. The Object Constraint Language (OCL) is
the native language for expressing constraints in UML.

The process of translating a model into a formal notation involves first clearing the
ambiguity by agreeing on the interpretation of the expressions according to some
semantic domain.

The constraint checking framework has to be:

Flexible, to allow for different configurations, and

extensible, to allow for new constraints to be added

It should also support a batch checking mode in addition to an incremental on-
demand mode.

The framework has to be user-friendly in its presentation and allow for easy
expression of constraints.

Most importantly, the framework has to be efficient, which means among other
things scalable to the size of the model, fast in completing the analysis, and
accurate in reporting results.

It is also desirable if the framework can offer consistency correction actions and
design assist tips.

3.2 Consistency Classification
The following table summarizes different consistency classifications [2]:

Classification Features

Syntactic vs. Semantic Consistency rules that can be expressed by a formal
language are syntactic, otherwise they are semantic

Static vs. Dynamic Consistency rules that can be verified without executing
a model are static, otherwise they are dynamic

Intra-Model vs. Inter-Model Consistency rules within the same model are intra-model.
Those that span models are inter-model

Table 3.1 Consistency Classifications

STS – Technical University of Hamburg-Harburg (TUHH) 11

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.2.1 Syntactic vs. Semantic Consistency
The language specifications introduce two initial levels of consistency, the meta-
model and the well-formedness rules. The meta-model is a schema that precisely
defines the constructs and rules needed for creating models. A model is inconsistent
if it does not conform to the meta-model. However, it may not be consistent even if
it conforms to the meta-model. This is mainly due to the limited expressiveness of
the meta-language.

In an effort to complement the meta-language, the OMG proposed OCL, a higher
order logic language for denoting well-formedness constraints in a modeling
language like UML. OCL, a pure expression language, has constructs to inspect and
navigate objects and their structure and return a true or false value but it does not
change the model. Well-formedness, as expressed by OCL constraints, is usually a
prerequisite to any further consistency analysis. The following are some examples of
well-formedness rules as expressed in OCL:

An element may not directly or indirectly own itself:

not self.allOwnedElements()->includes(self)
Elements that must be owned must have an owner:

self.mustBeOwned() implies owner->notEmpty()

Once the semantics are formalized, further consistency analysis can proceed by
tailoring rules to the selected interpretations.

3.2.2 Static vs. Dynamic Consistency
Most languages distinguish between their static and dynamic semantics. The static
semantics, or the syntax, of a modeling language is formally described in terms of its
meta-model and OCL constraints. While syntax can usually be checked by a static
inspection of a model, dynamic semantics cannot be completely verified until
runtime. For example, it may not be possible to statically check that a precondition
to an operation is satisfied before the operation is called. The problem here is that
not all modeling languages are an executable language, and therefore the dynamic
constraints have to be embedded into an executable formalism (like code) that is
translatable from a modeling language.

3.2.3 Intra-Model vs. Inter-Model Consistency
One recurring classification of consistency in the literature distinguishes between
intra- model and inter-model consistency or between horizontal and vertical
consistency. Intra- model or horizontal consistency is a property of a model. It
indicates that all the elements of a model are syntactically and semantically correct.

Multiple viewpoints for modeling the same system. They range from structural (ex:
class and instance diagrams in UML) to behavioral (ex: interaction and state machine
diagrams in UML). These viewpoints or perspectives are usually inter-dependent. For

STS – Technical University of Hamburg-Harburg (TUHH) 12

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

example, a synchronous message in a sequence diagram has to match an operation
in a class diagram. This intersection of viewpoints leads to a very interesting class of
inconsistencies that is not formalized as part of the specifications. While some of
these constraints are obvious, others are mainly heuristic in nature. The following is
a sample list of constraints between the class and the object diagrams:

The number of values for an attribute of a given object violates the multiplicity lower
bound for that attribute as defined by the object’s classifier.

self.value ->size() >= self.definingFeature.lowerBound()

The attribute’s value in an object does not conform to the corresponding attribute
type as defined by the object’s classifier.

if self.definingFeature.type ->isEmpty()
 then true
else
 self.value ->forAll(v:ValueSpecification |

v.type.conformsTo(self.definingFeature.type))
endif

The object is not classified (heuristic since it is allowed by the specifications)

self.classifier.size() > 0

On the other hand, inter-model consistency is a relationship between models. These
models are usually related to each other by some sort of a transformation
relationship. A transformation describes the application of some procedures to one
model to create a new model. The new model can be another representation of the
same information in the old model, or a modified version of the original model. In
fact, the relationship between transformation and consistency characterized a
transformation as consistent if a model before the transformation is consistent with
the new model after the transformation.

Refinement is a transformation that takes a model from an abstract level to a more
concrete or detailed level. One essential characteristic of this kind of transformation
is consistency preservation. Such consistency is also called a vertical consistency
since it is between models at different levels of abstraction. A refinement
transformation left the old and the new models consistent between each other.

STS – Technical University of Hamburg-Harburg (TUHH) 13

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.3 Introduction to OCL
The Object Constraint Language (OCL) is a language that enables one to describe
expressions and constraints on object-oriented models and other object modeling
artifacts. An expression is an indication or specification of a value. A constraint is a
restriction on one or more values of (part of) an object-oriented model or system.

The OCL is a standard query language, which is part of the Unified Modeling
Language (UML) set by the Object Management Group (OMG) as a standard for
object-oriented analysis and design.

3.3.1 Types of expressions
Expressions can be used in a number of places:

• To specify the initial value of an attribute or association end.
• To specify the derivation rule for an attribute or association end.
• To specify the body of an operation.
• To indicate an instance in a dynamic diagram.
• To indicate a condition in a dynamic diagram.
• To indicate actual parameter values in a dynamic diagram.

3.3.2 Types of constraints
There are four types of constraints:

• An invariant is a constraint that states a condition that must always be met by all
instances of the class, type, or interface. An invariant is described using an
expression that evaluates to true if the invariant is met. Invariants must be true
all the time.

• A precondition to an operation is a restriction that must be true at the moment
that the operation is going to be executed. The obligations are specified by
postconditions.

• A postcondition to an operation is a restriction that must be true at the moment
that the operation has just ended its execution.

• A guard is a constraint that must be true before a state transition fires.

3.3.3 The Context of an OCL expression
The context definition of an OCL expression specifies the model entity for which the
OCL expression is defined. Usually this is a class, interface, datatype, or component.
In terms of the UML standard, this is called a Classifier.

Sometimes the model entity is an operation or attribute, and rarely it is an instance.
It is always a specific element of the model, usually defined in a UML diagram. This
element is called the context of the expression.

STS – Technical University of Hamburg-Harburg (TUHH) 14

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Next to the context, it is important to know the contextual type of an expression. The
contextual type is the type of the context, or of its container. It is important because
OCL expressions are evaluated for a single object, which is always an instance of the
contextual type. To distinguish between the context and the instance for which the
expression is evaluated, the later is called the contextual instance. Sometimes it is
necessary to refer explicitly to the contextual instance. The keyword self is used for
this purpose.

Figure 3.1 Class diagram with OCL constraints for LoyaltyAccount

For example, the contextual type for all expressions in above figure is the class
LoyaltyAccount. The precondition (pre: i>0) has as context the operation earn. When
it is evaluated, the contextual instance is the instance of LoyaltyAccount for which
the operation has been called. The initial value (init: 0) has as context the attribute
points. The contextual instance will be the instance of LoyaltyAccount that is newly
created.

3.3.4 Invariants on attributes
The simplest constraint is an invariant on an attribute. Suppose our model contains a
class Customer with an attribute age, then the following constraint restricts the value
of the attribute:

context Customer inv:
age >= 18

STS – Technical University of Hamburg-Harburg (TUHH) 15

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.3.5 Invariants on associations
One may also put constraints on associated objects. Suppose in our model contains
the class Customer has an association to class Salesperson, with role name salesrep
and multiplicity 1, then the following constraint restricts the value of the attribute
knowledgelevel of the associated instance of Salesperson:

context Customer inv:
salesrep.knowledgelevel >= 5

3.3.6 Collections of objects
In most of the cases the multiplicity of an association is not 1, but more than 1.
Evaluating a constraint in these cases will result in a collection of instances of the
associated class. Constraints can be put on either the collection itself, e.g. limiting
the size, or on the elements of the collection. Suppose in our model the association
between Salesperson and Customer has role name clients and multiplicity 1..* on the
side of the Customer class, then we might restrict this relationship by the following
constraint.

context Salesperson inv:
clients->size() <= 100 and clients->forAll(c: Customer | c.age >= 40)

3.3.7 Pre- and postconditions
In pre- and postconditions the parameters of the operation may be used.
Furthermore, there is a special keyword result which denotes the return value of the
operation. It can be used in the postcondition only. As an example we have added an
operation sell to the Salesperson class.

context Salesperson::sell(item: Thing): Real
pre: self.sellableItems->includes(item)
post: not self.sellableItems->includes(item) and result = item.price

3.3.8 Derivation rules
Models often define derived attributes and associations. A derived element does not
stand alone. The value of a derived element must always be determined from other
(base) values in the model. Omitting the way to derive the element value results in
an incomplete model. Using OCL, the derivation can be expressed in a derivation
rule. In the following example, the value of a derived element usedServices is
defined to be all services that have generated transactions on the account:

context LoyaltyAccount::usedServices : Set(Services)
derive: transactions.service->asSet()

STS – Technical University of Hamburg-Harburg (TUHH) 16

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.3.9 Initial values
In the model information, the initial value of an attribute or association role can be
specified by an OCL expression. In the following examples, the initial value for the
attribute points is 0, and for the association end transactions, it is an empty set:

context LoyaltyAccount::points : Integer
init: 0
context LoyaltyAccount::transactions : Set(Transaction)
init: Set{}
Note the difference between an initial value and a derivation rule. A derivation rule
states an invariant: The derived element should always have the same value that the
rule expresses. An initial value, however, must hold only at the moment when the
contextual instance is created. After that moment, the attribute may have a different
value at any point in time.

3.3.10 Body of query operations
The class diagram can introduce a number of query operations. Query operations are
operations that have no side effects, i.e., do not change the state of any instance in
the system. Execution of a query operation results in a value or set of values,
without any alterations in the state of the system. Query operations can be
introduced in the class diagram, but can only be fully defined by specifying the result
of the operation. Using OCL, the result can be given in a single expression, called a
body expression. In fact, OCL is a full query language, comparable to SQL. The use of
body expressions is an illustration thereof.

The next example states that the operation getCustomerName will always result in
the name of the card owner associated with the loyalty account:

context LoyaltyAccount::getCustomerName() : String
body: Membership.card.owner.name

3.3.11 Broken constraints
Note that evaluating a constraint does not change any values in the system. A
constraint states "this should be so". If for a certain object the constraint is not true,
in other words, it is broken, then the only thing we can conclude is that the object is
not correct, it does not conform to our specification. Whether this is a fatal error or a
minor mistake, and what should be done to correct the situation is not expressed in
the OCL.

STS – Technical University of Hamburg-Harburg (TUHH) 17

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.4 Requirements for OCL tools

3.4.1 Functional requirements
OCL is not a stand-alone language. The language was conceived to express
information that the graphical formalism of UML cannot. By using the graphical and
textual formalisms jointly, the UML models gain precision. OCL cannot be used apart
from UML; consequently, the OCL tools must support both OCL and UML formalisms.

The OCL support covers both the user model and the metamodel level. OCL offers a
more intuitive access at the metamodel level. To define OCL specifications at M2
level of OMGs 4 layers, the user needs to understand the metamodel, to navigate it.
The specifications made at the user model level express the “business semantic” of
each model.

The OCL functionalities concern the support for: specifying, compiling, evaluating,
debugging and reusing OCL specifications.

The UML models need to be validated against Well Formedness Rules (WFR) and
their Business Rules. Until now, this activity was not performed in modeling,
exclusively due to the lack of appropriate OCL support in UML tools.

Regarding the evaluation process, there is a particular requirement induced by the
dynamic characteristic of the user model. At runtime, the objects can change their
state and the application consistency must be kept through dynamic evaluation of
the OCL constraints that specify model semantics. This can be realized if the OCL
specifications are translated into source code, corresponding to a target
programming language, integrated with source code generated from the UML and
evaluated everywhere and every time this is necessary. Thus, an UML-OCL tool needs
to support automatic code generation from OCL specifications and the integration of
this code.

In addition, each tool supporting rule evaluation must provide the user with
functionalities needed to identify the eventual rule failures and to modify the model
in order to comply with evaluated rules.

The OCL specifications made at metamodel level are reusable because these
specifications can be used irrespective of the evaluated UML model and the tool used
in the evaluation process.

Also, taking into account the object-oriented nature of UML and of most of the user
models, UML CASE tools must support design by contract. This means that each
invariant, pre or post condition, specified in a parent or for a parent operation, must
be satisfied in all its descendants. Another important functional requirement concerns
the possibility to redefine in descendants the functions specified by means of the OCL
def – let mechanism.

STS – Technical University of Hamburg-Harburg (TUHH) 18

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.4.2 GUI requirements
The GUI component must support the user in interacting with the tool in the
simplest, natural and intuitive manner. Mainly, the GUI must provide support for:
model management, model navigation, synchronization of information displayed in
different views. Considering the functionalities needed for managing medium and
large size models, the tools must support information filtering. Extended searching
functionalities for the model information are very useful. The text editor needs to
support: auto indentation, syntax highlighting, auto completion.

3.5 Related Work
3.5.1 Dresden OCL ToolKit for OCL2.0
http://dresden-ocl.sourceforge.net/

Instead, many of the contained tools are meant to be used as a library, integrated
into other tools, but there exist also some standalone tools in the toolkit. The whole
toolkit is metamodel-based and relies on a common metamodel derived from the
MOF14 and UML15 metamodels.

All models and metamodels are stored in a MDR metadata repository and then Java
interfaces for accessing models can be generated using JMI based API. The contained
OCL parser uses two passes. Pass one creates a concrete syntax tree (CST) from the
textual constraint. During pass two, the attribute evaluator performs the
transformation from CST to Abstract Syntax Tree (AST).

It allows loading MOF14 based models, creating constraints over these models,
generating code for them and evaluating the constraints in the context of a concrete
model (M1). It also allows loading or editing textual OCL constraints, loading UML15
models through XMI import and parsing the constraints in the context of the model
loaded. After parsing, the constraints will be attached to their contextual model
elements and can be exported using XMI export.

An example of simple constraint that manager in the company is also an employee
can be specified by

@invariant manager_is_employee2:
 manager.employers->includes(self)

Its freely available with source code to download.

3.5.2 USE – UML based Specification Environment
http://www.db.informatik.uni-bremen.de/projects/USE/

USE is a system for the specification of information systems. It is based on a subset
of the Unified Modeling Language (UML). A USE specification contains a textual
description of a model using features found in UML class diagrams (classes,

STS – Technical University of Hamburg-Harburg (TUHH) 19

http://dresden-ocl.sourceforge.net/
http://www.db.informatik.uni-bremen.de/projects/USE/

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

associations, etc.). Expressions written in the Object Constraint Language (OCL) are
used to specify additional integrity constraints on the model. A model can be
animated to validate the specification against non-formal requirements. System
states (snapshots of a running system) can be created and manipulated during an
animation. For each snapshot the OCL constraints are automatically checked.
Information about a system state is given by graphical views. OCL expressions can
be entered and evaluated to query detailed information about a system state. The
figure 3.2 below gives a general view of the USE approach.

Figure 3.2 General view of the USE approach

The distribution of USE comes with full sources.

Example of partial textual specification of Employee in a company working on
different projects would be specified by

model Company

-- classes

class Employee
attributes
 name : String
 salary : Integer
end

and example of one OCL constraint on that model can be specified by

context Employee
 -- employees get a higher salary when they work on
 -- more projects
 inv MoreProjectsHigherSalary:
 Employee.allInstances->forAll(e1, e2 |
 e1.project->size > e2.project->size
 implies e1.salary > e2.salary)

STS – Technical University of Hamburg-Harburg (TUHH) 20

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

3.5.3 OCLE 2.0 – Object Constraint Language Environment
http://lci.cs.ubbcluj.ro/ocle/

OCLE is a UML CASE Tool (developed in "BABES-BOLYAI" University Computer
Science Research Laboratory), offering full OCL support both at the UML metamodel
and model level. It checks the well formedness of UML models against the WFR
specified in UML 1.5. OCLE offers a very strong support for compiling and debugging
OCL specifications. UML models saved in XMI 1.0 or 1.1, regardless of the tools and
parsers used in producing and transferring the models can be used. Apart from the
OCL support offered at the metamodel level, OCLE helps users in realizing both static
and dynamic checking at the user model level. Dynamic support is offered by means
of the generated Java source code. the graphical interface was conceived and
implemented with the aim of supporting the use of OCLE in a natural and intuitive
manner. A User Manual and some detailed examples are included in the distribution
package.

Certainly, a lot of possible extensions can be realized and probably enough functions
can be improved like to offer a better and complete support for the diagrams editor,
better code generation, a strong support for transforming different models (MDA),
and so on. As source code is not available its difficult to integrate into existing
framework.

3.5.4 Octopus
http://www.klasse.nl/english/research/octopus-intro.html

The OCL Tool for Precise UML Specifications (Octopus) of the Netherlands company
Klasse Objecten serves the syntactic examination of in the OCL formulated
expressions. The tool is available as Plug-in for the Eclipse development
environment. Octopus supports the OCL in version 2.0 and is in further development.

Octopus is able to statically check OCL expressions. It is able to transform the UML
model, including the OCL expressions, into Java code. UML model here is the
octopus' own textual syntactic format which will also be refered as OctopusUML in
this document for clarification. Octopus has xmiimport eclipse plug-in which can
import UML model from xmi into OctopusUML. It also has internal visitors for
OctopusUML model, which can be used in case of export or transform purpose in
some special requirements.

Octopus fully conforms to version 2.0 of the OCL standard. Furthermore, Octopus
offers the possibility to view expressions in an SQL-like syntax.

Octopus is able to generate a complete 3-tier prototype application from your
UML/OCL model.

The middle tier consists of plain old Java objects (POJOs). These POJOs include code
for checking invariants and multiplicities from the model. OCL expressions that define
the body of an operation are transformed into the body of the corresponding Java
method. Derivation rules and initial value specifications are transformed as expected.
Optionally a number of convenience methods may be created for each class, for
example, a getCopy() method. The creation of a visitor interface and the
corresponding accept methods is also optional.

STS – Technical University of Hamburg-Harburg (TUHH) 21

http://www.klasse.nl/english/research/octopus-intro.html
http://lci.cs.ubbcluj.ro/ocle/

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The storage tier consists of an XML reader and writer dedicated to the given
UML/OCL model. It stores any data content in your prototype application in an XML
file. It is also able to read the content of this XML file into prototype application.
Furthermore, application can be regenerated, for instance, because one of the
classes was missing an attribute, and the reader will still be able to read the XML file.
The reader will read the contents of the XML file and produce objects for whatever
classes, attributes, and association ends are still in your model.

The user interface tier consists of an implementation of a plug-in for the Eclipse Rich
Client Platform, where model can be created, navigated and OCL invariants and
multiplicities can be checked.

As a proof of concept for the MDA vision Octopus generates a complete prototype
application from UML/OCL model but still it needs even better transformation tools.
As source code is available it can be extended and integrated easily with the existing
frameworks.

3.5.5 MMT
The Meta-modeling Tool (MMT) has been designed and constructed to support the
testing of UML 2.0. MMT is a virtual machine that understands the textual version of
constrained class diagrams and the construction of languages using templates. MMT
supports the testing of language definitions at a number of levels. At a simple
level it is able to check the definition to ensure it is syntactically correct (the
importance of this in a definition the size of UML 2 should not be underestimated).
MMT is also able to check that constraints hold within the definition to ensure that
models are well formed. Most importantly, MMT is reflexive which enables the
building of new languages described using existing languages. Consequently,
MMT can be used to build UML 2 models and check that our understanding of
UML2 (encapsulated in the definition) is correctly defined. A programmer’s guide is
available at following URL.
http://www.dcs.kcl.ac.uk/staff/tony/docs/ProgrammersGuideToMMT.pdf

STS – Technical University of Hamburg-Harburg (TUHH) 22

http://www.dcs.kcl.ac.uk/staff/tony/docs/ProgrammersGuideToMMT.pdf

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

4 Transformation in MDA
4.1 Introduction
Transformation can be defined as the generation of a target model from a source
model. This means that transformations are purely processes. The process is
described by a transformation definition, which consists of a number of
transformation rules, and is executed by a transformation tool. In an MDA approach
desirable features of the transformation process are [2]:

1. Tunability, which means that although the general rule has been defined in the
transformation definition, an application of that rule can be configured and tuned
with additional control parameter; for example, when transforming a UML String
to a database String (VARCHAR) in an entity-relationship model, you might want
the length of the VARCHAR to differ for each occurrence of a UML String.

2. Traceability, Transformations may record links between their source and target
elements. These links can be useful in performing impact analysis (i.e., analyzing
how changing one model would affect other related models), synchronization
between models, model-based debugging (i.e., mapping the stepwise execution of
an implementation back to its high-level model), and determining the target of a
transformation.. A preferable approach is to store a GUID in each model element
and store the traceability information separate from the source and target.

3. Incremental consistency, which means that when target-specific information
has been added to the target model and it is regenerated, the extra information
persists and newly added information will get merged.

4. Bidirectionality, Most rules are applied in one direction by binding the LHS in the
source and expanding the RHS in the target model. In some cases, a declarative
rule (i.e., one that only uses declarative logic and/or patterns) can be applied in
the inverse direction, too. This property seems attractive in the context of
synchronization between models. An alternative approach is to define two
separate rules, one for each direction.

4.1.1 Metamodeling
Model is a description of (part of) a system written in well-defined language. A well-
defined language is a language which is suitable for automated interpretation by a
computer.

In the past, languages were often defined using a grammar in Backus Naur Form
(BNF), which describes what series of tokens is a correct expression in a language.
This method is suitable and heavily used for text-based languages. But modeling
languages do not have to be text based, and often aren't (they can, for example,

STS – Technical University of Hamburg-Harburg (TUHH) 23

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

have a graphical syntax, like UML), we will need a different mechanism for defining
languages in the MDA context. This mechanism is called metamodeling.

A model defines what elements can exist in a system. A language also defines what
elements can exist. It defines the elements that can be used in a model. So, we can
describe a language by a model: the model of the language describes the elements
that can be used in the language.

Every kind of element that a modeler can use in his or her model is defined by the
metamodel of the language the modeler uses. In UML you can use classes,
attributes, associations, states, actions, and so on, because in the metamodel of UML
there are elements that define what is a class, attribute, association, and so on. If
the metaclass Interface was not included in the UML metamodel, a modeler could not
define an interface in a UML model.

Figure 4.1 Relation between model, modeling language and metalanguage

Because a metamodel is also a model, a metamodel itself must be written in a well-
defined language. This language is called a metalanguage.

Because a metalanguage is a language itself, it can be defined by a metamodel
written in another metalanguage. In theory there is an infinite number of layers of
model–language–metalanguage relationships. The standards defined by the OMG use
four layers, as explained in the next section.

4.1.2 The Four Modeling Layers of the OMG
The OMG uses a four-layered architecture for its standards. In OMG terminology
these layers are called M0, M1, M2, and M3 [4].

Layer M0: The Instances

At the M0 layer there is the running system in which the actual ("real") instances
exist. These instances may exist in various incarnations, such as data in a database,
or as an active object running in a computer.

While modeling a business and not software, the instances at the M0 layer are the
items in the business itself, for example, the actual people, the invoices, and the
products. While modeling software, the instances are the software representations of
the real world items, for example, the computerized version of the invoices or the
orders, the product information, and the personnel data.

STS – Technical University of Hamburg-Harburg (TUHH) 24

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Layer M1: The Model of the System

The M1 layer contains models, for example, a UML model of a software system. In
the M1 model, for instance, the concept Customer is defined, with the properties
name, street, and city.

There is a definite relationship between the M0 and M1 layers. The concepts at the
M1 layer are all categorizations or classifications of instances at the M0 layer.
Likewise, each element at the M0 layer is always an instance of an element at the M1
layer. Instances that do not adhere to their specification at the M1 layer are not
feasible.

Figure 4.2 The four modeling layers of the OMG

Layer M2: The Model of the Model

The elements that exist at the M1 layer (classes, attributes, and other model
elements) are themselves instances of classes at M2, the next higher layer. An
element at the M2 layer specifies the elements at the M1 layer. The same
relationship that is present between elements of layers M0 and M1, exists between
elements of M1 and M2.

The model that resides at the M2 layer is called a metamodel. In fact, the concepts
used at the M1 and M2 layers are identical. An M1 class defines instances at the M0
layer, an M2 class defines instances at the M1 layer.

Layer M3: The Model of M2

Along the same line, we can view an element at the M2 layer being an instance of an
element at yet another higher layer, the M3 or metameta layer. Again, the same
relationship that is present between elements of layers M0 and M1, and elements of
layers M1 and M2, exists between elements of M2 and M3. Every element at M2 is an

STS – Technical University of Hamburg-Harburg (TUHH) 25

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

instance of an M3 element, and every element at M3 categorizes M2 elements. Layer
M3 defines the concepts needed to reason about concepts from layer M2.

Within the OMG, the MOF is the standard M3 language. All modeling languages (like
UML, CWM, and so on) are instances of the MOF.

QVT (Query / Views / Transformations)

MOF QVT RFP (Request for Proposal) [4] is one of a series of RFPs related to
developing the next major revision of the OMG Meta Object Facility specification,
which will be referred to as MOF 2.0. Some of the RFPs pertain to specifying the
technology neutral MOF itself, while others pertain to mapping the MOF to specific
implementation technologies. MOF QVT RFP addresses a technology neutral part of
MOF and pertains to:

1. Queries on models.
2. Views on metamodels.
3. Transformations of models.

In summary, the intent of this proposal is, to address the need of a QVT form to be
used for standardization, and to establish an open standard, allowing the
combination of legacy tools, MOF based technologies, a variety of modeling
languages, and a large set of transformation modeling approaches, as well as
allowing an easy and wide accessibility.

STS – Technical University of Hamburg-Harburg (TUHH) 26

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

4.2 Metamodeling and Transformation
Within MDA we define languages through metamodels. On the other hand, the
transformation rules that constitute a transformation definition describes how a
model in a source language can be transformed into a model in a target language.
These rules use the metamodels of the source and target languages to define the
transformations.

Figure 4.3 [2] shows how the transformation and metamodeling works in MDA
framework.

Figure 4.3 The extended MDA framework, including the metalanguage

4.3 Model Transformation Categories
At the top level, model transformation can be categorized into model-to-code and
model-to-model transformation approaches. Transforming models to code is actually
a special case of model-to-model transformations; it would need only a metamodel
for the target model language. However, for practical reasons of reusing existing
technologies, model is often generated simply as text, which is then fed into an
existing system. For this reason, distinction is needed between model-to-code
transformation (also known as model-to-text) and model-to-model transformation.
Several tools offer both model-to-model and model-to-code transformations (e.g.
ATL [23], MTF [22]).

STS – Technical University of Hamburg-Harburg (TUHH) 27

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

When bridging large abstraction gaps between PIMs and PSMs, it is easier to
generate intermediate models rather than go straight to the target PSM. For
example, when going from a class diagram to an EJB implementation, tool would
generate an intermediate EJB component model, which contains all the necessary
information to produce the actual Java code from it. This makes the transformations
more modular and maintainable. Also, intermediate models may be needed for
optimization and tuning, or at least for debugging purposes. In addition to PIM-to-
PSM transformation, model-to-model transformations are useful for computing
different views of a system model and synchronizing between them, which is difficult
in case of model-to-text transformation.

4.4 Model Transformation Approaches
There are many approaches noticed to achieve model transformation described
above. Different MDA tools follow combination of approaches to achieve the
functionality. Some of the approaches are shortly described as follows [17]:

4.4.1 Visitor-Based Approaches
A very basic code generation approach consists in providing some visitor mechanism
to traverse the internal representation of a model and write code to a text stream.
Example of this approach is Jamda [8]. Jamda is an object-oriented framework
providing a set of classes to represent UML models, an API for manipulating models,
and a visitor mechanism (so called CodeWriters) to generate code. Jamda does not
support the MOF standard to define new metamodels; however, new model element
types can be introduced by subclassing the existing Java classes that represent the
predefined model element types.

4.4.2 Template-Based Approaches
Many of currently available MDA tools support template-based model-to-code
generation, e.g., openArchitectureWare (oAW) [6], FUUT-je [46], Codagen Architect
[39], AndroMDA [33], ArcStyler [37], OptimalJ [7][40] and XDE [12] (the later two
also provide model-to-model transformations). AndroMDA reuses existing open-
source template-based generation technology, namely Velocity [11] and Xdoclet
[34]. A template usually consists of the target text containing slices of metacode to
access information from the source and to perform code selection and iterative
expansion.

In short, the LHS uses executable logic to access source; the RHS combines untyped,
string patterns with executable logic for code selection and iterative expansion; and
there is no syntactic separation between the LHS and RHS. Template approaches
usually offer user-defined scheduling in the internal form of calling a template from
within another one. The LHS logic accessing the source model may have different
forms. The logic could be simply Java code accessing the API provided by the internal
representation of the source model (e.g., JMI [5]), or it could be declarative queries
(e.g., in OCL or Xpath [14]). The oAW Framework propagates the idea of separating
more complex source access logic (which might need to navigate and gather

STS – Technical University of Hamburg-Harburg (TUHH) 28

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

information from different places of the source model) from templates by moving
them into user-defined operations of the source-model elements.

Compared to a visitor-based transformation, the structure of a template resembles
more closely the code to be generated. Templates lend themselves to iterative
development as they can be easily derived from examples. Since the template
approaches operate on text, the patterns they contain are untyped and can represent
syntactically or semantically incorrect code fragments. On the other hand, textual
templates are independent of the target language and simplify the generation of any
textual artefacts, including documentation.

A related technology is frame processing, which extends templates with more
sophisticated adaptation and structuring mechanisms (Bassett’s frames, XVCL [16],
FPL [44], ANGIE [45]). FPL and ANGIE have been applied to generate code from
models.

4.4.3 Direct-Manipulation Approaches
These approaches offer an internal model representation plus some API to
manipulate it. It is usually implemented as an object-oriented framework, which may
also provide some minimal infrastructure to organize the transformations (e.g.,
abstract class for transformations). However, users have to implement
transformation rules and scheduling mostly from scratch using a programming
language such as Java. Examples of this approach include Jamda and implementing
transformations directly against some MOF-compliant API (e.g., JMI).

Direct manipulation is obviously the most low-level approach. It offers the user little
or no support or guidance in implementing transformations. Basically all work has to
be done by the user.

4.4.4 Relational Approaches
This category groups declarative approaches where the main concept is
mathematical relations. The basic idea is to state the source and target element type
of a relation and specify it using constraints. In its pure form, such specification is
non-executable. However, declarative constraints can be given executable semantic,
much like in the case of logic programming. All of the relational approaches are side-
effect-free. They often support backtracking and, in contrast to the imperative direct
manipulation approaches. Relational specifications can be interpreted bi-directionally.
Logic programming-based approaches also naturally support bi-directionality. But
some approaches fix the direction for executable transformations. Logic
programming-based approaches require strict separation between source and target
models (i.e., they do not allow in-place update).

Relational approaches seem to strike a well balance between flexibility and
declarative expression. They provide flexible scheduling and good control of
nondeterminism.

STS – Technical University of Hamburg-Harburg (TUHH) 29

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

4.4.5 Graph-Transformation-Based Approaches
This category of model transformation approaches draws on the theoretical work on
graph transformations [19]. In particular, these approaches operate on typed,
attributed, labelled graphs, which is a kind of graphs specifically designed to
represent UML-like models. Examples of graph-transformation approaches to model
transformation include ATOM [47], GreAT [48], UMLX [50], and BOTL [53].

Graph transformation rules consist of a LHS graph pattern and a RHS graph pattern.
The graph pattern can be rendered in the concrete syntax of its respective (source or
target) language or in the MOF abstract syntax. The former is preferred since for
complex syntaxes (like UML) the later may result in huge patterns even for relatively
small transformations. The LHS pattern is matched in the model being transformed
and replaced by the RHS pattern in place. The LHS often contains conditions in
additional to the LHS pattern (e.g., negative conditions). Some additional logic (e.g.,
in string and numeric domains) is needed in order to compute target attribute values
(such as element names). In most approaches, scheduling has external form and the
scheduling mechanisms include nondeterministic selection, explicit condition, and
iteration.

Graph-transformation-based approaches are inspired by heavily theoretical work in
graph transformations. These approaches are powerful and declarative, but also the
most complex ones. The complexity stems from the nondeterminism in scheduling
and application strategy, which require careful consideration of termination of the
transformation process and the rule application ordering (including the property of
confluence). There is a large amount of theoretical work and some experience with
research prototypes. However, experience with practical applications of these
approaches is still limited. It remains to be seen how well the complexities of these
approaches will be received in practice.

4.4.6 Structure-Driven Approaches
Approaches in this category have two distinct phases: the first phase is concerned
with creating the hierarchical structure of the target model, whereas the second
phase sets the attributes and references in the target. The overall framework
determines scheduling and application strategy; users are only concerned with
providing the transformation rules. An example of the structure-driven approach is
the model-to-model transformation framework provided by OptimalJ. The framework
is implemented in Java and provides so-called incremental copiers that users have to
subclass to define their own transformation rules. The basic metaphor is the idea of
copying model elements from the source to the target, which then can be varied to
achieve the desired transformation effect. The framework uses reflection to provide a
declarative interface. A transformation rule is implemented as a method with an
input parameter whose type determines the source type of the rule, and the method
returns a Java object representing the class of the target model element. Rules are
not allowed to have side effects and scheduling is completely determined by the
framework.

The structure-driven category groups pragmatic approaches that were developed in
the context of (and seem particularly well applicable to) certain kinds of applications
such as generating EJB implementations and database schemas from UML models.

STS – Technical University of Hamburg-Harburg (TUHH) 30

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

These applications require a strong support for transforming models with a 1-to-1
and 1-to-n (and sometimes n-to-1) correspondence between source and target
elements. Also, in this application context, there is typically no need for iteration
(and in particular fix pointing) in scheduling, and the scheduling can be system-
defined. It is unclear how well these approaches can support other kinds of
applications.

4.4.7 Hybrid Approaches
Hybrid approaches combine different techniques from the previous categories. The
Transformation Rule Language (TRL) [52] is a composition of declarative and
imperative approaches. It could be also classified in the relational category, but its
better to classify it separately because of its stronger imperative component. Similar
to QVT Proposal, it distinguishes between specification and implementation. A
mapping rule in TRL declares a relationship between source and target elements that
is constrained by a set of invariants. They are similar to relations and fit into the
relational category. Operational rules in TRL represent executable transformation
rules. In contrast to mapping rules, operational rules explicitly state whether a rule
creates, update, or deletes elements. Scheduling is explicit in internal form, where a
rule explicitly calls other rules in its body. Rule inheritance is supported. Rules can be
organized into modules (called units). Inheritance between modules (with overriding)
is also supported.

Rational XDE is an example of a highly hybrid approach. XDE supports model-to-
model transformation through its pattern mechanism. Patterns can be associated
with JSP-like code templates (so-called scriptlets) in order to perform model-to-code
transformation.

The Atlas Transformation Language (ATL) is also a hybrid approach, which has some
similarities to TRL. A transformation rule in ATL may be fully declarative, hybrid, or
fully imperative. The LHS of a fully declarative rule (so-called source pattern) consist
of a set of syntactically typed variables with an optional OCL constraint as a filter or
navigation logic. The RHS of a fully declarative rule (so-called target pattern)
contains a set of variables and some declarative logic to bind the values of the
attributes in the target elements. In a hybrid rule, the source and/or target pattern
are complemented with a block of imperative logic, which is run after the application
of the target pattern. A fully imperative rule (so-called procedure) has a name, a set
of formal parameters, and an imperative block, but no patterns. Rules are
unidirectional and support rule inheritance. ATL strictly separates source and target
models; however, in-place transformation can be simulated thanks to an automatic
copy mechanism. ATL provides both implicit and explicit scheduling. The implicit
scheduling algorithm starts with calling a rule that was designated as an entry point,
which may call further rules. After completing this first phase, it automatically checks
for matches on the source patterns and executes the corresponding rules. Finally, it
executes a designated exit point. Explicit, internal scheduling is supported by the
ability to call a rule from within the imperative block of another rule.

Hybrid approaches allow the user to mix and match different concepts and paradigms
depending on the application. Practical approaches are very likely to have the hybrid
character.

STS – Technical University of Hamburg-Harburg (TUHH) 31

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

4.4.8 EMF Ecore model based Approaches
In fact the approaches undertaken in this category can be described as one or more
of the above approaches, but because of the fact that EMF models are not the
extension of the OMG MOF models in any way, its better to consider as a different
approach.

The OMG MOF Model has influenced the design of the EMF Ecore model. The Ecore
model evolved in parallel with the MOF 1.4 model. Implementation experience in
integrating a number of tools led to an optimized implementation (focused on tool
integration as opposed to the original MOF focus of metadata repositories) that uses
a subset of the modeling concepts in MOF 1.4. For example, Ecore does not support
‘first class’ Associations. Associations are mapped to a pair of Ecore References. To
minimize confusion.

One of the key goals of EMF is to use simple visual models to allow easy integration
of Java and XML tools. To accomplish this one can use UML class models as input to
the EMF framework. This model is then used to drive Java interface and
implementation generation for EMF instances. These java interfaces define a
consistent programming model for tools built using EMF. The same EMF model is also
used to generate the XML serialization (XMI 2.0 format) for EMF instances.
Essentially EMF supports the key MDA concept of using models as input to
development and integration tools which produce multiple programming language
(Java in the case of Eclipse EMF itself) or data interchange format (XML)
representations. The code generation or XML serialization is ‘driven’ from the same
model.

As part of its involvement in the QVT standardization, IBM has developed a prototype
model transformation toolkit, MTF. MTF implements some of the QVT concepts and is
based on the EMF. It provides a simple declarative language for defining mappings
between models, along with a transformation engine that can interpret mapping
definitions in order to perform transformations. The aim of MTF is to simplify ability
to develop transformation tools by supporting incremental update, round-tripping,
reconciliation, and traceability.

An MTF transformation results in a set of mappings that relate objects among
different models; Transformations in MTF are defined in a declarative way: you
specify a set of relations between model classes, and then let the MTF engine
perform the transformation actions using these relations as input. The transformation
engine proceeds in two stages called mapping and reconciliation. During the mapping
stage, it evaluates the relations and generates mappings by iterating through the
relevant model instances. At the end of this stage, some mappings may be
inconsistent with respect to the relation. In other words, not all the imposed
constraints of the relation are satisfied.

Reconciliation tries to satisfy the relations by creating missing elements, modifying
existing elements, or deleting elements. In some cases, reconciliation may not be
needed (when the models are already consistent, or if you only want to check the
consistency of models without changing them).

Similar to a rule-based system, it is possible to invoke one relation from another, and
propagate the execution of the mapping to related model classes. This mechanism is
called correspondence and allows MTF to traverse a whole model by applying all the

STS – Technical University of Hamburg-Harburg (TUHH) 32

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

correspondences reachable (directly or transitively) from the top-level relation.
Relations are expressed in a language called the Relation Definition Language (RDL).
MTF is intended specifically for transforming Eclipse modeling Framework models,
although you can work with other Java object models by using the MTF model
extension mechanism to create EMF wrappers and also supports generation of text
via an EMF model of document templates. MTF supports extensions and custom
constraints, which allow one to extend the MTF mapping definition language. MTF is
based on recording mappings between elements. Mappings may be persisted, re-
loaded, and used for reconciling changes, and they can accessed from your own
code. But the only restriction is: MTF is useful and simple to use only in the case of
EMF Ecore Model transformation and not others like OMG MOF.

4.4.9 Other Model-To-Model Approaches
At least two more approaches [2] should be mentioned for completeness: the
transformation framework defined in the OMG’s Common Warehouse Metamodel
(CWM) Specification and transformation implemented using XSLT.

The CWM transformation framework provides a mechanism for linking source and
target elements, but the derivation of the target elements has to be implemented in
some concrete language, which is not prescribed by CWM. Effectively, CWM gives a
general model, but no actual mechanism to implement model transformations.

Since models can be serialized as XML using the XML Metadata Interchange (XMI),
implementing model transformations using XSLT, which is a standard technology for
transforming XML, seems very attractive. Unfortunately, this approach has severe
scalability limitations. Manual implementation of model transformations in XSLT
quickly leads to non maintainable implementations because of the verbosity and poor
readability of XMI and XSLT. A solution to overcome this problem is to generate the
XSLT rules from some more declarative rule descriptions. However, even this
approach suffers from poor efficiency because the copying required by the pass-by-
value semantics of XSLT and the poor compactness of XMI.

Following is the result [18] of comparing four main kinds of transformation
approaches:

Figure 4.4 Comparison of four main kinds of transformation approaches

STS – Technical University of Hamburg-Harburg (TUHH) 33

Effort to use

Power
Visitors

Templates

Graph rewritingQVT

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

4.5 ATLAS Transformation Language

4.5.1 Introduction
ATL is the ATLAS INRIA & LINA research group answer to the OMG MOF/QVT RFP. It
is a metamodel-based transformation DSL (Domain Specific Language). The scope of
ATL is however not limited to the OMG set of recommendations as the intention is to
cover other technical spaces as well. It is a model transformation language specified
both as a metamodel and as a textual concrete syntax. It is a hybrid of declarative
and imperative. The preferred style of transformation writing is declarative, which
means simple mappings can be expressed simply. However, imperative constructs
are provided so that some mappings too complex to be declaratively handled can still
be specified. Once complex mappings patterns are identified, declarative constructs
can be added to ATL in order to simplify transformation writing.

An ATL transformation program is composed of rules that define how source model
elements are matched and navigated to create and initialize the elements of the
target models. A program in ATL is considered as a model, taking a model as input
and producing a model as output. Multiple input and output parameters are
supported as well.

The work on ATL is a collaboration between the University of Nantes and INRIA and
initially with TNI company. ATL has been chosen as the model transformation
technology for the "ModelWare" IST European project in collaboration with SINTEF
(Norway). It is currently being used by several research groups working in different
domains and also for teaching.

4.5.2 The ATL execution engine architecture
A model-transformation-oriented virtual machine has been defined and implemented
to provide execution support for ATL while maintaining a certain level of flexibility. As
a matter of fact, ATL becomes executable simply because a specific transformation
from its metamodel to the virtual machine bytecode exists. Extending ATL is
therefore mainly a matter of specifying the new language features execution
semantics in terms of simple instructions: basic actions on models (elements
creations and properties assignments).

This flexibility is important for two main reasons: ATL will need to be aligned with the
QVT standard when it is adopted in 2005 and, as a research project, it can this way
easily benefit from newly defined features. In the same way the Java Virtual Machine
(JVM) instruction set can directly deal with objects, the ATL Transformation Virtual
Machine (TVM) directly handles model elements. The present prototype version is a
stack machine with less than twenty instructions. It is built on top of a Java-based
model repository abstraction layer, which is the key to the current version’s lower
level adaptability.

Lower level adaptability of ATL has already been proven by porting the engine from
the Sun MDR/NetBeans to the Eclipse/EMF environment. Taking into account other

STS – Technical University of Hamburg-Harburg (TUHH) 34

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

underlying platforms should not be a big challenge. This means that ATL may be
easily integrated in various open MDD platforms.

4.5.3 Available developing tools for ATL
An IDE has been developed for ATL on top of Eclipse: ATL Development Tools (ADT).
It uses EMF, the Eclipse Modeling Framework, to handle models: to serialize and
deserialize them, to navigate and to modify them. A specific code editor, including
syntax highlighting and an outline view of the program, is implemented as a
convenience.

This IDE also includes a specific ATL extension of the Eclipse debugging framework
enabling source-level debugging of transformation programs. Single step, step over
and breakpoints support makes it possible for the developer to precisely control the
execution of the transformation program being written. When the execution is
suspended, it is possible to navigate into source and target models from the current
context as well as into user-defined variables. ADT is about to be released as part of
the Eclipse GMT project under the EPL (Eclipse Public License).

STS – Technical University of Hamburg-Harburg (TUHH) 35

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

5 CxPT – A matured MDA tool prototype

5.1 CxPT - CORYX Platform Technology
CxPT is a Framework, which makes a fast development possible of enterprise
applications. The platform is based on the criteria of the Model Driven Architecture
(MDA) and uses the consistent separation of the Business logic from architectural
details. Automatic code generators support the fast development of enterprise
applications on a large scale. The majority of the experts assumes such beginnings
will considerably determine the future of the software development. The CxPT
converts these beginnings for the development of applications of business to basis of
J2EE innovatively. The application developers do not have to control the complex
technical concepts of the J2EE platform. The data structures and other system
specification are defined in XML and the application logic is programmed in Java. A
generator takes over then the production of the necessary J2EE artifacts as well as all
model classes, Registries and Metaobjects necessary for application programming.

Figure 5.1 Basic concept of the CxPT

5.1.1 CxPT Framework
The CxPT is to serve business processes, which include business practices on the
server side in business services. It lets the Clients or the services communicate by
models. This communication is completely transparent for the participants. The
Client uses Business Delegate Objects for inquiries to the services. On the server side
the services communicate directly with one another - without delegation overhead.

STS – Technical University of Hamburg-Harburg (TUHH) 36

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

On the other hand, service Locator and storage mechanism (persistance objects) for
business services are not visible to the developers. For the fast use of the
middleware technology represented above the platform has a GUI package which is
based on Swing. Its most important characteristics are the illustration of the model
into the user interface control, making complex basis functionalities, standardized
dialogue types available, user Experience of element and panel Technology, report
engine and Action set interpreter.

Figure 5.2 Enterprise system architecture generated by CxPT

The functional requirements are described best by applications (use cases), which
will help to identify well isolatable and clear functions. These functions can be
grouped and different views (e.g. similar functions; Functions, on the same
participant or on a workflow etc.) and to services can also be aggregated. The
services are put to the client disposal, without he knows something about their
contents.

Models represent the static entities of application, which is combined by the business
entities according to the requirements of application. The services represent the
dynamic functions of application. The models are Java objects. They are collected by
the business and domain entities with the help of the middleware and transferred by
a business service method to the client. The client shows the model on the user level
and permits it to modify it. Subsequently, it is back handed over another method of
same service to the middleware. These steps can be repeated more arbitarily, in
order to realize an entire workflow. The services are disposed to the client by the
business objects, which works like a proxy and which make possible location-
transparent remote access including fail over and load balancing.

STS – Technical University of Hamburg-Harburg (TUHH) 37

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

5.1.2 Structure of the generated service artefacts
In this part some information about how the source code is structured within services
is given. The example in the following illustration shows a service, which is
responsible for the treatment of customized data.

Figure 5.3 Generated service structure (java file listing)

STS – Technical University of Hamburg-Harburg (TUHH) 38

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The developers must provide a file "service.xml", in which he name the Business
services, model information based on database tables, identification of the user
interface, data access mechanism and transfer requirements. It requires to write the
business methods in Java. In this case the method will work on the specified models.
Then through calls of the Generator tool all other objects are generated
automatically. That means, all models and model descriptor objects are written into
the model sublist as seen in the Figure. (note: a model descriptor is an object, which
describes the fields of the model, e.g. the maximum length of a string or the
accuracy or attributes of numeric fields etc.). Under the po sublists persistable object
classes are generated, which used as a transfer objects while reading from or writing
into a relational database and/or into another storage medium such as XML or OO
databases, implemented in the CxPT generator). Into the bo sublist the business
objects for the Client are generated. With the help of this object the client
communicates with the server. In the ejb and cfg sublists the J2EE platform-specific
classes are generated. In the res sublist language dependant label and error/warning
messages are managed.

An example service.xml can be seen as below:

STS – Technical University of Hamburg-Harburg (TUHH) 39

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Now after understanding about service generator and business logic definition the
point is how to assist them in a project more efficiently. The file "application.xml" is
of central importance, which is provided only once for a project. Therein all necessary
data objects including data source are defined for the support of the business logic,
and also mention required "services" - in XML notation. Each business service is
defined and described in separate "service.xml". The individual services are
referenced in "application.xml" and assigned to the project. From this file, other
"application.xml" files can also be referenced.

A snippet of an example application.xml can be seen as follows:

5.1.3 Benefits
With the employment of the Coryx Platform Technology, EJB related objects, which
make the business logic and the data base access possible, are hidden and must be
called only over methods. Whether the platform uses Enterprise Java Beans or other
methods, is perfectly uninteresting. The interfaces for the access always remain the

STS – Technical University of Hamburg-Harburg (TUHH) 40

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

same. The software developer does not notice therefore a possible change of this
technology. This independence from future technological change, the fact that a
frontend programmer does not have to know the functionality of components being
under it, are advantages with the employment of the CxPT.

It is no matter, which data base management system is used, Informix, Oracle or
MySQL, object-oriented or relational DBMS, Web services, file systems, mixed
applications or the parallel access Enterprise integration of systems e.g. on SAP/R3.
A conversion is possible also in the future at small expenditure - and thereby, the
Business logic remain untouched. With the GUI programmed in Java, the application
is independent of the operating system.

The developer has more time for the realization of the technical requirements, since
the manual tasks of programming can be reduced. Work procedures can be saved
and the development of the software be accelerated.

Productivity rises substantially: One does not have to write the J2EE-specific code.
One does not have to look for J2EE-specific error (that can be quite difficult to solve,
if one has little experience). The J2EE training expenditure can be avoided for CxPT
which requires substantially smaller !

INTEGRATION: The software system provided with the MDA and the CxPT has a
higher measure of interoperability, i.e. the exchange of information in heterogeneous
systems is facilitated by the generation of suitable interfaces.

MAINTENANCE: The higher quality of the automatically produced source code
facilitates the maintenance work. It generates the code based on number of design
patterns available.

STANDARDISATION: The components are standardized and coupled loosely with
one another. They can be more flexibly used thereby and built up for new software.

EXPANDABILITY: The business process can be extended at small expenditure by
new functionalities.

USER FRIENDLINESS: Pre-defined dialogue elements (filter, report...) improve the
operability of the software.

INVESTMENT SECURITY: The concentration on the Design models, which are basis
for the generation, leads to an completely documented and clearly structured
architecture. The investment security of customers increases.

5.1.4 Missing Links
There are some missing links in CxPT as an matured MDA tool. Links where
consistency must be checked at the PIM level and then application of transformation
rules to transform PIM to PSM, which then can be used to generate J2EE based
middleware solution as before in CxPT. Filling this gap will make CxPT more
consistent, time effective, more maintenable and stable in development of its
solutions.

STS – Technical University of Hamburg-Harburg (TUHH) 41

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The eXtensible Markup Language (XML) has gained acceptance as a configuration
and specification language for different software artefacts. It is also used as a
mechanism for bridging data heterogeneity problems. XML has simplified the creation
of domain-specific markup languages. It is accomplished by a set of powerful
technologies like Xpath which supports the selection of sets of elements from XML
documents by standardising a language for paths in trees. XLink is the linking
language for XML. An XLink consists of a set of locators which identify the resources
connected by the link. XLink greatly improves the linking facilities available for
hypertext authors over those available in HTML anchors: it can link more than two
documents, links do not have to be inside the documents being linked and link
traversal behaviour can be specified. When combined with a language like Xpath,
XLink can be used at a fine-grain level to relate elements rather than simple
documents.

So constraint based consistency checking of xml documents are becoming an area of
concern.

Schematron enables the specification of assertions about the structure of documents
and uses XSLT to evaluate the assertions. Schematron is a widely used, lightweight
approach to semantic document validation. It does however not posses the
expressive power of the language since, by using pure XPath expressions, it
essentially builds on a boolean logic. It also does not provide support for checking
inter-document relationships and does not eases the task of finding out the cause of
broken constraints.

Xlinkit leverages open standards such as XML, Xlink and Xpath in order to bridge
heterogenety problems and allow internet scale distribution of development
activities. Xlinkit enables checking simple consistency relationships of elements in
XML documents, and the formal specification of a semantics also enables the
generation of hyperlinks between inconsistent elements.

The Object Constraint Language can be used to specify static constraints specifically
on UML based models. OCL is more expressive than xlinkit, allowing the definition of
functions and permitting the use of infinite sets such as the integers in constraints.

5.1.5 Impose constraints on CxPT specification
It would be better that CxPT xml specification files (application.xml and service.xml)
metamodeled in uml and then ocl constraints can be imposed on the instances later
on using any of the tools supporting ocl. I will use Octopus tool for the same purpose
to demostrate the prototype solution.

Currently CxPT xml specification files are metamodeled by XSD files, will be used
now to metamodel uml specification. For better uml metamodeling its better not to
make it automatised and use heuristics instead. Following is the snippets of uml
metamodel in OctopusUML's syntactic format derived from application.xml.

STS – Technical University of Hamburg-Harburg (TUHH) 42

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Example part of application.xml to be converted into uml:
<xs:element name="application">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="namespace" type="xs:string"/>
 <xs:element name="data-sources" type="DataSourcesType" . . ./>
 ...
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>
<xs:complexType name="DataSourcesType">
 <xs:sequence>
 <xs:element name="jdbc-data-source" type="JdbcDataSourceType" . ./>
 <xs:element name="hibernate-datasource" type="HiberDatasourceType"/>
 <xs:element name="jdo-datasource" type="JdoDatasourceType" . . ./>
 <xs:element name="generic-ra-datasource" type="GenRaDsourceType"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="JdbcDataSourceType">
 <xs:sequence>
 <xs:element name="namespace" type="xs:string"/>
 <xs:element name="persistable-objects" type="PObjectsType" . . ./>
 <xs:element name="table-registry" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="HibernateDatasourceType">
 <xs:sequence>
 <xs:element name="mapping" type="xs:string" . . ./>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="JdoDatasourceType">
 <xs:sequence>
 <xs:element name="mapping" type="MappingType" . . ./>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="GenericRaDatasourceType">
 <xs:sequence>
 <xs:element name="data-access-object" type="xs:string" . . ./>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="PObjectsType">
 <xs:sequence>
 <xs:element name="persistable-object" type="PObjectType" . . ./>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PObjectType">
 <xs:attribute name="name" type="NameType" use="required"/>
 <xs:attribute name="table" type="xs:string" use="required"/>
</xs:complexType>

STS – Technical University of Hamburg-Harburg (TUHH) 43

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Derived uml specification from the above xml schema:

<package> application
 + <class> Application
<attributes>
 + name: String;
 + path: String;
 + namespace: String;
 + serviceNamespace: String;
<endclass>
+ <abstract><class> DataSource
<attributes>
 + name: String;
<endclass>
 + <class> JdbcDataSource <specializes> DataSource
<attributes>
 + namespace: String;
 + tableRegistry: String;
<endclass>
 + <class> HibernateDataSource <specializes> DataSource
<attributes>
 + mapping: String;
<endclass>
 + <class> JdoDataSource <specializes> DataSource
<attributes>
 + mapping: String;
<endclass>
 + <class> GenericRaDataSource <specializes> DataSource
<attributes>
 + dataAccessObjectName: String;
<endclass>
. . .
 + <class> PersistableObject
<attributes>
 + name: String;
 + table: String;
<endclass>
. . .
<associations>
 - Application.application [1..1] -> + DataSource.dataSources [0..*];
 - JdbcDataSource.jdbcDataSource [1..1] -> +

 PersistableObject.persistableObjects [1..*];

 . . .
<endpackage>

STS – Technical University of Hamburg-Harburg (TUHH) 44

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

As application.xml aggregates many service.xmls we dont need separate metamodel
for service.xml we can incorporate that into the single metamodel in a following way:

+ <class> Service
<attributes>
 + location: String;
 + name: String;
 + serviceType: ServiceType;
<endclass>
+ <enumeration> ServiceType
<values>
 Stateless;
 Stateful;
<endenumeration>
. . .

<associations>
 - Application.application [1..1] <-> + Service.services [1..*] ;

And then it will be the responsibility of transformation to produce separate xml
instances.

In Octopus apart from defining uml metamodel, ocl constraints can be defined in
separate .ocl files.

context Application
-- application name must not be blank
inv application_name_must_not_be_blank:

self.name.size() > 0
-- application path must not be blank
inv application_path_must_not_be_blank:

self.path.size() > 0
-- application namespace must not be blank
inv application_namespace_must_not_be_blank:

self.namespace.size() > 0
-- application service namespace must not be blank
inv application_service_namespace_must_not_be_blank:

self.serviceNamespace.size() > 0
-- application name must be unique
inv application_name_must_be_unique_in_all_applications:

allInstances()->select(name=self.name)->size() = 1
-- datasource name must be unique locally to the application
inv datasource_name_must_be_unique_locally_to_application:

dataSources->collect(e | e.name)->size() = dataSources->collect(e
| e.name)->asSet()->size()

STS – Technical University of Hamburg-Harburg (TUHH) 45

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

-- referenced external service name must be unique locally to the
application
inv
referenced_external_service_name_must_be_unique_locally_to_application:

refExtServices->collect(e | e.name)->size() = refExtServices-
>collect(e | e.name)->asSet()->size()
-- service name must be unique locally to the application
inv service_name_must_be_unique_locally_to_application:

services->collect(e | e.name)->size() = services->collect(e |
e.name)->asSet()->size()
-- external applications name must be unique locally to the application
inv external_application_name_must_be_unique_locally_to_application:

extApplications->collect(e | e.name)->size() = extApplications-
>collect(e | e.name)->asSet()->size()

complex invariants can be defined in ocl in simple way, few of them are as follows.

context Service
. . .
-- referenced service must not refer self
inv referenced_service_must_not_refer_self:

refServices->collect(e | e.name)->size() = refServices->collect(e
| e.name)->excluding(self.name)->size()
-- reference enumeration of own service not needed
inv reference_enumeration_of_own_service_not_needed:

refEnumerations->forAll(e:ReferenceEnumeration |
e.refService.name <> self.name)
-- dataAccessObject must refer to the datasource from the owned
application
inv
dataAccessObject_must_refer_to_the_datasource_from_the_owned_applicatio
n:

dataAccessObjects->forAll(dao:DataAccessObject |
application.dataSources->collect(e | e.name)-
>includes(dao.dataSource.name))

XMI Import

Octopus also allows developers to import existing UML model developed in UML
based tool like Poseidon into OctopusUML models using xmiimport plugin module.
The XMI Import module is based on a set of XSL stylesheets for conversion of an UML
XMI file to a set of Octopus UML files. It utilizes the eXtensible Stylesheet Language
Transformation (XSLT) technology.

Limitations

There are some limitations to be consider before using xmi import in Octopus:
● Octopus only allows packages as top level UML modelelement, no other

modelelements are allowed (such as classes).

STS – Technical University of Hamburg-Harburg (TUHH) 46

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

● Octopus does not support 'package' visibility.

● Octopus does not support sequences of multiplicity ranges, such as [1..3,4..6].

● Since Octopus is an OCL tool, it only has the following basic predefined primitive
types: Integer, Real, Boolean, String and OclVoid. However, Octopus allows the
user to provide a mapping (using the typeconversions.properties file).

Octopus is able to create Java code from the UML model. Optionally, code
implementing the OCL expressions is generated as well. The Java code generated by
Octopus complies with Java 1.4. One may customize the code generation process by
selecting or deselecting the options given in the project properties for Octopus Code
Generation. Typically octopus generates 3 tiers of java code: the middle tier, storage
layer and user interface tier.

The Middle tier

Ocl expressions

● Invariants: For each invariant a public method that checks the invariant is
created. This method is called invariant_X, where X is the name of the invariant,
or when the name is not given, X is the name of the class postfixed with a unique
number. If the check fails an InvariantException is thrown. As a convenience an
method is generated that checks all invariants of the class. This is called
checkAllInvariants. It returns a list of InvariantError objects. The user of the
generated code is free to check invariants whenever it is appropriate.

● Initial Values and Derivation Rules: OCL expressions that denote initial values
of either an attribute, or association end, are implemented in the constructor(s) of
the class. If the attribute or association end is static the initial value will be part of
the declaration of the corresponding Java field. A derivation rule is transformed
into a get method for the attribute or association end for which the rule was
defined. Note that there will be no set method, nor field for a derived feature.

● Bodies, Pre and Post conditions: A precondition will be transformed into an
assert statement. Postconditions are not transformed into code. A body expression
will, of course, be transformed into the body of the method.

● OCL Defined attributes and operations: Operations defined by an OCL (def)
expression are implemented in the same manner as other operations. Its
expression will be implemented as body expression. Attributes defined by an OCL
(def) expression are implemented as attributes with a derivation rule. There will
be a get method only, no field or set method.

● Any incorrect ocl expression will simply be ignored.

Association Multiplicities

The multiplicity check is implemented in a separate method called checkMultiplicities,
that can be called whenever it is appropriate to check the multiplicities of an object.

STS – Technical University of Hamburg-Harburg (TUHH) 47

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Other convenience methods

The following convenience methods can be generated by Octopus (ClassName stands
for the name of the class in which these methods are generated):

• public ClassName getCopy(),
• public void copyInfoInto(ClassName copy),
• public String getIdString(),
• public String toString(),
• public Collection allInstances().

Generation of Visitor interfaces

Octopus is able to generate two kinds of visitor interfaces. The first visitor interface is
able to visit every class in the project. This interface is named using the project
name: I<projectname>Visitor. In every class an accept operation will be added that
ensures that every attribute or association end in the instances of the class will also
be visited. Note that some objects may therefore be visited more than once.

The second type of visitor interface is dedicated to visiting a certain class, its parts,
and its subclasses. Only true parts are visited by visitors of this type.

The user may indicate the class for which to generate visitor interfaces of the second
type in the special 'Visitors' tab in the properties page. Visitor interfaces of this type
are named using the class name: I<classname>Visitor. All visitor interfaces will be
placed in the utilities package.

None of the generated visitor interfaces will visit instances of association classes.
Instances at both sides of the association, however, will be visited. One has to decide
at what end of the association responsible to handle the instance of the association
class, and implement this in the visit operation of the class on that end.
Generation of Interfaces and 'internal' Package

Octopus is able to generate a facade of interfaces for the UML model. For each class
in a UML package, a Java interface in the corresponding Java package is generated. A
new Java sub package, called internal, is created as well. This sub package contains
the implementations of all the interfaces in the package.

In Two-way Navigable Associations is explained that for some associations two extra
methods are created named z_internalAddToX, and z_internalRemoveFromX, where
X is the name of the association end. The facade interface will not contain these
methods, but it will contain the addToX, and removeFromX methods.

Using this option together with Post Generation Editing

Note that this option may be used together with the option to generate separate
classes for post generation editing. In that case a package P that contains classes Aa
and Bb will be transformed into a Java package P that contains interfaces IAa and
IBb and a subpackage called internal. The internal package contains the empty
placeholders for extra methods and fields called A and B and a subpackage called
generated. The generated package contains the classes that hold the generated code.
They are called AaGEN and BbGEN.

STS – Technical University of Hamburg-Harburg (TUHH) 48

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Generating User Interface

Within octopus it is possible to generate a user interface as a proof of concept
(because it works only for small and less complex models). The user interface can be
generated for plugin projects only.

The Navigator view

The application starts with the Navigator view opened. From the Navigator view new
instances may be created and existing instances may be explored. In it all instances
are sorted according to their class. Only classes that were selected in the project
properties are included. Double clicking on one of the class names will refresh the
Navigator view. An example of the navigator view is shown in the figure below.

STS – Technical University of Hamburg-Harburg (TUHH) 49

Figure 5.4 Navigator view

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

One may create a new instance of a certain class by using the context menu on the
class name. Double clicking in the Navigator View on one of the instances will open
an object detail window. For example Application object view can be viewed as
follows:

Figure 5.5 Object detail view

In the right upper corner of the Object Detail View there are two buttons:

• Check Invariants (on the left): checks all of the OCL invariants from the UML
model for this object. The result is a new window showing all broken
invariants.

• Check Multiplicities (on the right): checks all of the multiplicities from the UML
model for this object.

STS – Technical University of Hamburg-Harburg (TUHH) 50

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

The Actions in the toolbar

In the toolbar one will find three buttons. The left button opens an XML file in which
instances of this model are stored. The middle button saves the current instacnes to
file. The third button performs the Check Invariants and Check Multiplicities actions
on all instances in the system. And all broken invariants and association multiplicity
violations will be reported in a invariants view. Example can be seen in a following
figure 5.6:

Figure 5.6 Broken invariants view

Using invariants view objects which are violating invariants can be navigated easily
and corrected in the object detail view then.

XMLStorage

By default octopus will generate xml storage layer (consists XMLReader and
XMLWriter) so that it can store the created objects in a xml format. Storage related
code generated under xmlstorage package. Octopus persists all xml data according
to octopus-storage.xsd shema file:

<xs:schema . . .>
 <!-- storage ::= instance* -->
 <xs:element name="storageRoot">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="instance" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute ref="project" use="required"/>
 <xs:attribute ref="createdOn"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="instance">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="assocclass" . . ./>
 <xs:element ref="attribute" . . ./>
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 <xs:attribute ref="class"/>
 </xs:complexType>
 </xs:element>

. . .

STS – Technical University of Hamburg-Harburg (TUHH) 51

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Following is the snippet of the xml file produced by octopus which conforms to above
schema file:

Output.xml

 <?xml version="1.0" encoding="UTF-8" ?>
- <storageRoot xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://c:/eclipse4DAwork/plugins/com.k
lasse.octopus.codegen_2.0.0/octopus-storage.xsd"
project="octoAppTester" createdOn=" . . .">
- <instance id="id1" class="application.Application">

 <attribute name="name" value="sbs" />
 <attribute name="path" value="sbs" />

 <attribute name="namespace" value="sbs" />
 <attribute name="serviceNamespace" value="sbs" />
 </instance>
 . . .

. . .

As this is octopus specific format can only be read by octopus, and for better
integration with other tools with octopus it needs to produce a model based on a
standard metamodel. Model based on some metamodel like this can be transformed
to any other required format based on other metamodel or text based models (e.g.
XML, HTML etc.). XML.ecore is a ecore metamodel for xml and can be seen as
follows:

STS – Technical University of Hamburg-Harburg (TUHH) 52

file:///C:OctoWSxslJdataocto_xml.xml#%23
file:///C:OctoWSxslJdataocto_xml.xml#%23

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

5.1.6 Integrating ATL with Octopus
The Atlas Transformation Language (ATL) is a hybrid language (a mix of declarative
and imperative constructions) designed to express model transformations as required
by the MDA. A transformation model in ATL is expressed as a set of transformation
rules. The recommended style of programming is declarative. Transformations from
Platform Independent Models (PIMs) to Platform Specific Models (PSMs) can be
written in ATL to implement the MDA.

A prototype transformation engine, named ATL v0.1, has been developed to validate
some of the ideas included in the language. every model and metamodel needed
(typically: input model plus input and output meta-models) is read from its XMI /
Ecore definition. The transformation is then executed, rule after rule and the
resulting model is eventually serialized to an XMI / text file. ATL also support user to
query a view over any model using special OCL Query module.

Eclipse is going to be used as an IDE for ATL, with advanced code edition features
(syntax highlighting, auto-completion, etc.). ATL will provide a context in which
transformation-based MDA tools can be designed and implemented for Eclipse.

Now we will see how can we use output from Octopus to transform into the desired
PSM, which will be CORYX Platform specific xml based specification here, using ATL.

now the generated output.xml cant be used directly in ATL, because we need to
specify xml metamodel in ecore or xmi form. And that would be XML.ecore as seen
before.

So a desired example octopus output model for the metamodel XML.ecore would be
as follows.

STS – Technical University of Hamburg-Harburg (TUHH) 53

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Desired example octopus output model

The first dirty way to achieve this desired output is to directly modify the
src/xmlstorage/..write.java and make it write a proper format as you require. But
that will create a problem when you regenerate the java code, well then one will
think I would better write my own writer and use that writer from the generated
class, that would be slightly better but then when you change your .uml model in
octopus and regenerate the java code your writer class has to be modified manually
to match the new model. There are many ways to solve this problem, and I have one
to show here:

Whatever uml model you use to generate java code in octopus, the resulted output
stored by the octopus will always conform to octopus-storage.xsd, and you always
need to convert that to match the general xml metamodel given above in the xmi. So
a simple xslt transformation will do the job here, because we don’t need any heavy

STS – Technical University of Hamburg-Harburg (TUHH) 54

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

or complex transformations, we can use xslt for normal xml2xmi or xml2ecore
conversion.

Partial listing of the xslt solution

This will work to convert octopus output to desired .xmi or .ecore format which will
be a valid model of the XML.ecore metamodel. This transformation enables octopus
to integrate with any transformation tool easily and so eases octopus' further
extensions and/or integration with other software frameworks.

STS – Technical University of Hamburg-Harburg (TUHH) 55

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Now to automize this conversion, when you are done with generation of java code in
octopus just add a line of code in src/xmlstorage/..writer.java/write(..) as follows:

public void write(File output) {
 Map map = allocateIDs();
 List allElements = storeInstances(map);
 writeDoc(output, allElements);
 org.apache.xalan.xslt.Process.main(
 new String[]
 {"-IN", "octopus out file name",
 "-XSL", "xsl file name",
 "-OUT", "desired out file name with extension .xmi/.ecore"});
}

or one can also do this conversion before applying ATL rules, so that one don’t even
need to change any auto generated file.

Now that we have xml model based on Ecore metamodel we can apply
transformation rules using transformation language, I chose ATL for the purpose.
One of the advanced feature from ATL will be used here: ATL Query to generate text.

5.1.7 ATL Queries and Generation of Text

Queries for service.xmls

STS – Technical University of Hamburg-Harburg (TUHH) 56

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Above is the ATL Query snippet which will generate set of service.xml which will be
then integrated using application.xml which will be generated by another query;
snippet of which can be seen as follows:

After generating xml specification files for CxPT now those can be directed to CxPT as
input and then can be generated software artefacts as before.

The whole solution prototype can be visualized as follows:

Figure 5.7 Extended CxPT Prototype

But as you can see Octopus persist xml instances based on octopus-storage.xsd
which is weakly typed, meaning all instances are stored with same xml elements and
it would be better if it could persist instances valid to schema which is derived from
uml metamodel. XML instances then can also be checked for inconsistencies using
Xqueries which could be derived from OCL constraints. Details for this approach to
extend Octopus can be seen in following chapter.

STS – Technical University of Hamburg-Harburg (TUHH) 57

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

6 Extending Octopus
6.1 OctopusUML to XSD transformation

The rubber meets the road when using UML in the development of XML schemas. A
primary goal of this mapping is to allow sufficient flexibility to encompass most
schema design requirements, while retaining a smooth transition from the conceptual
vocabulary model to its detailed design and generation. A related goal is to allow a
valid XML schema to be automatically generated from any UML class diagram
[54,55,56,57], even if the modeler has no familiarity with the XML schema syntax.
Having this ability enables a rapid development process and supports reuse of the
model vocabularies in several different deployment languages or environments,
because the core model is not overly specialized to XML structure.

The same mapping from UML to XML schema can be reversed to support reverse
engineering XML schemas into UML. There are several different strategies for
implementing this mapping into UML. For example, the model might reflect a
hierarchical structure similar to the XML parent/child relationships, or the mapping
might emphasize a conceptual, object-oriented structure in UML. The description on
the mapping from UML to XML schema is not the intent of this document.

Another purpose of this mapping being implemented is to extend Octopus tool to
serialize xml instances in strong typed way instead of weak typed as it is now. Strong
typed and weak typed xml snippet can be seen as follows:

Weak typed XML instance

Strong typed XML instance

STS – Technical University of Hamburg-Harburg (TUHH) 58

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

To achieve this strong typed support, XMLReader and XMLWriter will also be needed
as a proof of concept to support new schema definition, implementation of which will
be in the end of this chapter.

Octopus offers two important functionalities:

● Octopus is able to statically check OCL expressions. It checks the syntax, as well
as the expression types, and the correct use of model elements like association
roles and attributes.

● Octopus is able to transform the UML model, including the OCL expressions, into
Java code.

Octopus is able to generate a complete 3-tier prototype application from your
UML/OCL model.

● The middle tier consists of plain old Java objects (POJOs). These POJOs include
code for checking invariants and multiplicities from the model.

● The storage tier consists of an XML reader and writer dedicated to your UML/OCL
model. It stores any data content in your prototype application in an XML file, and
can also read back in. All instances are stored in a weak typed way in the XML file
for now.

● The user interface tier consists of an implementation of a plug-in for the Eclipse
Rich Client Platform. From a Navigator view that shows you all instances in the
system, you are able to create and examine instances of your UML/OCL model. Of
course, the invariants or multiplicities of an instance can be checked by pushing a
single button.

Figure 6.1 Existing Octopus generated artefacts using weak typed XMLs

The remaining of this chapter is about the details on extending Octopus to transform
OctopusUML (.uml) to XML Schema XSD model, Which then can be extended further
to transform OCL expressions to XQueries to make it complete. The complete
extension can be visualized in figure 6.2.

STS – Technical University of Hamburg-Harburg (TUHH) 59

OctopusGUI

POJOs

XML Reader/Writer

Weak typed
XMLs

OctopusUML / OCL

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Figure 6.2 Extended Octopus with UML/OCL mapped to XSD/XQuery

6.1.1 Representing Associations
The most crucial issue of the transformation algorithm is the treatment of UML
associations. There are different procedures how to represent associations in an XML
Schema but all of them result in some loss of information regarding the source
model. There are four approaches which are as following:

Figure 6.3 Example relation between two classes

• Nested elements (hierarchical relationship)
• Key/Keyref references of elements
• References via association element
• References with XLink and XPointer

Hierarchical relationship

The hierarchical relationship is the "natural" relationship in XML because it
corresponds with the tree structure of XML documents. Elements are nested within
their parent elements which implies some restrictions. The main obstacle for the
nesting of elements is the creation of redundancies in case of many-to-many
relationships. Regarding hierarchical representation it is also difficult to deal with
recursive associations or relationship cycles between two or more classes. The XML
documents have a document tree of indefinite depth.

STS – Technical University of Hamburg-Harburg (TUHH) 60

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Key/Keyref references

The Key/Keyref relationship is expressed by adding an ID attribute to referenceable
elements and a key that contains a selector and a field which includes an XPath
expression each. The selector selects all elements of a class and the field selects the
ID attribute of each selected element. The references are implemented by reference
elements with an attribute of type IDREF and a keyref (key reference). This keyref
references the key of the target class. Additionally, the keyref selects all reference
elements with the selector XPath expression and the field XPath expression selects
the IDREF attribute of each selected reference element. So the schema validator
compares the IDREF attribute of all the reference elements with the ID attribute of
the target class element. This approach guarantees type safety.

References via association elements

For each association an association element is introduced that references both
participating elements using IDREF attributes (analogous to relations for many-to-
many relationships in RDBMS). The association elements are included as
subelements of the document root. There are no references in the class elements.
The association element gets the name of the association, the references are labeled
according to the association roles. The approach produces XML documents with
minimal redundancy because every instance needs to be stored only once within the
document. The multiplicity values cannot be expressed adequately by association
elements.

References with XLinks

XLinks have been invented for hyperlink documents that are referencing each other
which makes it possible to reference different document fragments. We consider the
extended features provided by XLinks. The association element is represented as
extended link. A locator element is needed for each associated element to identify it.
The association itself is established by arc elements that specify the direction.
However this approach has no type safety.

6.1.2 Representing Association classes
An association class is an association with class features. So the transformation has
to consider the mapping of both a class and an association. Therefore, the four
mapping approaches for associations, as sketched above, apply to association classes
as well: The association class is mapped to an association element that is nested
inside the parent element in the hierarchical approach (for functional relationships
only). The association attributes and the child element in the hierarchical approach
are added to the association element.

Using Key/Keyref references requires the introduction of two references to consider
bidirectional relationships. Thus the attributes of the association class would be
stored twice. It could not be guaranteed that those attributes are the same in two
mutually referencing elements. Hence, the mapping has to be enhanced by
association elements. The association elements contain the attributes of the

STS – Technical University of Hamburg-Harburg (TUHH) 61

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

corresponding association class. Associations of each multiplicity are dealt with the
same way.

Regarding the last approach that uses extended XLinks is comparable with
association elements one can draw the same conclusion as mentioned above.

It is also possible to resolve the association class and represent it as two separate
associations. Note that the semantics of bidirectional associations cannot be
preserved adequately with that mapping.

6.1.3 Associations - Limitations
Each end of an association can be assigned the {ordered} property to determine the
order of the associated instances. It is not possible to define the order of element
instances in an XML Schema.

The direction of an association cannot be preserved by mapping approaches that
represent just bidirectional associations. This applies to: hierarchical relationships,
association elements and extended XLinks.

6.1.4 Mapping of Generalization
There is no generalization construct in the XML Schema. The most relevant aspect of
generalization is the inheritance of attributes of the superclass. There are two
reasonable approaches to represent the inheritance in the XML Schema: the type
inheritance by type extension and the reuse of element and attribute groups. This
approach supports the substitution relationship between a superclass and its
subclasses, but it supports only single inheritance.

Alternatively, an element and an attribute group can be defined for the subelements
and attributes of each class element which can be reused in the complex type of the
corresponding class element. Additionally, the element and attribute groups of all
superclasses of a class are reused in the complex type of this class. So all elements
and attributes of the superclasses are assigned to the subclasses. This approach
supports multiple inheritance, but doesn’t support the substitution relationship
between a superclass and its subclasses. To express the substitution relationship
between a superclass and its subclasses, the use of a superclass element is
substituted by a choice list that contains the superclass element and all its subclass
elements.

6.1.5 Further mapping issues
The aggregation relationship of UML embodies a simple part-of semantics whereas
the existence of the part does not depend on the parent. Therefore aggregations are
treated like associations. Compositions can be mapped through hierarchical
relationships according to a previous proposal for associations, because nested
elements are dependent on the existence of their parent elements and therefore
represent the semantics of compositions.

STS – Technical University of Hamburg-Harburg (TUHH) 62

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

6.1.6 Transformation rules
Transformation rules can be seen as follows:
Table 6.1 Transformation rules – OctopusUML to XML Schema

OctopusUML XML Schema

Package:

<package>
Root element, complex type without attributes
consisting all types(e.g. Class, datatype,
enumeration etc.); and name will be used as a
namespace for children e.g. Package.class

Abstract types:

<abstract><class> /
<interface>

Abstract complex type, with ID attribute

Normal types:

<class> / <datatype> /
<enumeration>

Element, complex type (with extension if defined
so,), with ID attribute, and in case of
enumeration type will be xsd:enumeration

Extended types:

<implements> /
<specializes>

Complex type of the subclass is defined as an
extension of the complex type of the superclass

Attributes:

<attributes>
Optional subelement of the corresponding class
complex type, derived attribute (/) not
supported in the xml context, transform
multiplicity in minoccurs and maxoccurs
attributes

Operations:

<operations>
<<information will be added as a comment>>

Visibility:

+ $ -
<<information will be added as a comment>>

Behavioral states:

<states>
<<loss of information>>

- -

Associations / Aggregations:

<associations> /
<aggregate>

Reference element, with IDREF attribute
referencing the associated class and keyref for
type safety references

Composition:

<composite>
Reference element, with subordinated class
elements (hierarchical rel.), or reference element
with dangling checks to impose cascade
relationship

Qualified associations:

<ordered> / <notUnique>
<<information will be added as a comment>>

Association Class:

<associationclass>
Complex type with ID, and an additional IDREF
references to the association class element and a
keyref in the corresponding reference elements
in the associated classes

STS – Technical University of Hamburg-Harburg (TUHH) 63

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

For more clear idea of mapping between OctopusUML and XSD following example
(based on Royal and Loyal class model) will be helpful.

Royal and Loyal Class model

An UML class diagram of Royal and Loyal can be seen in figure 6.4 and an
OctopusUML of Royal and Loyal can be refered from appendix A.

Abstract Syntax Trees (ASTs) used in example are produced using debug mode of
octopus' plug-ins for more clear view of the Octopus in-memory representation of
object model.

Octopus has different visitor classes which will help to visit through OctopusUML
model and OCL expressions. While visiting different artefacts one can also get
branches related to that artefact from the in-memory AST. For transformation from
OctopusUML model to XSD only packages and classifiers (classes, datatypes and
enumerations) and interfaces are visited.

In this algorithm there will always be one root package, which will contain all other
packages as elements in a complex type. This root package named 'model' is
equivalent to the octopus hidden root package named '_system'.

Figure 6.4 Royal and Loyal class diagram

STS – Technical University of Hamburg-Harburg (TUHH) 64

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Package

For each package, a complexType will be created having same name as package.
This complexType will have a sequence of all classifiers and interfaces contained in
that package including any subpackages as elements (same name as in uml model)
of complexType (fully qualified name like in java). A complexType for each will be
created when it will be visited. All elements here will be optional, subpackage
elements can be allowed once at max and other elements are allowed with no max
limit. For each classifier element (except enumeration) one key also be defined here
with the fully qualified name and having key attribute 'id', which will be refered from
keyRef definition using attribute 'idref'.

Figure 6.5 AST view of Package

Following is an example snippet of xml schema generated from the AST shown
above.

STS – Technical University of Hamburg-Harburg (TUHH) 65

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Class, attributes and navigable associations

For each classifier, complex type will be created with a fully qualified name of the
classifier to avoid name conflicts. Here we see how class will be transformed.
Interfaces will be treated same as an abstract classes.

Figure 6.6 AST view of Class, Attribute and Association

While visiting classes we also visit contained attributes, operations and navigable
associations (navigations). Operations will be ignored in the context of XSD and will
be added as XML comments. Attributes will be added as subelements (same name as
in uml model) in a single complexType/sequence. By default all these elements will
be kept as optional and allowed only once at max, otherwise if specified
multiplicityKind will be used to set lowerBound and upperBound of element
occurance. Visibility of attribute will be ignored in the context of XSD. Actually here
only non-transient attributes should be serialized but as there is no way of defining
attributes transient in octopus, all attributes will be treated as non-transient.
Primitive type of the attributes will be transformed to an XSD primitive type, e.g.
String to xsd:string, boolean to xsd:boolean etc., all other types will be treated as
complexType and assumed to be declared in the given uml model. Collection types
like Set and Sequence will be treated as complexType of collection item type but with
according upperBound. Aggregation and composition will be treated same here. So
dangling artefacts then can be removed or ignored using appropriate XQuery.

STS – Technical University of Hamburg-Harburg (TUHH) 66

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Then all navigations will be added as an element with an attribute of type
'xsd:IDREF' and appropriate keyRef will be defined with selectors and field.
Multiplicity will be used to set lowerBound and upperBound of element occurance.

For all abstract classes and interfaces one more attribute will be added in the
complexType: abstract=”true”.

Following is the XSD snippet of the AST of class, attribute and association shown in
figure 6.6.

Following is an XSD snippet for an extended class. It should be noted here that
multiple inheritance is not supported and interfaces will be treated as abstract
classes.

STS – Technical University of Hamburg-Harburg (TUHH) 67

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Note here that there is no key attribute 'id' defined for this complexType because
extended types will always inherit all fields from the base type and so key attribute
'id' also been inherited and used.

It has been said that key will be defined while visiting package, for each classifier.
While defining key we also need to specify that how it will be searched using
appropriate XPath in selector. Note below that how selector includes inherited types
also in the base types.

Enumeration

Figure 6.7 AST view of Enumeration

Even though enumeration is treated as classifier in octopus AST, it will be treated
differently in the context of XSD. For each enumeration classifier simpleType (with
fully qualified name of classifier) with restriction of string values will be created.
String values will be retrieved using enumLiterals from the AST. All other
transformation details will be same as other classifiers as before.

The transformed snippet from the XSD can be seen as follows :

STS – Technical University of Hamburg-Harburg (TUHH) 68

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Association class

Figure 6.8 AST view of Association Class

Association classes are treated differently in the XSD context. For each association
class complexType (with the fully qualified name) will be created with all attributes
as subelements as in other classifiers. Additionally here two keyRef will be added
each for each associated end. Here it should be noted that associated class can only
refer two ends at most and those are mandatory references. Transformed snippet of
XSD can be referred as follows:

STS – Technical University of Hamburg-Harburg (TUHH) 69

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

It should also be noted the way association class being referred by associated
classes. Associated classes will have keyRef to other associated class and the
associationclass, to avoid name conflicts attribute name will be same as name of
associationclass instead of normal 'idref'. Example snippet can be seen as follows:

STS – Technical University of Hamburg-Harburg (TUHH) 70

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

6.2 Proof of Concept
Now as we have seen how OctopusUML to XSD transformation rules are
implemented, we need a proof of concept that octopus can still support reading and
writing of XML instances valid to newly generated strong typed XSD schema. To
understand how new reading and writing capability is implemented in the original
structure shown in figure 6.1, we first need to understand two important things
which are Java reflection API and Java XML Binding.

6.2.1 Java Reflection API
Reflection enables Java code to discover information about the fields, methods and
constructors of loaded classes, and to use reflected fields, methods, and constructors
to operate on their underlying counterparts on objects, within security restrictions.
The API accommodates applications that need access to either the public members of
a target object (based on its runtime class) or the members declared by a given
class.

Beginning with J2SDK 1.4.0, certain reflective operations, specifically
java.lang.reflect.Field, java.lang.reflect.Method.invoke(),
java.lang.reflect.Constructor.newInstance(), and Class.newInstance(),
have been rewritten for higher performance. Reflective invocations and instantiations
are several times faster than in previous releases.

6.2.2 Java XML Binding (JAXB)
JAXB simplifies access to an XML document from a Java program by presenting the
XML document to the program in a Java format. The first step in this process is to
bind the schema for the XML document into a set of Java classes that represents the
schema. JAXB also supports unmarshalling and marshalling of XML instances.

Unmarshalling an XML document means creating a tree of content objects that
represents the content and organization of the XML document. The content tree is
not a DOM-based tree. In fact, content trees produced through JAXB can be more
efficient in terms of memory use than DOM-based trees. The content objects are
instances of the classes produced by the binding compiler. In addition to providing a
binding compiler, a JAXB implementation must provide runtime APIs for JAXB-related
operations such as marshalling, means creating a XML document that represents the
objects. The APIs are provided as part of a binding framework.

STS – Technical University of Hamburg-Harburg (TUHH) 71

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

6.2.3 Extended Octopus using strong typed XML
 reader/writer

Figure 6.9 Extended Octopus using strong typed XML reader/writer

Please compare figure 6.1 and figure 6.9 to have more clear idea about what
changes are made to support strong typed XML reading and writing capability. In the
new architecture Octopus generated XML reader/write are not used as they support
only weak typed XML instances. OctopusGUI and Octopus generated POJOs (in the
figure 6.9 – OctopusPOJOs) are used as they were. Strong typed XSD is transformed
from OctopusUML and then from that XSD JAXBinding classes (here refered as
JAXBPOJOs) are generated which will be used to marshal and unmarshal the strong
typed XMLs. Now as OctopusPOJOs are tightly coupled with OctopusGUI to support
JAXBPOJOs with the OctopusGUI we need a mapping between OctopusPOJOs and
JAXBPOJOs. That mapping bridge here is implemented using Java Reflection APIs. As
this mapping is done using the generation pattern of Octopus and JAXB we don't
need to generate classes for mapping everytime we change our metamodel,
OctopusUML in this case. The part of the figure connected with dotted lines is not
implemented with this work but can be implemented as shown to support external
consistency checking using XQuery.

STS – Technical University of Hamburg-Harburg (TUHH) 72

OctopusGUI

OctopusPOJOs

JAXBPOJOs

Strong
typed XMLs

OctopusUML / OCL

Java Reflection Mapping

Marshal / Unmarshal

Strong typed XSD

Using transformation
rules

XQuery(ies)

Transformation
rules

Consistency
checking

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Appendix A
OctopusUML For Royal and Loyal

<package> RandL
 + <class> Burning <specializes> Transaction
<endclass>
 + <class> Customer
<attributes>
 + name: String;
 + title: String;
 + isMale: Boolean;
 + dateOfBirth: Date;
 + /age: Integer;
 + gender: Gender;
<operations>
 + age(): Integer;
 + birthdayHappens();
<endclass>
 + <class> LoyaltyProgram
<attributes>
 + name: String;
<operations>
 + enroll(<inout> c: Customer);
 + getServices(): Set_Service;
 + getServices(<inout> pp: ProgramPartner): Set_Service;
 + addTransaction(<inout> accNr: Integer, <inout> pName: String, <inout>
servId: Integer, <inout> amnt: Real, <inout> d: Date);
 + selectPopularPartners(<inout> d: Date): Set_ProgramPartner;
 + addService(<inout> p: ProgramPartner, <inout> l: ServiceLevel,
<inout> s: Service);
 + enrollAndCreateCustomer(<inout> n: String, <inout> d: Date):
Customer;
<endclass>
 + <class> ProgramPartner
<attributes>
 + numberOfCustomers: Integer;
 + name: String;
<endclass>
 + <associationclass> Membership
 + Customer.participants [0..*] <ordered> <-> +
LoyaltyProgram.programs [0..*]
<endassociationclass>
 + <class> Service
<attributes>
 + condition: Boolean;
 + pointsEarned: Integer;
 + pointsBurned: Integer;
 + description: String;
 + serviceNr: Integer;

STS – Technical University of Hamburg-Harburg (TUHH) 73

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

<operations>
 + upgradePointsEarned(<inout> amount: Integer);
 + calcPoints(): Integer;
<endclass>
 + <class> ServiceLevel
<attributes>
 + name: String;
<endclass>
 + <abstract> <class> Transaction
<attributes>
 + points: Integer;
 + date: Date;
 + amount: Real;
<operations>
 + program(): LoyaltyProgram;
<endclass>
 + <class> CustomerCard
<attributes>
 + valid: Boolean;
 + validFrom: Date;
 + goodThru: Date;
 + color: RandLColor;
 + /printedName: String;
 + myLevel: ServiceLevel;
<operations>
 + getTransactions(<inout> from: Date, <inout> until: Date):
Set_Transaction;
<endclass>
 + <class> LoyaltyAccount
<attributes>
 + number: Integer;
 + points: Integer;
 + totalPointsEarned: Integer;
<operations>
 + earn(<inout> i: Integer);
 + burn(<inout> i: Integer);
 + isEmpty(): Boolean;
 + getCustomerName(): String;
<endclass>
 + <class> Earning <specializes> Transaction
<endclass>
 + <class> Date
<attributes>
 + $ now: Date;
 + year: Integer;
 + month: Integer;
 + day: Integer;
<operations>
 + isBefore(<inout> t: Date): Boolean;
 + isAfter(<inout> t: Date): Boolean;
 + <infix> = (<inout> t: Date): Boolean;
 + fromYMD(<inout> y: Integer, <inout> m: Integer, <inout> k: Integer):
Date;

STS – Technical University of Hamburg-Harburg (TUHH) 74

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

<endclass>
 + <enumeration> RandLColor
<values>
silver;
gold;
<endenumeration>
 + <enumeration> Gender
<values>
male;
female;
<endenumeration>
 + <class> TransactionReport
<attributes>
 + from: Date;
 + until: Date;
 + /name: String;
 + /balance: Integer;
 + /number: Integer;
 + /totalEarned: Integer;
 + /totalBurned: Integer;
<endclass>
 + <class> TransactionReportLine
<attributes>
 + /partnerName: String;
 + /serviceDesc: String;
 + /amount: Real;
 + /points: Integer;
 + /date: Date;
<endclass>
<associations>
 + CustomerCard.cards [0..*]<-> + Customer.owner [1..1];
 + ServiceLevel.currentLevel [1..1]<-> + Membership.<noName> [0..*];
 + ProgramPartner.partners [1..*]<-> + LoyaltyProgram.programs [1..*];
 + Service.deliveredServices [0..*]<-> + ProgramPartner.partner [1..1];
 + LoyaltyAccount.account [0..1]<-> + Membership.<noName> [1..1];
 + CustomerCard.card [1..1]<-> + Membership.<noName> [1..1];
 + Transaction.transactions [0..*]<-> + LoyaltyAccount.account [1..1];
 + Service.generatedBy [1..1]<-> + Transaction.transactions [0..*];
 + Transaction.transactions [0..*]<-> + CustomerCard.card [1..1];
 + Service.availableServices [0..*]<-> + ServiceLevel.level [1..1];
 + ServiceLevel.levels [1..*]<ordered><-> +LoyaltyProgram.program[1..1];
 + Service.usedServices [0..*]<- + LoyaltyAccount.<noName> [0..*];
 + TransactionReportLine.lines[0..*]<-> +TransactionReport.report[1..1];
 + TransactionReport.<noName> [0..*]-> + CustomerCard.card [1..1];
 + Transaction.transaction[1..1]<-+TransactionReportLine.<noName>[0..*];
<endpackage>

STS – Technical University of Hamburg-Harburg (TUHH) 75

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

Bibliography
[1] Model Driven Architecture: An Introduction, Richard Mark Soley, OMG Chairman and CEO, 2001

[2] Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained; The Model Driven Architecture: Practice
and Promise, Addison-Wesley, 2003.

[3] http://www.sdmagazine.com/documents/s=826/sdm0406e/ (browsed on 7.09.2005)

[4] Object Management Group, MOF 2.0 Query / Views / Transformations RFP, OMG Document:
ad/2002-04-10, revised on April 24, 2002

[5] Java Metadata Interface 1.0, July 2002, http://java.sun.com/products/jmi

[6] ArchitectureWare, Generator Framework, http://www.architectureware.de

[7] OptimalJ 3.0, User's Guide, 2003,
http://www.compuware.com/products/optimalj/default.htm

[8] Jamda: The Java Model Driven Architecture 0.2, May 2003,
http://sourceforge.net/projects/jamda/

[9] Strategies for Program Transformation, http://www.stratego-language.org

[10] The Unified Modeling Language 1.5, March 2003, http://www.omg.org/cgibin/doc?formal/03-03-01

[11]Velocity 1.3.1, The Apache Jakarta Project, March 2003,
http://jakarta.apache.org/velocity/

[12]Rational XDE, http://www.rational.com/products/xde

[13] OMG, OMG-XML Metadata Interchange (XMI) Specification, v1.2, OMG
Document formal/02-01-01, http://www.omg.org/cgi-bin/doc?formal/2002-01-01

[14] XML Path Language Version 1.0, November 1999, http://www.w3.org/TR/xpath

[15] W3C, XSL Transformations (XSLT) Version 1.0, November 1999,
http://www.w3.org/TR/xslt

[16] XML-based Variant Configuration Language, http://fxvcl.sourceforge.net/

[17] Classification of Model Transformation Approaches
 by Krzysztof Czarnecki and Simon Helson
http://www.swen.uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.pdf

[18] Dr. Jon Whittle, Templates & Transformations : http://www.sse.cs.tu-
bs.de/teaching/ss05/transformations/docs/Templates.ppt

[19] Dr. Jon Whittle, Graph Transformations : http://www.sse.cs.tu-
bs.de/teaching/ss05/transformations/docs/GraphTransformations.ppt

[20] J. B´ezivin, F. Jouault, and P. Valduriez. First Experiments with a ModelWeaver. In Proceedings of
OOPSLA & GPCE Workshop, October 2004.

[21] MOFScript, http://www.modelbased.net/mofscript/index.html

[22] MTF, http://www.alphaworks.ibm.com/tech/mtf

[23] ATL, http://www.sciences.univ-nantes.fr/lina/atl/

[24] ModelWare, http://www.modelware-ist.org/

STS – Technical University of Hamburg-Harburg (TUHH) 76

http://www.modelware-ist.org/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.alphaworks.ibm.com/tech/mtf
http://www.modelbased.net/mofscript/index.html
http://www.sse.cs.tu-bs.de/teaching/ss05/transformations/docs/GraphTransformations.ppt
http://www.sse.cs.tu-bs.de/teaching/ss05/transformations/docs/GraphTransformations.ppt
http://www.sse.cs.tu-bs.de/teaching/ss05/transformations/docs/Templates.ppt
http://www.sse.cs.tu-bs.de/teaching/ss05/transformations/docs/Templates.ppt
http://www.swen.uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.pdf
http://fxvcl.sourceforge.net/
http://www.w3.org/TR/xpath
http://www.omg.org/cgi-bin/doc?formal/2002-01-01
http://www.rational.com/products/xde
http://jakarta.apache.org/velocity/
http://www.omg.org/cgibin/doc?formal/03-03-01
http://www.stratego-language.org/
http://sourceforge.net/projects/jamda/
http://www.compuware.com/products/optimalj/default.htm
http://www.architectureware.de/
http://java.sun.com/products/jmi
http://www.sdmagazine.com/documents/s=826/sdm0406e/

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

[25] UMT, http://umt-qvt.sourceforge.net/

[26] MTL, http://modelware.inria.fr/

[27] MDR, http://www.netbeans.org/mdr

[28] EMF, http://www.eclipse.org/emf

[29] ModFact, http://modfact.lip6.fr/ModFactWeb/index.jsp

[30] GMT, http://www.eclipse.org/gmt

[31] KMF, http://www.cs.kent.ac.uk/projects/kmf/index.html

[32] OpenMDX, http://www.openmdx.org/index.html

[33] AndroMDA, http://www.andromda.org/

[34] XDoclet, http://www.xdoclet.org/

[35] Middlegen, http://boss.bekk.no/boss/middlegen/index.html

[36] OMELET, http://www.eclipse.org/omelet

[37] ArcStyler, http://www.io-software.com/

[38] MCC, http://www.inferdata.com/products/mcc/mdac.html

[39] Codagen Architect, http://www.codagen.com/

[40] OptimalJ, http://www.compuware.com/products/optimalj/default.htm

[41] Xactium XMF, http://www.xactium.com/

[42] SosyInc, http://www.sosyinc.com/

[43] Model-in-Actioin, http://www.mia-software.com/

[44] Frame-Processing-Language, http://sourceforge.net/projects/fpl

[45] Frame Processor ANGIE, Delta Software Technology,
http://www.d-s-t-g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm

[46] FUUT-je, hosted at the Eclipse Generative Model Transformer (GMT) project
website, http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmthome/download/index.html

[47] ATOM3: A Tool for Multi-Paradigm modeling, http://atom3.cs.mcgill.ca/

[48] A. Agrawal, G. Karsai and F. Shi. Graph Transformations on Domain-Specific Models. Under
consideration for publication in the Journal on Software and Systems Modeling, 2003

[49] A. Rensink (Ed.) Proceedings of the Workshop on Model Driven Architecture: Foundations and
Applications, University of Twente, Enschede, The Netherlands, June 26-27, 2003, CTIT Technical Report
TR–CTIT–03–27, University of Twente, 2003, http://trese.cs.utwente.nl/mdafa2003

[50] E. D. Willink. UMLX: A graphical transformation language for MDA. In [49], pp. 13-24

[51] OMG, The Object Constraint Language Specification 2.0, OMG Document: ad/03-01-07

[52] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, et al. MOF
Query/Views/Transformations, Revised Submission. OMG Document: ad/03-08-05

[53] F. Marschall and P. Braun. Model Transformations for the MDA with BOTL. In [49], pp. 25-36

[54] Rule-Based Generation of XML Schemas from UML Class Diagrams
 by Tobias Krumbein, Thomas Kudrass; Leipzig University of Applied Sciences

STS – Technical University of Hamburg-Harburg (TUHH) 77

http://trese.cs.utwente.nl/mdafa2003
http://atom3.cs.mcgill.ca/
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmthome/download/index.html
http://www.d-s-t-g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm
http://www.mia-software.com/
http://www.sosyinc.com/
http://www.xactium.com/
http://www.compuware.com/products/optimalj/default.htm
http://www.codagen.com/
http://www.inferdata.com/products/mcc/mdac.html
http://www.io-software.com/
http://www.eclipse.org/omelet
http://boss.bekk.no/boss/middlegen/index.html
http://www.xdoclet.org/
http://www.andromda.org/
http://www.openmdx.org/index.html
http://www.cs.kent.ac.uk/projects/kmf/index.html
http://www.eclipse.org/gmt
http://modfact.lip6.fr/ModFactWeb/index.jsp
http://www.eclipse.org/emf
http://www.netbeans.org/mdr
http://modelware.inria.fr/
http://umt-qvt.sourceforge.net/

 Consistency and Transformation Rules in the MDA-based Modeling of an Enterprise Software Architecture

[55] Conceptual Modeling XML Schemata Using UML
 by Rainer Eckstein, Humboldt University zu Berlin; Silke Eckstein, Technical University
Braunschweig;

[56] Towards A Framework for Mapping Between UML/OCL and XML/XQuery
 by Sherif Sakr, University of Konstanz; Ahmed Gaafar, Cairo University;

[57] Practical Usage of W3C's XML-Schema and a Process for Generating Schema Structures
from UML Models
 by Mario C. Jeckle, DaimlerChrysler Research and Technology, Ulm, Germany

STS – Technical University of Hamburg-Harburg (TUHH) 78

	Thanks to
	My Parents
	Abstract
	Declaration
	Content
	At a Glance
	Table of Contents
	Preface

