
Cost-Efficient
Web Service Compositions

submitted by
Irma Sofia Espinosa Peraldi

supervised by
Prof. Dr. Ralf Möller

M.Sc. Sebastian Bossung

Hamburg University of Science and Technology
Software Systems Institute (STS)

ii

Abstract

Web services are the latest standard technology in the area of software reusabil-
ity for distributed systems. They are a new layer of abstraction on top of
existing systems, helping to communicate them by the use of the internet
network. Their aim is to share resources, more precisely, specific operations
of an application, regardless of the platform or language in which they are
implemented. Thus a web service can be seen as an application that can be
accessed over the internet, providing service not only to human end users but
also to other systems. The advantages that web services offer can be increased
when they are used within compositions. Composed web services define a new
web service interface above a set of existing ones, allowing to create complex
processes by using prebuilt applications at different internet network locations
as if they where part of a single application. Therefore, the typical way to
reuse code (functions, classes, etc.) in a programming language by the use
of resources found in local repositories is now extended to a wider scope the
internet. As a well-adopted technology, the number of available web services
that offer the same functionality is increasing, making management decisions
over the selection of the most convenient one become more important. It is in
this area of management that this thesis focuses. Having as a starting point a
given web service composition, and having the possibility to choose from a list
of web services of the same type for each web service partner invoked in the
composition, the problem addressed in this thesis is to analyze the different
aspects involved in the process of creating an optimal composition, expressed
in terms of a configuration problem, in which candidate web services become
the primitive objects to be combined such that they satisfy a given criteria.

iii

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, 14th July 2005
Irma Sofia Espinosa Peraldi

iv

Acknowledgments

This report describes the thesis project that I developed from January to July
2005 as part of my studies at the Master program Information and Media
Technologies in the STS (Software Technology Systems) department of the
Technical University Hamburg-Harburg.

I would like to thank my parents for giving me always their support, it
is because of them and the education they have given me, that i am able to
come to Germany and live an experience of a life time.

To CONACYT for granting me a scholarship during my first 2 years of
studies as part of a program with DAAD to promote the scientific research of
Mexicans in Germany.

I am grateful to my supervisor Prof. Dr. Ralf Möller, for the hours of
attention specially at the beginning of the project which were very important
to guide me during my research and also for trusting me an interesting and
challenging topic of research.

To Sebastian Bossung for the great discussion sessions and careful review
of my work.

To Michael Wessel for the professional and fast answer of my questions
during the multiple Racer sessions.

To Savvas Katemliadis for the comprehension and spiritual support in dif-
ficult times.

This project could not have been as fruitful as it was, without the sup-
port, interest and inputs from individuals and their willingness to share their
experience and knowledge, and the time given to discuss related topics.

Contents

Preface ix

1 Introduction 1
1.1 Reusability of Software . 1
1.2 Web Services . 2

1.2.1 Web Service Technologies 2
1.2.2 Web Service Compositions 4

1.3 Addressed Problem . 5

2 Object to Optimize 7
2.1 Web Service Compositions . 7

2.1.1 BPEL4WS . 7
2.2 Web Service Compositions as a Querying Process 9

2.2.1 Design of a Specific Composition 11
2.3 Conclusions . 15

3 Criteria Analysis 17
3.1 Service-Independent Criteria 17

3.1.1 Classification of QoS Concepts 18
3.1.2 Descriptive Languages for the Specification of QoS . . . 19
3.1.3 Frameworks for QoS Aware Web Service Management . 20

3.2 Service-Dependent Criteria . 21
3.2.1 Web Service Functionality 21

3.3 Conclusions . 27

4 Optimization Design 29
4.1 Algorithms for Optimization . 29

4.1.1 Fundamental Design Techniques 30
4.1.2 A Heuristic Approach 31
4.1.3 Adopted Approach . 36

4.2 Candidate Solutions . 38
4.2.1 Global Optimization . 38
4.2.2 Local Optimization . 40

4.3 Conclusions . 42

v

vi CONTENTS

5 Materials and Methods 43
5.1 Locator’s Design . 43

5.1.1 Components . 43
5.1.2 Multiple Threads . 48
5.1.3 Service Assignment Logic 51
5.1.4 Constraint Relaxation 55
5.1.5 Pareto . 56
5.1.6 Summary . 57

6 Results 59
6.1 Locator’s Behavior . 59
6.2 Conclusions . 63

7 Future Work, Shortcomings and Contributions 67
7.1 Future Work . 67

7.1.1 Criteria Management 67
7.1.2 Further Introduction of Criteria Classes 68
7.1.3 Global Optimization . 68
7.1.4 Usage of the UDDI Repository 68

7.2 Shortcomings . 68
7.2.1 Locator Interface . 68
7.2.2 Local Optimization . 69

7.3 Contributions . 69
7.3.1 Optimization Criteria 69
7.3.2 Criteria as Black Boxes 69
7.3.3 Memory Management 70
7.3.4 New Business or Service Paradigm 70

A Tests 71
A.1 Indexing Time for Aboxes of Different Sizes 71
A.2 Assign thread’s run results . 72

A.2.1 Example 1 . 72
A.2.2 Example 2 . 77

List of Figures

1.1 Core web service technologies in interaction 3

2.1 Required components for the definition of a BPEL composition 9
2.2 Web service composition example: A querying process 10
2.3 Univ-Bench Ontology . 12
2.4 A specific composition: Professor for exchange program 14

3.1 WS QoS Stack [13] . 18
3.2 Abox graph. 22
3.3 Qbox for Abox University1 . 26
3.4 Distribution of cached information. 26

4.1 A complete enumeration approach. 30
4.2 Greedy-Backtracking method 32
4.3 Genetic Algorithm: Crossover and Mutation 33
4.4 Population of Genetic Algorithm for a problem instance 34
4.5 Crossover and mutation for a problem instance 35
4.6 Evaluation function of A∗ Algorithm 37
4.7 Pareto Optimal curve for two evaluation functions 38
4.8 Composition of queries . 38
4.9 Changes of the server’s state through time 41

5.1 The Locator middleware . 44
5.2 Qbox states per server . 44
5.3 Local Racer server for reasoning. 46
5.4 Locator’s Pools . 47
5.5 Simple class diagram . 49
5.6 Sequence diagram . 50
5.7 Assignment flow chart . 51
5.8 Memory management flow chart 52
5.9 Constraint relaxation . 55
5.10 Obtaining non-dominated nodes 56

7.1 Criteria management. 67

vii

viii LIST OF FIGURES

Preface

Document Distribution

Chapter 1: Introduction

This chapter aims to introduce the background of the project. First it is
introduced how web service technologies facilitate software reusability, then
an overview about the core technologies that realize web services and their
composition is described. Finally an introduction to the problem addressed in
this thesis is given.

Chapter 2: Object to Optimize

This chapter gives a more detailed description about what web service com-
positions are and how they are considered in this project as means for the
definition of a querying process. Finally a specific web service composition is
defined, which serves as an example for the design of the optimization strategy.

Chapter 3: Criteria Analysis

Having a web service composition as an object to be optimized, this chapter
aims to search for suitable criteria that can help to measure the optimality of
the composition, once the strategy developed in this project is applied.

Chapter 4: Algorithms for Optimization

This project considers the optimization problem as a configuration problem,
where web services are being combined and compared according to some cri-
teria to find an optimal solution. Thus, this chapter presents a number of
optimization algorithms considered suitable to solve the problem addressed in
this project. Finally, the adopted approach is presented.

Chapter 5: Materials and Methods

It aims to give a detailed description about the design of the Locator’s imple-
mentation. Thus, how the considered criteria obtains its values, some pseu-
docode of the optimization algorithm, communication style with the web ser-
vice partners and clients, etc.

ix

x PREFACE

Chapter 6: Results

This chapter presents some test results to show how the implementation be-
haved according to specific settings. Moreover advantages and disadvantages
of the design are discussed.

Chapter 7: Future Work, Shortcomings and Contributions

Finally shortcomings, significance of the findings and future work are pointed
out.

Chapter 1

Introduction

This chapter aims to give an overview of the background related
to this project. Web services and the core technologies that im-
plement them are introduced and described how they are a new
generation of technology for the reusability of software with the
world wide web as scope. Finally the problem addressed in this
project is pointed out.

1.1 Reusability of Software

Reusing something has as a natural consequence the possibility of saving re-
sources and effort. Thus, there is a constant tendency for reusability in differ-
ent areas from which software development is not an exception.

Techniques and tools for software development have evolved since the cre-
ation of computer systems towards reusability. This can be appreciated since
the use of functions in structural programming, where ready made pieces of
code are available from local libraries. Continuing to object-oriented program-
ming where a whole concept is abstracted in so called objects which encapsu-
late attributes and functions describing their specific characteristics and be-
havior, such that not only a function but a whole concept can be modeled and
reused. More over, with the development of distributed systems from the local
area network to the world wide web, the scope for sharing and reusing software
resources has also changed from local to remotely distributed locations. Still
when considering the reusability in distributed environments, compatibility is-
sues become a priority, since there is a variety of languages, operating systems,
interaction protocols, etc. to deal with. An analogy to such compatibility is-
sues can be observed for example in today’s globalization, where humans are
nowadays able to reach other countries easier than ever, but it is confronted
to new languages (syntax) that he must understand, moreover customs and
interpretations are also different (semantics), metric systems, power adapters
should not be forgotten, to name only a few examples. Thus, the possibilities
and facilities to interact with other environments are there, but to successfully

1

2 CHAPTER 1. INTRODUCTION

interact with them some additional knowledge is needed.
To overcome those heterogeneous environments in the area of software devel-
opment, a new architecture has been introduced called SOA1. It has the aim of
loosely couple different architectures by the use of service units. These units
are considered as a black box, where only the interface is visible to indicate
how the interaction with the service can proceed independently of how their
internal processing is carried out.
Services in a SOA architecture must implement interfaces based on generic
semantics such that it is understood by any client that wants to use it, thus
facilitating the integration of software technologies.

1.2 Web Services

A SOA architecture that aims to integrate components distributed over the
world wide web can be realized by web services. They represent the latest
technology for reusability of software distributed in heterogeneous environ-
ments, that have facilitated the introduction of new business paradigms like
the automated integration of IT systems between different trading partners
for the collaboration in supply-chain processes, to name one example.
Thus, web services aim to overcome the compatibility issues between different
architectures due to their XML2 nature. XML is a descriptive language, which
allows to define data independently from any system architecture, this is done
through the creation of documents which are related to each other, namely
the document instance which contains the data to transfer and the schema
document which provide means for defining the structure, content and seman-
tics of the XML instance documents3, such that it is possible to interpret the
meaning of the data contained in the instance document and it can be trans-
formed according to the requirements of a specific system. XML is a syntax
on top of which many specifications have been developed, in the area of web
services.

1.2.1 Web Service Technologies

To be able to use web services it is necessary to first localize the service
of interest, understand its interface and finally start the communication. For
each of these activities, there is a web service specification that supports them,
these are:

SOAP The Simple Object Access Protocol, which supports the commu-
nication with web services. It uses the HTTP4 protocol used by the web to be
able to handle XML based messaging between the parties involved. The styles

1Service Oriented Architecture
2Extensible Markup Language: http://www.w3.org/XML/
3As described in http://www.w3.org/XML/Schema
4HyperText Transport Protocol

1.2. WEB SERVICES 3

Figure 1.1: Core web service technologies in interaction

of messages that can be send with SOAP can be divided in RPC 5 which sim-
ulates a method call with parameters of input and output, and the document
style which contains a plain XML document.
Both parties, the client and the service involved in the communication, need
a SOAP processor, such that the protocol can be interpreted. The processor
can map the received data to the underlying software that is providing the ser-
vice. In this way every service independent of their architecture, transforms
its outputs to a standard neutral syntax that can be sent through the internet
and received by other systems that understand the same syntax, interpret the
contents of the message and transform them according to their own needs.

WSDL The Web Service Description Language specification implements
an XML file which represents the interface of the web service, such that a
description of the location, its operations, their respective parameters and
binding styles are published on the internet for the customers to access.

UDDI The Universal Description, Discovery and Integration Registry, is
a directory that helps to localize the web services. The information contained
in this repository can be categorized in white pages, where the name, address,
web site, id number and other relevant information about a business can be
found. Another category is yellow pages, where the information is categorized
under different taxonomies, like type of business, location and products. And
finally the green pages where technical information of the business service is
described, for example the reference to the WSDL file can be found here.

In order to use a web service using the previously introduced technologies
the process in figure 1.1 shows how they interact with each other.

1. A web service registers its WSDL file in the UDDI directory, through a
SOAP request, thus, the UDDI registry provides a set of SOAP APIs to
services and clients that wish to interact with it.

5Remote Procedure Call

4 CHAPTER 1. INTRODUCTION

2. Clients, can browse the UDDI registry using the SOAP APIs to discover
the WSDL file of the desired web service and make a request.

3. The UDDI provides the WSDL information to the client. The file is
examined to understand the requirements for interaction.

4. The client can post a SOAP request to the web service.

5. The service can send the requested information back to the client.

These web service technologies have been widely adopted and are considered
as a standard for the interaction with applications over the internet. For a
more detailed description refer to [7] and [3].

The number of applications that are being developed as web services is
increasing, as a consequence, there is a tendency of constructing applications
that try to use various web services together, this kind of applications are
identified as web service compositions.

1.2.2 Web Service Compositions

A further level in the reusability of software is then observed when a new ap-
plication is developed by composing a set of web services. Such applications
are also referred to as orchestrations of web services, because the application
is managing the flow of information between the composed services.

A web service composition has its own web service interface constructed
on top of its web service partners, which are assembled together, to create
a process. Therefore, advantage is being taken of prebuilt components from
applications at different network locations as if they where part of a single soft-
ware system. Specifications have been developed to standardize the way web
services can be orchestrated, the most recent specification is called BPEL4WS 6

also referenced as BPEL. It merges two previous specifications, namely WSFL
proposed by IBM and XLANG by Microsoft. This specification defines an
XML base language, that allows to invoke web services, receive their response
and reply to clients of the composition in a structural programming style7.

When trying to compose web services together and as web services pro-
liferate, thus finding more web services that offer equivalent functionality, a
new situation emerges in which one wants to choose the one service that does
not only offer the desired functionality but it is also convenient according to
a certain criteria. For example, one can start to compare similar web services
according to price, binding styles, response time, security protocols, etc.

6Business Process Execution Language for web services
7For a detailed documentation on BEPL refer to http://www-

128.ibm.com/developerworks/library/specification/ws-bpel/

1.3. ADDRESSED PROBLEM 5

1.3 Addressed Problem

As explained in the previous section, a composition does not only obtain the
functionality of the web services, but some additional characteristics are also
expected to be fulfilled by the web service partners such that, they can be
considered as part of the composition. It is in this area of decision making
that this project takes place, where a given web service composition is to be
optimized by choosing the best web service partners according to given criteria.

The kind of compositions considered in this project model a querying pro-
cess, such that query requests are being send to the web service partners which
offer similar query reasoning functionality. It is observed that the optimization
strategy can be expressed as a configuration problem where combinatorial and
optimization algorithms are suitable for its solution. A set of criteria is con-
sidered to test the optimization strategy, implemented by the Locator, which
is able to compare and choose between the web service partners according to
this set of criteria. The Locator is designed in such a way that it treats any
criteria as black boxes with a value, so that there is flexibility for additional
criteria any time it is necessary independently of their peculiarities. Thus, the
Locator is developed to cope with multiple criteria expressed as constraints or
objectives.

A strategy for optimization, as the one presented in this project, can profit
from the current research in the area of quality of services, security and trans-
actions for web services where more specifications that complement the core
web service technologies are being developed to become standards. Future
work can further focus on finding criteria suitable for the optimization of web
service compositions towards the creation of a brokerage business model, such
that web service compositions of a certain domain are being attracted by the
knowledge that a middleware like the Locator possesses about candidate web
service partners that fulfill their demands and expectations. While, on the
other side web service partners can find a market place for the distribution of
their services.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Object to Optimize

This chapter aims to introduce the object to be optimized in this
project. A first explanation of the nature of web service composi-
tions and their behavior during instantiation is presented for the
proper understanding of the scenarios that can occur during the
life cycle of a composition; afterwards a specific composition is pre-
sented that will serve as an object for optimization. This last part,
aims to clarify how compositions are considered in this project as
means for designing a querying process to be target to a specific
system.

2.1 Web Service Compositions

Web services provide a new layer of abstraction, a new interface through which
it is possible to communicate via internet with existing software applications by
the use of standardized technologies, extending the area of SOA1 to the world
wide web. As a consequence a growing tendency to reuse the functionality
now available through this new interface, leads to the creation of web service
composed applications.

While a composed application could be built upon any architecture, some
standardization efforts have been taking place to ensure reliability regarding
the correct specification of a composition. One of these efforts is BPEL4WS2,
which merges two older proposals, the WSFL3 from IBM[7] and XLANG from
Microsoft[7]. The BPEL4WS specification is adopted in this project for the
description of the web service composition model to be optimized.

2.1.1 BPEL4WS

BPEL4WS is an XML based language for the standardized implementation of
processes through the composition of web services.

1Service Oriented Architecture
2Business Process Execution Language for web services
3Web Service Flow Language

7

8 CHAPTER 2. OBJECT TO OPTIMIZE

The composition can be exposed as any other web service by its own WSDL
file, containing a list of port types describing the operations offered by the
composition. This language provides a variety of XML tags that can be divided
into three groups, the primitive activities, the structure activities and the
consistency activities.

1. Primitive activities
These are the tags that deal with the interaction of the composition with
its web service partners. By web service partners is referred to any web
service that is used by the composition as a provider or that makes use
of the composition as a client. Since the main purpose of the language
is to compose together a set of web service into an executable program,
a BPEL program consequently makes use mainly of these activities. An
example of these primitive activities is:

• Invoke: To invoke an operation of some web service partner, which
plays the role of provider to the process

• Receive: Where the process waits for a message of someone external
with a response, to start or continue its execution.

• Reply: Generating a response to a partner of the process.

2. Structural activities
Refer to those tags that help to combine the primitive activities, into a
structure that defines their flow of execution. For example: in sequence,
in parallel, alternative paths, loops, etc.

3. Consistency activities
To support error handling and compensation actions, for example:

• Throw and catch commands for the handling of errors.

• Means to define scope units in which compensation activities will
take place, useful also for fault handling.

The required components for a complete definition of a web service composi-
tion based in BPEL, as showed in figure 2.1, are the following:

1. BPEL file, which contains:

• References to WSDL descriptions
Represent the description files of the web service partners. They
need to be identified in order to know exactly which operations to
invoke and the messages to exchange.

• Partner definitions
Lists relations of the partners with their respective port type and
the role they play with respect to the composition, as provider or
as client.

2.2. WEB SERVICE COMPOSITIONS AS A QUERYING PROCESS 9

Figure 2.1: Required components for the definition of a BPEL composition

• List of containers
They offer support to the primitive activities, such that requests
and response messages for the respective partners are stored and
available for the activities to manipulate them.

• Activity tags
Finally the activities that describe the flow of the composed appli-
cation.

2. WSDL file of the composition

3. WSDL file of web service partners

For a more detailed view of the BPEL standard, refer to [14].

Lifecycle of a composition

Once all these elements are defined, and the WSDL file of the composition is
published, clients can start its execution when they send a message to the en-
try port type. The port type is related with a receive activity in the BPEL file
which is in charge of creating an instance of the composition, thus multiple in-
stances of a process can run simultaneously. Each of the instances is identified
by a triple containing: port type, operation and partner. The triple is used as
an ID of the instance so that it is possible for the composition to differenti-
ate between messages of different clients and finally giving the corresponding
answer to its respective client.

2.2 Web Service Compositions as a Querying Pro-
cess

The type of composition being optimized in this project describes a querying
process. This means, that queries are being send to the web service partners in

10 CHAPTER 2. OBJECT TO OPTIMIZE

Figure 2.2: Web service composition example: A querying process

each invocation step. Thus, the set of queries that belong to a composition, are
not randomly chosen, but they complement each other to obtain information
according to the aim of the process’s business logic. For example, lets consider
a bureaucratic process, which aims at issuing a driving license, so that the next
queries are being performed:

• Query 1: A first query accesses the birthday registration file to obtain
the applicant’s birthday date and prove his age.

• Query 2: If the applicant is old enough, a second query is directed to
the license application file to check for the application number.

• Query 3: A third query accesses the driving tests file to obtain the test
profile of the applicant.

• Query 4: If the applicant passed the examination a forth query also
directed to the same driving test file will find the driving license number
attached to the test profile.

From the past description and as shown figure 2.2, the partners of the compo-
sition are web services that provide querying reasoning and contain the needed
information. The composition is in charge of organizing the order in which
predefined queries are to be processed, thus it has a general knowledge about:

• The file that a certain query requires.

• An implicit knowledge about the order in which queries need to be pro-
cessed.

• If a query subsumes another one, in this example, Q4 subsumes Q3, the
subsumption concept will be explained in more detail in section 3.2.1.

As the “Driving license issue” process, many other querying processes can
be developed for different domains and business logic. The process in figure
2.2 is just an example for illustration purposes, important to notice are the
characteristics of the composition that are relevant to this project which are:

2.2. WEB SERVICE COMPOSITIONS AS A QUERYING PROCESS 11

1. The partners: In every invocation step, partners of the same type
are required, thus all the partners are offering the same functionality,
but may contain different information. In this case the partners are
Description Logic Reasoners that offer querying services over ontologies,
a better description of their functionality is found in section 3.2.

2. The queries: There is a predefined set of queries, with a predefined
place inside the process, according to the business logic of the process.
The structure of the query does not change, only the information they
search for, e.g. for the driving license the same process is used to give
service to different applicants.

3. Global knowledge: Since the composition is defining a process of a
specific domain, e.g. driving license issue, marriage registration, etc.
The composition knows the domain of the information that a query
needs to get its results from, and the relationships between the queries,
mainly whether one query subsumes another or they are independent
from each other by searching in different files, or whether they search in
the same file.

To find an optimization strategy for a composition with such characteristics,
a specific composition was defined to serve as basis for experiments.

2.2.1 Design of a Specific Composition

To define a specific composition the next elements need to be identified:

1. Knowledge Base for the domain of the composition:4

• A Tbox that defines the ontology of the domain.

• Aboxes that contain the instances of the concepts defined in the
Tbox.

2. The set of queries describing the process of the composition.

3. The BPEL web service composition that will orchestrate the querying
process.

4. The set of WSDL descriptions from the web service partners.

Chosen Knowledge Base

As previously explained, the composition describes a querying process, where
the requests are send to web service partners which offer query reasoning
functionality over ontologies. Ontologies are defined through Tboxes and in-
stantiated through Aboxes, such that Tboxes an their respective Aboxes form
the knowledge base of such web service partners. For more detailed descrip-
tion of the structure of a knowledge base refer to section 3.2.1.

12 CHAPTER 2. OBJECT TO OPTIMIZE

Figure 2.3: Univ-Bench Ontology

Since the creation of an ontology to represent the Tbox is not a trivial task,
an existing ontology was adopted, this is the Univ-Bench ontology [16] devel-
oped by the Lehigh University. This ontology has been used for the evaluation
of DAML+OIL5 repositories built on RDF, which is one of various formats
supported by the web service partners. An advantage of this ontology is not
only that it defines a realistic domain but it is also understandable for most
of the people, since it models, as figure 2.3 shows, the university domain and
its respective organizations, people and work. Another advantage is that the
language primitives used in the Univ-Bench ontology6 consists mainly of prim-
itive classes, some restrictions, object properties and few data type properties,
which according to statistics [4] about the average usage of language primitives
in ontologies, the primitives used in this ontology are categorized under the
most frequently used. Thus, the Univ-Bench ontology can be used to represent
a real workload.

To create the Aboxes, a tool called UBA7 that supported the benchmark
[16] was used. It produces random instances, where the university instance
is the minimum unit of data being generated per file. Each file, represents a
department of a university.

4For a description on Tboxes and Aboxes refer to section 3.2
5A language specification for the creation of ontologies, described at:

http://www.daml.org/
6For a better overview of the ontology you can refer to

http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl
7Univ-Bench Artificial data generator

2.2. WEB SERVICE COMPOSITIONS AS A QUERYING PROCESS 13

Chosen Set of Queries

The set of queries that describe the process flow were created such that are suit-
able for the chosen knowledge base and also represent common used queries,
thus the process is as follows:

Name: “Professor for Exchange Program”.
Purpose: With the aim of cooperation and improvement in education, dif-
ferent universities around the country participate in an exchange program. In
this program, a professor is selected every year and sent to another university
to work for one year as a visiting professor. For this process, a university
chooses from two given departments, the one with the higher amount of full
time professors with respect to the total number of faculty members in that
department, such that the absence of a professor is least inconvenient. After-
wards a list of professors and the courses they teach is queried, to obtain the
professor that teaches the less number of courses. Finally the contact infor-
mation of the selected professor is given back.
In the next set of queries the next URL:

http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl

where the ontology is located, was abbreviated by TboxURL for illustration
purposes.

Q1: (retrieve (?x)(?x |TboxURL#Faculty|))
This is a unary concept query atom, that helps to obtain all the instances of
faculty members in the department, to later obtain the relation between total
faculty members and number of full time professors in the department.

Q2: (retrieve (?x) (?x |TboxURL#FullProfessor|))
This is a unary concept query atom, to get all instances of full time professors
in the department.
Since this two first queries look into different departments, thus into differ-
ent Aboxes, they can be executed in parallel. Moreover, this query subsumes
query Q1.

Q3: (retrieve (?x ?y) (and(?x |TboxURL#FullProfessor|)
———–(?x ?y |TboxURL#teacherOf|)))
This is a binary role query atom, which returns a list of full time professors
with the courses they teach, it is necessary to obtain the professor with the
lowest number of courses under their responsibility. Only after Q1 and Q2

are answered and the information about the percentage of full time professors
w.r.t. the total number of faculty members of each department is known, a
decision to choose between the two departments can take place, so that Q3 is
directed to the chosen department (Abox file).

Q4: (retrieve ((annotation (|TboxURL#emailAddress|
———– |http://www.Department0.University1.edu/FullProfessor0|)))

14 CHAPTER 2. OBJECT TO OPTIMIZE

Figure 2.4: A specific composition: Professor for exchange program

———– (|http://www.Department0.University1.edu/FullProfessor0| top))
Finally the email of the professor who teaches the lowest number of courses is
obtained.

As shown in figure 2.4 before a query is sent to a web service partner, some
computation needs to be done in order to obtain for example, the total number
of entities in the answer, to calculate the percentage of full time professors,
etc.

The composition’s entry point, consists of one port which requires two pa-
rameters with the names of the Aboxes to query, as a reply the composition
gives back to the client an email address of the chosen professor. Even though
the queries for the process are given as a kind of template for the composi-
tion, the computation tasks found in between the invoke statements, help to
complement the query with the needed information, for example, for Q4 the
name of the full time professor varies for every instance of the composition,
so according to the professor’s name, the query is changed, also the Aboxes
for every instance of a composition vary, so the corresponding changes to the
query should be done.

BPEL Web Service Composition

As explained before, the BPEL4WS standard was adopted to define the query-
ing process. To ensure the correctness of the BPEL file, the BPEL Designer
from Oracle8 was used, since it produces BPEL compatible files and facilitates
their creation.

8http://www.oracle.com/technology/products/ias/bpel/index.html

2.3. CONCLUSIONS 15

WSDL Description of Web Service Partners

As explained in section 2.2 the web service partners offer the same function-
ality, they are services of the same type, thus they have similar WSDL files.
The web service partners contain only one port type with one operation, the
operation gets as input one parameter of type string that should contain the
query and as output a string parameter containing the response to the query
is given back. The service is bound to the SOAP messaging protocol, through
an RPC/encoded style.

2.3 Conclusions

With the increasing adoption of web service standards, more web services
offering the same functionality are available, thus opening a variety of possi-
bilities to choose from, as a consequence the creation of composed applications
based in web services become more common. Thus, leading IT companies have
gathered to develop a standard for the definition of web service compositions
called BPEL4WS.

In this project an optimization strategy for a web service composition is
to be found. Still, optimization possibilities can vary from composition to
composition, according to the kind of web service partners they use and the
architecture on top of which the composition is built. Therefore particularities
of the kind of composition to be optimized were identified, such that accord-
ing to these characteristics a specific composition was defined to serve as an
example basis for the optimization strategy.

The kind of composition to be optimize in this project, is one, which uses
in every invocation step a query reasoning service over RDF documents, thus
the composed application describes a querying process. The BPEL standard
was adopted for the description of the composition.

16 CHAPTER 2. OBJECT TO OPTIMIZE

Chapter 3

Criteria Analysis

The optimization of an object or process means, its improvement
towards a certain criteria. This chapter presents a variety of crite-
ria suitable for the optimization of the previously introduced web
service composition. It aims to show that most of the time in an
optimization project, one has to decide on multiple ways to opti-
mize something to be able to determine objective and constraint
functions that will help to probe the cost efficiency of the solution
to the given problem.

The research of parameters for the optimization of a problem is a task that
is confronted to a wide area of possibilities. For this reason, a good approach
would be one that first takes a high level overview of the possible optimization
areas, then decided on the area considered as most interesting or convenient
to the problem and finally focus the research on the selected area, such that
the first optimization steps can take place. Considering that this project tries
to optimize a web service composition based on the characteristics of the web
service partners, and that all the required partners, as described in section
2, provide the same functionality, the optimization criteria was divided into
two major groups, namely service-dependent and service-independent criteria.
The first focuses in characteristics related to the functionality offered by the
web service partners, while the second refers to characteristics found in the
technologies that realize web services in general, regardless of their function-
ality.

3.1 Service-Independent Criteria

With the increasing adoption of WSDL, SOAP and UDDI as core standard
technologies for the implementation of web services, there is a continuous re-
search focused on the creation of additional complementary technologies that
cope with issues like security, transactions, quality of service management, etc.
that the core technologies have not covered. It is in the different technologies
and standards, which realize web services, that it is possible to find optimiza-

17

18 CHAPTER 3. CRITERIA ANALYSIS

Figure 3.1: WS QoS Stack [13]

tion criteria for web service compositions.

Research has been done in the area of Quality of Service1 for web services,
following different paths, which I classify in three groups:

1. Classification of QoS concepts

2. Descriptive languages for the specification of QoS

3. Frameworks for QoS aware web service management

For each of them a selection of related work in the area is introduced that was
considered as relevant for this project.

3.1.1 Classification of QoS Concepts

While many articles talk about ways to specify QoS for web services and
propose frameworks for their management, a few have given the time to try
to classify QoS aspects, for these reason I found the classification proposed by
[13] relevant for this project. The so called QoS stack, see figure 3.1, provides
a relation between the technologies which realize web services, divided in data
layer, logic layer and presentation layer and their QoS concepts, divided in:

• Performance: Which deals with throughput, latency, execution and trans-
action time as issues concerning with the application logic, network and
messaging and transport protocols.

1hereafter referred as QoS

3.1. SERVICE-INDEPENDENT CRITERIA 19

• Reliability: Focus on the transport protocols.

• Integrity: Focus on transactions and security issues.

• Accessibility: With focus on scalability and infrastructure of the system.

• Availability: With focus on fault-tolerant systems.

• Interoperability: With focus on the implementation of web service stan-
dards.

• Security: With focus in authorization, encryption and access-control.

3.1.2 Descriptive Languages for the Specification of QoS

There is a proposal of IBM, called Web Service Level Agreements which ex-
tends the WSDL file to describe quality of service level agreements2, between
the involved parties. A SLA represents a contract containing three main
groups of information:

1. Parties: Involves not only the client and provider, but optionally also
a third party, for the support in service evaluation and service manage-
ment, to take actions when a guarantee has been violated.

2. Service description: This is the core part of the contract where the
SLA parameters for every operation are specified with higher and lower
metrics, to help the parties determine if they meet their expectations,
for example, binding possibilities, response time, availability.

3. Obligations: The obligations describe guarantees and constraints upon
the agreements, for example, validity period of a SLA parameter.

A general scenario starts when a service provider publishes its WSDL file to-
gether with the SLA for multiple operations or for the service as a whole. The
interested client starts a negotiation procedure supported by an authoring
tool, which retrieves the metrics offered by the provider, allowing the client to
choose and combine them into its own SLA and finally send them for approval,
such that at the end only one SLA document between the two parties is estab-
lished. Thus, the language provides with a variety of XML commands for the
specification of predefined element that compose a SLA, plus the possibility
to extend the language to define other parameters. For a complete reference
on the WSLA language you can refer to the XML-Schema found in [1].

There is a similar proposal from HP, called Web Service Management Lan-
guage [2], also based in SLA containing the information previously described,
plus a Purpose section, describing the reasons why the SLA was created, and
the Exclusions section, which describes what is not covered in the SLA, an-
other difference is that 3rd parties can not be specified.

2hereafter referred as SLA

20 CHAPTER 3. CRITERIA ANALYSIS

These two proposals, are oriented towards inter-enterprise scenarios, try-
ing to standardize an unambiguous set of XML commands that can express
offers and demands for the creations of contracts, and legally formalize agree-
ments between parties, thus formalizing a way to express the criteria upon
which a web service can be measured. Still the infrastructure to obtain the
measurements and manage decisions has to be build.

Another proposal with a slightly different view comes from Carleton Uni-
versity with a language called Web Service Offerings Language [15]. It is based
in the so called Service Offerings, which are a kind of SLA, the main idea is
that different kinds of service offerings can be specified for the same service
as a whole, such that more flexibility is offered for the customer to choose
between the available offerings while reducing overhead in negotiation pro-
cesses to form a whole new and unique SLA between parties, as the previously
described languages do. A service offering is composed of:

• Constraints: To specify QoS constraint, functional constraints and access
rights.

• Statements: To specify price/penalty statements, management respon-
sibility statements and in general any construct which is not considered
a constraint is classified under this group.

The language also enables the reusability of offerings, for the specification of
new offerings in a inheritance like way. Constraints can be grouped into units
of constraints that can further become a template, there is also the possibility
to extend the language for the definition of new constraints.

3.1.3 Frameworks for QoS Aware Web Service Management

The WS-QoS Framework developed at the Free University of Berlin, allows
for the definition, publication and matching of requirements and offers for web
services [11], to achieve this the next tools are being offered:

1. QoS XML-Schema: A language to specify predefined QoS requirements
of server performance, network performance, security, transactions, pric-
ing, for both client and service provider. The language can be extended
through an attribute called ontology, which references an ontology file,
where the new parameters are defined.

2. Service broker: To help in the service lookup process, so that clients send
the request to the broker together with their requirements, according
to these requests the broker looks into its UDDI registries, finds the
appropriate service and starts the communication with the services to
ask for their offers, the broker compares the offers and decides for the
best choice, finally gives the web service reference back to the client, so
that it can start its communication with the web service.

3. QoS Proxy: Which aims to support the QoS for the network layer, by
mapping the transport QoS parameters specified by the client to the

3.2. SERVICE-DEPENDENT CRITERIA 21

underlying technologies supporting the QoS transport, thus relays on
other technologies like ATM, UMTS.

4. GUI: For the monitoring of server and network performance in real-time.

Thus, the described research efforts try to complement the existing web
service standards for the specification of a variety of constraints for a bet-
ter description of web services and try to find a standard language for their
specification. They represent good examples for different paths that research
on web service management can take. Still, I consider that without a deeper
study in the different areas of QoS parameters, (as the areas presented in figure
3.1) that is sponsored by a standardization group in charge of the definition
of ontologies for such diversity of parameters, no standard unambiguous lan-
guage can be developed that could truly support the further development of
management tools for web services.

3.2 Service-Dependent Criteria

To identify service dependent criteria, the functionality offered by the web
service partners needs to be understood. As previously explained, the web
service composition considered in this project makes use of the services offered
by the inference engine called RACER.

3.2.1 Web Service Functionality

RACER: Renamed Abox and Concept Expression Reasoner

The information found in the current world wide web, is described with the
use of the HTML language, such that it is possible to combine and organize
multimedia objects and texts on top a structure that mainly describes the
visual layout of the elements in a web page. Thus, the information is syntac-
tically described while the semantics are left to the interpretation of human
end users. Therefore HTML descriptions are insufficient for a computer to
reason about the real meaning of the rendered information, for example, to
distinguished that “e50” is not only a string but a price of something.

If a computer can understand the real meaning of the information found
in the web, then it is possible to automate the gathering of information in a
more intelligent way. For this reason, some descriptive technologies have been
developed to extend the current web and give well-defined meaning to the in-
formation, such that is also understandable for computers. This new extended
web is called Semantic Web. RDF3 and OWL4 are such descriptive technolo-
gies and they complement each other to provide descriptive vocabulary. Still,
the concepts described with these vocabularies, need a structure that deter-
mines their relationship with other concepts with respect to a domain, such a
structure is called ontology.

3Resource Description Framework: http://www.w3.org/RDF/
4Web Ontology Language: http://www.w3.org/TR/owl-features

22 CHAPTER 3. CRITERIA ANALYSIS

Figure 3.2: Abox graph.

The RACER system is an inference engine over documents which contain
descriptive information written in RDF, DAML, Racer and other descriptive
technologies. It can reason over the ontologies found in its knowledge base.

Knowledge Base

As description logic reasoner the knowledge base of a Racer server is composed
of Tboxes and Aboxes.

A Tbox represents an ontology where a group of concepts and roles (which
represent the relationships between the concepts) for a specific domain are
modeled. In a Racer server, the concepts of a Tbox can have several axioms,
allowing to built knowledge upon already existing knowledge. An example
of an ontology well know around the Racer documentation [9] is the family
ontology Tbox, where for example, the relationships between the concepts
sister and mother, man and woman, etc. are defined.

Instances of concepts with respect to a Tbox can be created in the so
called Aboxes, see figure 3.2, in these Aboxes each instance is mapped to a
concept, this means that different names refer to different individuals, such a
characteristic is called UNA (Unique Name Assumption).

The distribution of the knowledge base is such that for every Abox file a
related Tbox file must be found, an Abox can refer only to one Tbox, while

3.2. SERVICE-DEPENDENT CRITERIA 23

a Tbox can have many related Aboxes. In case that the Abox and its corre-
sponding Tbox are separated in different files, a reference must be declared,
another possibility is that the Abox file can directly contain the Tbox descrip-
tion.

Inference Services

Being an inference engine, a RACER server, thus obtains a query as input
and sends back the corresponding result. This is reflected in its web service
interface where only one operation is offered, requiring one string as param-
eter containing the query command and giving back a string containing the
corresponding result. There are different inference services offered for both
Tboxes and Aboxes, they can be classify as follows:

- Satisfiability: To check consistency/coherence of a concept in a Tbox,
while for an Abox, it is checked if the instance assertions are satisfiable
with respect to other individuals.

- Subsumption: The hierarchy level of a concept in the taxonomy of a
Tbox can be obtained, while for an Abox, it is possible to know if a
concept subsumes an instance.

- Realization: The concepts in the Tbox are classified according to the
hierarchy in the taxonomy from the most general to the most specific,
the same is applied for the individuals of an Abox.

- Concepts and roles: For an Abox, instances of a inquired concept or role
are obtained.

The query services for Aboxes are relevant for this project.

Querying Process

When a query is received for its execution, the server will try to obtain the
information from the Tbox/Abox considered as current, therefore, the next
server states can be found when a query arrives:

1. The server considers the default knowledge base as current:
The default knowledge base5 is automatically loaded when the server is
started and will be considered as current as long as no other KB is loaded.
The default KB consists of a pair of an empty Tbox and Abox. When
such a status is found, the answer to any query will be a “NIL” string.
NIL is an answer given back when the server recognizes the absence of the
requested information, in this case there is no information in the default
KB, but it can also be the case that the KB do contains information, still
the concept or role is not defined, it is absent, so the server interprets
absence of information as something that can’t be proved, this is because
of the adopted OWA6 concept, which says that something that cannot

5Knowledge base will be hereafter referred as “KB”
6Open-World-Assumption

24 CHAPTER 3. CRITERIA ANALYSIS

be proven to be true is not believed to be false. This is why the name of
the related Tbox/Abox should be specified together with the query to
warranty a consistent answer.

2. The current KB is not the desired one:
When the current Abox is another than the desired one, but still is based
on the same Tbox, after a concept or role-like enquiry, the answer will
be misleading.

3. The desired KB is considered as current:
According to the query, a result to the desired KB can return either the
enquired tuples or the “NIL” string.

It is recommended to specify the name of the required Abox together
with the query command, such that misleading answers are avoided and the
previously described server states do not interfere.

The very first time that an Abox is queried, index structures for the Abox
are build, which is a procedures that can take some time, since the related
Tbox needs to be first classify and then the realization process of an Abox can
take place. The Abox realization has the purpose of computing the concept
names for all the individuals, this is an optimization step which helps future
queries to be answered much faster. The information in table A.1, see appendix
A.1, shows an example relation between indexing time and the size of an Abox
file. But once the index structures are build, the following queries to the same
Abox will use the same index structures, thus the response time is clearly
faster.

If one has the choice between one server that has the needed Abox with
the index structures already computed, against a second one who has no index
structures for the same Abox, it is clear that the first option is preferred. Thus
this is one criteria that can be consider for the optimization of our composition,
hereafter referred as Abox indexation.

The Query Repository

A Racer server can be configured according to different processing modes,
when the query repository also called Qbox is activated, then besides exe-
cuting the query, the server will also classify the query in a subsumption-like
hierarchy, such that for the set of queries that have been sent to an Abox,
the ancestors of the query, which represent its most general subsumees and
successors, which represent its more specific subsumers are computed.
This classification process is based on the object vector of the query, thus a
query is composed of head and body, for example for the next query:

(retrieve (?x) (and (?x woman) (?y person)))
The head is: (?x)
The body is: (and (?x woman) (?y person))

Each query has an associated object vector of variables and individuals, which
are obtained from the body of the query. For example:

3.2. SERVICE-DEPENDENT CRITERIA 25

For the query body: (and (?y woman) (?a man))
The object vector of variables is: (?a, ?y)
The object vector of individuals is: (man, woman)

The vector specifies how the answer tuples are internally formatted in a lex-
icographic order, which is later reordered according to the given head of the
query, to present the answer. Thus the internal vectors are the ones used for
the entailment comparison between two queries. For example, according to
the next queries and vectors:

Query1: (retrieve (?x) (and (?x woman) (?y person)))
Vectors: (x,y) (woman,person)
Query2: (retrieve (?a) (and (?b woman) (?a person)))
Vectors: (a,b) (person,woman)
Query3: (retrieve (?a) (and (?b person) (?a woman)))
Vectors: (a,b) (woman,person)

Query3 and Query1 entail each other because their internal vector is the same
(woman,person). While Query2 has a vector different to the others so it can
not be entailed by any of the other queries. If the query bodies where different,
then entailment applies between the most general and the most specific one.
For example, according to the next queries and vectors:

Query1: (retrieve (?x) (?x mother)) Vectors: (x) (mother)
Query2: (retrieve (?a) (?a woman)) Vectors: (a) (woman)

Query1 entails Query2, but not the other way around.

Moreover, the Qbox feature maintains in memory the results of the exe-
cuted queries over a specific Abox, this means that, once the query repository
is enabled in the processing mode of the server, different query repositories for
every accessed Abox will be created.

The cached information found in the Qbox can help for optimization pur-
poses in a way that futures queries can totally or partially profit from the
cached information, thus reducing computational effort of recomputing the
total amount of information.

If we see the Qbox after a session of queries, the figure 3.3 shows an ex-
ample of a Qbox for the Abox “University1”. One can see that Query-4 is
the most specific subsumer of Query-16, while Query-26 has an equivalent
query (Query-31) but no subsumers or subsumees. As showed in figure 3.4,
the answer of the forth inquiry (Query-16) to the University1 Abox, was par-
tially computed, taking advantage of the information stored in Query-11 and
computing only the left information, corresponding to the highlighted area.
Thus, a server that contains cached information that is useful for the present
query can be considered as a good candidate. Since this information is ob-
tained from the Qbox hierarchy, query subsumption is another criteria useful
for optimization.

26 CHAPTER 3. CRITERIA ANALYSIS

Figure 3.3: Qbox for Abox University1

Figure 3.4: Distribution of cached information.

3.3. CONCLUSIONS 27

3.3 Conclusions

Considering the characteristics of the web service compositions to optimize
in this project, it was decided that the first optimization steps could better
profit when performance parameters from the application logic of the web
service partners are considered, due to the fact that all of them offer the same
functionality.

The first optimization steps consider Abox indexation and Query subsump-
tion as criteria parameters to cope with the performance issues of the partner’s
functionality.

28 CHAPTER 3. CRITERIA ANALYSIS

Chapter 4

Optimization Design

This chapter presents how the optimization of the web service com-
position can be considered as a configuration problem and the dif-
ferent kinds of optimization algorithms that were applied in try-
ing to find the best choice suitable for our problem. Finally the
adopted approach is presented.

4.1 Algorithms for Optimization

From the description given in section 2 about the kind of web service com-
position to be optimize in this project, it becomes clear that the aim of the
optimization is to find for every invocation step in the composition a conve-
nient web service among candidates such that it is possible to find a combi-
nation of them that satisfies certain criteria. This kind of problem is known
as configuration design, which is described by [5] as following: “An artifact
is said to be configured if it is made by combining objects that are chosen
from a given finite set of generic components. The final configuration satis-
fies a given criteria, expressed either as constraints or objectives.” The next
problem description, illustrates this better:

Suppose n WS partners WS1. . .WSn
1 required in a BPEL compo-

sition. For each and every one of those partners there are 0 until
∞ other WS offering the same functionality and containing the
required information. For each WS there is a cost c(WSi) and a
time unit representing the execution time t(WSi). Which WS fits
best each partner, such that the combination of all partners mini-
mizes the total time without exceeding a given budget? Consider
the next problem instance:

No. of WS partners in the composition n = 4

For WS1, X1= 0 WS candidates are found

For WS2, X2= 4 WS candidates are found

1They can be considered as a class of web service

29

30 CHAPTER 4. OPTIMIZATION DESIGN

For WS3, X3= 2 WS candidates are found

For WS4, X4= 6 WS candidates are found

Figure 4.1: A complete enumeration approach.

This implies that the total of possible combinations can be expressed as:

n∏
i=1

Xi + 1

As seen in figure 4.1, the number of possible combinations can dramati-
cally increase according to the number of partners in the composition and the
number of similar WS found for each of these partners, making the task of ex-
amining all possible solutions in order to find the best combination that fulfils
the requirements, unpractical and most important, time consuming. For these
reason it is reasonable not to solve the problem by a complete enumeration
approach, thus it is necessary to find a solution that reduces search efforts.

There has been extensive research in the area of algorithmics, to find clever
methods that reduce the size of the search space. Since this is a broad field, a
solution starting from fundamental algorithm design techniques was intended
to be found. For a better understanding of algorithmics you can refer to [10].

4.1.1 Fundamental Design Techniques

A Combination of Backtracking and Greedy Methods

To find an optimization strategy for this combinatorial problem, it was de-
cided to look into some general techniques that are considered as fundamental
because they provide efficient algorithms for different kinds of problems, two

4.1. ALGORITHMS FOR OPTIMIZATION 31

of these techniques are the Backtracking and the Greedy methods, that can
be used for solving optimization problems.

A Backtracking method carries out a systematic search on top of a struc-
ture, the most commonly used structure is a tree which is considered as an
implicit directed graph with no cycles. With implicit graph is meant, that ev-
ery node in the tree is being constructed during the search progress. A search
cycle starts from the root of the tree towards a leaf, a leaf represents a feasible
solution and the end of the cycle. If during the cycle the solution is found
unsatisfiable, the edges used in the algorithm are discarded and a new search
cycle begins.

A Greedy method refers to one that for each search step the most con-
venient parameter is considered according to the specifications of a desired
solution. This means the most convenient local parameter is chosen regardless
of the situation that can come in the future.

Thus, combining this two methods an optimization algorithm was found,
which can be better illustrated with an example. Consider the afore given
problem instance, where a composition requires four web service partners. As
depicted in figure 4.22 each candidate web service is given a pair of criteria,
time and cost with their respective values. The specifications of the desired
solution is to minimize the time, while a budget less or equal than 14 is not
exceeded. For every step in the search iteration, the edge with the lowest time
was considered as the most convenient, and the cost of every edge was added.
The first iteration fails, because the budget was exceeded with a cost value of
20. The edges participating in this iteration are discarded3. The next cycle
starts with a new set of edges and the feasible solution is found.

Even though, the answer was found in the second step, this is still an
exhaustive search process which in the worst case, it would have to evaluate
all the non-eliminated nodes for each step. This could happen for example,
when the given budget constraint is too low to discover that no combination
is possible to fulfill it.

The given example in figure 4.2 represents only one instance of a com-
position, but in this project, it is intended to find a suitable algorithm for
compositions with different input sizes, so it should be possible to cope with
problems of larger input sizes and still maintain a reasonable computational
cost.

4.1.2 A Heuristic Approach

An alternative solution are the heuristic techniques which are part of the com-
binatorial optimization field and are suitable to approach the so called hard
problems. Hard problems represent any kind of problem with an exponential
complexity that could take much time to be solved by deterministic exhaustive

2All the edges in the tree are expanded for illustration purposes, but the tree is still
implicitly considered.

3For additional efficiency of the algorithm, edges considered poorer than the discarded
ones could also be discarded.

32 CHAPTER 4. OPTIMIZATION DESIGN

Figure 4.2: Greedy-Backtracking method

4.1. ALGORITHMS FOR OPTIMIZATION 33

Figure 4.3: Genetic Algorithm: Crossover and Mutation

search programs, when considering a realistic input size. The main character-
istic of heuristics algorithms in general, is that they find solutions among the
universe of all possible solutions, without any guarantee that the best will be
found. But they can find solutions close to the best one, in this sense they are
approximating algorithms.

Several heuristic techniques are inspired by nature, biology and physics,
for example the Ant Colony Optimization or ACO [6] inspired by the obser-
vation of how ants find the shortest path to their food source and why all
of them follow the same path which appear to require much coordination. It
was discovered that ants leave pheromone trails on their way, such that the
following ants will use the same path by following the pheromones. If by
chance the larger path was first chosen and not large enough to give time to
the pheromone to evaporate, the following ants will come the same trail laying
out more pheromone, thus maintaining a mediocre path. Still this is not al-
ways the case and has helped computer scientists in finding new optimization
solutions, by using weight or “artificial pheromones” for each possible path
with an artificial degree of evaporation, such that bad paths (paths of larger
size) will evaporate first and good paths (paths of smaller size) will maintain
a higher degree of pheromones according to their size.

Genetic Algorithm

For this project the Genetic Algorithm was also applied, aiming to find a
suitable algorithm for input sizes of bigger dimensions.

The Genetic Algorithm simulates the natural optimization process found
in evolution where the sequential recombination of chromosomes (DNA se-
quences) produce new generations from which the bests are chosen to be re-
combined again, thus producing in each iteration a better generation.

To simulate this process the population or the artificial chromosomes are
represented with vectors or strings. Two chromosomes representing the par-
ents are needed to create two new individuals, for these process the crossover
operation is used, see figure 4.3, in which parts of the chromosomes are ex-
changed, thus producing a new generation with characteristics of both par-
ents4. Then, the mutation takes place, in which random genes of the new
chromosomes are mutated. The so called fitness value determines if a chro-

4How parts of chromosomes are mixed together is fixed by the designer of the algorithm.

34 CHAPTER 4. OPTIMIZATION DESIGN

Figure 4.4: Population of Genetic Algorithm for a problem instance

mosome is kept or discarded for further reproduction, thus generations are
compared against the fitness value and depending of their value, they are dis-
carded or chosen to be parents. For a more detailed documentation of this
algorithm you can refer to [10].

To explain how this algorithm suits our optimization problem, lets look
at an example, for which we take the same problem instance given in section
4.1.1. First we need to find the population, as observed in figure 4.4 each web
service partner has a different number of web service candidates. To produce
chromosomes of the same size for a proper crossover, the candidates for the
same partner are duplicated in the rest of the column. A cycle would then
progress as follows:

1. Fitness value check: With a fitness value of cost less or equal to 14 and
a minimum time, the best chromosome according to its fitness value,
is kept for the next generation, while the chromosome with the worst
fitness value is not considered for crossover.

2. Crossover: The crossover could only then take place in such a way, that
only the candidates for the same web service are mixed with each other,
from the figure 4.4 the crossover is taking place when the chromosomes
are considered horizontally. The crossover point is taken randomly.

3. Mutation: Each new chromosome, see figure 4.5, is exposed to a random
but low number of mutations, where the value of the mutation can only
take a value from a random candidate from the same group of candidates
(column) of their respective web service partner. The lowest number of

4.1. ALGORITHMS FOR OPTIMIZATION 35

Figure 4.5: Crossover and mutation for a problem instance

36 CHAPTER 4. OPTIMIZATION DESIGN

permutations the better, to avoid falling into a pure random search, the
experts5 recommend 0.5% to 1% of permutation.

For choosing the parents, the so-called steady-state selection was applied,
such that elitism is used, to avoid loosing the best present chromosome for
the next generation. Together with a rank-selection, according to their fitness
value. More than a couple of parents was chosen other wise by choosing only
the best two parents for their crossover in each cycle, prunes out chromosomes
that could lead for better solutions, the number of parents for crossover can
be chosen by percentage in concordance with the size of the population, a
percentage between 60% and 80% has been recommended. This cycle can
repeat until a number of populations are reached.

4.1.3 Adopted Approach

The result provided by a robust optimization algorithm is a solution that
satisfies a set of criteria. Criteria can be divided in constraints and objectives,
where constraints are expressed as equalities or inequalities and objectives are
expressed as the maximum or the minimum possible value. As a consequence,
when too many constraints are applied, it is possible that no solution can be
found that satisfies all of them, while objectives are more flexible.

The previously presented algorithms solved the given problem instances
in the examples, while considering only a pair of criteria. Still, this project
intents to cope with criteria to be added in the future, thus it should be
possible to handle multiple objectives and multiple constraints.

The solutions presented before in section 4.1.1 and 4.1.2 can easily cope
with a single objective, but when considering multiple objectives, with no total
order, then it is better to consider an approach such as the one proposed by
[5], namely the PO − A∗ algorithm. With no total order is meant, that the
objectives are not mutually comparable and there is no factor to convert all
the criteria into a single metric. The PO − A∗ algorithm gets its name from
the combination of the next two algorithms.

1. The A∗[12] is a single-objective search algorithm that guides the explo-
ration on top of a tree and uses the next evaluation function:

f∗(n) = g∗(n) + h∗(n)

This evaluation function determines the goodness of a node in the tree,
where g∗(n) (see figure 4.6), refers to the cost from a given node s to
a given node n, and h∗(n) refers to the optimal path from node n to
the goal. Since this is a best-first algorithm, the value of g∗(n) will be
optimal, and an optimal solution can be guaranteed, only if for the value
h∗(n) optimistic nodes are being considered. Since this a single-objective
function, there is a unique solution for the optimization expressed with

5http://cs.felk.cvut.cz/ xobitko/ga/

4.1. ALGORITHMS FOR OPTIMIZATION 37

Figure 4.6: Evaluation function of A∗ Algorithm

a scalar value. In figure 4.6 the unique optimal solution is f∗(n) = 5
+ 2 = 7, the value of f∗(n) is then the total cost of an optimal path
in the tree from node s to the goal, constraint to pass through node n[12].

2. The Pareto-Optimal is a multi-objective optimization algorithm, where
the values of the objectives are expressed by dimensions in a graph,
see figure 4.7 each vector is placed according to its value inside the
dimensions. As a rule of thumb, a multi-objective problem has more
than one solution, the vector 5 and 2 are pareto optimal because they
dominate all the other vectors, this is the so called pareto-optimal set or
non-dominated set.

A vector in a multi-objective problem is characterized by the fact that
it can’t be increased in one of its objective functions without decreasing
on some of the other objective functions, this behavior can be appre-
ciated in figure 4.7, where vector 5 increases its objective towards A,
while decreasing its objective function B. There is always a trade-off to
choose from one solution or the other, so the decision can be made when
priorities to each function are given.

The PO-A∗ algorithm is therefore the result of combining these two
algorithms, so that it is possible to search into the tree and decide on
the goodness of a node for multiple objectives.

It can be observed that a pareto optimal strategy can be applied to
other optimization algorithms when it comes to compare a set of decision
variables with different objectives, for example, the pareto optimality can

38 CHAPTER 4. OPTIMIZATION DESIGN

Figure 4.7: Pareto Optimal curve for two evaluation functions

Figure 4.8: Composition of queries

determine the goodness of a chromosome in the genetic algorithm, such
that non dominated chromosomes are considered for crossover.

The pareto optimality strategy was adopted to solve the multi-objective
problem.

4.2 Candidate Solutions

This section describes two of the most relevant approaches considered to solve
the configuration problem for a web service composition, using the criteria
described in section 3.

4.2.1 Global Optimization

A layout language represents a set of relationships between the components of a
design, in this project, the design is represented by the web service composition
and its components are the queries to be sent as parameters when invoking a
web service partner. To easily understand this section, a scenario is given.

4.2. CANDIDATE SOLUTIONS 39

Composition ID Query ID Abox Predecessor Successor Subsumed by Related query
1 Q1 Abox1 - Q3 - Q2
1 Q2 Abox1 - Q3 - Q1
1 Q3 Abox3 Q1,Q3 Q4 - Q4
1 Q4 Abox3 Q3 - Q3 Q3

Table 4.1: Layout language for a composition of queries (Scenario 1)

Web Service Aboxes Indexed Aboxes
S1 Abox 1
S2 Abox 1, Abox 2 Abox 2
S3 Abox 3
S4 Abox 3, Abox 2 Abox 3
S5 Abox 2 Abox 2

Table 4.2: States of web service partners (Scenario 1)

Scenario

Consider the composition in figure 4.8, four queries are involved, where Q4 is
subsumed by Q3.

If the table 4.1 is used as the layout language6 for the composition in figure
4.8, the next relationships are described:

• Composition ID: Represents the ID of the composition to which all in-
stances of that composition belong to.

• Query ID: An ID that identifies the query inside of the composition.

• Abox: The enquired Abox

• Order of execution: The successor and predecessor of a query, helps to
identify the order in which the queries are executed.

• Subsumption: Is the ID of a subsumee(s) of the query. This information
should be known before instantiation.

• Related query: Queries in this rubric represent the queries that use the
same Abox.

Now consider the status information given in table 4.2, where the candidate
web service partners, the Aboxes they contain and the indexed Aboxes are
listed. The ideal solution would assign the queries as follows:

• Q1 - S1: Q1 is assigned to S1 because the needed Abox is found there.

• Q2 - S1: Q2 is assigned to S1 because the previous query used the same
Abox so it is indexed.

• Q3 - S4: Q3 is assigned to S4 because the needed Abox is indexed.
6The content of the layout language should be given by the designer of the composition.

40 CHAPTER 4. OPTIMIZATION DESIGN

• Q4 - S4: Q4 is assigned to S4 because its subsumee (Q3) was assigned
to S4.

Comments

Making assignment decisions according to the relationship of a query with
other past queries in the composition as the last solution showed, dramatically
restricts the number of candidates, thus hindering the possibility of finding
better solutions.

The ideal situation for a global optimization algorithm, is to consider the
values of each criteria for each web service candidate, such that it is possible
to play with the combination of values, as shown in sections 4.1.1 and 4.1.2.

The advantage of the algorithms in section 4.1 is that global optimization
can be guaranteed.

The disadvantage is, that such an approach is suitable when only one in-
stance of a composition is running at a time, thus only for one client composi-
tion. This is because the values of the chosen criteria, namely Abox indexation
and level of query subsumption are dynamic, meaning that their value is con-
stantly changing, so if other clients are accessing the web service candidates
at the same time, the status of the servers change. Therefore, to obtain an
accurate solution from a global optimization algorithm for such dynamic val-
ues, it is necessary that no other clients access the web service candidates, but
this is not a realistic scenario, although it can be argued that the optimization
solution is optimal according to the status of the web service candidates found
in the past at designation time, but by the time a composition has finished
executing its last query, the status of the servers will be different.

This project focuses on a solution that could serve multiple clients, as
explained in the next section.

4.2.2 Local Optimization

As explained in section 4.2.1, having a global knowledge of the composition
is useful when the constraints have a constant value or at least a value that
will remain unchanged during the lifecycle of the composition, such that, with
the use of a heuristic, it is possible to find in advance an optimal combination
of resources (web service partners) to be assigned to each invocation step in
the composition. But, when the value of the criteria is constantly changing, it
is better to look for the proper web service only until run time, this has two
important reasons, which are closely related to the criteria that this project
considers as first steps for optimization, namely Abox indexation and query
subsumption. Both criteria are affected by the changes in the state of the
server, caused by the execution of queries for other clients. Figure 4.9 shows
these two reasons:

1. By the time the composition invokes a partner, the Racer server has most
probably changed its state, because other client’s queries can arrive at
any time in between changing the state of the server. Thus, the changes

4.2. CANDIDATE SOLUTIONS 41

Figure 4.9: Changes of the server’s state through time

are reflected in the state of the Qboxes that cache results of the executed
queries, increasing the possibility to find a subsumee for the present
query. Furthermore, a query that has been executed on an Abox for the
first time, causes the Abox to be indexed. In this way, the more queries
the server executes the more possibilities there are to find a convenient
server state with respect to query subsumption and Abox indexing as
criteria.

2. The name of the inquired Abox is known only until some decisions in
the business logic of the composition have been made during its runtime,
thus the decision to find a server that contains the required Abox can
only be made at run time.

These two reasons point out for a solution that looks for a local optimiza-
tion when considering criteria, which values are constantly changing. Local
optimization means that only possible web service resources are taken into
consideration for the present query and no decisions are taken on behalf of
future queries that are to come, since there is not a way (at least for now)
to predict the future state of the servers, moreover, the knowledge about the
characteristics of the composition discussed in section 4.2.1 are for the moment
not useful for decision making.

Comments

This approach can serve to multiple clients, avoiding the bottleneck that can
be caused by blocking the access to web service candidates used by a client

42 CHAPTER 4. OPTIMIZATION DESIGN

composition. Another advantage is that, before the end of its life cycle, the
composition can profit from the changes in the state of the servers that are
being produced by the inquiries of other clients.

The local optimization applies pareto optimality to compare the goodness
of the web service candidates.

4.3 Conclusions

The pareto optimal algorithm was adopted to be able to cope with multiple
objective functions.

It could be observed that other optimization algorithms that deal with
only one objective function can be helpful to solve multi-objective problems
when they are combined with the Pareto Optimal algorithm.

After analyzing the advantages and disadvantages of a global optimization
approach against a local optimization, it was decided to go for a local opti-
mization which copes with multiple clients, giving the possibility of improving
the values for the criteria of Abox indexing and query subsumption produced
by the inquiries of multiple clients before a composition reaches the end of its
life cycle.

Chapter 5

Materials and Methods

Until this moment, only the strategy applied by the optimization
algorithm has been discussed, but how the strategy will be tech-
nically applied is to be introduced in this chapter. Thus, the next
aspects are presented: type of communication between the client
and the web service partners, the different criteria categories that
can be handled by the Locator, so as the processes to obtain their
respective values and finally the way in which the pareto opti-
mality for comparison of multiple objectives was implemented is
described.

5.1 Locator’s Design

5.1.1 Components

To implement the optimization strategy, as figure 5.1 shows, a web service
middleware, hereafter referenced as Locator, will be active between the compo-
sition instances and the web service entities, to generate the proper decisions.
These decisions are based according to the following information:

1. Query to execute

2. Abox: Represents the name of the Abox to be inquired.

3. Candidate web services: Represents a list of web service URIs for each
server that the locator will consider as candidate.

4. Knowledge-Base: Represents a list of names of Tboxes and Aboxes that
each server contains, since the knowledge base of every server is not
identical. It is assumed that Tboxes and Aboxes with the same name,
will contain the same information in each server.

5. Qboxes: Represents the Qboxes in every candidate server, reflecting the
querying activity that an Abox has had until the present, indicating
which information has been cached. Thus, it is from this information

43

44 CHAPTER 5. MATERIALS AND METHODS

Figure 5.1: The Locator middleware

Figure 5.2: Qbox states per server

that the criteria for query subsumption and Abox indexing can obtain
their respective values.

As explained in section 3.2 Abox indexing and query subsumption are
the criteria towards which the composition is to be optimized, which can be
expressed as constraints or objectives. While constraints are expressed as
equalities or inequalities, objectives aim to maximize or minimize its value.

The Qbox

Knowing the state of the servers with respect to its Qboxes helps to know if
there is any cached information that the present query subsumes. Thus, a
server that has cached the needed information is considered more convenient
than another with no subsumee.

To profit from the Qbox processing mode, the locator needs to know the
state of every server with respect to its Qbox for each Abox. As the scenario
in figure 5.2 shows, different servers have a different state with respect to

5.1. LOCATOR’S DESIGN 45

the Qbox of the same Abox (Abox1), Q5 represents the present query to be
executed and the different places where it fits in the Qboxes.

• In server 1, there is still no Qbox for Abox1, this means, that no query has
been executed for Abox1, thus the Abox1 in server 1 is not yet indexed.

• In server 2, the parent of Q5 in the Qbox hierarchy is Top, this means
that there is no other query that this one subsumes, but only the entire
universe.

• In server 3, there are two ancestors (besides Top) to Q5, while in server
4 only one ancestor is found, server 3 is then the most convenient server,
since Q5 does not only have a subsumee but its hierarchy in the Qbox
is deeper than in server 4, this means that the search space is smaller.

This example shows that considering query subsumption as criteria is ex-
pressed as an objective, such that the subsumption is maximized, according
to the number of the query’s ancestors. Moreover, knowing the existence of
a Qbox in a server reflects that the Abox is indexed, thus Abox indexation is
considered as a constraint where its values either resolve to true or false.

Obtaining Criteria Values

It is then clear that to obtain information about a possible subsumee of the
present query, the Qbox information of every Abox in every server must be
known to the Locator. Still, to obtain the Qbox information, the following
requirements must be fulfilled to maintain the Locator’s efficiency:

• The Qbox information should be found locally: Since the Qbox informa-
tion is remotely located and the Locator can receive a high amount of
queries to be executed, it is not desirable to ask the Qbox state to every
server every time a query arrives, therefore this information should be
found locally.

• Avoid duplicating Qbox’s cached content: The cached information found
in every server, should not be duplicated for the local Qbox knowledge,
otherwise the Locator itself would be able to answer the queries.

To cope with these requirements, the proposed solution in figure 5.3 makes
use of a Racer server on the side of the Locator that performs Qbox reasoning
and helps to maintain a local copy of the status of each remote Qbox. First,
the Locator inquires the local Racer server through the JRacer to classify the
query against each Qbox. According to the classification, the proper server
can be obtained. In this way the state of the Qbox in the destination server
is locally reflected before it is actually changed in the remote server.

The local Racer server contains a copy of the Tboxes and empty Aboxes
of every server, which are necessary to perform the Qbox reasoning. To accu-
rately reflect the status of the remote servers, it is required that:

46 CHAPTER 5. MATERIALS AND METHODS

Figure 5.3: Local Racer server for reasoning.

1. Every query should be directed to the locator: For the locator to have
a sufficient knowledge about the state of the servers, it is necessary that
every client that intents to inquire the Racer servers, sends the query to
the Locator, so that there is knowledge of every query that has reached
a server, otherwise allowing the clients to directly access the servers will
cause unnoticeable changes in their state. For this purpose and to make
it transparent to the client, the locator will have the same interface as
the Racer’s web service, namely it will offer only one operation that
receives a query string and gives back a result string.

2. The queries should specify the name of the Abox: Since the state of the
servers can also change with respect to the current Tbox or Abox, then
it is necessary that the client specifies the Abox to enquire, otherwise the
query will be executed on top of the current Abox, thus giving a false
answer if the Abox is not the correct one. The NRQL language allows
specifying the Abox name, right after the query command, for example:

(retrieve (?x) (?x top) :abox file://University1-0.owl)

Specifying the Abox name right after the query, makes it unnecessary
to send previous commands to load the required Abox before the query
can be executed, which is a task that either the client or the Locator
would have to take care of in order to assure the correct answer.

Pools

To help in the management of query requests and query answers, different
query-pools are used such that there is a common place to obtain requests
waiting to be assigned to a server, assigned queries waiting to be send to the
web service partner and query answers waiting to be given back to the clients.

5.1. LOCATOR’S DESIGN 47

Figure 5.4: Locator’s Pools

Thus to cope with multiple clients, the Locator uses three pools, see figure
5.4.

1. Pool1 of requests: While the Locator is busy assigning a service to
other requests, clients can store their requests in this pool, from which
the Locator will pick them up to start the assigning process in a First-in
First-out model.

2. Pool2 of assigned queries: Afterwards, the queries assigned to a web
service partner are stored in this second pool, which stores the queries
that cannot yet be executed, because the web service partner is busy.
Once their respective web service is available, they can be send for ex-
ecution. Since the queries in Pool1 were assigned in order of arrival,
the optimization decisions were made also according to this order, in
consequence queries in this pool are also picked up in a Fist-in First-out
model to be sent to the corresponding service.

3. Pool3 of answers: When the web service partner finished executing the
query, the responses are kept in this pool until they are delivered back
to their respective client.

Due to this design, it is possible to know the waiting queue of a web
service partner, since this information is found in the pool Pool2 of assigned
queries, which contains requests that are only waiting to be executed. To
take advantage of this facility, the waiting queue can be considered as another
objective function to be included in the optimization, where the minimum is
desired.

48 CHAPTER 5. MATERIALS AND METHODS

Comments

Thus, as previously explained, for the efficiency of the Locator’s strategy the
following components are used:

• One local Racer server: To avoid the inquiry to every remote server
about their Qbox state and profit from its query classification reasoning
without having to execute the present query in the remote servers.

• Knowledge Base: The query classification performed by the local Racer
server, is done on top of Tboxes with empty Aboxes, to avoid duplication
of remote information.

• Three pools: They are helpful to cope with multiple clients. Since the
main task of the Locator is to find a suitable service to the present query,
these pools help to maintain requests and answers while the Locator is
busy finding the suitable service for a query.

5.1.2 Multiple Threads

To cope with multiple clients, the Locator is designed as a multithreading
application. As shown in figure 5.5, it is divided in a front end and a back
end. The front end is instantiated when a SOAP request reaches it, thus, the
only method found in this class is published as web service, duplicating the
interface of the web service partners. The main tasks of the Locator’s front
end are:

1. Interception of the client’s request.

2. Delivery of the request to the Locator’s back end, for its assignation to
a convenient service.

3. Delivery of the answer back to the client.

4. Maintain a synchronous communication link with the client.

The back end of the Locator is a singleton class which aims to find the conve-
nient service for the requests given by the front end, thus, it is activated every
time that a front end hands a request to it. This class uses the following three
threads:

1. Assign thread:
Its aim is to assign all queries found in Pool1 of requests, to a convenient
server. After a service is assigned the query is transferred to Pool2 of
assigned queries. Thus, this thread is active as long as there are requests
waiting to be assigned in Pool1.

2. Send thread:
This thread is executed right after the first assigned query is found in
Pool2, its aim is to supervise that there are no idle service partners that

5.1. LOCATOR’S DESIGN 49

Figure 5.5: Simple class diagram

50 CHAPTER 5. MATERIALS AND METHODS

Figure 5.6: Sequence diagram

can solve the requests that are waiting to be executed. Thus, this thread
has knowledge about the available service partners and their activity
status, being busy or idle. Once a service is idle and there is a request
that can be solve by it, this thread runs a third thread, called Thread to
Server, which is following explained. Thus, this thread is active as long
as there are waiting requests in Pool2 and until there are no more active
Threads to server.

3. Thread to server:
This thread sends a SOAP request to a specific web service partner
containing the query as parameter and maintaining a synchronous com-
munication link. Once the answer is obtained, it is stored in Pool3 and
the thread is finished. There is one of this thread per service partner, in
this way the Locator can control the activity of the web service partners
by assigning a request at a time to each partner and maintaining the
waiting requests in Pool2, such that it is possible to know how many
request are waiting to be solved by a specific partner. Thus, the Send
thread administers their instantiation and hinders the instantiation of
more than one thread per service. Only if the query request was suc-
cessfully answered, the registry of the request from Pool2 will be deleted,
otherwise, this thread will be created each time to try to send the request
until the answer is successfully obtained.

Thus, as figure 5.6 shows, the back end can be considered as the main
thread from which the previously described threads are launched and man-
aged, so that no thread is idle while there are requests to be assigned and
requests to send. The back end finishes its activity, once the 3 repositories are

5.1. LOCATOR’S DESIGN 51

Figure 5.7: Assignment flow chart

left empty and the other threads have finished.

Every request, contains the query to execute as only parameter, once the
request arrives at the Locator, the query is encapsulated in an object called
Query Context, which aims to identify the query inside the Locator, such that
the following information is known:

• Client: Represents an ID of the client that requested the execution of
the query, to identify which of the answers found in Pool3 correspond
to a certain client.

• Pool: An ID of the repository in which the query is stored at the moment,
thus, the three repositories store Query context objects.

• Host and Service URI: Represent the service that answered or will answer
the query.

• Abox and Result of the query.

5.1.3 Service Assignment Logic

The previous sections have focused mainly in the communication of the Loca-
tor between the clients and the web service partners, but the strategy to find
the convenient web service is to be explained in this section.

The strategy to find an appropriate service for a request is implemented in
the Assign Thread. As the flow chart in figure 5.7 shows, it consists of three
synthesis steps each of them corresponding to categories of criteria, thus the
criteria are divided as follows:

• Must Constraints: Represent the set of minimum constraints which a
web service partner must satisfy in order to give a response, for exam-
ple that the service contains the Abox to inquire, or access rights are

52 CHAPTER 5. MATERIALS AND METHODS

Figure 5.8: Memory management flow chart

satisfied, etc. If none of these constraints are satisfied, it is not possible
to execute the query, thus this kind of constraints help to find partners
that satisfy the minimum requirements to obtain an answer. The set of
partners obtained after this synthesis are passed to the second synthesis
stage.

• Constraints: Represent all the other constraints that are not part of the
first category. This means, that their absence does not hinder the pos-
sibility of executing the request. Still it is not recommended to include
too many constraints of this category, otherwise the web service partners
might not satisfy all of them, thus decreasing the possibility of finding
any candidates after this synthesis stage. If this is the case, the Locator
will start to iterate in a cycle, which relaxes constraint by constraint
until a candidate partner is found. In the worst case, the whole set of
criteria is relaxed. The relaxation process is explained in section 5.1.4

• Objectives: Represent the criteria who’s value needs to be maximized
or minimized according to its objective function. In this synthesis stage,
the values of the objectives are compared to obtain a set of non domi-
nated candidates according to a Pareto algorithm, which is explained in
section 5.1.5. If a set of candidates is obtained after this synthesis stage,
a decision process chooses one of the candidates and assigns it to the re-
quest by writing its URI information to the Query Context object of the
request. Finally the Query Context object is stored in Pool2 of assigned
queries, ready to be sent to the corresponding web service partner

Once a service has been assigned, a memory management procedure starts
to check if the service has cached already an equivalent query for the same
Abox, if this is true, a delete command is sent right after the request, with

5.1. LOCATOR’S DESIGN 53

the aim of deleting the cached information of the present request in the cor-
responding Qbox to avoid duplicated cached information. This is realized as
figure 5.8 shows, by giving a name to the assigned query, afterward the query
is executed in the corresponding Abox in the local Racer server. Thus, the
local Racer server contains many empty Aboxes named after Service URL +
Abox name. Afterwards, it is asked if the query with the given name has an
equivalent query, if this is true, the query maintains its name and a delete
command with the same name are stored in Pool2 of assigned queries. While
if there are no equivalents, then the query without any name is stored in Pool2.

The same procedure is done if it is a top like query, which duplicates the
whole content of the Abox in the Qbox. To get to know if a query is a top
like query, the first query atom of the request is obtained and kept in variable
X=?z , afterwards a string of the form (retrieve(X)(Xtop)) is compared with
the query request (with no spaces), if they are equivalent, then it is a top like
query.

To manage the different categories of criteria, as shown in figure 5.5, every
criteria that the Locator considers, should be implemented in its own class
which must inherit from the Criteria class and should override the getValue
method. Thus, it is considered that every criteria should have the next char-
acteristics:

- A name.

- A type indicating the category of criteria that it belongs to.

- A desired value, if it is a constraint.

- An objective function, if it is an objective and to indicate the way a
constraint should be relaxed.

- Priority, to support the order of the relaxation process.

- A specific method to obtain its value.

The class CriteriaXService is there to relate the different criteria and their
value according to a specific service and request. Thus, the Criteria and
CriteriaXService classes have the purpose of handling every criteria in a sim-
ilar way and leaving only the implementation of the getValue method to the
specific requirements of each criteria. For example, the objects of criteria
QuerySubsumption and AboxIndexing make use of the JRacer API to com-
municate with a Racer server and obtain their respective values, while the
WaitingQueue reads the waiting queries for a service found in Pool2, etc.

As the following pseudocode shows, the Criteria and CriteriaXService
classes help to manage the different criteria in every synthesis stage in a dy-
namic way, independent of their peculiarities.

54 CHAPTER 5. MATERIALS AND METHODS

In first synthesis stage:
for every service begin
——-for every Must Constraint in CriteriaXService begin
————value = mustConstraint.getValue();
————if value != 0
—————-add to number of satisfied constraints
——-end
——-if all constraints where satisfied
————add service as candidate service for next stage
end

In second synthesis stage:
while no candidates for next stage are found begin
—-for every candidate service begin
———–for every Constraint in CriteriaXService
—————-value = Constraint.getValue();
———–if value != 0
—————-add to number of satisfied constraints
—-end
—-if all constraints where satisfied
——–add service as candidate service for next stage
—-if no candidate satisfied all constraints
——–relax one constraint
end

In third synthesis stage:
for every candidate service begin
—-for every Objective in CriteriaXService
——–value = Objectives.getValue();
—-add CriteriaXService object to set of Pareto nodes
end

Still there is a restriction that every criteria must satisfy, namely the get-
Value method must return an integer value, where 0 means “not satisfied”.
Since it is not possible to expect that the value of every criteria is numeric,
then it is left to the implementation of the criteria class to decide on a metric
that will represent the kind of values it can get, for example:

The criteria Indexing has a boolean value, where false is considered
as not indexed, then the metric rule of that criteria can be:
false = 0
true = 1 (or another integer)

Thus, numeric values are required so that they can be compared during the
third synthesis stage of objectives.

5.1. LOCATOR’S DESIGN 55

Figure 5.9: Constraint relaxation

In this way, new criteria can be added to the Locator by creating its own
class and including it in the CriteriaXService class as a mustConstraint, Con-
straint or Objective.

5.1.4 Constraint Relaxation

As described in the previous section, constraints are relaxed during the sec-
ond synthesis stage. The relaxation process takes place when at the end of
the synthesis stage, there were no candidates found that satisfied all the con-
straints. From the set of constraints the one with the least priority will be
chosen for relaxation, thus the order of relaxation in each iteration goes from
the least important to the most important according to the priority attribute
found in the criteria object. The process consists in converting the constraint
into an objective. Thus as figure 5.9 shows, in the CriteriaXService object
used for the classification of criteria in different categories, the desired criteria
is moved from the category constraints to the category objectives. In this way,
during the third synthesis stage the CriteriaXService object of every service
will consider also as objectives, all the constraints relaxed in the previous syn-
thesis stage. This procedure aims to find candidates to be considered in the
third stage and still compare the service against the criteria now relaxed to
an objective, thus the search still optimizes against the relaxed constraint.

For this reason every criteria should inherit from Criteria class and specify
an objective function independent of the category that they initially belong to.

Even though candidate services can be found after the second stage without
the need of relaxing criteria, the services that were discarded in this stage could
be considered as non-dominated in the third stage where other criteria come
into consideration. Moreover some criteria could block other services to ever
be considered in the third stage, for example, consider the following case:

Constraints : Indexing
Objectives : Subsumption Level, Waiting queue
State of the servers: No Aboxes are indexed
Enquired abox : Abox1

1. For the first request the Locator relaxes criteria Indexing,

56 CHAPTER 5. MATERIALS AND METHODS

Figure 5.10: Obtaining non-dominated nodes

since non of the services have the abox Abox1 indexed, conse-
quently all services are considered in the third stage and one
service Service1 is chosen.

2. The second request inquires the same abox Abox1, conse-
quently only Service1 is considered after the second stage
and as long as no other Abox is enquired, the same service
Service1 will be chosen, thus the waiting queue for Service1
can easily increase, while the other services are left idle.

5.1.5 Pareto

For the comparison of multiple objectives, the third synthesis stage finds a set
of non-dominated services based on the Pareto curve as explained in section
4.1.3. To understand how the non-dominated services are obtained an example
for 2 dimensions is presented in figure 5.10. Four services are considered
where their value for criteria Waiting queue is to be minimized and criteria
Subsumption level is to be maximized then:

Service 1 dominates Service 2
Service 2 dominates none
Service 3 dominates Service 1 and Service 2
Service 4 dominates Service 1 and Service 2
Service 3 and Service 4 are non-dominated

Thus, the non-dominated nodes are obtained as the following pseudocode
shows:

for every service to compare i begin
——–current = servicei

5.1. LOCATOR’S DESIGN 57

——–for every service to compare i+1 begin
————-compare = servicei+1

————-for every objective begin
—————–if objective function is minimize
———————if current.objective.value <= compare.objective.value
————————-current dominates
—————–if objective function is maximize
———————if current.objective.value >= compare.objective.value
————————-current dominates
————-end
——–end
——–if current dominates compare in every objective
————add compare to set of dominated nodes
————delete compare from set of services to compare
end

After the third stage, if more than one non-dominated nodes is found, a de-
cision process should follow to pick one of the set of non-dominated nodes.
In this case the decision process consist in randomly choosing one of the set
and finally assigning the request to the selected service (non-dominated node),
such that the request can be stored in Pool2 of assigned requests.

5.1.6 Summary

• The Locator was implemented as a middleware between the client com-
positions and the web service partners. It is a multithreading application
divided in front-end and a singleton back-end, where the front-end is ex-
posed as a web service having the same interface as the web service
partners and helps to maintain a synchronous communication link with
the clients (compositions).

• The back-end is a singleton which manages the activity of three threads,
namely the Assign thread, where the main strategy of the Locator for
assigning a service to a request is found, and two other threads that are in
charge of the communication with the web service partners, namely the
Send thread which manages and launches the Thread to server threads
which maintain a synchronous communication link with the web service
partners.

• The assignment strategy is divided in three synthesis steps, each one
corresponding to a category of criteria. Thus, the first stage finds services
which satisfy the Must Constraints representing the set of minimum
constraints which a web service partner must satisfy in order to give a
response. The second stage verifies the fulfillment of a set of Constraint
and finally the third stage is for the comparison of multiple objectives.

• For the comparison of multiple objectives with no total order the Pareto
optimality approach is used.

58 CHAPTER 5. MATERIALS AND METHODS

• Three criteria were considered for optimization, namely the query Sub-
sumption level, the Abox indexing which both of them make use of a
locally found Racer server to obtain its respective values, and the Wait-
ing queue criteria which obtains its value from the queries waiting to be
executed in Pool2 of assigned queries.

• Every criteria used by the locator should be implemented in its own
class, with the next conditions:

– It should inherit from Criteria class.

– It should override the getValue method.

– It should implement a metric rule such that the values of the criteria
are returned as integers in the getValue method, where the value 0
is considered as not satisfied.

– Every new criteria should assign a value to all the attributes inher-
ited from the Criteria class, regardless of the category they belong
to.

• Every criteria can be considered under any of the categories Must Con-
straints, Constraints or Objectives, this is defined in the CriteriaXSer-
vice class, where the criteria object is assigned to a vector of a specific
category.

• It is recommended to classify the least number of criteria under the
category Constraints to avoid pruning off service candidates that could
turn out to be non-dominated in the third synthesis stage where other
criteria objectives come into consideration.

Chapter 6

Results

6.1 Locator’s Behavior

In this section the behavior of the Locator is being presented through exper-
imental results. Relevant examples are presented together with the status of
the web service partners and their respective Qboxes, before and after, such
that it is possible to observe the decisions made by the Locator. In the ex-
amples, four services were used containing different Aboxes as the following
relation shows:

• Service name: NrqlService p9081
Contained Aboxes: University1 0.owl, University1 1.owl, University1 2.owl

• Service name: NrqlService p9082
Contained Aboxes : University1 1.owl, University1 2.owl

• Service name: NrqlService p9083
Constained Aboxes : University1 0.owl

• Service name: NrqlService p9084
Contained Aboxes : University1 0.owl, University1 2.owl

Example 1

In this example, the behavior or the Assign thread is presented, thus it is
shown how the Locator finds a service to be assigned to execute the request.
The Assign thread uses four criteria objects:

1. Abox, which helps to find the service that contains the required Abox.

2. Waiting queue, which obtains the number of requests waiting to be ex-
ecuted by a service.

3. Subumption level, which obtains the hierarchy of the query in the re-
spective Qbox.

4. Indexing, which obtains if the required Abox has been indexed or not.

59

60 CHAPTER 6. RESULTS

Criteria three and four make use of a local Racer server to obtain their respec-
tive values.

The Assign thread represents the main logic of the Locator, while the Send
thread and Thread to Service threads, as explained in section 5.1.2, manage
the connection with the web service partners, thus no interaction with the
web service partners is being observed in this example, but only the internal
reasoning of the Locator.

The context in which this example ran is as follows:

• Composition:
The set of queries of the composition presented in section 2.2.1 is used,
where Aboxes University1 0.owl and Univeristy1 1.owl are inquired.

• Criteria:
The existence of the Abox in a service is considered as a must constraint.
Indexing is considered as a constraint and subsumption level together
with waiting queue are considered objectives.

• server states:
Non of the Aboxes in any server is indexed, meaning that no query has
been send before. Therefore, no Qbox for any of the Aboxes exist.

• Comments:
The activity of the Send thread and Thread to server threads for the
interaction with the web service partners was paused, so that the waiting
queue criteria can be better observed. The set of queries were previously
stored in the Pool1 of requests.

Results

As the run print out in appendix A.2.1 shows, for every request the three
synthesis stages explained in section 5.1.3 are being carried out.
Six requests were assigned to a service for its execution:

1. First request: As the first query request arrived, only three services were
found that contain the Abox University1 0.owl. In the second stage, be-
cause non of the Aboxes is indexed, no service satisfied criteria Indexing,
therefore the constraint was relaxed and considered as an objective.
Since it is expected that more criteria is considered as constraint, a sec-
ond iteration in this stage was done to find services that satisfies the
rest of the constraints. In this example, only the criteria Indexing was
considered as constraint, therefore all the candidates are considered for
the next stage, because there are no more constraints to satisfy.
In the third stage, all candidates had the same values for every objective,
thus the first service NrqlService p9081 was considered as non-dominated
and assigned for this request. As explained in section 5.1.5, a service is

6.1. LOCATOR’S BEHAVIOR 61

considered non-dominated when it is greater or equal than another ser-
vice in all dimensions.
The waiting queue for service NrqlService p9081 increases to one.

2. Second request: The second query request requires another Abox Uni-
versity1 1.owl, thus a similar situation as in the first query is presented,
with the difference that NrqlService p9081 has one request waiting for its
execution, thus NrqlService p9082 dominates NrqlService p9081 in the
waiting queue dimension, which is being minimized. Finally NrqlSer-
vice p9082 increased its waiting queue to one.

3. Third request: During the second stage only service NrqlService p9081
satisfied the indexing criteria, thus is the only considered in the third
stage, consequently the only non-dominated. The waiting queue for this
service increases to two. Observe that the value for subsumption level is
two, thus this query subsumes the first query in the composition, such
that their query ancestors are faculty inquiry and the top of the Qbox.

4. Forth request: For this request, a similar situation than for the third
query occurred. The NrqlService p9082 increases its waiting queue to
two.

5. For the next 2 queries only NrqlService p9082 satisfied criteria indexing,
thus the waiting queue increases finally to four.

It can be observed that considering criteria Indexing as a constraint, causes
NrqlService p9081 and NrqlService p9082 to be chosen every time, discarding
the possibility of comparing them against other services in the third stage.
Thus, if another query that inquires Abox University1 1.owl arrives, the wait-
ing queue of service NrqlService p9082 is much larger than the one of other
services which would emerge as non-dominated during the third stage, since
their waiting queue is shorter. The constraint is hindering the possibility of
finding better candidates, therefore is not recommended to consider too many
criteria as constraints but only the very necessary ones. Even though, this
could be considered as a weakness of the Locator, this design aims to fulfill
the clients request of considering certain criteria as constraint, by nature a
constraint is strict, thus it is either fulfilled or not, while an objective is more
flexible.

In fact, it is recommended that only must constraints and objectives are
considered as criteria, thus, the third stage prunes out the dominated services
and obtains the set of best considered services to choose from. This can be
better observed in the next example where no constraints are considered.

Example 2

This example shows the decisions made for a second composition that was
executed after the composition shown in the previous example. Thus the
context is as follows:

62 CHAPTER 6. RESULTS

• Composition:
The same set of queries of the composition in example 1 were used, where
the Aboxes University1 1.owl and Univeristy1 2.owl are inquired.

• Criteria:
The existence of the Abox in a service is considered as a must constraint.
Indexing, subsumption level together with waiting queue are considered
objectives.

• Server states:
After the execution of the composition in the first example, the servers
were left with the following states1:

– NrqlService p9081:
Indexed Aboxes: University1 0.owl
Qbox for Abox University1 0.owl cached: Faculty and FullProfes-
sor inquiries.

– NrqlService p9082:
Indexed Aboxes: University1 1.owl
Qbox for Abox University1 1.owl cached: Faculty, FullProfessor,
TeacherOf and Email inquiries.

• Comments:
The set of queries were previously stored in the Pool1 of requests. There
are no queries waiting to be executed for any of the servers.

Results

As the run print out in appendix A.2.2 shows, for every request only the first
and third synthesis stages were carried out, since there are no constraints to
consider. Six requests were assigned to a service for its execution as follows:

1. First request: For the first query request three services were found con-
taining Abox University1 0.owl. There were no constraints to consider.
In the third stage, service NrqlService p9081 dominates the other twp
services in all the dimensions. Thus the request is assigned to NrqlSer-
vice p9081.
From the execution of the previous composition, an equivalent query was
cached, thus a delete command for the present query is to be sent right
after it. Therefore NrqlService p9081 increases its waiting queue to two.

2. Second request: For the second query request, the service NrqlSer-
vice p9082 dominates the other two services, thus, NrqlService p9081
is dominated in the waiting queue dimension, while NrqlService p9084
is equivalent. Thus, NrqlService p9082 is chosen as non dominated and
its waiting queue increases to one.

1Only the relevant states are presented

6.2. CONCLUSIONS 63

3. Third request: For the third query request, service NrqlService p9083
dominates NrqlService p9084, while NrqlService p9081 and NrqlService p9083
are non-dominated. Even though NrqlService p9081 is indexed and has
two ancestors for the present query, the waiting queue has a value domi-
nated by NrqlService p9083, thus both are considered as non-dominated.
Finally NrqlService p9081 was randomly chosen and since it has already
cached an equivalent query in the same Qbox, a delete command is sent,
thus the waiting queue increases to four.

4. Fourth request: NrqlService p9082 dominates NrqlService p9081, but
because of the waiting queue it does not dominate NrqlService p9084,
thus both are non-dominated. By random NrqlService p9082 is assigned,
increasing its waiting queue to two.

5. Fifth request: NrqlService p9082 dominates in all the dimensions to
NrqlService p9081, thus it is chosen. Since there is an equivalent query
already cached in the Qbox a delete command is sent. The waiting queue
increases to four.

6. Sixth request: a similar situation as for the previous query is presented.

It can be observed that considering only must constraints and objectives,
more optimal choices among the total set of services are being obtained avoid-
ing a situation where only certain services are chosen every time during the
constraint synthesis stage as observed in the last example.

6.2 Conclusions

Finding the appropriate service to solve a certain request was resolved by
choosing the service that satisfied a set of criteria that is based on the func-
tionality of the web service partners. The considered criteria is:

1. Abox indexing: As explained in section 3.2.1 index structures are build
for an Abox the first time it is inquired, which is a process that takes
some time, as shown in appendix A.1. Therefore finding a service that
contains an indexed Abox is advantageous.

2. Query sumbsumption: As explained in section 3.2.1 the Qbox, maintains
the cached information of inquiries for a specific Abox, classifying the
queries in a relation from most general to more specific, from which it
is possible to know if the needed information has been cached before. If
this is the case, the answer for the query will be totally or only partially
computed, thus reducing computational effort.

3. Waiting queue: Due to the design of the Locator, in which the activity
of a service partner is being observed and managed by the Send thread,
such that only one Thread to server is active at a time. The Pool2
of waiting queries reflects the waiting queue for a specific service, thus

64 CHAPTER 6. RESULTS

helping to know how busy a service is, and helping for load balancing
purposes.

4. Abox: Ensures that only services that contain the required Abox are
being considered.

The criteria were organized under three categories, which order also deter-
mined synthesis stages:

1. Must constraints: representing the minimum criteria expressed as equal-
ities or inequalities that a service must satisfy in order to execute the
query. Thus, these criteria are considered in the first synthesis stage.

2. Constraints: represent criteria expressed as equalities or inequalities that
are considered as very important to be satisfied, knowing that its satis-
fiability might pruned out other services that could be advantageous in
other criteria. This type of criteria is considered in the second synthesis
stage.

3. Objectives: represent criteria expressed as minimization or maximiza-
tion, thus being more flexible in its satisfiability. They are considered in
the last synthesis stage.

Since there is no human interaction that intervenes in the decisions of the
Locator, this classification of criteria, helps to know which constraints can be
relaxed to objectives, when there are no services found that satisfies all the
constraints. Thus, it is left to the designer to decide on the classification under
which a criteria should be considered, such that they are proved in a three
stage order, from the most strict to more flexible.

Considering the criteria as black boxes with a value, such that they can be
dynamically classified under any of the criteria categories, probed to be very
flexible and suitable for the different synthesis stages. Moreover, considering
the content of each criteria classification as a set of black boxes, facilitates
procedures like constraint relaxation, where a black box is removed from the
constraint classification and added to the objective classification.

Obtaining the values of functionality dependent criteria2 by the use of a
local Racer server, prevents the invocation of the web services partners only
for questioning their status. Moreover, the procedure to obtain the value for
a criteria like subsumption level, as explained in section 5.1.1, requires send-
ing some extra commands to obtain the hierarchy of the query in the remote
Qbox.
For example, commands like (prepare-abox-query)3, such that the query is clas-
sified without being executed, then a (query-ancestors :query-id) command
should be sent to obtain its hierarchy, etc. Moreover to identify the ID of

2In this project also referred as service-dependent criteria
3For a detailed description refer to [8]

6.2. CONCLUSIONS 65

the query in the remote service a extra ID must be given by the Locator to
be able to refer to the query in the remote service such that commands like
(query-ancestors :query-id) are correctly executed. Thus having to send mul-
tiple commands to a remove service, means much processing and delay, which
should be avoided.

Having a local Racer server, reflecting the state of the different web service
partners, helped to manage the state of the remote servers, such that, if an
equivalent query was already cached in the Qbox, the cached information of
the executed query is deleted, to avoid the storage of duplicated information.
Also Top like queries, are being deleted to avoid duplicating the total Abox
content in the cached information of the Qbox.

66 CHAPTER 6. RESULTS

Chapter 7

Future Work, Shortcomings
and Contributions

7.1 Future Work

7.1.1 Criteria Management

The Locator carries out the different synthesis stages according to the con-
figuration of each criteria object contained in the CriteriaXService class. As
figure 7.1 shows, the criteria objects with some predefined attribute values are
classified under a criteria category. Thus, the attributes like priority, desired
value and objective function of the criteria objects are being fixed and the
same configuration is applied to optimize every composition.
To offer more flexibility, the Locator can be extended such that the attributes
of the criteria objects and their classification in the CriteriaXService object,
can be dynamically handled for each composition. For this purpose an appro-
priate way for the entry of parameters should be designed, such that they can
be transferred to constructors methods of each criteria and CriteriaXService
objects.

Figure 7.1: Criteria management.

67

68CHAPTER 7. FUTURE WORK, SHORTCOMINGS AND CONTRIBUTIONS

7.1.2 Further Introduction of Criteria Classes

As explained in section 3.1, criteria for optimization can also be searched
outside the functionality offered by the web service partners. Thus, research
to find suitable criteria for general web services focuses on quality of service
concepts like performance, reliability, integrity, accessibility, etc. Therefore, a
variety of possibilities are there to extend the set of criteria for optimization.
Considering the extension of the Locator for the dynamical management of
criteria, appropriate criteria in the area of service level agreements can extend
the present set to handle different classes of clients, such that each client profile
corresponds to a different configuration of criteria.

7.1.3 Global Optimization

Once more criteria classes are considered the necessity for a global optimization
also increases, such that criteria like total cost can be guaranteed. For this
purpose, the algorithms for combinatorial optimization explained in section
4.1 are helpful.

7.1.4 Usage of the UDDI Repository

As observed in section 3.1.2, resent research in the specification of quality of
service issues with respect to web services has been focused in the development
of language specifications. For example, the WSOL [15] and WSLA [1] speci-
fications that complement the WSDL service description for the specification
of service level agreements, such that quality descriptions can also be obtained
from the UDDI registry in a similar way as for the WSDL descriptions.
Thus, the Locator can be extended to use the UDDI technology, such that
other web services which want to be considered as web service partners for
the optimization strategy, can register to the UDDI. In this way, the Locator
can use the UDDI registry to obtain the set web service candidates plus some
extra quality descriptions, from which criteria values can be obtained, leaving
the computation of those values to the web service partners.

7.2 Shortcomings

7.2.1 Locator Interface

Until now, the present solution works properly when considering web services
that offer the same functionality with a similar interface. As explained in
section 5.1 the Locator tries to be transparent to the client by offering a similar
interface as the web service partners. Therefore if new web service partners are
to be considered which implement a different interface, the transparency is not
fulfilled anymore. Moreover, when considering extending the Locator to handle
criteria management, additional information is required to be transferred while
invoking the Locator. For these reasons, if other service interfaces and criteria

7.3. CONTRIBUTIONS 69

management is considered, another approach can be proposed to cope with
these problems as follows:

• To change the Locator interface from the present rpc binding style to a
document binding style, such that an XML document containing criteria
preferences can be transferred. Even though this implies some extra
parsing computation.

• Another feasible solution to avoid changing the Locator’s interface is
such where client preferences are registered in a repository, such as the
UDDI, thus when ever a client is recognized the preferences are obtained
and the optimization process can take place. Thus, the client would
have the responsibility to update its own preferences. This is a similar
approach as the Service Level Agreements described in section 3.1.2.
This approach implies also the same extra parsing computation as the
previous proposal.

7.2.2 Local Optimization

As described in section 4.2.2 a local optimization strategy was applied to profit
from changes in the state of the servers caused by the inquiry of other client
compositions that are being executed in parallel. It was considered that for a
global optimization, locking the required web service partners, with the aim
of maintaining a consistent state of the servers until the last invocation of the
composition was processed, would lead to undesired bottlenecks. Though the
global optimization can be applied without locking the use of the web service
partners, arguing that decisions were made upon the service’s states during
the combinatorial optimization, without the warranty that the same states
will be maintained. This is beneficial to criteria like subsumption level and
Abox indexing which values can only improve (if considering that servers do
not discard anything from their cached information), while for the waiting
queue is not.

7.3 Contributions

7.3.1 Optimization Criteria

A solution for the optimization of web service compositions with the char-
acteristics described in section 2, was developed based on the selection of
web service partners according to criteria related to their functionality. The
considered criteria deal with query subsumption, Abox indexing, existence of
required Abox and waiting queue of a service. For a detailed description of
this criteria refer to section 3.2.

7.3.2 Criteria as Black Boxes

Handling the criteria in a uniform way, independently of any peculiarities by
considering them as black boxes with a value, provides a very flexible way

70CHAPTER 7. FUTURE WORK, SHORTCOMINGS AND CONTRIBUTIONS

of dealing with multiple criteria. Thus, different optimization algorithms can
profit from this flexibility, while leaving the specifics to the different criteria
classes.

7.3.3 Memory Management

A way to avoid the duplication of cached information, while the Qbox feature is
activated in the web service partners was implemented, such that delete com-
mands are being send to the web service partners for the removal of equivalent
queries and top like queries.

7.3.4 New Business or Service Paradigm

Providing an optimization strategy for this specific type of web service com-
positions, offers the possibility of creating a business or service paradigm in
which clients (web service compositions) are being attracted to profit from the
Locator services, while web services capable of fulfilling the clients request can
find a market place for their service offers.

Appendix A

Tests

A.1 Indexing Time for Aboxes of Different Sizes

To obtain the time that it takes an Abox to be indexed, a Java program using
the JRacer API, executed a query over Aboxes of different sizes. The tests
where performed under the following conditions:

Used Knowledge Base

The Univ-Bench ontology [16] that has been used for the evaluation of DAML+OIL
repositories, and a set of Aboxes produced by the UBA1 generator where used.
To change the size of the produced Aboxes, different random instances were
added or deleted.

Thus the unique Tbox is separated from the Abox files, to avoid recompu-
tation of the Tbox for the related Abox every time a query is sent.

Results

Abox size Indexing time
6000 Kb 51 seconds
5000 Kb 41 seconds
4000 Kb 26 seconds
3000 Kb 22 seconds
2000 Kb 11 seconds
1000 Kb 1 second

Table A.1: Indexing time for an Abox

Comments

Once the indexing structures are build, the next query is answered in less than
a second.

1Univ-bench artificial generator

71

72 APPENDIX A. TESTS

Even though, the processing time for the indexation of an Abox can vary
according to the characteristics of the computational resources, the tests give
an example of difference between response time before and after indexation.

A.2 Assign thread’s run results

A.2.1 Example 1

Start Assign Thread
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|))
———–Abox: /KB/University1 0.owl

First synthesis: Must Constraints

-Service NrqlService p9081 satisfies criteria: Abox
——-Service NrqlService p9083 satisfies criteria: Abox
——-Service NrqlService p9084 satisfies criteria: Abox

Second synthesis: Constraints

-Service NrqlService p9081:
——--Index checking
——-abox is not indexed

-Service NrqlService p9083:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9084:
——- -Index checking
——- abox is not indexed

- Non of the candidates satisfy all the constraints, proceeding to relaxation:
——- Criteria Indexing was relaxed
——- Next iteration for this synthesis stage:

- Service NrqlService p9081:
——- NrqlService p9081 satisfies all constraints. Added as candidate for next stage

- Service NrqlService p9083:
——- NrqlService p9083 satisfies all constraints. Added as candidate for next stage

- Service NrqlService p9084:
——- NrqlService p9084 satisfies all constraints. Added as candidate for next stage

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0
——- -Index checking
——- abox is not indexed

- For service: NrqlService p9083
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:

A.2. ASSIGN THREAD’S RUN RESULTS 73

——- Total number of queries waiting: 0
——- -Index checking
——- abox is not indexed

- For service: NrqlService p9084
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0
——- -Index checking
——- abox is not indexed

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
———- node: NrqlService p9083
———- node: NrqlService p9084
——- NrqlService p9083 dominates:
——- NrqlService p9084 dominates:
——- Service NrqlService p9081 is non-dominated

-Assigned to service NrqlService p9081
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query

—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|))
———– Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints

- Service NrqlService p9081:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9082:
——- -Index checking
——- abox is not indexed

- Non of the candidates satisfy all the constraints, proceeding to relaxation:
——- Criteria Indexing was relaxed
——- Next iteration for this synthesis stage:

- Service NrqlService p9081:
——- NrqlService p9081 satisfies all constraints. Added as candidate for next stage

- Service NrqlService p9082:
——- NrqlService p9082 satisfies all constraints. Added as candidate for next stage

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Checking subsumption level:
——- There is no subsumee

74 APPENDIX A. TESTS

——- -Waiting queue:
——- Total number of queries waiting: 1
——- -Index checking
——- abox is not indexed

- For service: NrqlService p9082
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0
——- -Index checking
——- abox is not indexed

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9082 dominates:
———- node: NrqlService p9081
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#FullProfessor|))
———– Abox: /KB/University1 0.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9083 satisfies criteria: Abox
——- Service NrqlService p9084 satisfies criteria: Abox

Second synthesis: Constraints

- Service NrqlService p9081:
——- -Index checking
——- abox is indexed
——- Service NrqlService p9081 satisfies criteria Indexing
——- NrqlService p9081 satisfies all constraints. Added as candidate for next stage

- Service NrqlService p9083:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9084:
——- -Index checking
——- abox is not indexed

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 2
——- -Waiting queue:
——- Total number of queries waiting: 1

- Obtaining non-dominated nodes:

A.2. ASSIGN THREAD’S RUN RESULTS 75

- NrqlService p9081 dominates:
——- Service NrqlService p9081 is non-dominated

-Assigned to service NrqlService p9081
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#FullProfessor|))
——- Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints

- Service NrqlService p9081:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9082:
——- -Index checking
——- abox is indexed
——- Service NrqlService p9082 satisfies criteria Indexing
——- NrqlService p9082 satisfies all constraints. Added as candidate for next stage

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9082
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 2
——- -Waiting queue:
——- Total number of queries waiting: 1

- Obtaining non-dominated nodes:

- NrqlService p9082 dominates:
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query
—————————————–
Assign- Assigning query: (retrieve (?x ?y) (and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-
bench.owl#FullProfessor|) (?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf|)))
——- Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints

76 APPENDIX A. TESTS

- Service NrqlService p9081:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9082:
——- -Index checking
——- abox is indexed
——- Service NrqlService p9082 satisfies criteria Indexing
——- NrqlService p9082 satisfies all constraints. Added as candidate for next stage

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9082
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 1
——- -Waiting queue:
——- Total number of queries waiting: 2

- Obtaining non-dominated nodes:

- NrqlService p9082 dominates:
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query
—————————————–
Assign- Assigning query: (retrieve ((annotation (|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-
bench.owl#emailAddress| |http://www.Department0.University1.edu/AssistantProfessor0|)))
(|http://www.Department0.University1.edu/AssistantProfessor0| top))
- Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints

- Service NrqlService p9081:
——- -Index checking
——- abox is not indexed

- Service NrqlService p9082:
——- -Index checking
——- abox is indexed
——- Service NrqlService p9082 satisfies criteria Indexing
——- NrqlService p9082 satisfies all constraints. Added as candidate for next stage

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9082
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 1
——- -Waiting queue:
——- Total number of queries waiting: 3

A.2. ASSIGN THREAD’S RUN RESULTS 77

- Obtaining non-dominated nodes:

- NrqlService p9082 dominates:
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query

Finish Thread to Assign
-Finished

A.2.2 Example 2

Start Assign Thread
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|))
——- Abox: /KB/University1 0.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9083 satisfies criteria: Abox
——- Service NrqlService p9084 satisfies criteria: Abox

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking
——- abox is indexed
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 1
——- -Waiting queue:
——- Total number of queries waiting: 0

- For service: NrqlService p9083
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- For service: NrqlService p9084
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
———- node: NrqlService p9083
———- node: NrqlService p9084

78 APPENDIX A. TESTS

——- NrqlService p9083 dominates:
——- NrqlService p9084 dominates:
——- Service NrqlService p9081 is non-dominated

-Assigned to service NrqlService p9081
Memory management:
——- -Looking for query-equivalents
——- there are equivalents
——- A delete command will be sent for this query
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|))
——- Abox: /KB/University1 2.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox
——- Service NrqlService p9084 satisfies criteria: Abox

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 2

- For service: NrqlService p9082
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- For service: NrqlService p9084
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9082 dominates:
———- node: NrqlService p9081
———- node: NrqlService p9084
——- NrqlService p9084 dominates:
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query

A.2. ASSIGN THREAD’S RUN RESULTS 79

—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#FullProfessor|))
- Abox: /KB/University1 0.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9083 satisfies criteria: Abox
——- Service NrqlService p9084 satisfies criteria: Abox

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking
——- abox is indexed
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 2
——- -Waiting queue:
——- Total number of queries waiting: 2

- For service: NrqlService p9083
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- For service: NrqlService p9084
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9083 dominates:
———- node: NrqlService p9084
——- NrqlService p9084 dominates:
——- Service NrqlService p9081 is non-dominated
——- Service NrqlService p9083 is non-dominated

-Assigned to service NrqlService p9081
Memory management:
——- -Looking for query-equivalents
——- there are equivalents
——- A delete command will be sent for this query
—————————————–
Assign- Assigning query: (retrieve (?x) (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#FullProfessor|))
- Abox: /KB/University1 2.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox
——- Service NrqlService p9084 satisfies criteria: Abox

80 APPENDIX A. TESTS

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 4

- For service: NrqlService p9082
——- -Index checking
——- abox is indexed
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 2
——- -Waiting queue:
——- Total number of queries waiting: 1

- For service: NrqlService p9084
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 0

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9082 dominates:
———- node: NrqlService p9081
——- NrqlService p9084 dominates:
——- Service NrqlService p9082 is non-dominated
——- Service NrqlService p9084 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are no equivalents

- -Checking if this is a top like query
——- is not a top query
—————————————–
Assign- Assigning query:
(retrieve (?x ?y) (and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#FullProfessor|)
(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf|)))
- Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking

A.2. ASSIGN THREAD’S RUN RESULTS 81

——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 4

- For service: NrqlService p9082
——- -Index checking
——- abox is indexed
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 1
——- -Waiting queue:
——- Total number of queries waiting: 2

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9082 dominates:
———- node: NrqlService p9081
——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are equivalents
——- A delete command will be sent for this query
—————————————–
Assign- Assigning query: (retrieve ((annotation (|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-
bench.owl#emailAddress| |http://www.Department0.University1.edu/AssistantProfessor0|)))
(|http://www.Department0.University1.edu/AssistantProfessor0| top))
- Abox: /KB/University1 1.owl

First synthesis: Must Constraints

- Service NrqlService p9081 satisfies criteria: Abox
——- Service NrqlService p9082 satisfies criteria: Abox

Second synthesis: Constraints –> no constraints where found

Third synthesis: Objectives

- Obtaining criteria values:

- For service: NrqlService p9081
——- -Index checking
——- abox is not indexed
——- -Checking subsumption level:
——- There is no subsumee
——- -Waiting queue:
——- Total number of queries waiting: 4

- For service: NrqlService p9082
——- -Index checking
——- abox is indexed
——- -Checking subsumption level:
——- Total number of subsumees(ancestors): 1
——- -Waiting queue:
——- Total number of queries waiting: 4

- Obtaining non-dominated nodes:

- NrqlService p9081 dominates:
——- NrqlService p9082 dominates:
———- node: NrqlService p9081

82 APPENDIX A. TESTS

——- Service NrqlService p9082 is non-dominated

-Assigned to service NrqlService p9082
Memory management:
——- -Looking for query-equivalents
——- there are equivalents
——- A delete command will be sent for this query

-Finish Thread to Assign
-Finished

Bibliography

[1] A. Dan, A. R. Franck, A. Keller, R. King, H. Ludwig, Web
Service Level Agreement Language Specification - IBM, 2002.
http://dwdemos.alphaworks.ibm.com/wstk/common/wstkdoc/services/utilities/wslaauthoring/
WebServiceLevelAgreementLanguage.html.

[2] Akhil Sahai, Anna Durante and Vijay Machiraju, Towards Automated SLA Management
for Web Services., 2002.

[3] Alonso Gustavo, Casati Fabio, Kuno Harumi and Machiraju Vijay, Web Services: Con-
cpets, Architechtures and Applications., 2004.

[4] Christoph Tempich and Raphael Volz, Towards a benchmark for Semantic Web reason-
ers - An analysis of the DAML ontology library., 2003.

[5] D. Navinchandra, Exploration and innovation in Design. Towards a Computationl
Model., 1991.

[6] E. Bonabeau, M. Dorigo and G. Theaulaz, Inspiration for optimization from social insect
behaviour., 2000.

[7] Eric Newcommer, Understanding Web Services: XML, WSDL, SOAP and UDDI., 2002.

[8] Haarslev Volker, Moeller Ralf, Wessel Michael, The New Racer Query Language-nRQL,
2005.

[9] Haarslev Volker, Möller Ralf, Wessel Michael, RACER User’s Guide and Reference
Manual Version 1.8., 2005April.

[10] Juraj Hromkovic, Algorithmics for Hard Problems: Introduction to Combinatorial Op-
timization, Randomization, Approximation and Heuristics., 2002.

[11] M. Tian, A. Gramm, T. Naumowicz, H. Ritter and J. Schiller, A Concept for QoS
Integration in Web Services., 2003.

[12] Nils J. Nilsson, Principles of Artificial Intelligence., 1982.

[13] Rajesh Sumra and Arulazi D., Quality of Service for Web Services-
Demystification, Limitations, and Best Practices., 2003March.
http://www.developer.com/services/article.php/2027911.

[14] Sanjiva Weerawarana and Francisco Curbera, Business Process with BPEL4WS., 2002.
http://www-128.ibm.com/developerworks/library/ws-bpel/.

[15] Vladimir Tosic, Bernard Pagurek and Kruti Patel, WSOL - A Language for the For-
mal Specification of Various Constraints and Classes of Service for Web Services.,
2002November. Technical Report OCIECE-02-06.

[16] Y. Guo, J. Heflin and Z. Pan, Benchmarking DAML+OIL Repositories., 2003.

83

