

Master Thesis

Information Retrieval Services for

Conceptual Content Management:

Evaluation and Systems Integration

Submitted by: Galip Gülsen - 23944
Information and Media Technologies

Supervised by:

Prof. Dr. Joachim W. Schmidt (STS)
Prof. Dr. Friedrich H. Vogt (TI5)

MSc. Sebastian Boßung (STS)

Technische Universität Hamburg-Harburg

Software Systems Group

Hamburg, September 2005

http://www.tu-harburg.de/

Abstract

Abstract:

Content Management Systems are used to store different types of contents and

retrieve them in an efficient way. They contain a persistence layer for large data, a file

system and other software modules which are used to facilitate the content management

system. On the other hand, a Conceptual Content Management System (CCMS) [CCM]

aims to improve the meaning of content with asset modeling (concept-content model). This

master thesis intends to develop and integrate a full-text search engine application into the

CCMS. The full-text search engine application performs indexing and searching operations

in order to manage and retrieve large data in CCMS efficiently.

Declaration

 Hereby, I declare that:

 This master thesis, with the subject “Information Retrieval Services for Conceptual

Content Management: Evaluation and Systems Integration”, has been prepared by myself.

All literal and content related quotations from other sources are clearly pointed out, and no

other sources or aids than the declared ones have been used.

Galip Gülsen

Hamburg, September 2005

 1

Acknowledgement

 Hereby, I would like to thank Prof. Joachim W. Schmidt for finding this master

thesis topic and supervising it. I also thank Prof. Dr. Friedrich H. Vogt for accepting being

my co-supervisor.

Furthermore, MSc. Sebastian Boßung was very patient and helpful for answering

my questions and providing programming tools in order to develop the applications. His

advices directed the project progress for a better implementation. Thanks also to Dr. Hans-

Werner Sehring for answering fundamental questions about the project.

 2

Contents

CONTENTS

1. Introduction…………………………………………………………………….6

1.1. Motivation ………………………………………………………………..6

1.2. Problem Statement………………………………………………………...7

1.3. Related Works…………………………………………………………….8

1.4. Structure of the Thesis………………………………………………….…9

2. State of the Art ………………………………………………………….……10

2.1. Content Management Systems……………………………………..……10

2.2. Conceptual Content Management System…………………………….…11

2.3. Information Retrieval……………………………………………………13

2.3.1. Information Retrieval Models………………………………….…16

2.3.2. Search Engines (Full-Text)……………………………………..…19

3. Information Retrieval Services……………………………………………..…21

3.1. Information Retrieval Libraries………………………………….………22

3.2. Comparison of Selected Search Engine Libraries………………….……22

4. Design of Application…………………………………………………...……26

4.1. Selected Search Engine Library: LUCENE…………………………..…27

4.1.1. The Functionality of Lucene...……………………………………27

4.1.2. Indexing……………………………………………………...……27

4.1.3. Searching……………………………………………………….…32

4.1.4. Analysis………………………………………………………...…33

4.2. Document Parsers…………………………………………………..……36

4.3. Definition of Modules………………………………………………...…37

4.4. Overall System Structure……………………………………………...…38

5. Implementation……………………………………………………………..…40

5.1. Lucene Module - Indexing Process……………………………………...41

5.2. Searching Process…………………………………………………..……45

5.3. Document Parsers……………………………………………………..…46

5.4. Query Parsers…………………………………………….………...….…49

5.5. Analyser……………………………………………………………….…55

 3

Contents

5.6. Application Logic and Functionalities……………………………..……57

5.7. User Interface……………………………………………………………59

6. Evaluation of Results…………………………………………………….…....63

6.1. Facilities for Conceptual Content Management…………………………63

6.2. Test Cases…………………………………………………………..……64

6.2.1. Compound versus Multifile Index…………………………...……64

6.2.2. FS versus RAM Directory……………………………………...…65

6.2.3. Index Tuning………………………………………………………67

7. Conclusions……………………………………………………………...……68

7.1. Future Work…………………………………………………………...…68

Appendices………………………………………………………………...………72

 4

Figures

 Figures:

Figure 2.1 Representation of Asset Model………………………………………………..12

Figure 2.2 Data Retrieval vs. Information Retrieval……………………………………...13

Figure 2.3 Precision and Recall…………………………………………………………...14

Figure 2.4 Information Retrieval Process………………………………………………...15

Figure 2.5 Vector Space Model…………………………………………………………...17

Figure 2.6 The similarity equation………………………………………………………..17

Figure 3.1 Comparison of Selected Information Retrieval Libraries……………………..23

Figure 4.1 Lucene Index Structure……………………………………………………..…28

Figure 4.2 Lucene Field Types and Features……………………………………………..30

Figure 4.3 Main Indexing Steps…………………………………………………………..31

Figure 4.4 Comparison of Different Analyzers in Lucene Library……………………….34

Figure 4.5 Lucene’s Weighting Equation………………………………………………...35

Figure 4.6 XML Tag Mapping……………………………………………………………36

Figure 4.7 Modules in Conceptual Content Management System (CCMS)……………...37

Figure 4.8 Overall System Structure……………………………………………………...38

Figure 5.1 Package Diagram for Conceptual Content Management……………………...41

Figure 5.2 The Main Indexing Methods in the Application………………………………42

Figure 5.3 XQuery Examples from the Application……………………………………...43

Figure 5.4 Asset Types in CCMS…………………………………………………………43

Figure 5.5 Sample XML Asset Content…………………………………………………..46

Figure 5.6 ‘Dokument’ Type Asset Parser Codes………………………………………...48

Figure 5.7 Query Expression in Lucene…………………………………………………..55

Figure 5.8 Sequence Diagram for Indexer Application…………………………………..58

Figure 5.9 Sequence Diagram for Searcher Application………………………………….59

Figure 5.10 The User Interface of Search Engine Application…………………………...60

Figure 5.11 The Content View of an Asset……………………………………………….61

Figure 5.12 The User Interface of Indexer Application…………………………………..62

Figure 6.1 Compound vs. Multi-File Index……………………………………………….64

Figure 6.2 RAMDirectory vs. FSDirectory……………………………………………….66

 5

Introduction

Chapter 1

1. Introduction

1.1. Motivation

Nowadays information plays an important role in people’s life and computer

science. Its growth is inevitable because of fast development in internet, web, software and

hardware technologies. Internet provides an easy structure to spread information

worldwide. Web technologies support different standards (like HTML, XML, Web

Services) in order to transfer information efficiently. Furthermore, hardware systems can

store huge amount of data using different data structures (file systems, relational databases).

Also, many software programs are available for creating information and publishing them

in favour of users.

But the tremendous growth of information and information technologies give rise

to many problems for developers and users. The most known are;

- How to reach required information?

- How to retrieve information in a quick and accurate way?

- Are the retrieved data relevant to user’s requirements?

- Are the users satisfied from the search result?

Therefore, it is obvious that the information itself has to be considered. So,

computer science has started to work on Information Retrieval Services. One solution for

these problems was development of search engines. At the beginning, search engines

looked for documents using linear search. In linear search a program must search for all

documents in the system just looking their titles in order. This method took too much time

and was not efficient.

But, the development in ‘Information Retrieval’ area introduced new mathematical

models in order to improve search methods. The basic Information Retrieval models are

Boolean model, Vector Space model and Probabilistic model. They are further explained in

section x. Also, there are many variations of these models, for example Latent Semantic

Indexing (LSI) (see section 2.3.1). Furthermore, in recently a new model was introduced by

 6

Introduction

Prof. Thomas Hofmann which is Probabilistic LSI (it is an interesting approach and details

can be read from the paper [Hof99]). All these models aim to use and understand

information better for retrieving efficiently.

The incorporation between Information Retrieval Services and software

engineering enables powerful methods for managing and searching information. In

analysis, design and implementation phases the Boolean model provides searching with

Boolean operators. In addition, the Vector Space model introduces weighting of documents

and ranking them. On the other hand, the Probabilistic model calculates probability of

relevance between documents in order to return better search results.

Search engines are mostly developed for retrieving web pages in internet. Also,

they are used as Information Retrieval services in different environments (like in an

organization or enterprise framework). In order to adapt Information Retrieval methods into

their systems, the frameworks implement their own search engine functionalities.

Therefore, Content Management Systems (CMS) are developed in order to realize

Information Retrieval methodology. CMS are a complete system that performs creation,

content management, publishing and searching in a collaborative manner. CMS works well

with ordinary content like textual documents or web pages. But, recently the type of content

varied from text to multi-media (e.g. image, audio or video). Therefore, content

management and implementing search engines become more challenging.

In this notion, a new model was derived namely Conceptual Content Management

System [CCM] that defines a new entity modeling and aims to improve the meaning of

content with closely coupled concept-content model. The details can be read in section 2.2.

As a result, this paper intends to use the CCMS and add a full-text search engine in order to

realize Information Retrieval services.

1.2. Problem Statement

In introduction part the importance of information and the role of content

management systems in information are stated. Also, information retrieval is an important

concept for using data effectively. Furthermore, the Conceptual Content Management

System (CCMS) goes one step further and provide a new entity modeling.

 7

Introduction

In CCMS the entity consists of content and concept parts. This content-concept

structure defines assets in the system. The main idea in CCMS is to add conceptual

attributes to the content of data. This improves the comprehension of content in the system.

Because, nowadays type of contents varies from textual documents to multi-media (e.g.

image, audio, video). So, this makes the applications more difficult to retrieve information

from the content and manage it. In such system structure, the available computational

models lack from providing complete support for information retrieval, managing content,

presenting documents, modifying them, etc. Therefore, CCMS provides an efficient

modeling to associate the concepts with their content.

In this project, I proposed to investigate information retrieval services for CCMS

and integrate a full-text search engine into the CCMS. Therefore, the underlying structure is

based on the previously developed system CCMS. This system implements an asset

modelling and stores the assets in its local database.

The problem is if the number of assets increase and the contents of assets are large,

then the system needs an information retrieval application. This application is a full-text

search engine that provides indexing and searching features in favour of CCMS. It

facilitates to search data and read concept-content parts of an asset. The search engine user

interface provides a user-friendly and natural application for inputting user queries and

showing search results to the users.

1.3. Related Works

In this project, the full-text search engine was implemented as a part of Conceptual

Content Management System (CCMS), which is implemented at Software Systems Institute

(STS) by Hans-Werner Sehring. General information can be read from the papers [Seh04],

[SS03] and [SS04]. Basically, the framework defines an asset modeling for content of data

which is constructed as a content-concept model. CCMS provides asset language, asset

definition language (ADL) compiler [ACF] and modeling tools. For example, the asset

definition language (ADL) compiler creates a CCMS from a user’s asset definitions.

Furthermore, different client modules are generated from a CCMS for various platforms.

The details for CCMS are investigated in section 2.2.

The implemented search engine application performs indexing and searching

operations for CCMS. The content-concept parts of an asset will be easily searched and

retrieved by the users. The search engine brings many advantages of information retrieval

library, for example phrase, fuzzy, proximity searching and ranking of documents.

 8

Introduction

The second project related to this project topic is Warburg Electronic Library

(WEL) project [Welib]. It is based on the "Image Index of Political Iconography”. “The

Image Index gives an iconographic overview of the variety of phenomena which reflect

political concepts, processes and demands and their relevance for the history of the arts”

as stated in [Welib] homepage. It is an open and dynamic application that uses the CCMS

framework. WEL aims to store and access to multi-media documents using the CCMS’s

entity modeling features and functionalities.

1.4. Structure of the Thesis

This paper starts with the introduction of master thesis and its topic. Then, the

topic and problems are explained further. Also, the related works are listed which describe

some projects similar to the subject of this master thesis. Section 2 explains state-of-the-art

technologies that are related to the project. The recent ideas like Conceptual Content

Management System are stated. Furthermore, Information Retrieval (IR), content

management systems, IR models and search engines are generally explained.

Section 3 gives information about Information Retrieval services which provide IR

methods and processes for retrieving data from systems. The subsections further explain the

IR libraries that are used for implementing full-text search engines, and the comparison

results of selected search engine libraries are shown.

Then the design of application is described in Section 4. This section consists of

the selected IR library – Lucene [LUC], definition of indexing, searching and analysis.

Also, document parsers used in search engines, the modules in the application and the

overall system structure of the developed search engine application are explained.

On the other hand, the implementation of search engine application is explained in

detail. The implementation part contains Lucene indexing process, searching process,

developed document parsers, parsing of user queries, analyser used in the search engine

application, application logic of the program and user interface of the application that

provides indexing of documents and searching them.

In Section 6, the evaluation of results is stated. The search engine facilities for

Conceptual Content Management System are explained. Furthermore, some test cases are

performed in order to understand Lucene library features.

Finally in section 7, the conclusions about the project and what can be done for a

future work are stated.

 9

State of the Art

Chapter 2

2. State of the Art

2.1. Content Management Systems

Content management systems (CMS) provide a complete framework for creating,

organizing, managing and publishing content in a computer system. Nowadays, CMS are

mostly used as a web application that provides these functionalities for web content and

web pages. So, the process can be divided as follows [Rob03]:

• Creation of content (content modelling)

• Content management

• Publishing to users

• Presentation (listing, sorting, browsing)

CMS have a permanent storage for storing the content (e.g. databases or disks).

They also provide client applications in order to administer the system, implement user

tools for monitoring data, indexing new content and searching any documents from the

storage correctly and efficiently. So, the user interfaces should be user-friendly and multi-

functional for fulfilling user requirements. There are different types of CMS that specialize

on specific areas which are known as:

• Web CMS: for web management

• Transactional CMS: for transactional operations in e-commerce

• Integrated CMS: for a specific organization

• Publication CMS: for online newspapers or bookstore

• Learning CMS: for e-learning systems

• Enterprise CMS: consists of various functionalities taken from other type of

CMS.

 10

State of the Art

There are some difficulties in CMS that should be taken into consideration.

Updating the content of documents, retrieving required documents from the system or

generally saying managing the data can be problematic. Because of the growth in internet,

web and multi-media contents makes managing data in systems difficult. In this project, we

consider the content and its concept. Many CMS can only provide little information about

the application concepts related to their content (especially in multi-media content). In

order to overcome this problem, a new model Conceptual Content Management System

(CCMS) was presented and developed by Hans Werner Sehring which connects the content

and concept pairs, and produce a new structure which is an asset. This model aims to

improve the meaning of content. Next section explains CCMS in detail.

2.2. Conceptual Content Management System

As described in previous section content management systems implements a

structure for storing, managing and outputting data for programmers and users. In general,

in computer science the representation of content is straightforward and this approach is

well implemented by data structures and databases in a persistent storage. Furthermore,

using various monitoring tools and information retrieval applications (search engines) the

content in content management systems can be retrieved efficiently. But as stated in the

paper [SS03]; if the content is any type of data (e.g. multi-media: images, audio, video), the

content management applications can provide limited functionalities for getting content,

presenting and using it. So, there is a little support for retrieving conceptual information of

the content.

Conceptual Content Management System (CCMS) constructs a new framework

which is concept-content modelling. In CCMS, the concept and content of data are closely

coupled in order to improve the meaning of content and they form the asset model which is

the foundation of CCMS. The concept part explains characteristics, attributes and rules for

the content. So, an asset is defined as concept-content pairs.

The content-concept model is defined by asset definition language (ADL). It has

two main perspectives according to the entity modeling:

1) Expressiveness: This defines the three features that must be in entity

modelling, therefore also in asset modeling. They are:

- Characteristics of the asset

- Relationships between as asset and other assets

- Systematics that defines rules for assets

 11

State of the Art

2) Responsiveness: The success of asset modeling is determined by being;

- Open: Openness means that users can adapt the pattern of the system

according to their desires or requirements (e.g. adding new attributes,

relationships or rules to the modelling).

- Dynamic: Dynamism means that the developed system can control

and adapt these desires independently and automatically without any

interference by a programmer.

The overview of entities and assets are shown in figure 2.1.

Figure 2.1: Representation of Asset Model [SS04]

 As depicted in the figure, the content and concept form the asset model. The

content part describes the media view (e.g. image) and the concept part describes the model

view (characteristics, relationships, rules). This asset modeling was implemented in object-

oriented programming; an example asset class definition is shown below.

class Fund {
 content
 contentIds: String
 concept
 characteristic titel: String
 characteristic datum: java.util.Calendar
 characteristic bemerkung: String
 characteristic erfassungsdatum: java.util.Calendar
 characteristic erfassungsdatum: java.util.Calendar
 characteristic typ: String
 relationship standort: Referenz
 relationship erfasser: User
 relationship verschlagwortung: Schlagwort*
 relationship kommentare: Kommentar*
 relationship masks: Mask*
}

 12

State of the Art

The codes show that expressiveness perspectives which are ‘characteristics’ and

‘relationships’ of assets are declared. Then, these descriptions are added as attributes to the

‘Fund’ asset type. These attributes construct the content and concept parts of the asset. As a

result, this modeling gives the possibility for end-users (programmers) easily construct new

asset classes for their CCMS systems because of the asset modeling’s open and dynamic

features.

2.3. Information Retrieval

Information Retrieval (IR) is an interdisciplinary area that is basically described as

storing data, searching documents and describing them to users. Therefore it involves many

different environments. In IR data should be stored in permanent storage, for this purpose

physical devices and databases are constructed. Also, the representation of files are

implemented with special data structures, database design, special index structures

(inverted file, graphs or trees) or continuous file types (like audio or video) etc. Besides the

storage and data representation IR should provide searching among the documents and

database in an efficient ways. Therefore, IR plays an important role for reaching any

documents, in a quick way and resulting accurate search results.

In order to understand Information Retrieval better, the differences between IR and

data retrieval are shown in figure 2.2. [Rij]. Data Retrieval is different from IR in the sense

that it retrieves data from databases with exact matches.

 Data Retrieval Information Retrieval

Matching Exact match Partial match, best match

Inference Deduction Induction

Model Deterministic Probabilistic

Classification Monothetic Polythetic

Query language Artificial Natural

Query specification Complete Incomplete

Items wanted Matching Relevant

Error response Sensitive Insensitive

Figure 2.2: Data Retrieval vs. Information Retrieval

 13

State of the Art

If the above figure is analyzed; while matching the documents with user queries in

data retrieval, the system returns an exact match or nothing (for example, using an SQL

query, a row data from a table in a database is retrieved). But, in IR the system returns

partial or best matches using the index. The data retrieval model is deterministic, meaning

that there is no random search. A search is executed at one time and results are fetched.

But, in IR there is also a probability that more relevant documents have high probability to

be retrieved during searching. There is a probability that a query could not match any

document from the system, too.

Also, entered query languages are different between data retrieval and IR. Data

retrieval needs artificial queries like SQL, XQuery [XQu] that are more complex and must

be typed correctly. On the other hand, IR systems support natural queries that are more

human readable and understandable (for example, the query “Java AND Swing”). Fuzzy

logic in IR services gives flexibility that although there is a syntax error in a query, the

search engine can return documents similar to the query. Finally, user preferences differ

between data retrieval and IR. In data retrieval the user wants to get an exact match of data

specified in a query, while in IR the user wants to retrieve the best or most relevant

documents that meet their preferences. Therefore, the usage areas are different between

data retrieval and information retrieval systems. Search engines generally use an

Information Retrieval system and its features.

When the quality of Information Retrieval Services is taken into consideration,

there are two classical parameters [FB92], which are Precision and Recall (see figure 2.3).

Precision is the number of relevant documents retrieved divided by number of retrieved

documents. In contrast, Recall is the number of retrieved documents divided by number of

relevant documents. The values reside in interval between 0 and 1. There is a trade-off

between these values, for example if the Precision increases then the Recall decrease and

vice versa.

= Precision

Recall

(number of retrieved documents)

(number of relevant documents)

(number of retrieved documents)
=

 (number of relevant documents retrieved)

Figure 2.3: Precision and Recall

 14

State of the Art

Therefore, when designing information retrieval systems the Precision and Recall

values are important to evaluate quality of search engines according to user preferences.

Because, if Precision increases then this means user gets more relevant documents from

retrieved documents. So, the irrelevant documents are further eliminated. On the other

hand, if Recall increases then this means that users get more documents among the relevant

documents. So, the quality of relevant documents in favour of the users is improved.

According to the above described facts, for instance if a search engine only results

limited number of documents, it is necessary and feasible to improve Precision values of

the search results. In this way, the user will retrieve the most relevant documents. The rest

probably is irrelevant to the user and he does not need to read them. But, if the user needs

or wants to learn all documents retrieved from an IR system, so the Recall parameter should

be maximized. Then, the user gets all documents regardless of relevance or irrelevance

degree in search results.

A classical Information Retrieval process is depicted in figure 2.4. At first, there is

an information need by users and the need should be processed fast with correct results.

Then, the user enters a query which contains some terms related to wanted documents’

content. The query is executed by searching phase and ranked search results are returned

from the IR system. Finally, the results are shown to the user by a user interface

application. In searching process the query terms are matched with terms stored in an index,

so indexing process an important role in IR. Because, well-implemented and designed

index and index structure will give a better and faster search results.

Figure 2.4: Information Retrieval Process [BR99]

 15

State of the Art

2.3.1. Information Retrieval Models

In information retrieval environment, there are three main mathematical models

[BR99] those describe fundamentals of indexing, searching, weighting, ranking, providing

queries and documents evaluation. These models are important to understand what lies

under indexing and searching functions.

The fundamental models are:

• Boolean model

• Vector space model

• Probabilistic model

Boolean Model:

Boolean model is known as the first information retrieval model. It uses simple

algorithms like simple match in searching and relies on the use of Boolean operators (AND,

OR, NOT). When searching documents, user can only enter queries like ‘Java AND

Swing’, ‘Java OR Swing’ or ‘Java AND (NOT Swing)’. This results exact matches for

query terms in the index meaning ‘yes’ or ‘no’.

Furthermore, in Boolean retrieval model all documents have same weighting.

There is no term weighting, so it does not support ranking of indexed documents, either.

This causes size of retrieved results to be either too large or too small. Also, the user must

know the right term that he is searching. Therefore, nowadays it is inflexible and

insufficient for modern and big information retrieval systems. In order to overcome these

problems, fuzzy operators are implemented. Fuzzy operators provide more accurate and

close search results than Boolean operators.

Vector Space Model:

Because of the above mentioned restrictions in Boolean model, an improvement

was done and Vector Space model was introduced. The key idea in Vector Space model is

representation of everything (documents, fields, terms or queries) as a vector in a multi-

dimensional space. The representation of a query and two documents according to their

term weights in a vectoral space is shown in figure 2.5.

 16

State of the Art

Doc x

Doc y

query

 Figure 2.5: Vector Space Model

In this model term weighting, calculating similarity of documents, ranking of

documents can be realized. In information retrieval process, the query vector is compared

with other document vectors by calculating the cosine angle between the query and the

document. In figure 2.5, the angle between document y and the query is smaller than the

angle between document x and the query. This means that document y is more similar than

document x by calculating the similarity using the similarity equation in figure 2.6

[LCS97], therefore the document y is more relevant to the entered query.

The similarity equation (figure 2.6) [LCS97] calculates the similarity value

between a document Di and a query Q, where;

wQ, j is the weight of term j in the query,
wi, j is the weight of term j in the document i, and
the denominator is called the normalization factor.

Figure 2.6: The similarity equation

The similarity measurement is important in Vector Space model, because it used to

retrieve documents according to a query and provide ranked results. So, the ranking is done

after computing the similarity values between all vectors and the query. This results more

accurate and relevant outputs with respect to Boolean model. Nowadays, most of the

information retrieval services are based on Vector Space model (more information about

information retrieval services and used models is given in section 3).

 17

State of the Art

When we summarize the Vector Space model processes, there are three main steps

in order to implement an information retrieval service. They are indexing, term weighting

and ranking.

The first step is document indexing. It analyzes the documents (extractions of stop

words or common words, stemming, synonym checking, filtering etc are applied to the

documents). As a result, terms used in searching are produced. The indexing details are

explained in section 4.1.2.

The second step is weighting of indexed terms. Here two parameters are important

that are ‘term frequency’ (tf) and ‘inverse document frequency’ (idf). ‘Term frequency’ is

the number of occurrences of term in a document; on the other hand ‘inverse document

frequency’ is the measure of occurrences of term in all documents.

idf is calculated with “log(N/f)”

Here N is the total number of documents and f is the occurrence of term in whole

documents. As a result, weighting of each terms is calculated as (tf * idf).

Finally after indexing and weighting, the similarity function (figure 2.6) is used for

ranking the documents. According to the given query the similarities of each documents

related to the query are calculated. As a result the ranking output, showing from most

similar to least similar documents, is produced.

Latent Semantic Indexing:

Latent Semantic Indexing (LSI) is the variant of Vector Space Model. One of the

features of Vector Space Model is the term or document vectors are independent from each

other. The space matrix of documents, terms or queries are normally too large. Therefore,

LSI aims to reduce the space matrix for indexing documents. So, the reduced space matrix

probably gives better search results.

It uses Singular Value Decomposition (SVD), a dimensionality reduction

technique, in order to determine uncorrelated, insignificant document or term vectors. So,

LSI procedure is generally used for identifying synonym (words that have same meanings)

and polysemy (a word that has multiple meanings) between documents. For example, if two

documents have ‘car’ and ‘vehicle’ terms, then it can be concluded that these documents

are relevant to each other. So, during searching with a query ‘car’, results also contain the

document that contains ‘vehicle’ term.

 18

State of the Art

LSI is a useful method, because it improves the accuracy and relevance of search

results. But its main disadvantage is that it is computationally expensive especially in large

matrices. Also, it consumes more time for comparing all vectors and reducing matrix

dimensionality.

Probabilistic Model:

 Probabilistic model is the newest model and rarely used in information retrieval

services. It is based on the calculating the probability of relevance for retrieved documents.

This is done with relevance feedback process. Relevance feedback holds the information

about how relevant the retrieved documents are to a user during the search operations. It

stores statistical information of relevant documents by starting from initial assumption.

After the initial assumption the probability of relevance is improved during feedback of

search processes.

Probabilistic model is more time and resource consuming process than other

models. It claims that information retrieval process is uncertain, so there is no information

that a correct match will occur in the retrieved results. In order to increase the accuracy of

search results it calculates probability of relevance for the documents by using the equation

P(relevance/document) with Baye’s Rule. The calculation details of

P(relevance/document) can be read in [Rij] - in chapter 6.

2.3.2. Search Engines (Full-Text)

Search engine is a program that searches for documents and lists retrieved results

to clients. They became important and inevitable for Content Management Systems with

the growth of data. Nowadays, most search engines are implemented to search through the

whole internet and web pages or documents (e.g. Google is a famous web search engine).

There are three main parts in search engine applications which are document

browsing (known as crawler or web spider), index and searcher interface. As the name

implies, crawler’s job is to find and gather as many document as possible for Information

Retrieval. After that, those documents are ready for indexing. The indexing operation

processes various analyses (see section 4.1.4) and outputs an index that is used for

retrieving data. The index basically contains field and value pairs that identify contents of

related documents. The index structure is further explained in section 4.1.2. Finally, after

the index is created, there should be a search interface in search engines. This interface

handles user inputs and shows retrieved results appropriately.

 19

State of the Art

Early search engines did not use indexing; they simply looked for document titles

with linear search. This process was slow and user needs to know at least some right words

from title in order to retrieve some results. But, today most search engine application use

index structure. This results in more accurate and relevant search results with various

developed algorithms, models and methods.

On the one hand, full-text search engines mean that they analyze all textual content

of any data and index them. So, they can only manage textual data. This is why they are

called “full-text”. For non-textual data, various document parsers are developed. They

convert any type of documents into textual representation like XML to text, HTML to text

or PDF to text. Then they able to index them and use in search engine applications.

In search engines there are some criteria which determine the quality and power of

search system. The first one is the relevance of retrieved documents depending on user

requests. Users generally want to retrieve data that match best during searching, because

there are lots of documents and the time is restricted. It was observed that people mostly

pay attention to first documents in search results (in some cases, the most relevant

document for a user can be in lower rank, it might be overlooked), so the relevance is

important in searching for documents in favour of the users.

The second one is the popularity of documents. This is widely known as ranking of

documents. The popularity is assigned to documents by calculating weights of document

terms. According to the document weights, the search results are ranked from highest to

lowest values and listed.

The last criterion is the location of data. The idea in ‘location’ is to know where

original documents reside (for example, the file URL in internet or the path in a file

system). This checks the availability and reliability of retrieved results. Because, in user

interface applications mostly a descriptive small size of text for the documents or a link

where the original text exists is shown, so the location information is important too.

In this thesis, a full-text search engine application is implemented using Lucene as

a search engine library. Then, it is integrated with CCMS, so it uses the data from CCMS

database for full-text indexing and searching. The design and implementation of the full-

text search engine can be read in section 4 and section 5 accordingly.

 20

IR Services

Chapter 3

3. Information Retrieval Services

In recent years Information Retrieval became an important area because the size

and number of information increase day by day. Besides this growth, people need

information or documents in a quick way with most relevant ones which satisfy user needs.

For this reason, wide range of Information Retrieval services is developed to provide robust

search engine features.

This first group are complete applications that implement all Information Retrieval

functionalities from indexing documents to showing them to front-end users. These

applications are ready to use and integrate to user’s system without having much

programmer interference. For example, web crawlers, web search engines or commercial

content management systems are developed in this way. Therefore, users or programmers

generally do not know which algorithms, models or methods are implemented during

Information Retrieval process.

The second group are Information Retrieval libraries which provide the

fundamental indexing (section 4.1.2) and searching (section 4.1.3) functionalities. They

work as Application Programming Interface (API) in developing applications. The search

engine application is fully controlled and developed by programmers. Indexing documents,

parsing contents, getting user inputs and showing search results are all programmed by the

programmers. Therefore in this thesis and implemented search engine application, one of

the Information Retrieval libraries, which is “Lucene” [LUC], is selected and used.

In subsections of this chapter, the best Information Retrieval libraries and their

comparison are explained. The reasons for choosing Lucene Information Retrieval library

are detailly described.

 21

IR Services

3.1. Information Retrieval Libraries

Information Retrieval libraries are search engine Application Programming

Interfaces (APIs) that provide basic indexing and searching functionalities for the content

management systems that have large size of data to be managed.

The most available search engines were developed commercially. Therefore, there

are not too many free search engine libraries. Recently some new and open source

Information Retrieval libraries developed and they are further in development. In this part,

the well-known and widely used Information Retrieval libraries are selected and explained.

The selected libraries are Lucene [LUC], Egothor [EGO] and Xapian [XAP]. In

general, they are open-source, free and full-featured libraries. Lucene and Egothor are

based on Java, on the other hand Xapian is written in C++. The detailed features and

differences like supported languages, Information Retrieval models, used file formats,

indexing and searching algorithms are described in following section 3.2.

3.2. Comparison of Selected Search Engine Libraries

Firstly, the used programming languages are Java in Lucene and Egothor, whereas

C++ in Xapian. Lucene, Egothor and Xapian search engine libraries are well-known, free

and open source tools. They can easily be integrated into search engine systems. The

summary of comparison results are shown in figure 3.1.

When the underlying technologies are compared between these libraries, they

differ on selected Information Retrieval models (see 2.3.1). Lucene is based on Vector

Space model (also includes Boolean model) and this model has powerful algorithms and

methods as explained. Also, today it is mostly used model between various libraries or

search engine tools. Egothor is based on Extended Boolean model that supports basic

Boolean model queries like (AND, OR, NOT) and also implements some extensions like

using fuzzy logic, fuzzy operators (e.g. similarity search). It also uses some Vector Space

model methods for ranking indexed documents. On the other hand, Xapian is totally

different from the two tools and based on Probabilistic IR model. Because of the

probability search Xapian is the most complex library that was developed recently.

 22

IR Services

All the developed and available search engine tools can only handle and execute

textual data, this is way they are called “full-text”. Because of this restriction lots of third

party documents parsers are implemented. These parsers provide the conversion of different

type of files into plain texts. Therefore Lucene, Egothor and Xapian support widely used

file formats HTML, PDF, MS Word, XML and so on. Also, special document parsers for

other types can be written and be integrated into IR applications.

When the supported languages are investigated, Lucene supports English, German,

Russian, Chinese and Korean languages for analyzing documents and indexing them.

Egothor states it has a Universal stemmer that can analyze any European language. Also, it

is important to mention that no testing has been performed on other languages except

English. Besides, Xapian supports total 12 languages (English and most European

languages, Danish, Dutch, Finnish, French, German, Italian, Norwegian, Portuguese,

Russian, Spanish, and Swedish.).

 Lucene Egothor Xapian

Programming lang. Java Java C++

License Free, open-source Free, open-source Free, open-source

IR models Vector Space Model Extended Boolean,

Vector Space Model

Probabilistic Model

Supported files Text, HTML, PDF,

XML, MS Word

Text, HTML, PDF,

PS, MS Word, XLS

Text, HTML, PHP,

PDF, PS

Query types Boolean, Fuzzy,

Wildcards, Range

Boolean, Fuzzy,

Wildcards, Range

Boolean, Fuzzy,

Wildcards

Supported languages

for indexing

English, German,

Russian, Chinese,

Korean

Universal stemmer:

any European

language

Total 12 languages:

English and most

European lang.

Weighting techniques Similarity, Latent

Semantic Indexing

Similarity Probability of

relevance, relevance

feedback

Index structure Inverted index,

incremental

Inverted index,

incremental

Inverted index,

incremental

Index storing RAM, disk RAM, disk RAM, disk

Database indexing YES YES YES

Max index size 2^32 docs 2^64 docs 2^32 docs

Figure 3.1: Comparison of Selected Information Retrieval Libraries

 23

IR Services

The ranking process of documents is done with different techniques among these

tools. Lucene’s ranking system is based on weighting of terms. Also there are special

functions (like boosting term values, normalization of weight values) used during the

ranking. So, Lucene uses Vector Space model’s similarity calculation. The mathematical

definition and calculation of similarity can be read in section 2.3.1. Furthermore, Lucene

performs Latent Semantic Indexing (LSI) too in order to reduce search matrix. Also

Egothor uses Vector Space model’s weighting and ranking techniques. It performs

similarity ranking between documents to improve relevance of documents.

Xapian executes completely different method for ranking documents. Because it is

based on Probabilistic IR model, it calculates probability of relevance for documents in

ranking. In calculation, it uses relevance feedback technique (see Probabilistic Model) for

further improvement of relevance in search results. These operations are time and resource

consuming, so indexing times are higher than Lucene and Egothor.

The common features of the selected libraries are; they support Boolean operators

(AND, OR, NOT), wildcard searching (*: zero or many characters, ?:only one character),

fuzzy operation (~: similarity searching), range and phrase queries. Furthermore, they all

implement incremental indexing. Incremental indexing means that when new documents

are indexed they are stored in a new file and then the new ones are merged with old index.

In this way, a search engine application can simultaneously update and search indexes. This

an important feature for IR services, because there is no need to stop searching or making

search engine off-line while indexing new documents. So, there will be no time lost for

search engine users.

As explained previously these libraries support well-known file formats. Besides,

they can also index documents from databases directly. They implement their own index

structures. Generally they index document terms with field and name pairs. The index can

be created both in memory (RAM) and in disk storage. When we compare the limit of

index sizes, Lucene and Xapian support 32-bit operating systems whereas Egothor 64-bit.

Therefore, there can exist 2^32 documents in an index using Lucene or Xapian. On the

other hand maximum 2^64 documents can be indexed using Egothor.

Furthermore, Lucene implements optimized memory management in applications.

In Java virtual machine (JVM) less java objects are allocated, but Egothor does not support

this memory optimization yet.

 24

IR Services

As a result, Lucene is selected and used for the full-text search engine application

in CCMS. The reasons for selecting Lucene library are as follows. Firstly, CCMS is

developed with Java programming language and Lucene is also based on Java. Also,

Lucene is a free and open source Java library and is widely used by programmers. It has

more literature than other libraries which are observed in this project. On the one hand, it

has an efficient German analyser that can index and search German documents.

 Furthermore, Lucene provides a compound index structure (see 6.2.1 for details).

Basically, in the compound index structure the indexed document results are merged into

one index file. This provides faster searching results because of the minimized index file

accesses. Lucene library has index tuning parameters (see 6.2.3) that enable to adjust the

searching process according to users’ system resources. Also, Lucene supports Latent

Semantic Indexing (LSI) (see Vector Space Model in section 2.3.1) which minimizes the

index size further. Finally, it has a feature which is optimized memory management that

allocates less Java objects in memory.

 25

Design of Application

Chapter 4

4. Design of Application

In this section, the design of the information retrieval application for Conceptual

Content Management is explained in detail. As explained in previous pages, the application

is developed in order to work as a module in CCMS. The application retrieves data from

CCMS-database, indexes the retrieved data and searches them with user queries which

entered by user interface program.

Therefore, firstly in design phase some decisions were made. They are, the

programming language used in applications, the information retrieval service for

implementing indexing and searching methods, the document parsers in order to find

information that is stored efficiently, accurately and the language analyser according to the

language of data stored in database.

The first subsection explains the selected programming language and the selected

information retrieval library (Lucene) for this thesis. In this subsection, the most important

parts in search engine environment, indexing and searching are described. This part also

includes the analysis process which is important for applications to convert textual data into

index structure and use it in searching.

The document parsers aim at handling the documents which are XML files

different from normal textual data, so the parsing methods are necessary in order to catch

required texts from these files for indexing and searching. On the other hand, the asset data

can be any type and they can be parsed further. So, the different type of data can also be

indexed and searched. After that, modules which are implemented and used in application

are explained using UML diagrams. Finally, the application logic and the available

functionalities are described in detail. Also, at the end of this part, the overall system

structure can be seen for further understanding.

 26

Design of Application

4.1. Selected Search Engine Library: LUCENE

The comparison of different search engine libraries and information retrieval

services was explained in section 3.2. As a result, the Lucene information retrieval library,

which is based on Java, free, open source and widely used API, was selected in order to

perform indexing and searching mechanism in the application.

4.1.1. The Functionality of Lucene

Lucene is an information retrieval library that is written in pure Java. It provides

core Application Programming Interface (API) for adding full-text indexing and searching

functionalities into developer’s applications. Therefore, it is not a complete framework that

performs all methods for implementing a search engine. It helps programmers with

indexing and searching functions to convert any type of data to textual presentation index

them to an index file structure and search with given user queries. So, the application logic

how to manage indexing, searching, getting user queries or representing them to front-end

client belongs to the programmers.

In traditional or first search engines indexing is done by keywords and its

represented text pairs determined by programmers. In this type of document retrieval user

can only use Boolean queries (AND, OR, NOT) for searching and it has some drawbacks

like depending on indexers, using only Boolean queries and being time consuming. But

with the new mathematical models, the functionalities in full-text search engines increased.

Apart from Boolean queries term, range, prefix, phrase, wildcard and fuzzy queries are

supported. Ranking the documents according to occurrence of search terms, having a

complex index structure for retrieving the data efficiently are further developments in full-

text search. The supported queries are described in section 5.4.

As a result Lucene supports full-text indexing and searching mechanism that is

popular, widely used and supported by developers.

4.1.2. Indexing

One of the main concepts in Lucene search engine API is indexing. Indexing is

conversion of any type of data into searchable index format. The conversion is performed

by analyzers. Firstly, documents are retrieved and all unusable texts like stop words, word -

 27

Design of Application

suffixes or prefixes are discarded. The details about analysis process can be found in

section 4.1.4. As a result of indexing process an index is created.

A Lucene index consists of Lucene Document class instances which defines the

index documents. Each document contains Fields those consist of name and value pairs. A

sample index is depicted in figure 4.1.

 Lucene Index Structure:

Lucene index structure [LUC2] is known as inverted index. Inverted index means

that the content of documents is analyzed and the important terms are indexed as field name

and value pairs. Each field contains many terms that point to corresponding documents in

the content management system. The inverted index facilitates retrieving documents from a

system and is used by search engine application. So, the documents are searched in the

fields and in their values.

As it is shown in figure 4.1., Lucene index consists of many Segments. A Segment

is created when a heap of new Documents are created and indexed. So, each Segment has

many Documents stored in it. The Documents consists of indexed Fields. As explained the

Fields have the smallest parts in index structure which have name and value pairs. These

Fields are used for calculating weights and ranking search results.

segment

segment

document

document

document

document

fields

fields

name valuefields

fields name value

Figure 4.1: Lucene Index Structure

 28

Design of Application

In indexing process the basic Lucene classes are [LUC3];

• IndexWriter

• Analyzer

• Directory

• Document

• Field

IndexWriter:

The IndexWriter is the main class in Lucene indexing operation. It creates the

initial index file to desired path in your computer. As a parameter it takes the path, type of

Analyzer and Boolean parameter (if Boolean value is true then it creates a new index from

scratch, if false then it appends to existing index on that path). IndexWriter is the only class

that has write-access to the index and using its methods users can add documents to the

index for searching purposes

Analyzer:

The Analyzer class implements parsing of contents before creating the index file.

It analyses the documents and discards text that is not useful in searching application. The

analysis process is explained in section 4.1.4.

Directory:

The Directory class shows the place where the index is created. It has two

subclasses which are FSDirectory and RAMDirectory. According to programmer

preferences one can use both of them in indexing process. FSDirectory resides in a file

system; on the other hand RAMDirectory resides in computer memory.

It is obvious that RAMDirectory has advantages over FSDirectory because when

an index is on memory it is faster for indexing and searching documents than accessing to

the index on a disk. But, when stop searching or exit from the application, the index on

memory will be deleted. Therefore, it is important to store the index on a disk for future

use. The evaluation of two Directory types can be found in section 6.2.2 in order to get a

clear understanding.

 29

Design of Application

Document:

The Documents class represents the fields in an index. It consists of fields that

store name and value pairs. In Lucene, the original document or meta-data (such as title,

date, author of that document) can be linked to these fields so the retrieval in searching is

done efficiently. Also, in order to index any document it must be in a textual format or

convertible to text.

Field:

The final core indexing class is Field; it represents the basic field structure in an

index. Each of the fields shows information about their related documents and they are

retrieved during the search operations from the index.

There are four types of Lucene fields which can be used according to application

requirements. They are “Keyword”, “UnIndexed”, “UnStored” and “Text”. Here the field

types, their features and used places are important in designing search engine because it

directly affects searching process. Their overall features can be seen in the figure 4.2.

Field Type Analyzed Indexed Stored

Keyword * *

UnIndexed *

UnStored * *

Text * * *

Figure 4.2: Lucene Field Types and Features

The “Keyword” field type is used for indexing any text as it is written in the

documents. This can be useful if one wants to index documents where original values are

kept. For example titles, URL, dates, personal names or path of documents. As a result,

with Keyword field type the data is not analyzed or tokenized but it is indexed and stored.

The “UnIndexed” field type is used for, as it can be understood from its name,

indexing texts which will be neither analyzed nor indexed, but it is stored in the index. This

is effective if one does not want to search a document directly but he wants to show the

document in search results. The disadvantage of this field type is storing the documents as a

whole, so if documents are large then the index size will increase.

 30

Design of Application

The “UnStored” field type is the reverse of UnIndexed, it is analyzed and indexed

but the original content of document is not stored in the index. This type is suitable for

documents that have large size of contents, like HTML pages’ bodies or any textual content

of files.

The “Text” field type is mostly used when a user wants to analyze, index and store

documents in his application. This type is useful for indexing small size of textual data like

document title, description or subject.

The summary of indexing steps is shown in figure 4.3.

AnalysisParsersAny type
of docs

------ ----
------ ----
------ ----
------ ----

index • HTML parser

• Text

• XML

• PDF

• User defined

•

• Stemming

• Synonyms

• Stop words

• non-English languages

• Filtering

• Weighting, ranking

•

Figure 4.3: Main Indexing Steps

 The indexing process starts with reading documents, in this case assets, and

parsing their contents. The parsing is done for any type of documents that are convertible to

texts. In general, Lucene can parse only textual data, but for other type of files (e.g. PDF,

MS Word, XML, etc) there are specific document parsers. The list of Lucene document

converters can be found in reference [LUC]. Also, the users can implement their own

document parsers by converting any type of data into text.

In the implemented search engine application, the XML data are converted to

texts. After parsing the assets, the analyzing phase starts. The implementation of Analyzer

is shown in section 5.5. The main steps in analysis are stemming, removing of stopwords or

common words, synonym checking, weighting of documents and ranking the results.

Finally, the analyzer process creates a Lucene index which is the fundamental structure for

searching mechanism.

 31

Design of Application

4.1.3. Searching

Searching process is the second main step in information retrieval services. After

indexing the required documents, in order to search them the searching methods should be

developed. User queries are entered to an application, the queries are parsed by the searcher

parser, and then hits are returned from the stored index and used for showing results to the

user.

In Lucene the main search classes are [LUC3];

• IndexSearcher

• Query

• Term

• Hits

IndexSearcher:

As it is explained in previous section IndexWriter is used for indexing the

documents, on the other hand IndexSearcher is used for searching a document from an

index. It opens the index in read-only mode and uses its methods in order to return search

results. Then, the results are ready for output, listing or sorting.

Query:

This class is used for defining user queries. There are lots of query types in Lucene

which are BooleanQuery, FilteredQuery, MultiTermQuery, PhrasePrefixQuery,

PhraseQuery, PrefixQuery, RangeQuery, SpanQuery and TermQuery. All these types of

queries can be used in searching by creating manually or the Lucene QueryParser class can

automatically fetch and understand in which type the user query belongs to. The Backus-

Naur form (BNF) of Lucene query grammar is as follows [LUC3]:

 Query ::= (Clause)*

 Clause ::= ["+", "-"] [<TERM> ":"] (<TERM> | "(" Query ")")

Here the <TERM> describes in which index field will be terms are searched like

“Title: Java”. (+) indicates the clause is contained and (-) indicates the clause is not

contained in search criteria.

 32

Design of Application

Term:

The basic unit in a search query is the Term class. It represents any text in a

document while searching. The constructor has two parameters, one is the field in which

the text will be searched and the other is the text itself. It is used for constructing a user

query.

Hits:

After the construction of queries with Query and Term classes, the IndexSearcher

class retrieves searched documents from the index. The matched documents are pointed by

Hits class. The results come out as a ranked list. So, by implementing Hits class, the user

gets searched documents, their scores and total number of documents.

4.1.4. Analysis

Analysis is the process of converting document texts into fundamental and

indexable terms. Here the tokenization steps happen which are stemming, discarding

stopwords, normalization, lemmatization and removing common, unuseful words from the

document. Also, weighting and ranking of document terms is done in analyses part.

Stemming produces the root of the words. The stopwords which are “and, or, but, not, then”

and etc. are extracted. Normalization means to lowercase the text. Lemmatization is similar

to stemming that produces basic tokens from the texts by normalizing words into the

headwords. For example, the lemmatized form of the words “writing” and “written” is

“write”.

Furthermore, in Lucene there exists different type of analyzers. They are

GermanAnalyzer, RussianAnalyzer, SimpleAnalyzer, StandardAnalyzer, StopAnalyzer and

WhitespaceAnalyzer. So, it is important to choose the right analyzer for the applications. In

this thesis the content of documents are in German, therefore in application

“GermanAnalyzer” is used. The usage of GermanAnalyzer in the application can be read in

section 5.5. The following results show how different types of analyzers provide different

outputs during analyzing of texts:

 33

Design of Application

Analyzing "Analysis is the process of converting texts into terms."

WhitespaceAnalyzer:
 [Analysis] [is] [the] [process] [of] [converting] [texts] [into] [terms.]

SimpleAnalyzer:
 [analysis] [is] [the] [process] [of] [converting] [texts] [into] [terms]

StopAnalyzer:
 [analysis] [process] [converting] [texts] [terms]

StandardAnalyzer:
 [analysis] [process] [converting] [texts] [terms]

Analyzing "STS&TUHH - sts@tu-harburg.de"

WhitespaceAnalyzer:
 [STS&TUHH] [-] [sts@tu-harburg.de]

SimpleAnalyzer:
 [sts] [tuhh] [sts] [tu] [harburg] [de]

StopAnalyzer:
 [sts] [tuhh] [sts] [tu] [harburg] [de]

 StandardAnalyzer:
 [sts&tuhh] [sts@tu-harburg.de]

Figure 4.4: Comparison of Different Analyzers in Lucene Library

 WhitespaceAnalyzer divides texts according to whitespaces in the text. So, each

part is indexed as it is written as shown in the above tables.

StopAnalyzer firstly divides texts at nonletter characters, and then lowercases the

letters. Finally it removes the stopwords which belong to the used language (e.g. English

stopwords or German stopwords).

SimpleAnalyzer is similar to the StopAnalyzer, it divides texts at nonletter

characters and then lowercases them but it does not remove stopwords from the texts.

 StandardAnalyzer can be thought as a composition above explained analyzers. It

performs all operations which Whitespace, Stop or SimpleAnalyzer do. On the other hand,

it executes special operations according to the related language grammar. It can recognize

abbreviations, e-mail addresses or special words (For example P&G has ‘&’ character in its

letters and StandardAnalyzer can efficiently index it as ‘P&G’ so it can be queried with the

term ‘P&G’. This is very important when indexing such words in order to search them

correctly) and etc. As a result StandardAnalyzer is the mostly used analyzer in indexing and

searching.

 34

Design of Application

 Lucene’s weighting equation:

 It is important to understand how Lucene’s scoring algorithm works. It performs

various operations in order to index and rank documents. These weighting values determine

which documents are relevant to a given query. The score values are between 0 and 1. If the

highest score is greater than 1, all scores are normalized from that value. Therefore returned

Hits values are always between 0 and 1, meaning that 1 is the most relevant document and

0 is the least relevant document according to the entered query. The Lucene’s scoring

equation for a query (q) and a document (d) is shown below in figure 4.5 [LUC3]:

score(q,d) =

 Σ tf(t in d) * idf(t) * getBoost(t.field in d) * lengthNorm(t.field in d) * coord(q,d) * queryNorm(q)
t in q

Figure 4.5: Lucene’s Weighting Equation

In this equation;

tf(t in d) is the term frequency of the term (t) in the document (d).

idf(t) is the inverse document frequency of the term (t).

getBoost returns the boost value of term field in the document, which is calculated and

set during indexing.

lengthNorm function calculates the normalization for the term field in the document.

coord(q,d) computes a coordination value according to the query (q) terms the

document (d) has. In Lucene API [LUC3] states that, “The presence of a large portion of

the query terms indicates a better match with the query, so implementations of this method

usually return larger values when the ratio between these parameters is large and smaller

values when the ratio between them is small.”.

queryNorm(q) computes the query normalization score for the query which is the sum

of square values of terms’ weights (the terms are retrieved from the given query).

 35

Design of Application

4.2. Document Parsers

If a programmer wants to index a document it must be in a textual representation

or be convertible to text. Therefore, there is a need of document handlers in order to index

non-textual data like MS Word, PDF, XML files. In this thesis the retrieved data was as an

XML format therefore different XML document parsers are developed. The implementation

of document parsers with examples can be found in section 5.3.

Lucene does not have built-in common document parsers like other search engine

libraries. They focus on indexing and searching functionalities with the intention of

developing information retrieval applications. But, there are third party tools that can be

easily integrated into such common document type handlers. For example, in Lucene API

users can parse XML data using Jakarta Commons Digester [JCD], PDF using PDFBox

[PDF], HTML using JTidy [JTi], MS Word documents using Jakarta POI [POI] or using

built-in Java Development Kit (JDK) parser. As it is mentioned previously, in this thesis the

stored data can be retrieved as XML files from the CCMS System, thus the Jakarta

Commons Digester parser tool is used to handle these data.

Basically, Commons Digester allows programmers to map XML contents into Java

objects with defined Digester rules. The rules show how to map XML tags, add calling

methods, start or end tags and setter/getter methods for retrieving element/attribute values.

An example of XML tags mapping is shown in figure 4.6. It is seen from this figure that in

Commons Digester the parent/child relations can be easily coded in an application. The

implementation of these document parsers are described in section 5.3.

XML file for an Asset Mapping value in Java class

<data>
<xml-fragment id="1118259927750">
 <dok:typ>Zeitungsartikel</dok:typ>
 <dok:datum>2005</dok:datum>
 <dok:titel>Title</dok:titel>
 …………………
 ………………..
</xml-fragment>
</data>

data/xml-fragment , id (parsing attributes)
data/xml-fragment/dok:typ (parsing elements)
data/xml-fragment/dok:datum (parsing elements)
data/xml-fragment/dok:titel (parsing elements)
......................
.....................

Figure 4.6: XML Tag Mapping

As a result, after defining the XML tag mapping rules and creating call methods,

using getter methods, the attribute value of ‘id’, element value of ‘dok:typ’,‘dok:datum’ or

‘dok:titel’ and so on are retrieved and indexed by Lucene’s indexing methods.

 36

Design of Application

4.3. Definition of Modules

This project uses CCM System in order to retrieve documents from the database

which is explained in section 2.3. Basically, the CCM System provides assets (concept-

content model) for storing and managing data. It is implemented with the help of asset

definition language and compilers. Also, the assets are stored in a database.

The first module is GKNS Module [CCM] that was developed as a part of CCMS.

This module provides the main methods for creating, adding, deleting and modifying

assets. Also, there are various functions that retrieve the assets from the database as XML

stream data.

In this thesis, Lucene Module was designed and implemented as a sub-module in

CCMS above the GKNS Module. A depiction of these modules and their relations are

shown in figure 4.7. Lucene Module instantiates the GKNS Module and inherits all its

methods. Furthermore, Lucene Module uses the inherited functions and implements new

methods in order to retrieve all assets efficiently from the database, index the retrieved

assets using Lucene search engine library.

GKNS Module

Lucene Module

Application

Lucene Engine

Query

XML data

Figure 4.7: Modules in Conceptual Content Management System

At the top of GKNS and Lucene Module, the full-text search engine GUI is

implemented. The search engine uses the Lucene engine and, realizes indexing and

searching applications. The indexer application instantiates the Lucene Module and creates

an index which stores all analyzed and indexed assets retrieved from the CCM System. On

the other hand, the searcher application is programmed as a Java Client application that is a

 37

Design of Application

user interface. This user interface gets user inputs, sends queries to the searching methods

and retrieves wanted documents from an index. Finally, results are returned to the user and

listed with details about the retrieved assets. The implementation details of the user

interface are explained in section 5.7.

4.4. Overall System Structure

The parts used and implemented in this project are shown in figure 4.8. It consists

of two main sections. They are the CCM System and the Lucene search engine application.

Asset Model

Docs

Lucene Module

Indexing Searching

------ ----
------ ----
------ ----
------ ----

generator

User Interface

Enter
Query

Search
Results

Application

Lucene
Engine

GKNS Module

index

XML
data

Figure 4.8: Overall System Structure

The first section contains previously developed applications which are Asset

model definition, CCMS modules (GKNS module and Lucene module (with user interface)

that is implemented during the thesis). The detailed definitions of modules are in section

4.3. Basically, GKNS module provides methods in order to create, delete, manage and

retrieve data from a database. Lucene module implements interfaces for implementing a

full-text search engine. It interacts with GKNS module and retrieves the data (the

documents in the database are assets) that will be indexed and be searched. Therefore,

searching functionality is performed by a user interface. The interface gets queries from

users, triggers the searching operations and lists the returned search results. In the CCM

system the data are assets. They are defined and the implementation is generated by the

 38

Design of Application

Asset Definition Language (ADL). Assets consist of concept-content pairs, then this asset

models are created by a generator in order to form a CCM system. Also, concept details and

content of assets are shown to the users.

The second part is the Information Retrieval application itself. It instantiates the

Lucene module and uses the Lucene search engine API. After getting all assets from the

CCM system using Lucene module methods, these documents are sent to the indexer

application. The indexing process analyzes the assets and creates an index in a file system.

On the other hand, the searcher application handles user queries from the user interface and

retrieves document matches from the index. Then, the search results which are ranked and

showing the most relevant documents are listed.

 39

Implementation

Chapter 5

5. Implementation

In implementation part Lucene Module, indexer, searcher and document parser

applications are developed. All these classes form the ‘de.tuhh.gkns.informationretrieval’

package in the Conceptual Content Management System (CCMS). Also, it interacts with

other packages in CCMS which performs many methods for asset modeling. The overall

structure of packages, the main classes contained in and their relations are shown in

package diagram of CCMS in figure 5.1.

The implemented package classes perform the indexing and searching operations

for CCMS. The subsection 5.1 describes the Lucene module and indexing of assets and

their content in CCMS. The searching process is explained in subsection 5.2. The

implementations of document handlers (like FundHandler, NachlassHandler) are explained

in subsection 5.3. Furthermore, the query parsers supported by Lucene library are explained

in 5.4 and the Analyzer used in the application is explained in 5.5. The subsection 5.6

shows the application logic and functionalities in indexing and searching process. Finally,

the full-text search engine user interface and its features are shown in 5.7.

 40

Implementation

Figure 5.1: Package Diagram for Conceptual Content Management

5.1. Lucene Module - Indexing Process

The indexing of assets in CCMS is done by Lucene module’s functions. Basically,

Lucene module implements the ClientModule interface from CCMS and extends with its

own methods in order to realize Information Retrieval in the system. The functions in

Lucene module for indexing operations are:

 41

Implementation

start()

stop()

createInitialLuceneIndex(), createInitialLuceneIndex (String)

retrieveAssets(),

retrieveAssets(AssetClass, XQuery),

retrieveAssets(AssetClass[], XQuery)

indexAssets(),

indexAssets(AssetClass),

indexAssets(AssetClass[])

getModule()

getLuceneDirectory()

Figure 5.2: The Main Indexing Methods in the Application

start(): This method activates the created module.

stop(): This method deactivates the started module in an application.

getModule(): It used to retrieve the LuceneModule in order to reference it and

use its methods in different applications.

getLuceneDirectory() : It returns the path of index from the file system which

will be used in searching application.

createInitialLuceneIndex(), createInitialLuceneIndex (String):

These methods are the starting point for creating an index for the Information

Retrieval application. These methods create an initial index in a file system with a default

location or the path of index is specified by a String parameter. After that this index is used

for adding new assets from the database during indexing process.

retrieveAssets (), retrieveAssets (AssetClass, String XQuery), retrieveAssets

(AssetClass[], String XQuery):

This is one of the most important methods during indexing, because it retrieves the

documents (assets) which will be indexed. retrieveAssets() method by default gets the all

assets from the database. Also there are two more variations of this method. One has the

‘AssetClass and XQuery’ parameters, the other one has ‘array of AssetClass and XQuery’

 42

Implementation

parameters. The programmer can specify with ‘AssetClass’ or ‘AssetClass[]’ which asset

class or array of asset classes will be retrieved and indexed. For this reason, the ‘XQuery ’

parameter forms an XML query [XQu] in order to retrieve assets from the eXist [eXist]

database. An example programming code is shown in following figure. The assets are later

retrieved by the searcher application and Lucene queries which is explained in section 5.2

String queryKorres = "declare namespace gkns =

'http://sts.tuhh.de/gkns/dokumenttypen.xsd' ; " +

"<gkns:allAssetList>{ /child::gkns:*[local-name(.)='korrespondenz']}" +

"</gkns:allAssetList>";

String queryFund = "declare namespace gkns='http://sts.tuhh.de/gkns/dokumenttypen.xsd';

<gkns:allAssetList>{ /child::gkns:*[local-name(.)='fund']}" +

"</gkns:allAssetList>";

Figure 5.3: XQuery Examples from the Application

indexAssets (), indexAssets (AssetClass), indexAssets (AssetClass[]):

After retrieving the assets, the ‘indexAssets’ methods triggers indexing classes for

assets according to their types. The asset specification files describe schema of different

asset types. The schema definition of assets can be found in appendix. The retrieved and

indexed asset types in search engine application are as follows:

Korrespondenz

Bilddokument

Dokument

Fund

Gesetzerlassbestimmung

Lebensdokument

Manuskript

Nachlass

Sachakte

Veroeffentlichung

 Figure 5.4: Asset Types in CCMS

 43

Implementation

An example of ’Fund’ asset schema definition is shown below:

<xs:complexType name="Fund">
<xs:sequence>
 <xs:element name="typ" type="xs:string"/>
 <xs:element name="datum" type="xs:dateTime"/>
 <xs:element name="titel" type="xs:string"/>
 <xs:element name="erfassungsdatum" type="xs:dateTime"/>
 <xs:element name="bemerkung" type="xs:string"/>
 <xs:element ref="gkns:kommentar" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="gkns:mask" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="erfasserRef" type="xs:ID" minOccurs="0"/>
 <xs:element ref="gkns:referenz" minOccurs="0"/>
 <xs:element name="verschlagwortungRef" type="xs:ID" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="contentIds" type="xs:string"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>
</xs:complexType>

This schema defines elements and attributes for the Fund asset. The elements are

type of asset, creation date, title, entry date, remarks, comments, writer reference, content

id, etc. The attribute is the unique ‘id’ value for the created asset. As a result, this schema

and its values forms the concept part of a Fund asset, whereas with ‘contentIds’ element

refers to the content of the Fund asset (Asset = concept + content model).

The methods ‘indexAssets (AssetClass), indexAssets (AssetClass[])’ can be used

to index a specific asset type or types accordingly. As a default, ‘indexAssets ()’ indexes

all type of assets that exist in CCMS.

Finally, for each type of asset there exist document parsers. Basically, these

document parsers handle different type of assets, convert the asset contents into textual

representation and use Lucene library functions in order to index all documents. The

parsing details are explained in section 5.3.

Adding assets to the index:

Using the Lucene module the initial index is created and the assets are retrieved

from the database as XML data, then these data are sent to specific data parsers. These asset

document handlers do the main indexing operations for each type of assets. Firstly, the

index directory is read, and then the analyzer is chosen. In this project the content of data is

in German, so we use Lucene’s ‘GermanAnalyzer’ for analyzing the data and indexing. In

order to write the outputs from the analyzer and index them, the constructor of

‘IndexWriter’ is called. IndexWriter is like a pointer to an index and used to add new

documents. The code is shown below:

 44

Implementation

String indexDir = setDir;
Analyzer analyzer = new GermanAnalyzer();
boolean createFlag = false; // means append to existing index without recreating
// IndexWriter to use for adding assets to the index
fsWriter = new IndexWriter(indexDir, analyzer, createFlag);

Now we have the index and IndexWriter instance for adding new documents.

Therefore the program should create Document objects for different type of assets. The

below example creates documents for “Bilddokument” assets. Then, different type of fields

are added to a Document object with ‘add (Field.<type>(name>,<value>))’ method. Some

asset data are added as ‘Keyword’ type fields and the other are added as ‘Text’ type fields.

For example, 'ids’ are indexed as Keyword fields or ‘titels’ are indexed as Text fields. The

differences between field types are explained in Field title of section 4.1.2. After adding all

asset values to the Document object as fields, finally the document is added to the index

with IndexWriter’s ‘addDocument(<Document>)’ function. This process is repeated until

the application finish indexing all assets.

Document assetDocument = new Document();

assetDocument.add(Field.Keyword("id", asset.getId()));
assetDocument.add(Field.Text("typ", asset.getTyp()));
assetDocument.add(Field.Keyword("datum", asset.getDatum()));
assetDocument.add(Field.Text("titel", asset.getTitel()));
assetDocument.add(Field.Keyword("erfassungsdatum", asset.getErfassungsdatum()));
assetDocument.add(Field.Text("bemerkung", asset.getBemerkung()));
assetDocument.add(Field.Keyword("erfasserRef", asset.getErfasserRef()));
assetDocument.add(Field.Keyword("contentIds", asset.getContentIds()));
assetDocument.add(Field.Text("entstehungsort", asset.getEntstehungsort()));
assetDocument.add(Field.Text("inhalt", asset.getInhalt()));
assetDocument.add(Field.Text("umfang", asset.getUmfang()));
assetDocument.add(Field.Text("autor", asset.getAutor()));
assetDocument.add(Field.Text("beteiligtePersonen", asset.getBeteiligtePersonen()));
fsWriter.addDocument(assetDocument);

5.2. Searching Process

The indexing process analyzes all assets in CCMS and indexes them. At the end,

an index is created and now it is ready for executing search operations. The main function

for searching in Lucene library is IndexSearcher class. This class enables in programming

to point to the index and read data from it.

Users enter a query to the search engine, then terms in the query are parsed and

according to the query type assets are retrieved. This is performed by IndexSearcher’s

search() function. Finally, ‘Hits’ data structure is returned to the program. The ‘Hits’

includes the search results in a ranked order.

 45

Implementation

Also, with various functions, in program the details of documents can be read and

outputted. The main programming parts for searcher application are shown below.

// default index directory, you can change it with method "setDir()"
private File indexDir = new File("indexableXMLFiles\\index");
private static Hits hits;
private static Document doc;
…………………………………….
// Refer to the created Lucene index in the directory
Directory fsDir = FSDirectory.getDirectory(indexDir, false);
IndexSearcher is = new IndexSearcher(fsDir);

// parse the query 'q
Query query = QueryParser.parse(q, "contents", new GermanAnalyzer());
……………………………………
hits = is.search(query);
……………………………………
is.close(); // close the Index after search operation is completed
fsDir.close(); // close the directory

5.3. Document Parsers

The returned asset data from CCM system is in XML streams. As explained in

design of application part (see section 4.2) the parsing of these XML documents are done

by Jakarta Commons Digester [JCD]. Commons Digester is based on SAX parser for

document parsing. In figure 5.5 an example of XML Asset content is given, this Asset

represents the structure of ‘Dokument’ type asset with elements and attributes. As

mentioned previously, the asset types are “Korrespondenz, Bilddokument, Dokument,

Fund, Gesetzerlassbestimmung, Lebensdokument, Manuskript, Nachlass, Sachakte and

Veroeffentlichung“. Therefore for each asset type a document parser is developed.

<data>
<xml-fragment id="1118259927750" xmlns:dok = "http://sts.tuhh.de/gkns/dokumenttypen.xsd"
xmlns:gkns="http://sts.tuhh.de/gkns/dokumenttypen.xsd">
 <dok:typ>Zeitungsartikel</dok:typ>
 <dok:datum>2005-06-08T00:00:00.000+02:00</dok:datum>
 <dok:titel>dokuement example</dok:titel>
 <dok:erfassungsdatum>2005-06-08T00:00:00.000+02:00</dok:erfassungsdatum>
 <dok:bemerkung>kein Angabe</dok:bemerkung>
 <dok:erfasserRef>1000000007</dok:erfasserRef>
 <dok:verschlagwortungRef>s1363</dok:verschlagwortungRef>
 <dok:contentIds>1118691449953</dok:contentIds>
 <dok:entstehungsort>bremen</dok:entstehungsort>
 <dok:sperrvermerkFachlich>2005-06-08T00:00:00.000+02:00 </dok:sperrvermerkFachlich>
 <dok:sperrvermerkJuristisch>2005-06-08T00:00:00.000+02:00 </dok:sperrvermerkJuristisch>
 <dok:inhalt>Alles ist möglich</dok:inhalt>
 <dok:umfang>keine</dok:umfang>
</xml-fragment> </data>

Figure 5.5: Sample XML Asset Content

 46

Implementation

The function of document parsers is to handle this XML file and retrieve the XML

element and attribute values like id = "1118259927750", dok:typ = Zeitungsartikel,

dok:datum = 2005-06-08T00:00:00.000+02:00, dok:erfasserRef = 1000000007,

dok:contentIds = 1118691449953 and so on.

The XML file has a hierarchy as follows:

data/

data/xml-fragment

 data/xml-fragment/dok:typ

 data/xml-fragment/dok:datum

data/xml-fragment/dok:titel

data/xml-fragment/dok:erfassungsdatum

..

On the other hand, this XML structure is mapped to a Java class. The java code for

‘DokumentHandler’ class is shown in figure 5.6. There is a simple direct mapping between

the XML file Java class.

The attribute ‘id’ is mapped as follows:

digester.addSetProperties("data/xml-fragment","id", "id");

The elements <dok:typ> and <dok:datum> as follows:

digester.addCallMethod("data/xml-fragment/dok:typ", "setTyp", 0);

digester.addCallMethod("data/xml-fragment/dok:datum", "setDatum", 0);

As a result, the parsing algorithm works as follows:

1) According to the asset schema using the Commons Digester tools, the

programmer provides the rules for XML matching patterns to the parser. In

the above example the top-level element is <data>. <data> has several <xml-

fragment> elements that describe the assets and their values. So, the parsing

algorithm visits all assets recursively until the </data> is matched.

2) For each <xml-fragment> the parser reads its child elements like <dok:typ>,

<dok:datum> etc. and retrieves their element values.

3) These values are assigned to class variables by setter methods (setTyp(),

setDatum(), etc.). Also by getter methods these values will be retrieved in

indexing processes (getTyp(), getDatum()).

4) If there is a new asset element <xml-fragment>, the algorithm returns to the

first step until all assets are parsed.

 47

Implementation

………………………………………………………………..
// instantiate Digester and disable XML validation
Digester digester = new Digester();
digester.setValidating(false);

// instantiate DokumentHandler class
digester.addObjectCreate("data", DokumentHandler.class);

// instantiate asset class
digester.addObjectCreate("data/xml-fragment", Dokument.class);

// set id property of asset instance when 'id' attribute is found
digester.addSetProperties("data/xml-fragment","id", "id");

// set different properties of asset instance using specified methods
digester.addCallMethod("data/xml-fragment/dok:typ", "setTyp", 0);
digester.addCallMethod("data/xml-fragment/dok:datum", "setDatum", 0);
digester.addCallMethod("data/xml-fragment/dok:titel", "setTitel", 0);
digester.addCallMethod("data/xml-fragment/dok:erfassungsdatum", "setErfassungsdatum", 0);
digester.addCallMethod("data/xml-fragment/dok:bemerkung", "setBemerkung", 0);
digester.addCallMethod("data/xml-fragment/dok:erfasserRef", "setErfasserRef", 0);
digester.addCallMethod("data/xml-fragment/dok:contentIds", "setContentIds", 0);
digester.addCallMethod("data/xml-fragment/dok:entstehungsort", "setEntstehungsort", 0);
digester.addCallMethod("data/xml-fragment/dok:inhalt", "setInhalt", 0);
digester.addCallMethod("data/xml-fragment/dok:umfang", "setUmfang", 0);

// call 'addDokumentAsset' method when the next 'xml-fragment' pattern is seen
digester.addSetNext("data/xml-fragment", "addDokumentAsset");

// now that rules and actions are configured, start the parsing process
…………………………………
DokumentHandler dml = (DokumentHandler)digester.parse(is);

Figure 5.6: ‘Dokument’ Type Asset Parser Codes

“Digester digester = new Digester();“ instantiates the Digester class and defines

the parser methods.

“digester.addObjectCreate("data", DokumentHandler.class);” instantiates which

type of document parser is used by Digester functionalities. In this case, the type is

“DokumentHandler” document parser class.

“digester.addObjectCreate("data/xml-fragment", Dokument.class);” instantiates

which type of asset is going to be parsed in this parser. In this case, the type is

“Dokument”.

“digester.addSetProperties("data/xml-fragment","id", "id");” method is used for

adding attribute variables to the parser. In this case, the attribute name is “id”.

 48

Implementation

“digester.addCallMethod("data/xml-fragment/dok:typ", "setTyp", 0);” method is

used for adding element variables of XML file to the parser. In this case, the element

variable name is “dok:typ”.

“digester.addSetNext ("data/xml-fragment", "addDokumentAsset");” parser

method triggers the ‘addDokumentAsset’ function when next <xml-fragment> element is

reached. ‘addDokumentAsset’ function creates the Lucene Document object of the parsed

asset and with Lucene’s IndexWriter class this asset is indexed. So, the asset is ready for

searching.

 “DokumentHandler dml = (DokumentHandler)digester.parse(XMLstream);“:

Finally, after defining the parsing rules, the ’parse’ function starts parsing for assets from

CCM system and also indexing them.

5.4. Query Parsers

In search engines, query parsers are used to understand user entered query

expressions. Also, it determines and executes Boolean operators, fuzzy logic, wildcard

operations or phrase searching. In Lucene search engine library the query parsing is

implemented by QueryParser class. In general, the parsing is done with the static parse()

method in the QueryParser class. The parse() method works as follows:

public static Query parse(String query, String field, Analyzer analyzer)

 throws ParseException

Parameters:

query - the user-entered query expression.

field - the default field name for the query (the field must exist in Lucene index).

analyzer – it analyzes the query with respect to given Analyzer type and

transforms it into computer understandable string.

If there is an error like wrong syntax, then a parse exception is thrown.

The parse() method returns Query object. In Lucene, the Query object then

instantiates its subclasses according to the parsed query expression. Query class has several

subclasses; each of them implements specific query types. They are;

 49

Implementation

• BooleanQuery

• TermQuery

• WildcardQuery

• PrefixQuery

• PhraseQuery

• PhrasePrefixQuery

• FuzzyQuery

• RangeQuery

BooleanQuery:

This is the classical query type and used in all search engine application. It has the

logical Boolean operators AND, OR and NOT. Furthermore, BooleanQuery is also used for

defining complex clauses with other query types. In Lucene, it is declared as;

BooleanQuery bquery = new BooleanQuery();

In order to add clauses, the ‘add’ method is used:

bquery.add(< add a TermQuery >);

bquery.add(< add PrefixQuery >);

The details of add() method is as follows:

public void add(Query query, boolean required, boolean prohibited):

The required and prohibited parameters specify the clauses;

• required: This parameter determines that if it is true the query must match,

else it is optional (the clause exists or not)

• prohibited: This parameter determines that if it is true the query must not

match in searching, else it also optional.

• none: If both parameters are false, neither required nor prohibited, this means

that the clause is optional. There must be minimum one match from the

clauses in order to match the Boolean query.

• But, both of the parameters cannot be true (required and prohibited). It is

meaningless and invalid in searching.

In order to implement AND query, the ‘required’ parameter should be true and

‘prohibited’ parameter should be false. If the operation is OR, then the ‘required’ and

‘prohibited’ parameters should be false. For NOT operation, the ‘required’ parameter

should be false and ‘prohibited’ parameter should be true. In Lucene, the user can form

Boolean queries with -, +, AND, OR, NOT operators.

 50

Implementation

Finally, in Lucene the maximum number of clauses that can exist in a Boolean

query is limited to 1024. This can be changed with method ‘setMaxClauseCount’. If the

limit is exceeded, it causes ‘TooManyClauses’ exception in program. This limitation is

designed to avoid performance degradation in searching.

TermQuery:

TermQuery class is used to find a specific term from the Lucene index. The term

represents the smallest structure in the index. It consists of a field name and a value pair.

Therefore, firstly a term instance is created by Term class as follows:

 Term term = new Term(“contents”, “Zeitungsartikel”);

The Term constructor has a field (“contents”) and a value (“Zeitungsartikel”)

parameters, then a TermQuery is created:

 Query query = new TermQuery(term);

As a result, this query returns all documents that have “Zeitungsartikel” value in

their fields.

WildcardQuery:

WildcardQuery is a handy query type that matches words in a document although

there are some missing letters in an input. There are two wildcard characters used in Lucene

library which are * and ?. * means zero or more characters and ? means zero or only one

character in query expression. WildcardQuery is a costly operation so it can take longer

than other query types. In order to decrease the processing time, in Lucene the wildcards *

and ? cannot be used as a first character in a query (*ava or ?ava not allowed). It is also

interesting to note that if a query ends with wildcard characters, it is automatically

transformed to PrefixQuery in the application.

For example, a query:

m*t can find documents that contains terms ‘meat’, ‘meet’, ‘met’, ‘mat’ etc.

me?t can find ‘meat’, ‘meet’, ‘met’ etc.

me?t* can find ‘meat’, ‘meet’, ‘meeting’, ‘met’, ‘method’, ‘metal’, ‘meter’ etc.

PrefixQuery:

PrefixQuery is a very useful query type in searching. It matches all documents

with a specified prefix expression. For example, the query expression “prog*” will search

for documents starting with the prefix “prog”. So, it can find ‘programming’,

‘programmer’, and ‘program’ etc. terms from an index simultaneously. As an input syntax

“prog*” is translated to PrefixQuery by the QueryParser when it is entered. In

programming;

 51

Implementation

Term term = new Term(“contents”, “Zeit”);

In index the assets that have prefix term “Zeit” in their “contents” field are

searched.

PrefixQuery prefix = new PrefixQuery(term);

PhraseQuery:

PhraseQuery is used to find a specific order of terms in a document. For example,

if someone wants to retrieve data that contains the phrase “Java programming”. In this

phrase, there would be no other term between ‘Java’ and ‘programming’. Because, by

default the slop factor of PhraseQuery is set to zero. The slop factor shows the number of

words allowed to exist between query terms. It can be set to different value by the method

‘setSlop(int)’, so one can determine how many words could be between the terms in query.

An example of different slop values and their results are shown below:

If slop factor is equal 0 “Java programming”

If slop factor is equal 1 “Java <any word> programming”

If slop factor is equal 2 “Java <any word> <any word> programming”

PhrasePrefixQuery:

PhrasePrefixQuery is an extension of PhraseQuery. It is newly developed and so

far not supported directly by QueryParser class. It will be used in such an expression as

“find documents that have term ‘java’ and ‘prog’ as a prefix term”. If we formulate this;

“Java prog*”, it includes both phrase and prefix queries.

FuzzyQuery:

FuzzyQuery is based on the fuzzy logic; it derives from the extended Boolean

model. The main object is to find similar documents with respect to given query terms. The

similarity of terms is determined by the Levenshtein distance algorithm [GS], it is also

called edit distance. Basically, this algorithm finds the number of steps in order to

transform term x to term y.

For example, x= neet and y = meat

1) start : neet

2) meet (n -> m)

3) meat (e -> a)

4) end : meat

So, the Levenshtein distance is 2.

 52

Implementation

FuzzyQuery is used in Lucene with the character ‘~’ in queries like ‘meat~’ also

search the similar terms ‘meet’, ‘met’, ‘meets’, ‘seat’, ‘mate’ and so on. Therefore, fuzzy

query is very powerful searching process.

In Lucene, there is a variable called ‘minimumSimilarity’ that defines the min edit

distance value in fuzzy query. The default ‘minimumSimilarity’ value in the Lucene library

is 0,5 (it must be between 0 and 1). If the edit distance is less than this equation;

length(term) * minimumSimilarity ,

then it means that the terms are similar according to this parameter.

It works as follows; if two terms are ‘logic’ and ‘magic’, and minimumSimilarity

is equals to 0,5. The edit distance between ‘logic’ and ‘magic’ is;

logic -> mogic -> magic, so edit distance is 2.

The value length(term) * minimumSimilarity = 5 * 0,5 = 2,5

As a result, edit distance = 2 < 2,5 means that the terms ‘logic’ and ‘magic’ are

considered similar and it is possible to retrieve in search results with the fuzzy query

‘logic~’.

Proximity Search:

Lucene also supports proximity searching. It is mostly used if the users do not

know the exact words in a phrase or want to retrieve terms within a certain distance. For

example, if someone wants to search for documents that contain terms ‘java’ and

‘programming’ but within 5 words in the documents, then the query is:

“java programming”~5

RangeQuery:

RangeQuery is a powerful query type, it can retrieve documents with range values

(start TO end). The terms of documents in the index are listed lexicographically, so this

feature provides efficient searching with range queries. The RangeQuery constructor:

public RangeQuery(Term lowerTerm, Term upperTerm, boolean inclusive)

The lower and upper terms specifies the range of searched terms. The third

parameter inclusive defines either the lower and upper terms are included in searching or

not. As a result, range query can be efficiently used in dates (daily, monthly or yearly

ranges), keywords or identifier values.

 53

Implementation

An example of RangeQuery usage:

Term start = new Term(“datum”, “20050801”);

Term end = new Term(“datum”, “20050831”);

RangeQuery range = new RangeQuery(start, end, true);

Indexing Dates and Using in a Range Query:

It is problematic in Information Retrieval services to index dates, because the

representations or structures of dates in programming differ (especially in databases) and it

may not be handled properly. For this reason, Lucene provides a special indexing method

for dates which is:

Field.Keyword(String, Date) or Field.Keyword(String, String)

In our indexer application, it used as follows:

assetDocument.add(Field.Keyword("datum", asset.getDatum()));

Using this method, the dates can be indexed with different formats like with only

year (YYYY), month and year (YYYYMM) or day,month and year (YYYYMMDD). In

our Lucene search engine application, the retrieved dates from the database are in String

format, for example 2005-06-08T00:00:00.000+02:00, generated from Java Date class. In

indexing this date structure is parsed and day, month and year parts are extracted. Then,

they are indexed in YYYYMMDD format. This is a useful structure, because in range

queries users have lots of alternatives in searching documents with date values. The users

can enter queries as follows:

year - datum:[2000 TO 2005]

year, month - datum:[200001 TO 200501]

year, month ,day - datum:[20000101 TO 20050130]

Query expressions in Lucene:

The implemented search engine application can handle the operations shown in

figure 5.7. These queries are parsed by QueryParser class in Lucene library and translated

to the suitable query types.

 54

Implementation

Query expression Retrieves documents that contain….

Art the term ‘art’ in the default field.

art history

art OR history

the term art or history, or both of them in the default

field (the default operator is OR)

art AND history

+art +history

the terms art and history in the default field

typ:Bestellung the term ‘Bestellung’ in the field name ‘typ’

art –history

art AND NOT history

the term art in default field and do not contain history

term

title:art –typ:Bestellung

title:art AND NOT typ:Bestellung

the term art in ‘title’ fields and do not contain Bestellung

in ‘typ’ field

(art AND history) OR Bestellung the terms art and history, the term Bestellung is

optional, all in default field

“Albrecht Altdorfer ” the phrase “Albrecht Altdorfer" in default field

Absender: “Albrecht Altdorfer ” the phrase “Albrecht Altdorfer ” in absender field

prog* the terms like program, programmer, programming etc in

default field (see WildcardQuery)

contents:prog* the terms like program, programmer, programming etc in

contents field (see WildcardQuery)

me?t The terms like meet, meat, met etc in default field

Meet~ the similar terms to meet like meat, met, seat etc. (see

FuzzyQuery)

Datum: [20050801 TO 20051215] the dates between 01/08/2005 to 15/12/2005 in datum

field (see RangeQuery, date format: YYYYMMDD)

“art history”~ 4 the terms art and history within four words of one

another in a document (see proximity search)

Figure 5.7: Query Expression in Lucene

5.5. Analyser

The analyzing process is the most important phase in information retrieval

applications. Basically, analysis, in Lucene, means converting textual data into smallest

tokens named terms. These terms represents their corresponding documents and are used

for searching documents from the index. So, an analyzer performs complex and various

operations in order to produce documents terms. These operations are stemming of words,

synonym checking, removing stop words (e.g. and, not, the, of, etc), discarding punctuation

marks, lowercasing the texts also called normalizing and deleting common words.

 55

Implementation

Lucene provides different analyzers for languages, in our search engine application

the texts are in German. So, the GermanAnalyzer class of Lucene is used for analyzing the

assets and indexing them. GermanAnalyzer provides a default list that contains German

stopwords. Also, users can add their own stopwords to this list that will not analyzed and

indexed never. On the other hand, a developer can need a list of words that must not be

analyzed but be indexed. This is known as exclusion list in Lucene, the user provides this

list as a file to the analyzer. The second way for enabling exclusions is to use

‘Field.Keyword (….)’ function during indexing (details in section 4.1.2). It does not

tokenize words but index them as it is written in documents.

The indexing results in this project, and studies done in analyzing texts and

stemming them show that these algorithms are not complete and perfect. Especially, in

German where the form of words is complex and has specific features (e.g. ‘Umlaut’). The

stemming algorithms for German and their results can be read in [Cau99].

When the Lucene library and the implemented information retrieval application

are examined, it is also error-prone and has some weakness. The first disadvantage is the

GermanAnalyzer lowercases all ‘Umlaut’ characters (ä to a, ü to u, ö to o) and changes the

character ‘ß’ to ‘ss’ while indexing. For example, if there is a word ‘Häuser’ in a document.

Then, the GermanAnalyzer will produce tokens from ‘hauser’. This results problems while

searching, because normally the query ‘Häuser’ will not produce a matched document in

spite of existence in index. In order to solve this problem, at the beginning we parse the

queries and handle ‘ä’ as ‘a’, so ‘Häuser’ will match the required document in the index.

This process is also same for other ‘Umlaut’ characters ‘ö’ and ‘ü’.

The second disadvantage in German grammar is that plural forms modify vocals in

the middle of words and irregular verbs change the words completely. For example, ‘Mund

- Münder’ (mouth) or ‘essen - aß - gegessen’ (eat). On the other hand, the words ‘Eis’ (ice)

and ‘Eisen’ (iron) are different in meaning but they will produce the same term ‘eis’ or ‘ei’

while stemming these words (the suffixes ‘s’ or ‘en’ are discarded from words). This occurs

rarely in indexing process therefore it can be ignored. This mainly results from the suffixes

and prefixes that exist in nouns, verbs and adjectives. The following example shows a

stemming operation performed for a German sentence and the outputted tokens are listed.

Input sentence :

“Während die Standardsprache in den meisten europäischen Ländern aus dem Dialekt der

jeweiligen Hauptstadt hervorgegangen ist“

 56

Implementation

The returned tokens after the GermanAnalyzer function is executed are shown below:

[wahr] [standardsprach] [meist] [europaisch] [land] [dialek] [jeweilig] [hauptstad]

[hervorgegang]

 For example if we look at the term [wahr], it is important to notice that if a user

enter ‘während’ as a query, there will be not match for this sentence. So, the user query

must contain ‘wahr’ or similar to this word like ‘wah*’ or ‘wah?’. Lucene search engine

library works different than the normal internet search engines like Google. They search for

documents that contain the query terms word for word, but in Lucene the smallest parts of

words which are tokens are effective while searching information from the index.

As a result, the Lucene library and the implemented information retrieval

application have some drawbacks. But, it works well if the query types are used correctly

and this library is a free-open source tool that can be used in many search engine

applications effectively.

5.6. Application Logic and Functionalities

The main functionalities that the full-text search engine provides are indexing

assets and searching them. The original assets (concept and content pairs) are stored in a

repository. The application logic, indexing the documents and searching process according

to a given query, is explained in following paragraphs using sequence diagrams.

The first sequence diagram is for the indexer application and shown in figure 5.8.

Firstly, in indexing operation the Indexer class is instantiated. The indexer instance triggers

Lucene module (LuceneModule class) implementation. Lucene module has the main logical

methods for retrieving assets from the database and indexing them.

 Lucene Module gets all assets and for each type of asset it starts DocumentParser

objects iteratively. For example if the asset type is ‘Bilddokument’, then the

DocumentParser which is developed for ‘Bilddokument’ assets is called or if the asset type

is ‘Fund’, then the DocumentParser for ‘Fund’ assets is called. This is also performed

iteratively for the remaining asset types.

 57

Implementation

Figure 5.8: Sequence Diagram for Indexer Application

 After all assets are parsed and analysed, the important terms are extracted from the

asset data. For each asset a Document object is created. This Document object contains the

terms which are generated by the document parsers. Then all Document objects are sent to

IndexWriter object. IndexWriter performs the indexing operation.

The indexing is performed by writing all Documents into the Index. The Index is

created by the program in a file system. This writing process into the Index is repeated until

the entire Documents are finished indexing. Finally, the Index is optimized, closed and

returned to Indexer application.

 On the other hand, the searcher application provides searching assets from the

CCMS system and outputting them as a list. The sequence diagram for searcher application

is shown in figure 5.9. The searching process starts with initializing index directory and

analyzer type (in this case, the assets are in German, so the analyzer is ‘German analyzer’).

Also, the search query is retrieved from users.

 58

Implementation

Figure 5.9: Sequence Diagram for Searcher Application

 After the initialization, the user query is sent to QueryParser function for analyses.

QueryParser determines type of query (e.g. Boolean query, Term query, etc.). The parsed

query information is used by IndexSearcher class which implements search operations in

given Index. The IndexSearcher triggers full-text search and the Index returns a ‘Hits’

object. It contains the search results retrieved from the Index. The search results are a

ranked list of assets. Using ‘Hits’ class methods the asset information can be read and

outputted to the user. Finally, the search results are sent back to the Searcher application

and they are used for displaying content-concept parts of fetched assets.

5.7. User Interface

The application based on Lucene full-text search engine has a user-friendly and

multi-functional user interface as shown in figure 5.10. It contains classical functions like

text area for entering user queries, search button for triggering the information retrieval

process and output list that shows search results retrieved from the index. Most of the

search engines include these facilities.

The searching is executed by default field in the index. In this case, the default

field name is ‘contents’. It includes the largest terms indexed in it, so general searching can

 59

Implementation

be done with this field. Also using the combo box available in the user interface, the users

can further narrow their search results resulting in more relevance documents. The combo

box includes other field names that are more specific than ‘contents’ like ‘titel’, ‘datum’ or

‘remark’ etc.

Figure 5.10: The User Interface of Search Engine Application

In developed full-text search engine the retrieved data are assets. Assets consist of

concept and content parts. So, we introduced two new areas that show the conceptual data

of an asset and its content as thumbnails. The thumbnails show images that belong to the

content and they can be selected and be maximized to their original sizes (an example

showing the content of an asset is in figure 5.11). The conceptual and content outputs are

automatically changed according to selection made from the list of search results.

The output list shows the retrieved assets in a ranked order. On one page just

twenty assets are listed, but using ‘previous’ and ‘next’ buttons users can navigate through

all search results. Also, as further information, total time for searching documents and how

many assets are retrieved are shown. In the output list, there is brief information about the

retrieved assets which are identifier number, title and score (shows the relevance of an asset

to a search query) of the assets. By clicking on a row in the list, it results in outputting the

concept and content details of the selected asset.

 60

Implementation

Figure 5.11: The Content View of an Asset

The conceptual part of the user interface (which is the ‘Assetangaben’ area) shows

all attributes of an asset (the attributes are defined characteristics and relationships). On the

other hand, the content area (‘AssetInhalte’) shows content of the asset which is closely

connected with its conceptual part.

 The Indexer User Interface:

 The indexer application is developed in order to perform indexing operations

automatically and easily. It has a user interface as shown in figure 5.12. The ‘Retrieve &

Index Assets’ button triggers the methods for retrieving all XML data from CCMS’s

database and indexing them using Lucene search engine library. As a result, the index is

created for searcher application.

 Furthermore, the indexer application outputs some information about the indexing

process. The information includes total time for indexing all assets, how many assets are

retrieved from the database and indexed, and what are the available fields in the index. Also

 61

Implementation

if new assets are created or added to the database, the update can be easily performed. As a

result, this application facilitates the indexing process with visual components.

Figure 5.12: The User Interface of Indexer Application

 62

Evaluation of Results

Chapter 6

6. Evaluation of Results

6.1. Facilities for Conceptual Content Management

The developed search engine application provides indexing and searching methods

for Conceptual Content Management System (CCMS). The CCMS does not have a built-in

search engine feature. Therefore, the implemented program facilitates the retrieval of assets

from the system.

The assets in a CCMS database could be large in number and size of files. So,

searching for assets relevant to the users is required and important. Lucene library includes

the basic information retrieval functions. The full-text search engine has an efficient user

interface with visual tools for searching, listing result, navigating between search results,

and outputting details of assets with text areas. So, retrieving required assets is easier and

faster than looking them one by one. The search times take generally milliseconds. It is

known that fuzzy queries take much more time than other query types, but it is observed

that in the search engine fuzzy queries work as quick as other types. Also, the ranking and

scoring features of information retrieval library provide the most relevant documents in a

ranked order.

In CCMS the assets consist of concept and content parts as explained. So, there is

a need for the search engine to show both parts in an efficient way in favour of users. The

realization of concept – content monitoring is done by dynamic update of asset details and

their content. If an asset from the result list is selected, details of the concept attributes and

the content file associated with the concept are outputted automatically. All these features

provide easiness with the purpose of executing information retrieval in a complex system

like CCMS for users.

 63

Evaluation of Results

6.2. Test Cases

6.2.1. Compound versus Multifile Index

In Lucene there are two types of index structure [LIA04] compound index and

multi-file index. In multi-file index, when new documents are inserted to an index, they are

stored in a separate segment; this causes increase of files in an index structure. Therefore,

multi-file index has more files than compound index.

Compound index type consists of three files; two of them are “deletable” file that

shows the unused files in index and “segments” file that shows the segment names and their

size. The third one contains the all indexed documents and their field values. In compound

index all indexed files are merged into one single file. So, the number of files in the index is

minimized.

The comparison results between multi-file index and compound index are shown

in figure 6.1. The advantage of multi-file is the time for indexing documents takes less than

compound file. Because, in compound file the indexed files are in addition merged into one

single file. This can be suitable when the number of documents is large while indexing.

0
20
40
60
80

100
120
140

10 100 5000

docs

sec

Compound Multi-file

#docs Comp.
(sec.)

Multi-
File

(sec.)
10 0,172 0,078

20 0,313 0,250

100 1,046 0,970

1000 10,750 9,220

10000 115 103,5

(time for
indexing docs)

Figure 6.1: Compound vs. Multi-File Index

 64

Evaluation of Results

On the other hand, the advantage of compound file appears in searching. Because,

the total number of file accesses for reading data are minimum in compound index. In

contrast, using multi-file index the file fetches increase because the program needs to open

more files in order to retrieve required documents from the index. This is important while

search time in an application is in consideration.

 If the number of files opened during index operations are compared, the multi-file

and compound index structure differ as follows: for example a search engine application

uses 10 indexes, each index has 10 segments, each segment has 20 documents and each

document contains 5 indexed fields. Then, in multi-file index case:

(10 indexes) * (10 segments per index * (20 docs per segment + 5 fields)) = 2500

files are opened during execution.

On the other hand, in compound index case:

10 indexes * 10 segment per index * 1 docs per segment = 100

 files are opened during execution.

 The compound index opens considerably less files than multi-file index; therefore

it consumes less system resources while searching. Also in some operating systems the

number of files opened at the same time is restricted.

 As a result, in CCMS the compound index structure is used. If the indexing times

with the multi-file and compound index structures in the search engine application are

compared, the results show that the difference between the times is not too much. Also, the

compound index stores less files than multi-file index in the file system. Furthermore,

searching for documents is faster in the compound index as explained in previous

paragraphs.

6.2.2. FS versus RAM Directory

FSDirectory class provides the storage path for a Lucene index which resides in a

file system. RAMDirectory class holds an index in memory. Here the performance

difference of two different directory types is shown. It is obvious that RAMDirectory is

faster than FSDirectory, because in RAMDirectory the index is in memory and this

provides faster indexing and searching times.

 65

Evaluation of Result

In FSDirectory, the indexer or searcher program needs to access to the computer

disk for writing to the index or reading from index. Therefore, if a user has small size of

indexes then probably RAMDirectory would be efficient. But, at the end of implementation

one can need to store the indexes on a permanent storage like FSDirectory for further

usage, because the index in RAMDirectory is erased after the program termination. These

features should be considered in design and implementation of search engine applications.

The following figure 6.2 shows the performance test results of FSDirectory and

RAMDirectory indexes:

0

20

40

60

80

100

120

140

10 20 100 1000 10000

docs

sec

RAM
FS

#docs RAM
(sec.)

FS
(sec.)

10 0,050 0,050

20 0,125 0,219

100 0,282 0,890

1000 1,3 10

10000 7,75 123,5

(time for
indexing docs)

Figure 6.2: RAMDirectory vs. FSDirectory

The test results show that with RAMDirectory the indexing times increase almost

linearly, but with FSDirectory while the number of indexed documents increases the time

for indexing those goes up faster. The reason for that is number of disk accesses for writing

terms to the index consumes more time. Therefore, RAMDirectory is the optimum solution

for indexing and searching documents in search engine applications.

On the other hand, both of the Directory types can be used in one application in

order to index faster and store it in a file system (if one uses only RAMDirectory, created

index is deleted when the application stops). For this case, firstly create an index using

RAMDirectory and add all retrieved documents to it. Then, copy the completed index from

RAM to FSDirectory. This is the best solution for batch indexing with higher indexing

performance.

 66

Evaluation of Result

6.2.3. Index Tuning

The performance analysis applied to Lucene information retrieval library shows

that Lucene is able to index documents very fast (according to [Su02], 100 documents per

second). On the other hand, Lucene’s IndexWriter class has special parameters for tuning

the index process. They control Lucene buffer size in memory, segment size and merging

frequency during indexing. The parameters are;

1) Merge Factor (mergeFactor – default value is 10)

2) Max Merge Documents (maxMergeDocs)

3) Min Merge Documents (minMergeDocs – default value is 10)

The merge factor determines how often the segment indices will be merged during

adding documents to the index. Smaller values use less memory and merge operations are

more frequent. Therefore, small values are suitable for interactive indexing and computer

systems that have limited memory, whereas larger merge factor values (>10) are optimum

for batch indexing but use more memory.

The parameter of maxMergeDocs restricts the number of documents per segment.

It works similar to mergeFactor, smaller values are best for interactive indexing (for

example, smaller than 10,000) and larger values are best for batch indexing. Also, indexing

is faster in larger values.

Finally, the parameter minMergeDocs determines the buffer size in memory for

creating documents as segments and later merging them. This directly affects indexing

performance and larger values provide faster indexing. In general, the default values works

well while indexing. However, if one changes these indexing parameters, he should be

careful not having out of memory errors. This can cause index corruption and bad results.

 67

Conclusions

Chapter 7

7. Conclusions

The investigation about information retrieval services for CCMS showed that it

was feasible to develop and integrate a full-text search engine application into the CCMS.

IR services add tools and many facilities for indexing documents and searching them from

the systems easily. Therefore, the implemented search engine application provides efficient

methods in order to index assets (concept and content) and retrieve them by user queries.

The develop document parsers work well without errors.

 The full-text search engine is a complete and useful application that realizes all

features that a search engine must have. Furthermore, integration of this Lucene search

engine application with Conceptual Content Management System (CCMS) worked very

well. The searching and reading retrieved assets from CCMS are executed correctly and

fast as planned.

7.1. Future Work

In this part further suggestions and what features of information retrieval (IR)

application can be improved are explained. Firstly, the implemented search engine only

deals with textual documents which are stored in CCMS’s database as an XML data. The

textual data are produced by extracting text values from the asset information. But, in other

content management systems the document types may differ. For example, the file types

could be PDF, HTML, MS Word, etc. For such type of contents, the IR application in

CCMS needs specific document parsers for each type.

The fundamental feature of CCMS is support for multi-media content. It can be

image, audio or video. Until now, in CCMS assets have ‘content’ parts and they consist of

stored image files. If the contents are replaced by audio or video files, there should be an

 68

Conclusions

improvement in order to retrieve and index information from these files. This will advance

the full-text search engine support for any type of data.

As explained in analyzer chapter, there are different analyzer types for different

languages in information retrieval libraries. If the documents are written in German, then

the program must use a German analyzer or for English content, English analyzer is

needed. For this, reason a global analyzer can be implemented that handles most languages

or all of them. This will support using many languages in the same content management

system. Nowadays, the greatest number of search engines is based on only one language. It

is obvious that multi-language support will provide more efficient search engines without

considering the language of contents.

On the other hand, as stated there are some drawbacks in stemming especially in

German grammar. A better stemming algorithm can be developed for a better content

analyzing (also new versions of IR libraries improve the analyzers). An improvement in

stemming process means that indexed assets in CCMS will provide more accurate and

relevant search results for the users.

As a result the available IR libraries and services are new and under development,

but they provide effective and powerful methods in order to develop a full-text search

engine that fulfil most of the user requirements and searching features.

 69

References

REFERENCES:

[ACF] Asset Compiler Framework and Generator Development Guide, Link:

http://www.sts.tu-harburg.de/~hw.sehring/cocoma/projs/compiler

/Compiler_Framework.pdf

[BR99] Modern Information Retrieval, by Ricardo Baeza-Yates, Berthier Ribeiro-Neto,

Addison Wesley 1999, Link: http://www.sims.berkeley.edu/~hearst/irbook/

[Cau99] Jörg Caumanns, A Fast and Simple Stemming Algorithm for German Words, Freie

Universität Berlin, October 1999. Link: ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-

99-16.ps.gz

[CCM] Open Dynamic Conceptual Content Management, Link: http://www.sts.tu-

harburg.de/~hw.sehring/cocoma/

[EGO] Egothor search engine library, Link: http://www.egothor.org/

[eXist] eXist, an Open Source native XML database, Link: http://exist.sourceforge.net/

[FB92] Information Retrieval: Data Structures and Algorithms by William B. Frakes,

Ricardo Baeza-Yates, Prentice Hall PTR; Facsimile edition (June 12, 1992)

[GS] Levenshtein Distance, in Three Flavors by Michael Gilleland, Merriam Park

Software, Link: http://www.merriampark.com/ld.htm

[Hof99] Probabilistic latent semantic indexing, Thomas Hofmann, Proc. of the 22nd

Annual ACM Conference on Research and Development in Information Retrieval

Link: http://citeseer.ist.psu.edu/394759.html

[JCD] Jakarta Commons Digester, Open source XML file processing library

Link: http://jakarta.apache.org/commons/digester/

[JTi] JTidy, Java HTML processing library, Link: http://jtidy.sourceforge.net/

[LCS97] Document Ranking and the Vector-Space Model, Dik L. Lee, Huei Chuang, Kent

Seamons, Link: http://www.cs.ust.hk/faculty/dlee/Papers/ir/ieee-sw-rank.pdf

[LIA04] Lucene in Action by Erik Hatcher, Manning Publications (December 31, 2004),

Link: http://www.lucenebook.com

 70

http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/projs/compiler/Compiler_Framework.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/projs/compiler
http://www.sts.tu-/
http://exist.sourceforge.net/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=William%20B.%20Frakes/103-9227412-8580659
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Ricardo%20Baeza-Yates/103-9227412-8580659
http://www.merriampark.com/mgresume.htm
http://www.merriampark.com/ld.htm
http://citeseer.ist.psu.edu/394759.html
http://www.cs.ust.hk/faculty/dlee/Papers/ir/ieee-sw-rank.pdf

References

[LUC] Lucene search engine library, Link: http://jakarta.apache.org/lucene

[LUC2] Lucene Index File Formats, http://lucene.apache.org/java/docs/fileformats.html

[LUC3] Lucene 14.3 API, Link: http://lucene.apache.org/java/docs/api/index.html

[PDF] PDFBox, Java PDF processing Library, Link: http://www.pdfbox.org/

[POI] Jakarta POI, Java API to Access Microsoft Format Files,

 Link: http://jakarta.apache.org/poi/

[Rij] Information Retrieval, A book by C. J. van RIJSBERGEN, Information Retrieval

Group, University of Glasgow, Link: http://www.dcs.gla.ac.uk/Keith/Preface.html

[Rob03] “So, what is a content management system?” by James Robertson,

Link: http://www.steptwo.com.au/papers/kmc_what/index.html

[Seh04] Hans-Werner Sehring: Konzeptorientierte Inhaltsverwaltung: Modell,

Systemarchitektur und Prototoypen. Doctoral thesis, Technische Universtität

Hamburg-Harburg, 2004, Link: http://www.sts.tu-harburg.de/~hw.sehring/publ/

Hans-Werner_Sehring_-_COCoMa.pdf

[SS03] Joachim W. Schmidt and Hans-Werner Sehring: Conceptual Content Modeling

and Management: The Rationale of an Asset Language. Proc. PSI'03, 2003, Link:

http://www.sts.tu-harburg.de/~hw.sehring/cocoma/publ/2003-PSI03-JWSHWS.pdf

[SS04] Hans-Werner Sehring and Joachim W. Schmidt: Beyond Databases: An Asset

Language for Conceptual Content Management. Proc. ADBIS 2004, 2004, Link:

http://www.sts.tu-harburg.de/~hw.sehring/cocoma/publ/2004-ADBIS2004-

JWSHWS.pdf

[Su02] Performance Analysis and Optimization on Lucene, David Chi-Chuan Su,

Link:http://www.stanford.edu/class/archive/cs/cs276a/cs276a.1032

/projects/reports/dsu800.pdf

[Welib] The Warburg Electronic Library, Link: http://www.welib.de/

[XAP] Xapian, an Open Source Probabilistic Information Retrieval library,

Link: http://www.xapian.org/

[XQu] XML Query (XQuery), Link: http://www.w3.org/TR/xquery

 71

http://jakarta.apache.org/lucene
http://lucene.apache.org/java/docs/fileformats.html
http://ir.dcs.gla.ac.uk/
http://ir.dcs.gla.ac.uk/
http://www.steptwo.com.au/papers/kmc_what/index.html
http://www.sts.tu-harburg.de/%7Ehw.sehring/publ/
http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/publ/2003-PSI03-JWSHWS.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/publ/2003-PSI03-JWSHWS.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/publ/2004-ADBIS2004-JWSHWS.pdf
http://www.sts.tu-harburg.de/%7Ehw.sehring/cocoma/publ/2004-ADBIS2004-JWSHWS.pdf
http://www.stanford.edu/class/archive/cs/cs276a/cs276a.1032
http://www.welib.de/
http://www.w3.org/TR/xquery

Appendix A

APPENDIX A: UML Diagram of Lucene Module

 72

Appendix B

APPENDIX B:
This section shows the important parts of programming codes for Lucene module, search logic of

the full-text search engine and one of the document handlers that parses retrieved assets. The full

application and source codes are available in a separate CD.

Lucene Module Class:

package de.tuhh.gkns.informationretrieval;
........................

public class LuceneModule implements ClientModule {

public void createInitialLuceneIndex() {

boolean createFlag= true;
 indexDir = "indexableXMLFiles\\index"; // default index directory
 analyzer = new GermanAnalyzer();

 // IndexWriter to use for adding assets to the index
 try {
 writer = new IndexWriter(indexDir, analyzer, createFlag);
 writer.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

public void createInitialLuceneIndex(String setDir) {

IndexWriter writer;
 boolean createFlag= true;
 indexDir = setDir;
 Analyzer analyzer = new GermanAnalyzer();

 // IndexWriter to use for adding assets to the index
 try {
 writer = new IndexWriter(indexDir, analyzer, createFlag);
 writer.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 // indexes all default asset classes
 public void indexAssets() throws IOException, SAXException {
 KorrespondenzHandler kh = new KorrespondenzHandler();
 BilddokumentHandler bh = new BilddokumentHandler();
 DokumentHandler dh = new DokumentHandler();
 FundHandler fh = new FundHandler();

GesetzerlassbestimmungHandler gbh = new
GesetzerlassbestimmungHandler();

 LebensdokumentHandler ldh = new LebensdokumentHandler();
 ManuskriptHandler mh = new ManuskriptHandler();
 NachlassHandler nh = new NachlassHandler();
 SachakteHandler sh = new SachakteHandler();
 VeroeffentlichungHandler vh = new VeroeffentlichungHandler();
 UserHandler uh = new UserHandler();

 73

Appendix B

 // here new documents are appended to the existing index
 kh.execute(indexDir);
 bh.execute(indexDir);
 dh.execute(indexDir);
 fh.execute(indexDir);
 gbh.execute(indexDir);
 ldh.execute(indexDir);
 mh.execute(indexDir);
 nh.execute(indexDir);
 sh.execute(indexDir);
 vh.execute(indexDir);
 uh.execute(indexDir);

 // Finally, optimize the index and close
 writer = new IndexWriter(indexDir, analyzer, false);
 writer.optimize();
 writer.close();
 }

 public void indexAssets(AssetClass asset) throws IOException,
SAXException {

// The code for indexing a specific type of asset class
 }

 public void indexAssets(AssetClass[] asset) throws IOException,
SAXException {

// The code for indexing multiple types of asset classes
}
........................

 /*
 * with default Queries retrieve all assets from the database
 * The different type of assets must be retrieved with their special
queries.
 * Because, each asset model has their own XML schema or structure and
 * there are specific parsers for each of them in order to parse XML
stream.
 */

public void retrieveAssets() {

String queryKorres = "declare namespace
gkns='http://sts.tuhh.de/gkns/dokumenttypen.xsd'; " +
"<gkns:allAssetList>{ /child::gkns:*[local-name(.)='korrespondenz']}" +

 "</gkns:allAssetList>";

String queryFund = "declare namespace
gkns='http://sts.tuhh.de/gkns/dokumenttypen.xsd'; " +

 "<gkns:allAssetList>{ /child::gkns:*[local-name(.)='fund']}" +
 "</gkns:allAssetList>";

String queryDok = "declare namespace
gkns='http://sts.tuhh.de/gkns/dokumenttypen.xsd'; " +

 "<gkns:allAssetList>{ /child::gkns:*[local-name(.)='dokument']}" +
 "</gkns:allAssetList>";

 // same as for other asset types

 // for Korrespondenz asset type
 AssetIterator lookIt;
 lookIt = luc.lookfor(query);
 System.out.println(lookIt.getLength());
 lookIt = luc.lookfor(queryKorres);

 74

Appendix B

 try {
 DataOutputStream out = new DataOutputStream (
 new BufferedOutputStream(
 new FileOutputStream("indexableXMLFiles\\korrespondenz.xml")));

 out.writeBytes("<?xml version=\"1.0\" encoding=\"windows-
1252\"?>");
 out.writeBytes("<data>");
 while(lookIt.hasNext())
 {
 String data = lookIt.next().toString();
 System.out.println(data);
 out.writeBytes(data);
 }
 out.writeBytes("</data>");
 out.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 // for Fund asset type
 lookIt = luc.lookfor(queryFund);
 try {
 DataOutputStream out = new DataOutputStream (
 new BufferedOutputStream(
 new FileOutputStream("indexableXMLFiles\\fund.xml")));

 out.writeBytes("<?xml version=\"1.0\" encoding=\"windows-
1252\"?>");
 out.writeBytes("<data>");
 while(lookIt.hasNext())
 {
 String data = lookIt.next().toString();
 System.out.println(data);
 out.writeBytes(data);
 }
 out.writeBytes("</data>");
 out.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 // for Dokument asset type
 lookIt = luc.lookfor(queryDok);
 try {
 DataOutputStream out = new DataOutputStream (
 new BufferedOutputStream(
 new FileOutputStream("indexableXMLFiles\\dokument.xml")));

 out.writeBytes("<?xml version=\"1.0\" encoding=\"windows-
1252\"?>");
 out.writeBytes("<data>");
 while(lookIt.hasNext())
 {
 String data = lookIt.next().toString();
 System.out.println(data);
 out.writeBytes(data);
 }
 out.writeBytes("</data>");
 out.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 75

Appendix B

 // same as for other asset types

}

public void retrieveAssets(AssetClass asset, String xquery) {

// with this method user can retrieve a specific type of asset with a

query
// example: retrieve(Lebensdokument, xquery)
}

 public void retrieveAssets(AssetClass[] asset, String[] xquery) {

// with this method user can retrieve multiple types of assets with
corresponding asset queries

}

// returns the used LUCENEModule
public LuceneModule getModule() {

 return luc;
}

// returns the index directory
public String getLuceneDirectory() {

 return indexDir;
}

}

 Document Parser (DokumentHandler class):

package de.tuhh.gkns.informationretrieval;
........................

/**
 * Parses the contents of Dokument XML stream and indexes all
 * asset entries found in it.
 */
public class DokumentHandler
{

private static IndexWriter fsWriter;

 /**
 * Adds the Dokument asset to the index.
 *
 * @param asset in order to add to the index
 */

 public void addDokumentAsset(Dokument asset) throws IOException
 {
 System.out.println("Adding " + asset.getId());
 Document assetDocument = new Document();
 assetDocument.add(Field.Keyword("id", asset.getId()));
 assetDocument.add(Field.Text("typ", asset.getTyp()));
 assetDocument.add(Field.Keyword("datum", asset.getDatum()));
 assetDocument.add(Field.Text("titel", asset.getTitel()));

assetDocument.add(Field.Keyword("erfassungsdatum",
asset.getErfassungsdatum()));

 assetDocument.add(Field.Text("bemerkung", asset.getBemerkung()));
assetDocument.add(Field.Keyword("erfasserRef",
asset.getErfasserRef()));

 76

Appendix B

assetDocument.add(Field.Keyword("contentIds", asset.getContentIds()));
 assetDocument.add(Field.Text("entstehungsort",
asset.getEntstehungsort()));

 assetDocument.add(Field.Text("inhalt", asset.getInhalt()));
 assetDocument.add(Field.Text("umfang", asset.getUmfang()));

assetDocument.add(Field.UnStored("contents", asset.getId() + " " +
asset.getTyp() + " " +asset.getTitel() + " " + asset.getBemerkung() + " " +
asset.getErfasserRef() + " " + asset.getEntstehungsort() + " " +
asset.getInhalt() + " " + asset.getUmfang() + " " +

 asset.getContentIds()));

fsWriter.addDocument(assetDocument);
 System.out.println(assetDocument);
 }

 /**
 * Refers to the index to add assets to, configures Digester rules and
 * actions, parses the Dokument XML file.
 *
 * @param Directory where the index is created
 */
 public void execute(String setDir) throws IOException, SAXException
 {
 String indexDir = setDir;
 Analyzer analyzer = new GermanAnalyzer();
 boolean createFlag = false;

// this flag means append to existing index without recreating

 // IndexWriter to use for adding assets to the index
 fsWriter = new IndexWriter(indexDir, analyzer, createFlag);

 // instantiate Digester and disable XML validation
 Digester digester = new Digester();
 digester.setValidating(false);

 // instantiate DokumentHandler class
 digester.addObjectCreate("data", DokumentHandler.class);

 // instantiate asset class
 digester.addObjectCreate("data/xml-fragment", Dokument.class);

 // set id property of asset instance when 'id' attribute is found
 digester.addSetProperties("data/xml-fragment","id", "id");

 // set different properties of asset instance using specified methods
 digester.addCallMethod("data/xml-fragment/dok:typ", "setTyp", 0);
 digester.addCallMethod("data/xml-fragment/dok:datum", "setDatum", 0);
 digester.addCallMethod("data/xml-fragment/dok:titel", "setTitel", 0);
 digester.addCallMethod("data/xml-fragment/dok:erfassungsdatum",

"setErfassungsdatum", 0);
 digester.addCallMethod("data/xml-fragment/dok:bemerkung",
"setBemerkung", 0);
 digester.addCallMethod("data/xml-fragment/dok:erfasserRef",
"setErfasserRef", 0);
 digester.addCallMethod("data/xml-fragment/dok:contentIds",
"setContentIds", 0);
 digester.addCallMethod ("data/xml-fragment/dok:entstehungsort",

"setEntstehungsort", 0);
 digester.addCallMethod("data/xml-fragment/dok:inhalt", "setInhalt", 0);
 digester.addCallMethod("data/xml-fragment/dok:umfang", "setUmfang", 0);

// call 'addDokumentAsset' method when the next 'xml-fragment' pattern
// is seen

 digester.addSetNext("data/xml-fragment", "addDokumentAsset");

 77

Appendix B

 // now that rules and actions are configured, start the parsing process

InputSource is = new InputSource(new
FileInputStream("indexableXMLFiles\\dokument.xml"));

 DokumentHandler dml = (DokumentHandler)digester.parse(is);
 fsWriter.close();
 }

........................
 /**
 * JavaBean class that holds properties of each asset entry.
 * It is important that this class be public and static, in order for
 * Digester to be able to instantiate it.
 */
 public static class Dokument{
 private String id;

private String typ;
 private String datum;

private String titel;
private String erfassungsdatum;
private String bemerkung;
private String erfasserRef;

 private String entstehungsort;
 private String inhalt;
 private String umfang;
 private String contentIds;

 public void setContentIds(String newContentIds)
 {
 contentIds = newContentIds;
 }
 public String getContentIds()
 {
 return contentIds;
 }

 public void setId(String newId)
 {
 id = newId;
 }
 public String getId()
 {
 return id;
 }

 public void setTyp(String newTyp)
 {
 typ = newTyp;
 }
 public String getTyp()
 {
 return typ;
 }

 public void setDatum(String newDatum)
 {
 datum = formatDate(newDatum);
 }
 public String getDatum()
 {
 return datum;
 }
........................
 // same as for other Dokument JavaBean class properties.
........................

}

 78

Appendix B

Search Logic Class:

package de.tuhh.gkns.informationretrieval;
........................
// import libraries
........................

public class SearchLogic {
 private String input;
 // default index directory, you can change it with method "setDir()"
 private File indexDir = new File("indexableXMLFiles\\index");
 private static Hits hits;
 private static Document doc;
 private static long end;
 private static long start;

 SearchLogic(String inputFromUI) throws Exception
 {
 this.input = inputFromUI;
 search(indexDir, input);
 }

public static void search(File indexDir, String q) throws Exception {
 // Refer to the created Lucene index in the directory
 Directory fsDir = FSDirectory.getDirectory(indexDir, false);
 IndexSearcher is = new IndexSearcher(fsDir);

 // parse the query 'q
 Query query = QueryParser.parse(q, "contents",

new GermanAnalyzer());
 start = new Date().getTime();
 // perform the search operation
 hits = is.search(query);
 end = new Date().getTime();

 System.err.println("Found " + hits.length() +
 " document(s) (in " + (end - start) +
 " milliseconds) that matched query '" + q + "':");

 for (int i = 0; i < hits.length(); i++) {
 doc = hits.doc(i);
 System.out.println(doc.get("id"));
 }
 is.close();
 fsDir.close();
 }

 // returns the search hits
 public Hits getDocs() {
 return hits;
 }

 // returns the search time
 public long getSearchTime() {
 return (end-start);
 }

 // set the path of index
 public void setDir(String setDir) {
 indexDir = new File(setDir);
 }

 public File getDir() {
 return indexDir;
 }
}

 79

Appendix C

APPENDIX C

The Asset modeling schema [CCMS]:

<?xml version='1.0' encoding='utf-8'?>
<xs:schema targetNamespace="http://sts.tuhh.de/gkns/dokumenttypen.xsd"
xmlns:gkns="http://sts.tuhh.de/gkns/dokumenttypen.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xdt="http://www.w3.org/2003/05/xpath-
datatypes" elementFormDefault="qualified">

<xs:element name="referenz" type="gkns:Referenz"/>
 <xs:element name="allAssetList" type="gkns:AllAssetList"/>
 <xs:element name="muMeDokument" type="gkns:MuMeDokument"/>
 <xs:element name="nachlass" type="gkns:Nachlass"/>
 <xs:element name="ankuendigung" type="gkns:Ankuendigung"/>
 <xs:element name="irrelevanterFund" type="gkns:IrrelevanterFund"/>
 <xs:element name="dokument" type="gkns:Dokument"/>
 <xs:element name="fund" type="gkns:Fund"/>
 <xs:element name="bilddokument" type="gkns:Bilddokument"/>
 <xs:element name="mask" type="gkns:Mask"/>
 <xs:element name="sachakte" type="gkns:Sachakte"/>
 <xs:element name="tondokument" type="gkns:Tondokument"/>
 <xs:element name="lebensdokument" type="gkns:Lebensdokument"/>
 <xs:element name="korrespondenz" type="gkns:Korrespondenz"/>
 <xs:element name="veroeffentlichung" type="gkns:Veroeffentlichung"/>
 <xs:element name="user" type="gkns:User"/>
 <xs:element name="schlagwort" type="gkns:Schlagwort"/>
 <xs:element name="manuskript" type="gkns:Manuskript"/>

<xs:element name="gesetzErlassBestimmung" type="gkns:GesetzErlassBestimmung"/>
 <xs:element name="kommentar" type="gkns:Kommentar"/>

<xs:complexType name="Referenz">
 <xs:sequence>
 <xs:element name="signatur" type="xs:string"/>
 <xs:element name="ort" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>
 <xs:complexType name="IrrelevanterFund">
 <xs:complexContent>
 <xs:extension base="gkns:Fund">
 <xs:sequence></xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="MuMeDokument">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="autor" type="xs:string"/>
 <xs:element name="beteiligtePersonen" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 80

Appendix C

<xs:complexType name="Nachlass">

 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="nachlasser" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Ankuendigung">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="anlass" type="xs:string"/>
 <xs:element name="ort" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Fund">
 <xs:sequence>
 <xs:element name="typ" type="xs:string"/>
 <xs:element name="datum" type="xs:dateTime"/>
 <xs:element name="titel" type="xs:string"/>
 <xs:element name="erfassungsdatum" type="xs:dateTime"/>
 <xs:element name="bemerkung" type="xs:string"/>

<xs:element ref="gkns:kommentar" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element ref="gkns:mask" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="erfasserRef" type="xs:ID" minOccurs="0"/>
 <xs:element ref="gkns:referenz" minOccurs="0"/>

<xs:element name="verschlagwortungRef" type="xs:ID" minOccurs="0"
maxOccurs="unbounded"/>

 <xs:element name="contentIds" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

<xs:complexType name="Dokument">
 <xs:complexContent>
 <xs:extension base="gkns:Fund">
 <xs:sequence>
 <xs:element name="entstehungsort" type="xs:string"/>

<xs:element name="sperrvermerkFachlich" type="xs:dateTime"/>
<xs:element name="sperrvermerkJuristisch" type="xs:dateTime"/>

 <xs:element name="inhalt" type="xs:string"/>
 <xs:element name="umfang" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 81

Appendix C

<xs:complexType name="AllAssetList">

 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="gkns:referenz"/>
 <xs:element ref="gkns:muMeDokument"/>
 <xs:element ref="gkns:nachlass"/>
 <xs:element ref="gkns:ankuendigung"/>
 <xs:element ref="gkns:irrelevanterFund"/>
 <xs:element ref="gkns:dokument"/>
 <xs:element ref="gkns:fund"/>
 <xs:element ref="gkns:bilddokument"/>
 <xs:element ref="gkns:mask"/>
 <xs:element ref="gkns:sachakte"/>
 <xs:element ref="gkns:tondokument"/>
 <xs:element ref="gkns:lebensdokument"/>
 <xs:element ref="gkns:korrespondenz"/>
 <xs:element ref="gkns:veroeffentlichung"/>
 <xs:element ref="gkns:user"/>
 <xs:element ref="gkns:schlagwort"/>
 <xs:element ref="gkns:manuskript"/>
 <xs:element ref="gkns:gesetzErlassBestimmung"/>
 <xs:element ref="gkns:kommentar"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

<xs:complexType name="Bilddokument">
 <xs:complexContent>
 <xs:extension base="gkns:MuMeDokument">
 <xs:sequence></xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Mask">

 <xs:sequence>
 <xs:element name="w" type="xs:integer"/>
 <xs:element name="h" type="xs:integer"/>
 <xs:element name="y" type="xs:integer"/>
 <xs:element name="contentId" type="xs:string"/>
 <xs:element name="x" type="xs:integer"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

<xs:complexType name="Sachakte">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="betroffeneInstitution" type="xs:string"/>
 <xs:element name="betroffener" type="xs:string"/>
 <xs:element name="inhalt" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 82

Appendix C

<xs:complexType name="Tondokument">

 <xs:complexContent>
 <xs:extension base="gkns:MuMeDokument">
 <xs:sequence></xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Lebensdokument">

 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="person" type="xs:string"/>
 <xs:element name="aussteller" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Korrespondenz">

 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="adressatInstitution" type="xs:string"/>
 <xs:element name="absenderInstitution" type="xs:string"/>
 <xs:element name="betreff" type="xs:string"/>
 <xs:element name="adressat" type="xs:string"/>
 <xs:element name="absender" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="Veroeffentlichung">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="autor" type="xs:string"/>
 <xs:element name="jahr" type="xs:integer"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<xs:complexType name="User">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="kurz" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

 83

Appendix C

 <xs:complexType name="Schlagwort">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="identifier" type="xs:integer"/>

<xs:element name="kommentar" type="xs:string" minOccurs="0"/>
 <xs:element name="kuerzel" type="xs:string" minOccurs="0"/>

<xs:element ref="gkns:schlagwort" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

 <xs:complexType name="Manuskript">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="autor" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="GesetzErlassBestimmung">
 <xs:complexContent>
 <xs:extension base="gkns:Dokument">
 <xs:sequence>
 <xs:element name="erlasser" type="xs:string"/>
 <xs:element name="wirksamkeit" type="xs:dateTime"/>
 <xs:element name="betreff" type="xs:string"/>
 <xs:element name="adressat" type="xs:string"/>
 <xs:element name="voeDatum" type="xs:dateTime"/>
 <xs:element name="unterzeichner" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Kommentar">
 <xs:sequence>
 <xs:element name="datum" type="xs:dateTime"/>
 <xs:element name="text" type="xs:string"/>
 <xs:element name="autorRef" type="xs:ID" minOccurs="0"/>

<xs:element name="antwortenRef" type="xs:ID" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

</xs:schema>

 84

	[BR99] Modern Information Retrieval, by Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Addison Wesley 1999, Link: http://www.sims.berkeley.edu/~hearst/irbook/
	[Cau99] Jörg Caumanns, A Fast and Simple Stemming Algorithm for German Words, Freie Universität Berlin, October 1999. Link: ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-99-16.ps.gz
	[GS] Levenshtein Distance, in Three Flavors by Michael Gilleland, Merriam Park Software, Link: http://www.merriampark.com/ld.htm
	[POI] Jakarta POI, Java API to Access Microsoft Format Files, Link: http://jakarta.apache.org/poi/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

