

Architectural Approaches, Concepts and Methodologies of

Service Oriented Architecture

Master Thesis

submitted in partial satisfaction of the requirements for the degree of
Master of Science

in Information and Media Technologies

by

Selda Güner

Submitted to:
Prof. Dr. Joachim W. Schmidt

Supervised by:

Dip. Inf. Rainer Marrone

Software System Institute
Technical University Hamburg Harburg

Hamburg, Germany
4 August 2005

 ii

Declaration

I hereby declare that I am the author of this thesis, and all literally or content related
quotations from other sources are clearly pointed out and no other sources rather than the
ones declared are used.

Selda Güner

Hamburg, Germany
4 August 2005

[Signature]

 iii

Acknowledgement

I would like to thank Prof. Dr. Joachim W. Schmidt of Software System Institute (STS)
for giving the opportunity to work on this Master Thesis. As well, I would like to thank
Dipl. Inf. Rainer Marrone for supervising this thesis and his kind, essential advice,
encouragement and guidance throughout this work.

I would particularly like to thank Dipl. Inf. Patrick Hupe of STS for his kindness and
providing advice during the project. His guidance was great for me, and I am glad that I
have found the opportunity to have thoughtful conversations with him regarding my
project implementation.

I have special thanks to my parents for all their continuous support throughout my
educational studies. They have been always kind, caring and patient with me, which gave
me the strength to successfully finish my studies.

 iv

Table of Content

Abstract………………………………………………………………………………….

List of Figures…………………………………………………………………………..

List of Tables……………………………………………………………………………

1. Introduction……………………………………………………………………….....

1.1 Motivation…………………………………………………………………….…..…
1.2 Objectives……………………………………………………………………………
1.3 Structure of Thesis…………………………………………………………………...

2. Introduction to Service Oriented Architecture…………………………………….

2.1 Evolution of Computing Systems……………………………………………..…….
2.2 Object Oriented Development…………………………………………………........
2.3 Component Oriented Development………………………………………………….
2.4 Distributed Computing……………………………………………………………….
 2.4.1 Remote Procedure Call (RPC)……………………………………………..
 2.4.2 Distributed Objects………………………………………………………...
 2.4.3 Message Oriented Middleware (MOM)……………………………..….....
 2.5 Definition of Service Oriented Architecture (SOA)………………………………..
 2.5.1 SOA Entities and Characteristics…………………………………………..
 2.5.2 Service Oriented Development………………………………………….....
 2.5.3 SOA Layered Architecture………………………………………………...

3. Technologies for Service Oriented Architecture………………………………….. .

3.1 J2EE………………………………………………………………………………….
 3.1.1 Java Message Service (JMS)…………………………………………….…
 3.1.2 Remote Method Invocation (RMI)………………………………………...
3.2 COM / DCOM……………………………………………………………………….
3.3 CORBA………………………………………………………………………..…….
3.4 Web Services………………………………………………………………………....
3.5 Feature Based Comparison of Technologies…………………………………………

4. Service Orientation in Software Design and Development………………………..

4.1 Service Oriented Design……………………………………………………………..
 4.1.1 Service Design Considerations…………………………………………….
4.2 SOA Meta Model…………………………………………………………………….
4.3 Service Oriented Modeling…………………………………………………………..

vi

vii

ix

1

2
3
4

5

6
9
11
12
14
15
15
16
17
20
22

25

25
26
28
30
31
33
37

43

43
44
48
49

 v

 4.3.1 Unified Modeling Language…………………………………………………
 4.3.2 Model Driven Architecture …………………………………………………
4.4 Implementation Models for Services………………………………………………….

5. Frameworks for Service Oriented Architecture…………………………………….

5.1 SOA Framework Descriptions…………………………………………………….....
 5.1.1 SAP NetWeaver…………………………………………………………..…
 5.1.2 Apache Beehive Project ...
 5.1.3 Rogue Wave Lightweight Enterprise Integration Framework……………..
5.2 Evaluation of Frameworks…………………………………………………………....

6. Case Study: A Prototypical SOA Implementation..

 6.1 Description of Implementation Infrastructure…………………………………….…
 6.1.1 infoAsset Broker Architecture………………………………………………..
 6.1.2 Integration of infoAsset Broker with Apache Tomcat…………………..….
 6.1.3 Broker Web Service Development……………………………………….…
 6.1.4 Student Information System Web Application…………………………..…
 6.2 Extensibility of the Architecture………………………………………………….…

7. Strategies and Concepts for Service Orientation in Enterprise………….……….

7.1 Service Oriented Architectures for Enterprise Integration……………………….…..
 7.1.1 E-business Integration………………………………………………….…..
 7.1.2 Enterprise Application Integration……………………………………….…
 7.1.3 Portal Oriented Integration……………………………………………….…
 7.1.4 Business Process Oriented Integration…………………………………..….
 7.1.5 Realization of SOA through Integration Approaches……………………...
7.2 Considerations for SOA Implementations…………………………………………...
 7.2.1 Service Control and Management……………………………………….…
 7.2.2 Transaction Management…………………………………………………..
 7.2.3 Security………………………………………………………………….….
7.3 Grid Computing……………………………………………………………………....
.
8. Conclusion……………………………………………………………………….……

8.1 Further Studies…………………………………………………………..….................

Appendix: List of Web Service Specifications…………………………………...……

References……………………………………………………………………………....…

50
52
54

59

59
59
64
68
69

71

72
72
74
75
76
80

81

82
83
87
92
94
99
99
101
101
102
103

105

106

107

113

 vi

Abstract

Service Oriented Architecture (SOA) is an architectural style which allows interaction of
diverse applications regardless of their platform, implementation languages and locations
by utilizing generic and reliable services that can used as application building block. SOA
includes methodologies and strategies to follow in order to develop sophisticated
applications and information systems.

SOA is different from the traditional architectures as it has its own unique architectural
characteristics and regulations, which needs to be analyzed and clarified so as to apply
the information that should be included in the architectural model of SOA correctly to
service based application development.

This thesis aims to describe SOA in detail with considering all the approaches, concepts
and methodologies that surrounds architectural model of SOA. Service based application
development, service oriented integration approaches, technologies for SOA
development, frameworks and other related requirements are discussed in this study in
order to have a complete and accurate figure of SOA and be competent in utilizing
service orientation concepts in enterprise application development.

 vii

List of Figures

1.1 Service Oriented Architecture in Enterprise……………………………………….

2.1 Abstract Definition of Software Architecture……………………………………
2.2 Procedural Software Development……………………………………………….
2.3 Structured Software development………………………………………………..
2.4 Client-Server and N-tier Software Developments……………………………….
2.5 Physical Evolution of Computing Systems………………………………………
2.6 Object Oriented Development……………………………………………………
2.7 Component Oriented Development………………………………………………
2.8 Synchronous Messaging with Response………………………………………….
2.9 Asynchronous Messaging with Response…………………………………………
2.10 Remote Procedure Call Conceptual Model……………………………………….
2.11 Object Request Broker………………………………………………………......
2.12 Message Oriented Middleware…………………………………………………..
2.13 Service Oriented Architecture Conceptual Model………………………………..
2.14 Granularity………………………………………………………………………..
2.15 Service Based Development……………………………………………………..
2.16 Two-tier and Three-tier Architectural Models………………………………......
2.17 The Layers of Service Oriented Architecture…………………………………….

3.1 Conceptual Model for Java Message Service…………………………………….
3.2 Point-to-Point Messaging…………………………………………………….......
3.3 Publish-Subscribe Messaging…………………………………………………….
3.4 RMI Distributed Application Model……………………………………………..
3.5 COM Architectural Model……………………………………………………….
3.6 DCOM Architectural Model……………………………………………………..
3.7 The Structure of CORBA Object Request Interfaces…………………………….
3.8 Web Services Architecture………………………………………………………..
3.9 Web Services Technology Stack……………………………………………….…
3.10 The Interaction of Service with Its Consumer………………………………........
3.11 UDDI Informational Structural Model……………………………………………

4.1 Service Abstraction……………………………………………………………….
4.2 Services and Messages………………………………………………………......
4.3 Aggregation and Composition of Varying Granularity of Services……………..
4.4 Meta Model of Service Oriented Architecture…………………………………...
4.5 Extended SOA Model…………………………………………………………….
4.6 Service Oriented Modeling Method………………………………………….......
4.7 An Example UML Profile for Services………………………………………….
4.8 Model Driven Architecture Development Process………………………………
4.9 Synchronous and Asynchronous Services……………………………………….
4.10 Component Service………………………………………………………………
4.11 Composite Service………………………………………………………………..

2

5
6
7
8
9
9
11
13
13
14
15
15
17
19
21
23
23

27
27
28
29
30
31
32
34
34
36
37

46
47
47
48
49
50
52
54
55
55
56

 viii

4.12 Publish-Subscribe Services……………………………………………………….
4.13 Service Broker……………………………………………………………………

5.1 SAP NetWeaver Architecture…………………………………………………...….
5.2 Functional Areas of SAP NetWeaver in Enterprise Services Architecture……….
5.3 Service Interactions in SOA Based Enterprise Services Architecture……………
5.4 Relationships of Classes in Controls Architecture……………………………….
5.5 Control Architectural Elements and Flow……………………………………….
5.6 LEIF Tiers………………………………………………………………………..

6.1 Case Study Implementation Infrastructure……………………………………….
6.2 The infoAsset Broker Architecture with its Components………………………...
6.3 Sequence Diagram for Broker – Tomcat Integration…………………………….
6.4 Sample Broker Web Service Code with Metadata Annotations…………………
6.5 Class Diagram for Broker Web Service Operations……………………………..
6.6 Sequence Diagram for Login Process……………………………………………
6.7 Simplified SIS Application Structure within Service Oriented Architecture…….
6.8 Screenshot for infoAsset Broker Main Page…………………………………….
6.9 Screenshot for Student Information System Login Page…………………….......
6.10 Screenshot for Student Information System Main Page…………………………
6.11 Screenshot for Student Information System Registration Page………………….
6.12 Screenshot for Student Information System Registration Processing…………….

7.1 Service Oriented Enterprise…………………………………………………........
7.2 EDI in Enterprise………………………………………………………………….
7.3 CORBA, RMI and DCOM in Enterprise…………………………………….......
7.4 Simple Object Access Protocol (SOAP) in Enterprise…………………………..
7.5 Business Collaboration Steps with ebXML………………………………….......
7.6 Point-to-Point EAI Topology…………………………………………………….
7.7 Integration Broker EAI Topology………………………………………………..
7.8 Integration Bus EAI Topology……………………………………………….......
7.9 Web Services for Enterprise Application Integration……………………………
7.10 Enterprise Service Bus Architecture……………………………………………..
7.11 Aggregating Mark-up Fragments from Local Portlets……………………….......
7.12 Publishing, Finding, and Binding WSRP Services………………………………
7.13 Process Based Integration Approach………………………………………….….
7.14 Web Service Orchestration and Choreography…………………………………..
7.15 WSCI Interface and Web Services……………………………………………….
7.16 BPEL4WS Process and Partners………………………………………………….
7.17 Resource Virtualization in Grid Computing………………………………………

57
57

60
63
64
65
66
68

72
73
74
75
75
76
77
77
78
78
79
79

81
84
85
85
86
88
89
89
90
91
93
94
95
96
97
98
104

 ix

List of Tables

2.1 Comparison of Architectural Development Models……………………………..

3.1 Feature Based Comparison of Service Oriented Technologies…………………..

4.1 UML 2.0 Meta Model Elements for SOA …………………………….................

5.1 Comparison of SOA Frameworks………………………………………………..

7.1 Comparison of e-business Integration Technologies…………………………….
7.2 Realization of SOA Implementations in Enterprise…………………………......

22

41

51

70

87
99

 - 1 -

1. Introduction

From the period of the earliest computing units development to the present times, which
we call as Information Age, software architectures evolve rapidly to achieve building of
sophisticated application structures capable of not only fulfilling basic functionalities
expected from each computing systems, but also effecting humans life by providing
corporate agility, operational efficiency and innovative improvements that result in
utilization of universally shared application functionalities and services. Service Oriented
Architecture (SOA) provides this vision to cope with technical complexities faced with
enterprise application development and integration, as well as aligning business needs
and providing coarse grained business functionalities.

Service Oriented Architecture (SOA) is an architectural style and a combination of
methodologies that aims to achieve interoperability of remotely or locally located
homogeneous and heterogeneous applications by utilizing reusable service logic. Service
orientation shows variation in adopting technology for implementation, rather than
focusing on the technology itself, as SOA considers the description of the problem
domain before concentrating on the usage of a specific execution environment.

Although SOA does not a direct implication of a certain technology and has been applied
to software development before the invention of Web services, the capable architectures
that realize the SOA vision in a more applicable way are built with Web service
technologies. Driven by these competent technologies, the enterprise is practicing open
standards for communication over network, messaging and description of service
interfaces. SOA with Web services are at the present gaining momentum, as with Web
services there is fundamental improvement in SOA based application development.

It is required to follow new approaches and particular methodologies when building
service based application structure, rather than tracking the traditional approaches to
software development. SOA needs unique development strategies, which replace the
conventional approaches to building software architectures and promise the development
of plug-and-play application structures and building modules capable of expressing
definite business functionalities and problem domains.

SOA provides a strong architectural discipline and focus area centered on service
creation, modeling and development, formation of process information, and service
oriented integration approaches and strategies. Services are the building blocks of SOA
and new applications can be constructed through consuming these services and
orchestrating them within a business process. Services are reusable units for articulating
common business and technology functionalities.

1. Introduction

 - 2 -

To implement a successful SOA in enterprise requires consideration of various concepts
and implementation strategies, which formulate the essential characteristics of service
oriented enterprise. A complete SOA implementation reflects on not only the deployment
of services, but also the possibility of using them to integrate diverse application logics,
and building of composite applications.

Figure 1.1: Service Oriented Architecture in Enterprise

Upon a successful implementation of SOA, the enterprise gain benefit by reducing
development time, utilizing flexible and responsive application structure, and allowing
dynamic connectivity of application logics between business partners.

1.1 Motivation

SOA provides an evolutionary approach to software development, however, it introduce
many distinct concepts and methodologies that needs to be defined and explained in order
to understand the SOA offerings in an accurate way and build a competent architecture
that satisfy the SOA vision. The main issue is to analyze and assess the differences of
SOA from past architectural styles, investigate the improvement that SOA has brought to
computing environment, and apply this knowledge to service based application
development so as to have a satisfactorily SOA.

Primarily, it is required to have a clear understanding of what SOA is and the
fundamental characteristics of service orientation. Since SOA is a concept independent
from any certain technology and focus on the definition of architectural aspects of the
application including service design, processes and modeling, it is likely to observe
different variety of SOA implementation in enterprise. Especially, nowadays SOA
implementation with Web services is diverge from the initial SOA implementations done
with CORBA, COM/DCOM and RMI technologies.

Service
Oriented

Architecture

Service oriented
application design

and modeling

Service oriented
integration
approaches

SOA
implementation

strategies

SOA enabled
technologies and

frameworks

1. Introduction

 - 3 -

Traditional programming logic is mainly centered on user interface development,
processing a database or execution of a single transaction, however, SOA offers an
extensive operability area including process flow and service oriented integration, which
finally reaches to the development of a unified and single application logic, which may
include various services and applications within the enterprise and aims to solve a
specific business problem domain and serve widely focused united functionalities.

It is obvious that service based application development is more challenging and have
specific requirements than the development of a traditional application. To comprehend
SOA in an effective way, it is needed to describe what it is, investigate which information
must be included in the architectural model of Service Oriented Architecture, and look
into possible implementation scenarios.

1.2 Objectives

Principally, this study will introduce the fundamentals of SOA considering all other
required properties of service orientation including architectural principles, service design
and modeling, and strategies for building an enterprise application by combining
individual services to form SOA infrastructure.

This thesis will approach to SOA from the following perspectives:

− Service oriented applications have a different approach to its layered architectural
model. It is needed to describe and clarify what SOA is, the relationships of SOA
with other architectures and development approaches, and the requirements of
SOA in order to demonstrate how the architecture can be applied to software
application development.

− Service design and development is a significant concept of service orientation. To

investigate basic service design considerations, model-driven service
development, and functional and operational aspects of services is important to
have successful SOA implementation.

− Another perspective of looking at SOA is to determine and evaluate available

frameworks with the aim of finding out their capabilities in building effective
service based architecture.

− SOA implementation in enterprise is another fundamental concept which includes

service oriented integration approaches and other considerations required for a
competent infrastructure.

− It is needed to demonstrate the basic principles and concepts of service based

application development by designing and implementing a prototypical case
study.

1. Introduction

 - 4 -

1.3 Structure of Thesis

The subsequent chapter is an introduction to Service Oriented Architecture. Different
software development models and architectural styles will be discussed and compared to
service based development. SOA will be explained in detail in this part with considering
its entities, characteristics and layered architecture.

The third chapter of this study will focus on the technologies of Service Oriented
Architecture. Each technology will be described and compared in order to find out the
capabilities for developing and implementing service based applications.

The fourth chapter is for clarifying the principles of service orientation in software design
and development. Characteristics of service oriented design, SOA Meta-Model, modeling
approaches for service based development, and implementation models for services will
be discussed and analyzed.

In the fifth chapter, different frameworks will be introduced and compared in order to
demonstrate how they approach to Service Oriented Architecture implementation.

Chapter six will concentrate on the principles of service based application development
by demonstrating design and implementation of a prototypical case study.

The seventh chapter is for describing strategies and concepts of service orientation in
enterprise. In this chapter, different enterprise integration approaches will be introduced
and discussed in term of how they realize SOA in their infrastructures. Additionally,
other required considerations of SOA implementation will be presented.

The conclusion statement of this study will be the basis of fifth chapter. A summary of
the Thesis will be provided in this chapter with possible further studies.

 - 5 -

2. Introduction to Service Oriented Architecture

Software development turns out to be more challenging as the needs and desires grows to
have complex infrastructures capable of solving real-world problems. Similarly,
technological improvements through many tendencies and alternatives grounds to build
compound architectures for developing software systems.

The architecture of software explores the software system infrastructure by describing its
components and high level interactions between each of them. These components are
abstract modules built as a “unit” with other components. The high level interactions
between components are called “connectors”. The configuration of components and
connectors describes the way a system is structured and behaves [1], shown in figure 2.1.

Figure 2.1: Abstract Definition of Software Architecture

The software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the externally visible properties of
those components, and the relationship among them [2]. To simplify the complexity of
the architecture, conventionally, the system is built with modules, which involves
functions, objects, components and services.

However, from the early days of the computing to the nowadays, the era of Information
Technology, software development has passed through certain development stages,
which broaden the scope of building applications from small departments to the
enterprise and finally to the Internet. These stages shape the architecture of software
systems and result in more powerful, capable and effective software which aims to meet
the sophisticated expectations from computing systems.

Service Oriented Architecture (SOA) is a particular type of software architecture which
has distinguished features and characteristics. The concept of SOA emerged in the early
1980s and become a significant architectural style especially after invention of Web
services. Before examining the architecture in detail, it is important to evaluate the
existing software development concepts and related technologies to discover the
revolution of SOA so as to not to develop SOA from scratch.

Component Component

Connector

2. Introduction to Service Oriented Architecture

 - 6 -

2.1 Evolution of Computing Systems

The improvements in hardware technologies and specially the invention of networking
enforce the software developers to gain more benefit from these enhancements and build
composite software systems which endorse these technologies.

Networking has evolved from a few unified machines to enormous interconnected
computing resources on the Internet. Accordingly, the complexity, size and power of the
computing systems have advanced from monolithic programs to distributed computing
infrastructures. Based on these emerging trends in computing technologies, developers
and architects ought to renew their visions to replace the old approaches of application
development to the expansion of new logical models for current enabling technologies.

The early approaches of computing have started with closed, monolithic mainframe
systems. Monolithic applications were consequence of the evolution of single-processor
systems in which the processing and management of data is completely centralized.
Procedural development is the initial way of application development which comprises
the process executed on a single machine and manipulates the data through direct access
operations, as shown in figure 2.2. This computing method has many potential
dependencies between the algorithms of the program and does not allow doing
modification easily. If the data representation is modified, there can be substantial
impacts on the program in multiple places [3].

Figure 2.2: Procedural Software Development

FORTRAN, COBOL, C, Pascal and BASIC are the languages for procedural software
development. To develop an application with these languages requires complex
knowledge of physical storage of the data. Another difficulty is that although the
developers have implemented shared libraries of code and decomposed the application
structure into modules, still the program has many dependencies inside and changing was
difficult to manage.

Data

Data

Data

Data

Program Direct access

Subroutines

2. Introduction to Service Oriented Architecture

 - 7 -

The difficulties faced with procedural software development give rise to design a new
approach which involves decomposing larger processes into smaller ones [4], as
illustrated in the following figure. Structured design and development reduces
complexity of the program with designing small modules which can be reusable within
the application. In this way, the data aspect of the program and the behavior part of it is
signified separately.

Structured design allowed to development of more flexible and complex software
structures than procedural software development, however, still the dependencies
between individual modules and the data are high to build an effective software system.

Figure 2.3: Structured Software development

Client-server computing is the evolution of software development in which the emphasis
is given to building of individual application systems. The design involves separation of
the client and business logic from the keeper of the data, which is server, in both logical
and physical way. It is an important factor in the software development that client-server
technologies allows user to process data over network connection. The technology
resulted in the evolution of file-sharing system, which is still used to access the available
global file systems over supporting protocol such as HTTP, and database-server
technologies. These developments are closely related with the evolution of distributed
computing technologies.

In this period, transaction-processing monitors have grown to enable the consistent and
reliable maintenance of data integrity across distributed systems. Another development
between the late 1980s and early 1990s is the groupware technologies which allow email
and higher forms of interactive applications, such as chat rooms and videoconferencing.

Function

Module

Application

Data

Function

Function

Module

Function

2. Introduction to Service Oriented Architecture

 - 8 -

Starting from early 1990s, the necessity to support clean separation of data and
application logic layer from the presentation layer caused to replace client-server
technologies with N-tier component-oriented solutions. The additional layers reduced the
coupling between the modules and allowed more clients to access and converse with the
business logic tier, as shown in figure 2.4.

Figure 2.4: Client-Server and N-tier Software Developments

The first approach to software development is mainly from private vendors, which
control the construction of software through each step of product releases. These software
are called Proprietary Software and mostly dependent on the vendor which produces it.
Today’s systems are based on proprietary software to varying degrees. The capabilities
and quality of proprietary software can be high because of continuous debugging and
supporting features consistent with the expectations of the end-user from the owner
vendor of the software.

The other major category of commercial software is Open Software, which is an approach
to software development in which multiple vendors collaborate to build specifications of
the technology independent from proprietary software. The main benefit of the open
software is that it provides a uniform terminology of its software structure, which is the
foundation for building standard technology appropriate for many end-users. The
additional benefit is the interoperability that it may provide between different software
applications.

With the introduction of the World Wide Web, a new era for software development is in
progress. The Internet initially began as a way to publish scientific papers and evolved
into dynamic HTML (Hypertext Markup Language) and eventually to XML (Extensible

Client
Application

Logic DataProprietary

Client-Server Computing

Client

Application
Logic

DataProprietary

Application
Logic

Application
Logic Data Proprietary Proprietary /

Open

Proprietary /
Open

Proprietary /
Open

Proprietary /
Open

N-tier Software Development

2. Introduction to Service Oriented Architecture

 - 9 -

Markup Language), which is a meta-language and a fundamental, standard, and enabling
technology for data exchange between different platforms.

XML describes the data in an application-independent manner, and Web services use this
technology to enable the sharing of distributed processes between heterogeneous
computing environments. Today’s application development involves creating
independent services accessible through the firewall and support one discrete function.
Clients interact with services, which are assembled to build the application infrastructure.

Figure 2.5: Physical Evolution of Computing Systems

2.2 Object Oriented Development

Object Oriented Development supports the development of software with encapsulating
both data and behavior into abstract data types, called classes [5]. Instances of classes are
formed into small modules, called objects, as shown in figure 2.6. Any changes in data
representation only affect the immediate object that encapsulates the data. Classes can
live everlastingly, however objects have a limited lifetime.

Figure 2.6: Object Oriented Development

Data

Object

Data

Object

Data

Object

Data

Object

Messages

1950 1980 1986 1990 Today

File
servers

N-tier,
World

Wide Web,
Components,

Services

Client - Server
Monolithic

Database servers

 Groupware

TP
Monitors

2. Introduction to Service Oriented Architecture

 - 10 -

Objects communicate each other through messaging. Object based development advances
software design by providing more support for hiding behavior and data through objects
and classes. There is almost no dependency between objects, however a large number of
interconnected objects create dependencies that can be difficult to manage.

In Object Oriented development, everything is an object. The primary characteristics of
Object Oriented development are as follows:

− Encapsulation: An object contains both the physical properties, called data, and
the functionality of this data, described as behavior, to form a distinct software
module, which is called as package.

− Information Hiding: An object keeps its internal mechanism and does not reveal
object-specific information to the outside from its well-structured architecture and
interfaces.

− Associations and Inheritance: Classes and objects can associate to each other.
Inheritance is a special form of association which states is-a-relationship between
objects and classes and forms a hierarchical structure by allowing classes to be
extended into subclasses.

− Polymorphism: Object oriented development allows different implementations
of the same message through two or more separate classes.

Object oriented technology is a set of techniques used for the development of software
systems. Object oriented analysis extends the capabilities of information technology for
modeling real-world business processes. This is an evolution compared to procedural
technologies, which require modeling the business environments in terms of control flow
and data representation. Object oriented analysis provides a mechanism for modeling
reality that is relatively easy to communicate with end-users.

Object oriented design is another major software phase that has been successful
commercially in the software process market. Object oriented design involves the
planning of software structure, improving software quality by finding out the deficiencies
of the structure, and rapid prototyping of software systems.

The other major category of object technology focuses on implementation. Object
oriented programming, which can be done with the languages such as Smalltalk, C++,
Java, and C#, are one promising choice for implementation of application software. The
major quality of object orientation is that the implementation allows the development of
properly encapsulated applications.

The benefit of object orientation is that the software structures more easily map to real-
world entities. Today, object oriented technology is widely used and a dominant
paradigm for developing application software. This technology, when combined with
component infrastructures, can enable interoperability between different software
environments.

2. Introduction to Service Oriented Architecture

 - 11 -

2.3 Component Oriented Development

Components are more sophisticated software modules than objects and require
fundamental changes in systems thinking, software processes, and technology utilization.
Component-based development allows developers to create more complex, high quality
systems, because it provides better means of managing complexities and dependencies
within an application.

A software component is defined as a unit of composition with contractually specified
interfaces and explicit context dependencies. A software component can be deployed
independently and is subject to composition by third parties [6]. It is a group of objects
with has a specified interface, working together to provide an application function, as can
be seen from following figure.

Figure 2.7: Component Oriented Development

Component may refer to many different software constructs, from single application logic
to an entire functional system. In all cases, a component is a software package with one
or more well defined interfaces. A component is executed on a component execution
environment provided by an application server, such as J2EE container, which provides
the required functions, such as transaction management and database connection pooling.

Components overlap the properties of object orientation, such as encapsulation and
polymorphism, except it reduces the property of inheritance. In component thinking,
inheritance is tightly coupled and unsuitable for most forms of packaging and reuse.
Instead, components reuse the functionality by invoking other objects and components
rather than inheriting from them. In component terminology, these invocations are called
delegations [3].

Object

Object

Object

Component

Object

Object

Object

Object

Component

Object

2. Introduction to Service Oriented Architecture

 - 12 -

Components have specifications to describe the component encapsulation, which means
its public interfaces to other components. The reuse of component specifications is a form
of polymorphism. Preferably, component specifications are local or global standards that
are widely reused throughout a system, an enterprise, or an industry.

Components may be integrated to create a larger entity, which could be a new
component, a component framework, or an entire system. This is called composition. The
combined component acquires shared specifications from the constituent components.
This is often called plug-and-play integration.

Reusable components are good reflection of effective software design. The architecture
provides the design context in which the components are built and reused. The other
important aspect for components is that the development of software architecture based
on component specifications support parallel and independent building of the system
parts. These computational boundaries that define an individual system part are testable
subsystems and can be divided to one or more distributed project teams.

Many platform vendors have already produced software infrastructures which support
component oriented technology. These component infrastructures, such as Microsoft
.NET, Sun Java Enterprise JavaBeans, are central for building component-oriented
enterprise application development. With support of XML, Web services and other
standards, these technologies can interoperate for building sophisticated software
applications.

2.4 Distributed Computing

Although Service Oriented Architecture (SOA) is not a direct implication of distributed
computing, it has to incorporate existing middleware technologies and distributed
computing concepts. A successful SOA should overcome the difficulties faced with
existing middleware technologies by supporting an effective approach to application
development and upcoming technologies with consideration of obtainable concepts and
technologies.

The early approach to distributed computing is to set up a communication between two
distributed programs directly on the raw physical network protocol [7]. Higher level
protocols such as SNA, TCP/IP and IPX provided APIs that helped reduce the
implementation efforts and technology dependencies. As the next evolutionary step, a
communication middleware framework enables to access a remote application without
knowledge of technical details such as operating systems, lower-level information of the
network protocol, and the physical network address.

As distributed computing technologies evolve, it becomes increasingly necessary to
provide multiple network implementations to satisfy various quality-of-service
requirements. These requirements may include timeliness of message delivery,
performance, throughput, reliability, security and other nonfunctional requirements.

2. Introduction to Service Oriented Architecture

 - 13 -

Proper object-oriented distributed computing infrastructures provide access transparency
and give developers the freedom to select the appropriate protocol stacks to meet the
application quality-of-service requirements. Consequently, the evolution of techniques
for the distribution of enterprise software components resulted in the promise of universal
application interoperability.

Applications communicate with each other basically in two communication modes:
synchronous and asynchronous mechanism. However, in reality, there are usually
numerous variants of these basic modes of communication.

In synchronous messaging, the exchange of messages requires simultaneous engagement
of both endpoints. This is often called as request-response messaging.

Figure 2.8: Synchronous Messaging with Response

In asynchronous messaging, the client sends a message and continues processing
without waiting for a return. Based on some a priori agreement, such as a predefined and
agreed-upon endpoint, the receiver sends a response to the sender.

Figure 2.9: Asynchronous Messaging with Response

Sender Receiver

1: Send request message

1.1: Process
request

2: Response to message

The request is sent
and does not block
the sender, who
continues doing
other work

The receiver may
process
asynchronously in
the background

Sender Receiver

1: Send request message

1.1: Process
request

Sender blocks
response until
request is
returned

2. Introduction to Service Oriented Architecture

 - 14 -

2.4.1 Remote Procedure Call (RPC)

The development of the Remote Procedure Call (RPC) concept was driven by Sun
Microsystems in the mid of 1980s and is specified as RFC protocols 1050, 1057, and
1831. A communication infrastructure with these characteristics is called RPC-style, even
if its implementation is not based on the appropriate RFCs.

RPC involves the execution of a function or procedure of a distributed application which
encapsulates the code and makes it reusable for remote access. The remote call is routed
through the network to another application, where it is executed, and the result is then
returned to the caller. Most RPC implementations are based on a synchronous, request-
reply protocol, which involves blocking the client until the server replies to a request.

Figure 2.10: Remote Procedure Call Conceptual Model

RPC model has several components. The network protocol provides switching, routing,
packet sequencing, addressing, and forwarding between virtual circuits to transmit data
from node to node. The RPC library is specific to certain technology and provides
transferring data between hosts. It is also responsible for end-to-end error recovery and
flow control. The Client and Server stubs establish, coordinate, and terminate
connections, exchanges, and dialogs between applications. Finally, the application layer
contains the actual application and end-user processes, where the business functionality is
executed.

The main aim of the development of RPC style protocols is the need to provide platform
independent applications. At the end of the 1980s, DCE (Distributed Computing
Environment) emerged as an initiative to standardize the various competing remote
procedure call technologies. However, DCE did not gain a widespread industry support.
Other technologies, which include CORBA, COM/DCOM and Java Remote Method
Invocation (RMI), are used in practice today and provide robust RPC-based distributed
computing platforms.

Client
Application

Call
Procedure

Client
Stub

RPC
Library

Network
Protocol

Server
Application

 Execute
 Procedure

Server
Stub

RPC
Library

Network
Protocol

2. Introduction to Service Oriented Architecture

 - 15 -

2.4.2 Distributed Objects

The concept of Distributed Objects, emerged in the early 1990s, is the evolution of
object-oriented programming which provides remote procedure or function calls as the
replacement for the traditional modular programming styles.

Typically, distributed objects are supported by an Object Request Broker (ORB), which
manages the communication and data exchange with potential remote objects. It provides
an object oriented distribution platform, location transparency and enable objects to hide
their implementation details from clients.

Figure 2.11: Object Request Broker

CORBA is the most common RPC-based ORB implementation technology. It does not
pay specific attention to data or program execution services, as its main aim is to provide
an implementation of a proper distributed object framework.

2.4.3 Message Oriented Middleware (MOM)

Message-oriented Middleware (MOM) is typically a piece of software that locates
between communicating parties and provides a mechanism for connecting various
applications. It is responsible for handling different dependencies between them, such as
operating systems, hardware, and communication protocols. A MOM exposes its
facilities using an API that defines how distributed applications should use the underlying
MOM to communicate with each other through messages. Messages relate to a specific
function that should be executed upon receiving the message.

Figure 2.12: Message Oriented Middleware

MOM MOM API

MOM client
(receiver role)

MOM API

MOM client
(receiver role)

Client Object Implementation

Application Software

Object Request Broker (ORB) Core

ORB Interface

2. Introduction to Service Oriented Architecture

 - 16 -

MOM based messaging solutions can be architected in various topologies, such as
centralized MOM, which is designed as a central hub-and-spoke topology where the
MOM acts as a message bus between application components; or hybrid MOM topology,
which has a central MOM that acts as a router between communication parties that use
their own local MOMs.

MOM plays a significant role by providing an environment that enables two applications
to set up a conversation and exchange data. The features of a communication middleware
can be described as follows:

− It does not require the sender and receiver to be simultaneously connected
− It ensure strong delivery guarantees on the request and response between

participants
− It adds functionality in some cases by translating and formatting messages route

between participants

MOM encourages loose coupling between message consumers and message producers,
and enables dynamic, reliable, and high-performance systems to be built. However, it
ought not to be underestimated that the underlying complexity of MOM-based systems
makes it difficult to ensure a proper and efficiently working system development.

2.5 Definition of Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is an architectural style which utilizes methods and
technologies that provides for enterprises to dynamically connect and communicate
software applications between different business partners and platforms by offering
generic and reliable services that can be used as application building blocks. In this way it
is possible to develop richer and more advanced applications and information systems.

Although SOA is not a new concept, especially after the invention of Web Services, the
new developments in this area bring about a new way of constructing software
application architectures, a new approach to rebuild available software infrastructures and
possibility of communicating with other enterprises according to the available services.

However, building SOA is still challenging for the following reasons:

− The way SOA approaches to software resources is different from traditional
architectures,

− SOA needs a level of architectural regulation,
− SOA implementation needs an environment capable of being accessed by

different enterprises.
− Definition and composition of services into new ones in a secured and managed

environment is another aspect that needs a particular concentration.

2. Introduction to Service Oriented Architecture

 - 17 -

2.5.1 SOA Entities and Characteristics

Service Oriented Architecture is an architectural style that defines an interaction model
between three main functional units, in which the consumer of the service interacts with
the service provider to find out a service that matches its requirements through searching
registry. A meta-model describing this interaction is shown in following figure.

Figure 2.13: Service Oriented Architecture Conceptual Model

SOA contains 6 entities in its conceptual model, described as follows [1]:

Service Consumer: It is the entity in SOA that looks for a service to execute a required
function. The consumer can be an application, another service, or some other type of
software module that needs the service. The location of the service is discovered either by
looking up the registry, or if it is known, the consumer may directly interact with the
service provider.

Service Provider: It is the network addressable entity that accepts and executes requests
from consumers. It provides the definite service description and the implementation of
the service. The service provider can be a component, or other type of software system
that fulfills the service consumer’s requirements.

Service Registry: It is a directory which can be accessible through network and contains
available services. Its main function is to store and publish service descriptions from
providers and deliver these descriptions to interested service consumers.

Service Contract: A service contract is the description that clarifies the way of
interaction between the service consumer and provider. It contains information about
request-response message format, the conditions in which the service should be executed,
and quality aspects of the service.

Service Description

Service Registry

+ findService ()

Service Provider

+ invokeService ()
+ bindToService ()

Service Consumer

Consumer obtains Service Description from
Registry, or directly from Provider.

use realize

contains described
in

2. Introduction to Service Oriented Architecture

 - 18 -

Service Proxy: It assists the interaction between service provider and service consumer
by providing an API written in the local language of the consumer. It is supplied by the
service provider and a convenience entity for the consumer. As well as it can enhance
performance and provides caching facilities. Service proxy is an optional entity in SOA.

Service Lease: It specifies the amount of time that a service contract is valid. It is
managed by registry and determines the executive well-defined timeframes of binding to
the services. Usage of service lease supports loose coupling between service provider and
consumer and maintenance of state information for the service.

Service oriented architecture reflects specific principles and characteristics that need to
be applied when building service-oriented application infrastructures [8], which are
described as follows:

 Services are discoverable and dynamically bound

Services need to be discoverable dynamically at run-time. The consumer of the service
finds the required service through searching of registry and gets all the information
necessary to execute the service. There is no compile-time dependency to bind to the
service, apart from the service contract that the registry provides.

 Services are self contained and modular

A service supports unified and functional interfaces aggregated to perform specific and
concrete business logic. These interfaces are related to each other in the context of a
module and contain sufficient information to be authentic without any dependency to
other software modules or applications.

 Services are interoperable

Services express the ability to communicate with each other without any platform and
language dependencies. Because each software module might have proprietary and
tightly coupled structures, service based architecture utilizes interoperable technologies
that support the protocols and data formats of the service’s current and potential
consumers.

 Services are loosely coupled

Coupling describes the level of dependencies between software modules. Loosely
coupled modules are flexible and have well-defined dependencies, on the contrary, tight
coupled software systems are difficult to configure because of unknown requirements of
modules within the software structure.

2. Introduction to Service Oriented Architecture

 - 19 -

Service oriented architecture stress the development of loosely coupled services as the
software construction unit. Loosely coupled is achieved by usage of service registries.
The service requires no other system specific information to be executed autonomously.
However, tight coupling cannot be avoided at the interface definition level or binding to a
specific protocol.

 Services have a network-addressable interface

A service should publish its interface on the network to conform service oriented
architecture design principles, so that the consumer is able to invoke the service in a
distributed manner over the network. In this way it is probable to use the service at any
time with different consumers. A service can also be accessed through local interface
without usage of network. However, one of the main aims in building SOA is to allow the
consuming of services in a location-independent manner.

 Services have coarse-grained interfaces

The concept of granularity is related with the way of implementation of interfaces within
software system. If the interface supports all the functions necessary for complete
business logic, it is a coarse-grained interface. In contrast, if the interface implements
only a part of certain functionality, it is considered fine-grained. Granularity can be
applied to the entire service implementation, and also to the individual methods of the
interface execution. A service oriented software system supports coarse-grained interface
design by nature with different granularity levels. The objects which build the service
may still be fine-grained, however these objects is kept inside the physical structure of
the service.

Figure 2.14: Granularity

 Services are location transparent

SOA promotes location transparency, which means the consumer of the service does not
have pre-knowledge about the position of the service until to execute it at run-time
through registry. The only dependency between consumer and provider is the service
contract, which can shift from one location to another one without affecting consumer.

Fine-grained Objects Fine-grained Objects

Coarse-grained Services

2. Introduction to Service Oriented Architecture

 - 20 -

 Services can be composed into new applications

Another key characteristic of SOA is to enable building new applications composed from
existing services. Composition is an effective design which mainly focuses on service
modularity and reuse of service functionality without having pre-knowledge of which
applications will use the service in the future.

 SOA supports self-healing

Self-healing is described as the ability of a system to recover itself in case an error occurs
during its execution. Service oriented systems should give more importance to support
self-healing than other architecture styles as the services are combined to execute a
business function at run-time. The consumer should have the ability to find different
services on the network that supports the same functionality for the aim of a proper and
regular execution of the software system.

2.5.2 Service Oriented Development

Services are the evolution of components in which multiple component interfaces form
into a single interface to perform a specific function. A service is an abstract resource
with the capability of performing a task [9]. Services have the potential reflection of
business functions as well as technical task definitions.

Service based development advances component based development in a way that
services involves development of distributed, cooperating components realized in
different programming languages, but also service orientation supports the features such
as platform independence, dynamic discovery of services and improved level of reusable
application modules.

Service orientation is as well evolved into nowadays’ service-based application
development in which services is the natural fruition of Internet networking and World
Wide Web technologies. These technologies alter the application structure to allow more
dynamic and open software construction and solve interoperability problems by applying
standard developments that is acceptable from many software organizations and vendors.

Services are designed and developed to support the following characteristics:

− Each service defines a specific business function and can match to real-life
activities

− A service may have various procedures and operations
− Services interact with other services and system components in a loosely coupled,

message-oriented environment to accomplish business goals
− Services has clearly defined interfaces and can be used by many different other

services and applications
− Services do not need to be in a distributed environment

2. Introduction to Service Oriented Architecture

 - 21 -

The following figure illustrates service based development in the context of components
and objects.

Figure 2.15: Service Based Development

Software development has passed through certain stages and architectural models until to
enable the development of platform independent, reusable services. Each architectural
model provides a better means of dealing with software difficulties than the previous
approaches in order to accomplish enhanced software structures that fit real-world
requirements.

The early architecture of software is based on structured design, which has rigid rules for
the development of software constructs and limited support to enable robust and
sophisticated application development. Object oriented technologies result in flexible
software development that supports encapsulation of business logic through more
coarser-grained functions and classes; however, the tangible benefits of robust
application development are gained through the progression of components and services.

Component

Object

Service

Component

Object

Service

2. Introduction to Service Oriented Architecture

 - 22 -

The following table discusses the characteristics and features of each software
architectural models.

Structured
Development

Object Oriented
Development

Component Based
Development

Service Based
Development

Very fine
system structuring

Low reusability

Tight coupling

Have compile time
dependencies

Intra-application
communication
scope

Small – grain
system structuring

Low reusability

Tight coupling

Have compile time
dependencies

Building blocks are
individual classes

Encapsulation,
Inheritance,
Polymorphism

Functionality is
described by class
declarations

Dynamic but large
number of
connected object

Medium – grain
system structuring

Medium reusability

Loose coupling

Have compile time
dependencies

Building blocks
consist of several
classes (components)

Interactivity,
connectivity, and
exchangeability of
components

Functionality is
described by
interface
declarations

Coarse – grain
system structuring

High reusability

Loose coupling

Have only run time
dependencies

Building blocks
consist of
components

Published interface
definition

Dynamically
discoverable
distributed services

Functionality is
described by
network addressable
component interface
declarations

Inter-enterprise
communication
scope

Table 2.1: Comparison of Architectural Development Models

2.5.3 SOA Layered Architecture

The early systems are structured as two-tier layers in which the client have direct access
to database and network APIs without any logical model in between. This approach can
still be used in software systems where the development is small-sized and prototypical.
As well, some modules in advanced systems may apply this approach to provide certain
functionalities. However, two-tier application development is limited to short life-cycled
systems and does not support flexible APIs. It does not provide sufficient implementation
code isolation from the client which makes the architecture rigid and not scalable to many
concurrent users.

2. Introduction to Service Oriented Architecture

 - 23 -

Currently the most frequently used application development model is based on three-tier
architectural structure, which supports an additional layer between client and data storage
tiers. The additional layer, called as business logic layer, provides code isolation from
client and sharing of the application logic between various client implementations. It is a
competent approach to software development for flexible managing of data and usage of
system resources.

Figure 2.16: Two-tier and Three-tier Architectural Models

SOA is based on n-tier application development in which services are layered on top of
components that are responsible for providing certain functionalities and maintaining
quality of service requirements for services [10], as shown in figure 2.17.

Figure 2.17: The Layers of Service Oriented Architecture

Database

Data Access Layer

Presentation Layer

Database

Data Access Layer

Business Logic Layer

Presentation Layer

Two-tier architecture Three-tier architecture

Operational
Systems

OO-
Systems

CRM,
ERP...

Business
Intelligence

Enterprise
Components

Services

Business Process
Choreography,
Composite Services

Presentation Portlets UI WSRP

Integration

Q
oS, Security, M

anagem
ent and M

onitoring

2. Introduction to Service Oriented Architecture

 - 24 -

Each layer in SOA has specific architectural characteristics, as described below:

Operational Systems Layer: This layer contains existing applications including CRM
and ERP packaged applications, object-oriented systems, and business intelligence
applications. These applications provide the background for services and each of them
has its own proprietary structures, databases and other system resource access.

Enterprise Components Layer: These are specialized components to provide certain
functions and requirements for services. They are the business assets for service
implementations, and other system necessities such as management, availability and load
balancing of services.

Services Layer: This layer contains the actual services which can be discoverable and
invoked by other applications to provide a specific business function for enterprises.
Services realize and deploy enterprise component interfaces as service descriptions and
are published on the network.

Business Process Composition Layer: The services can be composed into a single
application through service orchestration or choreography, which supports specific use
cases and business processes.

Presentation Layer: It provides user interfaces for services and composite applications.
Although presentation layer is not a straight concern for SOA, because of the objective of
using services as user interface bring about the development of standards such as portlets
and Web Services for Remote Portlet (WSRP) specifications.

Other concern for SOA is the integration of services and composite applications within
the enterprise by supporting the features such as reliability, proper routing and
coordination of services, and managing other technical details including protocol and
integrating party agreements. QoS (quality of service) requirements, security,
management and monitoring of services are also other requirements that need to be
clarified when designing service based application architectures.

 - 25 -

3. Technologies for Service Oriented Architecture

The initial service-oriented technology was introduced in the late 1990s from Sun
Microsystems, which is called as Jini Network Technology [11]. Jini is a lightweight
environment for dynamically discovering and using services on a network. Its main aim
is to allow devices such as printers to dynamically connect to the network and register
their available services.

Consequently, the interest to use services as a software construction unit lead to
development of more set of technologies for implementing service oriented architecture.
However, the challenges of building SOA especially related with interoperability,
integration complexities and conveying to industry standards, influence today’s approach
to service based application development.

3.1 J2EE

The Java 2 Platform Enterprise Edition (J2EE) is a container-centric technology which
supports the design, development, and deployment of component-based distributed
applications [12]. J2EE uses multi-tiered application architecture in which the application
logic is divided into functionally different components and each component may run on
different machines.

J2EE components are written in Java language and assembled into a J2EE application.
Java applications access external systems through infrastructure services provided by the
J2EE-compliant application server. The J2EE specification defines the following J2EE
components:

− Client components: Application clients and applets
− Web components: Java servlets and Java Server Pages
− Business components: Enterprise JavaBeans

The J2EE specification proposes several services and each of these services has different
functionalities which can be used in building service oriented application development.
Clients access these services by provided APIs. Some of the basic services are defined as
follows:

− JavaBeans: JavaBeans are ordinary Java classes that conform to coding standards
and conventions.

− Enterprise JavaBeans (EJBs): EJBs are distributable, server-side components
that depend upon an infrastructure implemented by an application server. EJBs
support the development of application business logic.

3. Technologies for Service Oriented Architecture

 - 26 -

− Java Naming and Directory Interface (JNDI): JNDI provides access to directory

and naming services. Java clients use JNDI as a step in accessing EJBs, databases,
and other resources.

− Java Database Connectivity (JDBC): Provides access to relational databases.
− Java Message Service (JMS): JSM is an architecture and API for using

messaging from Java classes.
− J2EE Connector Architecture (JCA): JCA is a framework and API that defines a

standard interface through which Java programs can access a variety of legacy
and other non-Java systems.

− Java Transaction Service (JTS): JTS is a Java implementation of the Object
Transaction Service (OTS), an industry standard for distributed transactions.

− Java Mail: Provides an API for sending email from Java classes.

3.1.1 Java Message Service (JMS)

Messaging systems at enterprise level provides reliable transport of information between
different applications across a variety of heterogeneous computer networks and systems.
These systems have the characteristics of allowing interacting programs to run at
different times and with hiding network complexities. Java Message Service (JMS) is a
Java enabled development interface which supports standardized asynchronous message
interaction and offers the capability of simulating synchronous request/response
communication mode.

JMS provides Java applications with a standard and consistent interface to the messaging
services of a MOM provider or a messaging server [1]. JMS based applications provide
integrating capabilities for legacy systems and distributed applications in heterogeneous
environments. The architectural structure allows queuing of messages with guaranteed,
timeliness delivery and ensuring offline applications to process messages later when they
are capable of receiving them.

A message is a collection of data that one application seeks to send to another, typically
on another machine [13]. Messaging systems provide a mechanism to store incoming
messages on a queue, allow to the receiver to process messages and return back the
response at some later point in time. The complexity in this mechanism is to have a
reliable transportation of messages between sender and receiver.

JMS has a rigid set of rules to manage message communication for reliable and stable
message transportation with supporting features of message persistence, message
acknowledgement, and administration of the message consumer’s performance, which
may disconnect and reconnect to JMS provider.

The following figure is the illustration of the process of communication between message
sender, JMS provider and the consumer of messages.

3. Technologies for Service Oriented Architecture

 - 27 -

Figure 3.1: Conceptual Model for Java Message Service

JMS supports a variety of message types, such as byte-message, object-message, and
text-message. JSM can also be used for XML messaging by replacing a text-message
with an XML document.

The JMS specification [14] only defines a programming interface; however it leaves the
implementation details to message provider, which is located at each J2EE-compliant
application server. Messaging in general achieves loose coupling as the sender and
consumer interact through the messaging transport which requires separate transactions.
The provider guarantees the delivering messages to its destination; however the
processing of the message is independent from sender.

JSM API supports two messaging models:

Point-to-point: In this model, the message created by sender, which is then put on a
queue, addressed to a single targeted recipient. The consumer reads the incoming
messages from queue for processing.

Figure 3.2: Point-to-Point Messaging

Sender

Sender

Sender

Recipient
Provider

Message
Sender

Message
Consumer

Persistence

JMS
Provider

1. Subscribe
2. Disconnect
8. Connect

9. Retrieve

5. Messages stored in
underlying store

4. Persist

6. Acknowledge 7. Send ()
returns

3. Send

10. Receive

3. Technologies for Service Oriented Architecture

 - 28 -

Publish-subscribe: In this model, the senders publish messages, which are then put on a
topic. Multiple recipients can subscribe to the topic and deliver a copy of the particular
message.

Figure 3.3: Publish-Subscribe Messaging

These models use the same fundamental concepts, which indicate that they share a set of
base interfaces. Each base interface has separated sub-interfaces which supports for
individual model type.

JMS often supports communication across firewall boundaries. Also many vendors
extend their provider implementation to support SOAP messaging over HTTP. In this
way, HTTP is used as transportation protocol under JMS API and passes SOAP messages
as text-message. This is often called as SOAP over JMS.

3.1.2 Remote Method Invocation (RMI)

Remote Method Invocation (RMI) is the action of invoking a method of a remote
interface on a remote object. Most importantly, a method invocation on a remote object
has the same syntax as a method invocation on a local object [15]. RMI allows the
invocation of methods across a distributed network of clients and servers with providing
management of objects and the ability to overtake them between each machine.

RMI is a lightweight due to its easy-to-use native Java model. It supports small-sized
distributed object-based application development. A remote object has methods which
can be invoked by another application located potentially on a different host. The
interfaces which state the methods of the remote object are called remote interfaces.

RMI distributed object application have two major separate programs:

 A server which creates a number of remote objects, makes references to those
remote objects as to make them accessible, and waits for clients to invoke
methods on those remote objects,

Sender

Sender

Sender

Provider Topic

Sender

Sender

Sender

3. Technologies for Service Oriented Architecture

 - 29 -

 A client which gets a remote reference to one or more remote objects in the server

and then invokes methods on them.

The references of remote objects can be programmed either using RMI’s naming facility,
called as RMI Registry, or the application can pass and return remote object references as
part of its normal operation. RMI framework provides the necessary mechanism for
loading objects and transformation of the required data. It utilizes web servers to load
complied classes written in the Java programming language using any URL protocol such
as HTTP or FTP.

The following figure is the architectural diagram of RMI application model.

Figure 3.4: RMI Distributed Application Model

RMI is based on remote procedure call (RPC) implementation. A client stub is used as a
local representative or proxy for the remote object. Each remote object may have an
equivalent server skeleton which is created from a common interface object. The client
stub is used to connect RMI Registry, whereas the server skeleton transmits the remote
method invocation to the actual remote object implementation.

RMI provides a mechanism, called as Object Activation, in which the management of the
executed object implementation and persistent references to those objects are provided.
An instantiated remote object is called as active, while if the object is not instantiated, it
is passive object. Transforming a passive object into an active object is the process of
activation. RMI uses lazy activation, which means the object is only activated when the
client first invocate the object’s method.

The core RMI API provides a default network protocol called as Java Remote Method
Protocol (JRMP). RMI-over-JRMP (RMI/JRMP) is a proprietary, lightweight protocol
and only permits to communicate with other Java RMI objects. Its main features are ease-
of-use and usage of distributed garbage collection [13].

Client

Server

Registry

Web Server Web Server

URL
protocol

RMI

RMI

URL
protocol

Object

3. Technologies for Service Oriented Architecture

 - 30 -

The limitation of RMI/JRMP can be achieved by using the communication protocol
Internet Inter-ORB Protocol (IIOP) over RMI. RMI-over-IIOP (RMI/IIOP) does not
require knowing a separate language, because it uses Java as native language to define
the service interface, and it provides flexibility and performance enhancements.
RMI/IIOP can interoperate with the applications written other than Java.

3.2 COM / DCOM

Component Object Model (COM) is a part of Microsoft Windows family of Operating
Systems and used by developers to create re-usable software, link components together to
build applications, and take advantage of Windows services [16]. COM is the
combination of other Microsoft technologies including COM+, Distributed COM
(DCOM), and ActiveX Controls.

COM is a component-based software architecture which allows components from variety
of applications to be combined and built into a new higher-level software application.
COM defines a standard for component interoperability. It is independent from particular
programming language, available on multiple platforms, and extensible [17].

A COM object is defined as some piece of compiled code used for providing certain
service. These objects is different than the objects defined in object-oriented
programming, such that one object fulfills a comprehensive requirement in the system.
COM defines these objects as component object or simply an object.

Applications communicate with each other through collection of functions called as
interfaces. Interfaces provides the application logic used between components. A pointer
figures out the interface that component objects implements during the interaction of
different components. It is only used to call the function without modifying system state.
Interfaces are strongly typed and a component object can implement multiple interfaces.

Figure 3.5 displays the relationships among component objects; interfaces and pointers
within the context of COM based application.

Figure 3.5: COM Architectural Model

Object

Object

Interface

Interface Pointer
Application Application

3. Technologies for Service Oriented Architecture

 - 31 -

Distributed Component Object Model (DCOM) extends COM so as to support
communication among objects on different computers on a LAN, a WAN, and the
Internet [18]. It allows the components to be used at distributed environment by handling
the low-level details of network protocols.

In COM, the interaction between different components is handled by usage of some form
of inter-process communication provided by the operating system, since the component
cannot call directly the other component that it wants to communicate. When these
components are located in different machines, DCOM restore local inter-process
communication with a network protocol and hides the communication details from client
components.

The following figure is the illustration of DCOM architecture. The model consists of
COM runtime, DCE RPC and security provider, which all together provides a
background for DCOM wire-protocol implementation.

Figure 3.6: DCOM Architectural Model

Architecturally DCOM provides cross-platform development. It allows the integration of
platform-neutral development frameworks and virtual machine environments to build up
a single distributed application.

3.3 CORBA

Common Object Request Broker Architecture (CORBA) is an object system which
provides a framework where objects can communicate with each other in a distributed
manner without platform and language dependencies. An object system is a collection of
objects that isolates the requestors of services from the providers of services by a well-
defined encapsulating interface [19]. In particular, clients are isolated from the
implementation of services as data representations and executable code.

Client COM
run-time

COM
run-time

Component

Protocol Stack

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

DCE RPC

DCOM
network
protocol

3. Technologies for Service Oriented Architecture

 - 32 -

CORBA is a specification from Object Management Group. It defines Interface
Definition Language (IDL), a core API which classifies a communication infrastructure
based on Object Request Broker (ORB) for distributed applications, and a TCP/IP based
communication protocol called as Internet Inter-ORB Protocol (IIOP).

IDL is a language for describing distributed object attributes and operations which
combines client applications to the server for usage of CORBA specific services. Clients
and server converse with each other which is based on a specified contract and as long as
the contract is valid, the implementations of the client applications are independent from
this contract.

The main component in CORBA’s architecture is the Object Request Broker (ORB),
which is a software component for insuring a proper communication of objects across
heterogeneous environments. It connects all application components, interfaces and
services to be able to achieve interoperability and provide certain functions for distributed
applications.

Figure 3.7 is the illustration of the components in architectural structure of CORBA.

Figure 3.7: The Structure of CORBA Object Request Interfaces

The architecture of CORBA enables the client to be aware of server objects and invoke
them through dynamic invocation. Clients can also use IDL stubs which define the way
for clients to invoke server objects. ORB Interfaces are the APIs for CORBA specific
services. The skeletons provide environment for object implementation. Lastly, the object
adapter handles communication between an object and the ORB.

CORBA defines variety of services designed for the enablement of sophisticated
communication between different parties with allowing implementation of Quality of
Service (QoS) requirements.

Client Object Implementation

IDL stubs
Object Adapter

ORB
Interface

Static IDL
skeleton

Object Request Broker

Dynamic
Invocation

Dynamic
skeleton

3. Technologies for Service Oriented Architecture

 - 33 -

Some of these services are defined as follows:

− Event Service: provides the proper allocation of events to the related components
which register or un-register their interest to certain messages or events.

− Life Cycle Service: provides life-consistency of CORBA distributed objects.
− Naming Service: allows for distributed components to discover each other by

searching one another by its name.
− Persistence Service: provides an interface used for storing components on a

variety of database management systems.
− Security Service: provides a security framework for distributed objects.
− Transaction Service: provides two-phase transaction standards among

recoverable components.

Interoperable Object Reference (IOR) is the network-addressable reference given to an
object in CORBA. IOR encodes the hostname and port to which the messages are being
sent and provides a mechanism to distinguish different objects.

3.4 Web Services

Web services are a set of XML-based technologies which aim to provide a standard way
for communication of different applications and interoperability of heterogeneous
computing environments. Web services use standard Internet technologies for messaging
and data exchange, which makes them suitable for development of an application
accessible in a platform-independent environment.

A formal definition of Web services are as follows [9]:

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine process-
able format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards”.

The implementation logic of a Web service can be written in any language and in any
platform. The technologies of Web service makes this implementation logic accessible
using standard Web technologies, such as HTTP and Web browser, and result in a faster
and more dynamic communication for connected applications.

Web services architecture is service-oriented in which a consumer searches for an
available provider of a service to execute a certain function. A service registry contains
published services and when there is a request for a service, it returns back the
information which allows requestor to locate and invoke the service.

Figure 3.8 illustrates the roles in Web services architecture.

3. Technologies for Service Oriented Architecture

 - 34 -

Figure 3.8: Web Services Architecture

Web services architectural model is based on a layered family of technologies. Each layer
is interrelated with each other, and provides a level of abstraction and functionality for
Web service based application development.

The following figure illustrates some of these base technologies.

Figure 3.9: Web Services Technology Stack

XML (Extensible Markup Language) [20] is the basic foundation of Web services and a
base language for defining and processing of data. XML support dynamic content
creation and management. It expresses the data as self-describing elements, which then
may have child elements. It is a family of technologies used for creation, definition, and
transformation of XML documents.

Security

Communications
HTTP, SMTP, FTP, JMS, IIOP …

M
anagem

ent

SOAP Extensions

SOAP

Messages

Descriptions
Web Service Description Language (WSDL)

Processes
Discovery, Aggregation, Choreography

B
ase Technologies: X

M
L, D

TD
, Schem

a

B
ase Technologies: X

M
L, D

TD
, Schem

a

Service
Requestor

Service
Provider

Registry
(UDDI)

Publish

Service
Description

(WSDL)

Find

Bind

SOAP
Messages

3. Technologies for Service Oriented Architecture

 - 35 -

Some of XML-based technologies include:

− XML schema: an XML document that defines data types, structure and allowed
elements in an associated XML document,

− XML namespaces: the uniquely qualified names for XML document elements and
applications,

− Extensible Style-sheet Language Transformations (XSLT): used for transformation
of XML documents into other XML document format.

Simple Object Access Protocol (SOAP) [21] is a specification for describing how to read
and format XML messages between service consumer and service provider in Web
services architecture. It provides a messaging framework independent from operating
system, programming language, or distributed computing platform. A SOAP message has
three parts:

− The SOAP envelope: it is the top element of the XML document and specifies
that the message is a SOAP message.

− The SOAP header: it contains optional attributes, application context information
and directives used in processing of the message. It specifies the position of the
message which can be either an intermediary point or an eventual end point.

− The SOAP body: it contains the actual application data being sent between
consumer and producer.

SOAP messages support one of the two types of message exchange patterns: document-
oriented format and RPC style format. Document-oriented message exchange allows
service consumer and producers to exchange XML documents as data representation,
whereas in RPC style the data is passed as arguments and contains sufficient information
to invoke a method and fulfill a function offered from producer. SOAP is fundamentally
one-way communication model; however it is possible to implement a request/response
model.

Web Service Description Language (WSDL) [22] is an XML-based language for
describing Web services interfaces and specifying a service contract. It provides a
standard way to describe the data types passed in messages, the operations to be
performed on the messages, and the mapping of these operations to the transport
protocol.

WSDL document is structured into logical sections to create a final Web service
description, which is then used from service consumer to interact with the service. The
description contains the following major elements:

− The definitions element is the root element of the XML document and declares
the namespaces and the service name used by the service.

− The types element contains data type definitions used in the conversation of
service producer and consumer.

3. Technologies for Service Oriented Architecture

 - 36 -

− The message element represents the input and output parameters passing between

the service requester and the producer, and describes various messages the service
exchanges.

− The operations element represents a particular interaction in the conversation.
− The portType element describes the set of operations that the service supports

and provides information including operation name, input and output parameters.
− The binding element represents a particular binding of the operations to a specific

implementation protocol, such as SOAP.
− The service element is a collection of ports. A port describes a network location

where the service can be invoked.

Service consumers use WSDL to interact with the service using the following scenario
shown in the following figure [1].

Figure 3.10: The Interaction of Service with Its Consumer

The other main technology of Web Service is the Universal Description, Discovery and
Integration (UDDI) [23] specification which defines a framework for businesses to
publish their services, discover the available services and construct a global registry. A
registry provides the available services to consumers, and allows service producers to be
known their services by consumers.

There are three types of registries:

− White pages: allows consumers to search for an address, contact information, and
known identifiers.

Part

Part

Message

Part

Part

Message

Input and output messages construct an
<operation>. A collection of
<operation> forms a <portType>.

SOAP / HTTP Request

SOAP / HTTP Response

A <port> exposes the service
using a specific protocol binding.

<service> represents the actual
service being used. A service is
exposed as a <port>.

<location> represents the
network endpoint for the port.

Messages have parts. Parts are
defined as schema in the <type>.

<binding> represents how ports
are accessed using a specific
protocol like SOAP / HTTP.

Port
Service Service

Consumer

3. Technologies for Service Oriented Architecture

 - 37 -

− Yellow pages: includes classification of information based on standard

taxonomies.
− Green pages: indicates the services offered and reference it to a specified

business process.

UDDI includes four main parts in its architecture, which are businessEntity,
businessService, bindingTemplate, and tModel. The businessEntity contains descriptive
information about a particular business organization and provides references to the
offered services. The businessService indicates the actual service which has a unique
identifier. The information necessary for a client to invoke a service is provided by
bindingTemplate. The tModel (technical model) is primarily used to point to the external
specification of the service being provided.

The following figure represents the usage scenario of these primary core data structure
types [1].

Figure 3.11: UDDI Informational Structural Model

Web services have broad usage areas including accessing back-end software systems,
such as databases, integrating diverse applications to achieve business-to-business (B2B)
interaction and enterprise application integration (EAI), and building Internet-based
applications which provide user to access the system resources.

3.5 Feature Based Comparison of Technologies

The technologies that have been introduced in this section can be used to implement
Service Oriented Architecture. However, the capabilities of each technology determine
the complexities that it aims to solve when building a SOA. Although Web services are
new and revolutionary approach to service-based software development, it is critical to
conclude a certain technology as a universal remedy.

businessEntity

tModel bindingTemplate

businessService Entities contain Services

Services contain Tem
plates

Templates contain tModels

Contains information
about the entity that

offers services

Describes the
specifications for services

or categorizations

Describes a service
offering

Describes the service
entry point

3. Technologies for Service Oriented Architecture

 - 38 -

The following part will set up various significant SOA characteristics and elaborate these
technologies to discover the competencies of conforming SOA requirements.

Development Model

Although SOA involves the development of services in its structure, especially the
approaches before Web services for building service oriented applications are based on
distributed object communication, such as JMS, which focuses on principally messaging,
and RMI. A key difference between CORBA and COM/DCOM with Web services is that
CORBA and COM/DCOM provides object oriented component architecture, however
Web services supports service based messaging structure.

Interface Definition Language

Each technology introduced its own interface definition language used to describe the
service in public. Respectively, COM/DCOM uses Microsoft Interface Definition;
CORBA uses CORBA Interface Definition Language (IDL), and J2EE uses Java
programming language. Web Service Definition Language (WSDL) is proposed within
the Web services technology stack and universally accepted language. It utilizes XML
and provides the ability to bind to multiple transports.

Coupling

A significant feature of SOA is to enable a loosely-coupled architectural model
development in which the services are recombined and repackaged in order to build a
new and compound application structure. A Tightly-coupled application has
predetermined relationships within its application structure and it is difficult change this
structure.

JMS is based on messaging structure. As the producer and consumer of the message are
not dependent on each other, JMS achieves loose-coupling by some means. Web services
also target loosely-coupled application development; however there can be tight coupling
at the interface definition level and protocol binding. J2EE, COM/DCOM and CORBA
require rigid interface development and do not allow loosely-coupled interface
definitions.

Platform Independence

Architecturally services might be combined from different heterogeneous applications
and platforms which involve diverse component structures written in a variety of
programming languages. A platform independent service oriented technology allows
building a competent and sophisticated service-based application infrastructure by
assembling these services to build a service oriented architecture.

3. Technologies for Service Oriented Architecture

 - 39 -

CORBA promotes platform independent development environment in which the
application can be written in any language, however, it is still needed for communicating
applications to use the same Object Request Broker software from the same vendor for a
full support of interoperability. Web services support platform independence by
leveraging standard Internet technologies such as XML and HTTP. J2EE and
COM/DCOM provides vendor-specific application development environments and the
communicating parties should act upon the same standards.

Interoperability, Support for Open-Standards

The previous technologies before the introduction of Web services support their own
protocols located over TCP/IP. The applications built with these technologies such as
CORBA and DCOM are dependent on a single vendor’s implementation. JMS and RMI
address the usage of the identical environments on both the communication sides to
interoperate. Web services standardize the communication protocol by using widely-
accepted, open Internet technologies for building interoperable distributed applications.
This advancement allows for applications easily access to and communicate with each
other.

Web services requires no certain programming language, protocol or operating system
between communicating parties, so it achieves a high-level of interoperability
requirements and provides a means of universal solution when building a service oriented
architecture in terms of interoperability.

Location Transparency

Location Transparency is one of the main characteristic of SOA. SOA requires that the
consumer of a service should dynamically locate the service from registry without
knowledge of the exact position of the service. Accordingly, if it is required to move the
service from one place to another, the consumers of this service should not affect from
this changing.

CORBA Interoperable Object References (IORs) provide location transparency for
objects and strongly typed. Web services use URLs to indicate theirs location, which are
not strongly typed.

Communication Mode

Most distributed object based technologies support RPC-style synchronous
communication, such as COM/DCOM and CORBA. JMS specifically supports
asynchronous communication, however still it is possible to be able to build synchronous
communication-based JMS applications. Web services can be used with both
synchronous and asynchronous communication mode.

3. Technologies for Service Oriented Architecture

 - 40 -

Service Discovery and Registry Support

The technology used in building SOA should provide a mechanism for consumers to
dynamically discover the available services from registry, and for a provider to publish its
services, which then will be available publicly.

CORBA provides standard services for service discovery and registry support, such as
the Naming service, which maps a logical name to an object reference, and the Trading
service, which allows finding a service based on specified service properties. Web
services use UDDI, a general-purpose registry that can be used to query for available
services.

Security

Security is the main concern especially when building large-scale, distributed application
infrastructures. It involves supporting of features such as authentication, authorization,
encryption, data-integrity and auditing.

JMS provides J2EE-compatible security standards mostly implemented by the JMS
provider and it is vendor-specific. CORBA supports security by standard CORBA
Security service. The main drawback for Web services is that there is still ongoing-work
for Web services to support a sophisticated security framework. Web services can use
HTTPS for security support at transport layer, or other Internet technologies to build
security such as SSL or XML-signature. The standardization effort is mainly around WS-
Security (see Appendix), which enables an interoperable end-to-end security model in the
future.

Transactional Support

Certain applications require that the data should be persistent and transactional. Web
services currently do not support transactions. WS-Coordination and WS-Transactions
are ongoing standardization models for Web services to support loosely-coupled
transactional models with compensation. JMS only supports transactions to the
messaging queue entry point and the consumer of the message is responsible for
transactional support after getting the message from the queue. CORBA provides a
satisfactory transactional model by CORBA Object Transaction Service which offers
both short lived database transactions and long lived business transactions that may
involve integration of different autonomous business systems.

Table 3.1 displays a complete comparison of these technologies based on the discussed
characteristics and features.

3. Technologies for Service Oriented Architecture

 - 41 -

 JMS RMI COM/DCOM CORBA Web services

Development
Model

Object
Oriented

Messaging
Development

Object
Oriented

Development

Object
Oriented

Component
Development

Object
Oriented

Component
Development

Component
Oriented
Service

Development
Interface
Definition
Language

Java
Programming

Language

Java
Programming

Language

Microsoft
Interface

Definition
Language

CORBA
Interface

Definition
Language

(IDL)

Web Service
Definition
Language
(WSDL)

Coupling

Loose-
Coupling

Tight-
Coupling

Tight-
Coupling

Tight-
Coupling

Loose-
Coupling

Platform
Independence

Targets Java
Platform

Targets Java
Platform

Targets
Microsoft
Windows
Platform

Platform
Independent

Platform
Independent

Interoperability,
Support for

Open Standards

Not
Interoperable,
Java Standards

Not
Interoperable,
Java Standards

Not
Interoperable,

Windows
Platform
Standards

Not
Interoperable,

CORBA
Standards

Interoperable,
Open Internet

Standards

Location
Transparency

Location
Transparent

through
Message
Provider,
Vendor-
specific

Location
Transparent
through RMI

Naming
Facility

Location
Transparent

through
Interface
Pointers

Location
Transparent,

CORBA IORs

Location
Transparent,

URL
Addresses

Communication
Mode

Asynchronous
Mode,

Possible to
Implement

Synchronous
Mode

Synchronous
Mode, RPC-

based
Development

Synchronous
Mode, RPC-

based
Development

Synchronous
Mode, RPC-

based
Development

Supports both
Synchronous

and
Asynchronous

Mode

Service
Discovery and

Registry
Support

Registry of
Messages by

Message
Provider

RMI Registry Service
Discovery

through
Interface

Pointers, No
Registry
Support

Standard
CORBA
Services,
CORBA

Naming and
Trading
Service

Supports
through
UDDI

Security

J2EE-
compatible

security
standards

J2EE-
compatible

security
standards

Microsoft
Windows-
compatible

security
standards

CORBA
Security
Service

Ongoing-work
for

Standardization

Transactional
Support

Partial Support Supports Supports CORBA
Object

Transaction
Service

Ongoing-work
for

Standardization

Table 3.1: Feature Based Comparison of Service Oriented Technologies

3. Technologies for Service Oriented Architecture

 - 42 -

As it can be seen from the table, Web services provide a significant improvement in the
evolution of service-oriented computing environment. As Web services introduce
platform independent, loosely coupled and open-standard based communication
background, the new approach to application development bring in flexible interaction of
business partners and ease of solving integration complexities between distributed
applications.

However, Web services technologies are still evolving and there is continuing effort to
support Web services with additional features and functionalities, such as security and
transactional support. On the contrary, J2EE and CORBA are robust and mature
computing environments with offering satisfactorily features support, reliability and
scalability.

Other concern when building a SOA is that the technology should allow rapid
application development (RAD) with providing a universal programming model, which
Web services support. Although especially CORBA is widely used technology and
provides a rich development environment, it requires learning a new programming model
and does not support a straightforward and cost-saving application development.

Presently Web services are gaining momentum to be a dominant technology over its
competitors. The future evolutions of Web services will shape its acceptability and
competency, and determine its position in computing environment.

 - 43 -

4. Service Orientation in Software Design and Development

Service based architecture utilizes software services to build an application structure in
which the organization’s requirements are satisfied through reusable and distinct
functional modules. A service provides well-defined possibilities for application
integration, distribution of business functions inside the organization and across
organizational boundaries, and improvement of software quality by allowing adaptable
interfaces suitable for accessing across a network.

To construct service oriented architecture requires a clear understanding of business
functional domains and processes including intelligent decisions about how to implement
business functions as separate services. Modeling and designing of services within an
application structure needs more sophisticated approaches and considerations than
traditional application development.

Developing a service based application is different from a standalone application in a
sense that designing, developing, managing and maintaining of services are precious and
require advanced development stages. The main benefit of SOA is gained over the long
term of service implementations.

4.1 Service Oriented Design

Services are complex modules that need to be applicable to certain criteria and
development considerations. Good service design result in effectively encapsulated
business logic and data communication which correlates real-world processes with the
technical computing environments. Services are designed in a way that they represent a
precise problem domain modeled to solve, require minor maintenance while they are
executing, and provide high usage alternatives in specified backgrounds.

Service based enterprise application architecture involves variety of services including
business process services, technical services, and user interface (UI) services. These
services can be structured independently, without requirement of the placement on a
single computer. Such application infrastructure is obviously differ from a traditional
architecture and requires unique design considerations which allow the application to
utilize networked computational resources with offering several key advantages.

It is needed to take into consideration that services bring the main benefit when they are
designed for integration [24]. Services are used to integrate disparate applications and
software systems within different communicating partners and computing environments.
The design of services also should support the upcoming potential applications not
known at development phase of services.

4. Service Orientation in Software Design and Development

 - 44 -

The essential difficulties when developing enterprise service oriented architecture is to
decide on which service is needed to support the business processes of the organization,
clarified through service oriented analysis, and how each service should be built,
described in service oriented design. The other concern is to simplify the technical
infrastructure in which the services are deployed and managed.

Service oriented analysis involves the clarification of the problem domain and definition
of the functional and nonfunctional requirements necessary for the entire system. Since
service orientation requires specific decisions on the structure and modules of the
application architecture, it is needed to consider some methodologies and design issues
when building services in the design and analysis phase of the application development.

Service oriented analysis articulates some of the following key characteristics differ from
traditional software analysis:

− Services support multiple applications that are dynamically constructed. Therefore,

a clear explanation of the service descriptions and boundaries is required to
maintain the needs of other applications.

− It is needed to portray the business domain of the organization and functional
decomposition of the business into atomic subject areas and processes. The analysis
of the subsystem consists of creating object models to represent the internal
structures, which is then realized by services.

− A service is needed to be designed and structured in a way that it is agile to system
changing, however it is supposed to be up to date.

− Nonfunctional requirements are needed to be defined to satisfy the quality aspects
of the services. These aspects involves definition of reusability of services,
performance and security levels, availability, maintainability and other issues that
surrounds services.

The analysis of a service based system contains a feature list that the services are going to
support, the use cases that describe potential ways for consumers to utilize these features
and a detailed explanation of the components that will implement the services. The
business architecture [25] helps the designer to classify the problem domains and
elucidate possible usage of services in businesses. It describes potential use cases by
illustrating the way of business procedures and is independent from any technology.

4.1.1 Service Design Considerations

Service design includes several fundamental issues and guidelines that need to be
clarified to overcome the complexities of building service based application. During the
design phase of a service based application the services are structured according to the
specific design considerations, some of them will be described as in following.

4. Service Orientation in Software Design and Development

 - 45 -

Modularity

Modularity is an important concept in service construction. A service needs to be
applicable for the following principles to support good design [26]:

− Modular composability: the service should allow to be integrated with other
services to structure a new application. It is an indication of a good design if the
service can be composable dynamically with other services.

Modular composability, also called as bottom-up design, starts from defining integration
services based on the functionality of existing applications and the requirement for the
integration. The promise of this approach is to set up interoperability standards between
diverse applications.

− Modular decomposability: it refers to be able to separate the whole application
into small modules, which state a discrete business function. These small modules
are reusable in composition of services and building composite applications.

Modular decomposability is often referred as top-down design. This approach to SOA
design starts with building a business model of the enterprise, defining both processes
and semantics, and then mapping this model onto business services [27]. It allows better
arrangement of business and application perspectives.

− Modular understandability: the service does not need any other service or

application module to be able to articulate a business function. The boundaries of
the service are the verification of understandable and functional business logic.

− Modular Continuity: it implies in case there is an implementation altering in one

service; it should not require the other services and consumers to be effected. A
service needs to hide its internal implementation structures from outer surface.

− Modular Protection: if there is an unusual condition caused by one service, the

other services and consumers should not collide in order to support an expected
execution of services in its regular environment.

Service Abstraction

Service abstraction is a design issue which guarantees that a service is independent of any
specific application infrastructure and technology. The main aim is to focus on the
functionality of the service rather than how the service implements this functionality.
Abstraction requires that the internal working of the implementation is needed to be
hidden from service consumer. In this way, it is possible to invoke the service by
different existing applications.

4. Service Orientation in Software Design and Development

 - 46 -

The following figure illustrates different parts of the service including its description and
implementation logic within the context of other services. The key feature of a service is
that one description might have more than one service implementation associated with it
[28].

Figure 4.1: Service Abstraction

Service abstraction allows to access different service types including services that
supports wrapped legacy applications, composite services and applications built with
other services.

Service Classification

When the services are identified, service classification helps to determine the
composition and the layering of services in a service hierarchy, as well as coordinates the
individual and interdependent services in SOA layered architecture. Classification also
facilitate to the realization and creation of new services which are based on small-grained
services layered on the bottom.

Service Interfaces

Services communicate each other through messaging. When defining a service, it is
needed to identify which messages being sent and received by the service with the proper
sequence of these messages. The service interface reflects this message exchange to the
other communicating parties.

RPC style communication is based on interface semantic in which the interaction
between services is done with method invocation encoded in request/response calling.
Message based communication handles the service interaction through messages that
carry the data and other information. This is referred as payload semantic. Web services
use XML as message transportation and provide document-centric messaging approach.
Document centric messages are semantically rich messages where the operation name, its
parameters, and the return type are self-descriptive.

.NET

CORBA

J2EE

Other

Service Implementation Mapping Layers

Service Descriptions

4. Service Orientation in Software Design and Development

 - 47 -

Figure 4.2: Services and Messages

Service interfaces describe the complete information needed for the messages to activate.
This information involves the functionalities that the services provide including
parameters and return values of the service methods. Designing a service interface is
challenging in a sense that the interface should be sufficient descriptive to support
multiple service consumers in an efficient way.

Aggregation and Composition

Aggregation and composition of services provides a better design of service oriented
architecture in a way that fine-grained services can be used internally and coarse-grained
services provides the application function to the communicating parties. Figure 4.3
illustrates that services can be delivered at a number of different granularities to suit
different requirements [29]. Fine grained generalized services are composed into coarser
grained services that are specialized to provide a specific function within the enterprise.

Figure 4.3: Aggregation and Composition of Varying Granularity of Services

Service

Consumer
B

Service

Consumer
A

Service Provider
Aggregation

Coarse Grained
Services

Mixed Grained
Services

Service Provider’s
Services

Service Provider’s
Systems

Fine Grained
Internal Services

Service
Service

Service

Service

4. Service Orientation in Software Design and Development

 - 48 -

Exception Handling

It is unavoidable that the system may have errors during its execution. To define the
service exceptions is a good design issue which allows handling of many errors
programmatically in advance.

4.2 SOA Meta Model

The W3C Services Architecture Group defines SOA model in terms of invocation
message, implementation, owning organization, and metadata describing the service [9].
The message-oriented model defines a message in terms of its content, delivery transport,
and creating and executing agents. The resource-oriented model defines resources in
terms of URI, representation, and owning organization. The policy model defines policy
in terms of its subjects, organization, and supporting policy.

Figure 4.4: Meta Model of Service Oriented Architecture

The basic service oriented model consists of services, processes, and organizations. SOA
models the enterprise as collection of business services accessible across the enterprise.
The main features of the business services can be described as coarse grained, process
centric, loosely coupled, distributed and have stateless invocation. Business services are
orchestrated into business processes to provide certain required business functionality.
Organizations manage the creation, execution, and maintenance of the services and
processes.

Extended SOA model provides to the enterprise semantic data model and documents as
an extension of SOA definition. The semantic data model defines the standard business
data to effectively create ontology of the enterprise. Documents are legal entities that
define the responsibilities of the enterprise and communicating parties. A SOA
implementation should include documents and conserve the connection between
enterprise transactional data and supporting documents.

Service Oriented
Model

Message
Oriented Model

Policy Model

Resource
Oriented Model

Policy

Resource

Message

Action

4. Service Orientation in Software Design and Development

 - 49 -

Figure 4.5: Extended SOA Model

The W3C Services Architecture Group defines Web services architecture as an instance
of SOA in which the service is described as an abstract notion that must be implemented
by a concrete agent. The agent is the concrete entity, meaning that a piece of software,
that sends and receives messages, while the service is the abstract set of functionality that
is provided.

4.3 Service Oriented Modeling

Modeling is a required activity all through the range of software development life cycle
phases and involves design and measurements of necessities, definition of architectures
and software systems, and clarification of modeling types appropriate for the needs of
software modules. Modeling provides an effective way to handle the requirements and
complexities of software development.

Service oriented modeling utilizes effectual approaches to identify the fundamentals of
SOA by applying analysis and design techniques of service orientation. Modeling allows
clear description of the elements in SOA layers and provides an environment in which
these elements are visualized or textually described to be able to formulate significant
architectural decisions for structuring the service-based application.

Basically the process of service oriented modeling and architecture consists of three
general steps [10] which includes identification, specification and realization of services,
components and service flows, also called as choreography of services.

Service identification is the clarification of services which is done through decomposition
of business domains, analysis of existing system resources, and definition of required
functionalities by applying top-down or bottom-up design approaches.

Business Processes

Organization

Resources (services)

Owns Owns

Uses

Documents Semantic Data Model

Owns Owns

Uses Uses

Uses

4. Service Orientation in Software Design and Development

 - 50 -

Service classification or categorization is a required activity in service specification
which allows aggregating all services into a service hierarchy after they have been
identified. This process should reflect the granularity, usage areas, composition and
layering of services. The components that build the services are also specified in this
phase.

Service realization involves recognizing of the services within the service oriented
application. The services are possibly used for different purposes such as integration of
diverse functionalities, business or data services, or to provide certain functions such as
security and monitoring. The modules, components, and legacy applications that use
these services need to be identified with the aim of an appropriate execution environment.

The activities described above are illustrated in the following figure.

Figure 4.6: Service Oriented Modeling Method

Service oriented modeling method described above provides specific direction on the
analysis and design activities for determining fundamental aspects of service oriented
architecture. The modeling of services should reflect creation of business specific
services and decisions about how they will be composed into applications using
choreography.

4.3.1 Unified Modeling Language

Unified Modeling Language (UML) is proposed by Object Management Group (OMG)
[30] and a language for modeling, visualizing, constructing and documenting all features
of software systems and related artifacts. It offers a better support for model-driven
development (MDD) by providing advanced abstraction and automation methods for
modeling software.

Domain
decomposition

Existing system
analysis

Functionality
definitions

Service Identification

Service Specification

Component
specification

Service
classification

Granularity of
services

Service
composition

Service flow
specification

Message-Event
specification

Service Realization

Service allocation to
components

Determination of usage areas of
services

4. Service Orientation in Software Design and Development

 - 51 -

UML standardizes the modeling of software by providing both graphical and textual
syntax and semantic, so that it is possible to apply generic rules of UML to all stages of
software development. It allows for developers to concentrate on the abstraction of
software rather than the implementation details.

Primarily UML provides use case diagram, class diagram, behavior diagrams, and
implementation diagrams. All these diagrams can be used to model different
functionalities of application architecture. The UML specification [31] describes overall
aspects of UML diagrams including version 2.0 features.

UML provides in version 2 a meta-model for software construction which can be
applicable for transformation of models to interoperate with each other and generation of
automated tools for compilers, testing and other features in software development stages.
It is an extension version which provides a standard way to model specific areas such as
web-based applications and service oriented architectures through profiles in which the
specific problem domains and solutions are abstracted and modeled in an effective
approach. A profile identifies the UML elements to be used, extension points, and the
rules for gathering these elements. UML 2.0 improves modeling of large-scale software
systems and grounds validation and clarification of various modeling concepts.

An example UML 2.0 profile is provided [32] which demonstrates modeling of services,
service oriented architecture, and service-oriented solutions. The aim of this profile is to
provide a common language for describing enterprise-wide service portfolio. The logical
divisions contain service specifications which act as the contracts between the service
clients and providers, and other related artifacts.

UML 2.0 Meta
class

Stereotypes

Class Message, Service Partition, Service
Provider

Classifier Service Consumer
Collaboration Service Collaboration

Connector Service Channel
Interface Service Specification

Port Service, Service Gateway
Property Message Attachment

Table 4.1: UML 2.0 Meta Model Elements for SOA

UML 2.0 profile outlines individual stereotypes, the details of which specify its Meta
class, properties, and any constraints which should be applied when using the profile. As
an example, a stereotype message is represented as a class and provides semantics for
representation of concepts defined in the Web Service Description Language
specification. It has property named as “encoding”. A description for stereotype service
can also be described as it extends port and provides semantic for an end-point
implementation of service consumer-provider interaction.

4. Service Orientation in Software Design and Development

 - 52 -

Simplified illustration of the example profile is shown in following figure.

Figure 4.7: An Example UML Profile for Services

This example profile is mainly rested on stereotypes which categorize the elements of a
model. Stereotypes are good for the readability of the model and guiding the behavior of
a model translator tool. Profiles as well can be defined for a specific technology, such as
CORBA, and particular data modeling technique.

4.3.2 Model Driven Architecture

Model Driven Architecture (MDA), proposed by Object Management Group (OMG), is a
conceptual framework which allows modeling at distinct levels of abstraction and defines
transformation between different model types, as well supports automated tools for the
evolution of modeling and model-driven development (MDD) technologies [33].

<<metaclass>>
Class

<<metaclass>>
Port

<<stereotype>>
Message

+ encoding: String

<<stereotype>>
Service Provider

+ allowedBindings: String

+ location: String

<<stereotype>>
Service

{Message Property
may only be used on

Message}

{Service may only be
used on Provider}

{Specifications may
only be used on

Service}

<<stereotype>>
Message Attachment

+ encoding: String

<<stereotype>>
Service Consumer

<<stereotype>>
Service Specification

<<metaclass>>
Property

<<metaclass>>
Classifier

<<metaclass>>
Interface

4. Service Orientation in Software Design and Development

 - 53 -

MDA is based on several open OMG’s modeling specifications:

− UML (Unified Modeling Language): used for identifying application
development models and transformations

− MOF (Meta-Object Facility): used for defining meta-models which describe the
models in a clear and definite way in order to have the ability to analyze,
automate and transform them.

− CWM (Common Warehouse Meta-model): It covers the full life cycle of
designing, building and managing data warehouse applications and supports
management of the life cycle.

− XMI (XML Metadata Interchange): provides an XML tag set used for passing
UML information between tools, databases, and applications.

MDA allows modeling of enterprise applications using these modeling specifications and
transformation of the models into specific application development platforms including
CORBA, J2EE, .NET and web-based platforms.

MDA is the evolution of model driven software development technologies in which the
modeling is not characterized only with graphical notations and tools for transformation
of models. Roundtrip engineering (RTE) is the notion of bi-directional approach to code
generation from an abstract model, and MDA is the advancement of this technology
wherein the model is the heart of application development. The code is automatically
generated from this model and described using standard languages. MDA provides the
fundamental features such as model classification in which the business aspects of the
model are separated from the details of the platform and refinement of the model in an
independent way from the code execution.

MDA encourage usage of system resources in an effective way by providing modeling of
software in a platform, network structure and programming language independent
manner. In this way, it is achievable to provide a universal approach for integrating
complex applications written in different languages and running on different platforms.
It offers inclusive interoperability modeling approaches for developing interconnected
systems.

MDA defines diverse levels of modeling:

 Computation Independent Model (CIM): provides modeling of the system
environment independent from its technical structure,

 Platform Independent Model (PIM): provides modeling of the application
independent from a particular platform,

 Platform Specific Model (PSM): extends PIM with particular platform
implementation,

 Platform Model (PM): provides modeling of a particular platform,
 Transformation Model (TM): defines a model for the transformation from a

specific PIM to a specific PSM.

4. Service Orientation in Software Design and Development

 - 54 -

The initial step in MDA development process is to create a Platform Independent Model
(PIM), expressed using UML or any other well defined modeling language that allows
interpretation by a computer. PIM is the logical view of the application structure without
any specific technology details, which can be mapped to one or more Platform Specific
Models (PSM) that represents the source code implementation and defines the technical
platform, for instance COM, CORBA or Enterprise JavaBeans (EJB). The process of
converting a PIM into a PSM is called transformation. Application development in MDA
can be structured around definition of meta-models, a set of models by imposing
transformations between models and automation of these models through tools.

MDA allows modeling of well defined interfaces and services in SOA based application
development. The following figure represents an example MDA development process.

Figure 4.8: Model Driven Architecture Development Process

4.4 Implementation Models for Services

The Middleware Company proposed SOA Blueprints [34] which represent a
comprehensive attempt to define and implement an enterprise application architecture
that utilize SOA best practices in real-world computing environments.

UML Class
Model

OMG UML Specification

UML
Activity
Model

UML
Sequence

Model

Abstract Model of a Specific
Application Architecture

Concrete Model of
the Application

Concrete Model of
the Application

Concrete Model of
the Application

CORBA Profile J2EE Profile .NET Profile

CORBA
Code

JAVA
Code

.NET
Code

Platform
Independent
UML Model

(PIM)

Platform
Specific UML
Models (PSM)

A profile
extends UML
and provides a
consistent way

to generate
code from a
UML model

4. Service Orientation in Software Design and Development

 - 55 -

The SOA Blueprints specifications identify the following SOA implementation patterns
for services:

Synchronicity: Services can be invoked in one of two modes, synchronously or
asynchronously. The mode chosen for a particular service depends on its potential usage,
how long the service takes to run and how reliable the service invocation needs to be.

Figure 4.9: Synchronous and Asynchronous Services

Component Services: A component service is a simple atomic action on a simple entity
that does not depend on another service to function. As an example database access to a
single table can be thought of as a component service.

Figure 4.10: Component Service

Service
Consumer

Component
specification

Database

Component Service

Request Purchase
Order

Asynchronous
Service

Response
Invoice

Possibly after days

Service
Consumer

Service
Consumer

Activity 1

Activity 2

Activity 3

Request Purchase
Order

Service
Consumer

Synchronous
Service

Response
Invoice

4. Service Orientation in Software Design and Development

 - 56 -

Composite (Business) Services: A composite service is also atomic in nature, but
orchestrates the invocation of component services into a business level process.

Figure 4.11: Composite Service

Composite services may be invoked synchronously or asynchronously, and may hold
internal state while invoking other services. Serial Service Orchestration is the invocation
of component services in an order, waiting for the completion of one before the next is
executed. Parallel Service Orchestration involves the execution of services concurrently.
Certain sections of a composite service may be concurrent, with a join point at which all
services must be complete before moving on.

Conversational (Workflow) Services: A conversational service typically has state
attached to it; a certain operation on that service will start the conversation and set some
item into a specific state. Subsequent operations may continue the conversation and
change the state of the item. The conversation is ended with an operation that sets the
item to a final state. Operations within the service may be invoked synchronously or
asynchronously and the service needs to have a mechanism for correlating individual
operations.

Data Services: A data service provides a mechanism for querying a data source or
multiple data sources through a message based request response mechanism. Data
services can be combined together to provide a single response containing data from
multiple services. The data service is responsible for routing query parameters to the
correct source and combining resultant data in the correct response message format.

Publish-Subscribe Services: Publish-subscribe services are the services in which
interested parties may request notification of certain events. Some entity manages a list of
subscribed parties and publishes notification in the form of a message when the event
takes place.

Subscription and subsequent publishing of messages could be through a Message Broker,
or managed explicitly by a set of subscribe/unsubscribed messages sent to a subscription
manager. Figure 4.12 illustrates Publish-Subscribe services.

Service
Consumer

Composite
Service

Component
Service

Composite
Service

Component
Service

Component
Service

Component
Service

4. Service Orientation in Software Design and Development

 - 57 -

Figure 4.12: Publish-Subscribe Services

Service Brokers: Service Broker is an intermediary service that manages the invocation
of a set of registered services based on a set of rules. This incorporates routing of the
messages and possibly data transformation between the incoming message and the
requirements of the brokered service. A broker may itself be configured to be invoked
synchronously or asynchronously.

Figure 4.13: Service Broker

The broker may invoke one or many services concurrently depending on how it is
configured. If many services are invoked, it may wait for all to complete or just one to
complete before notifying the client, if running synchronously.

Exception Handling and Compensating Services: When a service invocation fails with
an exception, there usually needs to be some way of handling this failure. A simple
mechanism of handling such exceptions is to log or report them via some notification to
the invoker of the service.

In a complex business transaction, some action may need to be taken if a service that was
expected to succeed as part of the transaction, fails. A compensating transaction is a
mechanism for undoing some actions that were already completed that are now
inconsistent because the service failed.

Service
Broker Service

Consumer

Registered
Service

Registered
Service

Registered
Service

Service
Consumer

Message Broker,
Subscription

Manager

Event
request

Poll for response

Service
Provider

Service
Consumer

Service
Provider

4. Service Orientation in Software Design and Development

 - 58 -

Interception and Extensibility: Interception is a mechanism for inserting additional
functionality into a system without modifying or affecting existing components.
Functionality that intersects many aspects of a system can be inserted via interceptors,
extending the capabilities of the system.

The Blueprints specification as well defines interoperability as a requirement of any
service that may be accessed from multiple platforms. It means that the invocation
mechanism, message format, data format and security requirements of a service can be
interacted with successfully by any SOA implementation.

Service security is another requirement for services to ensure protection of confidential
resources. A variety of techniques are available within SOA to ensure security including
wire level security, such as HTTP Authentication and HTTPS, as well as message layer
security that involves XML Signature and XML Encryption.

The specification does not offer the followings as SOA implementation pattern:

− Overly granular business services,
− Remote access to local services,
− Overuse of XML,
− Usage of loosely coupled services where tight coupling is required.

 - 59 -

 5. Frameworks for Service Oriented Architecture

A framework comprises tools and components specialized to provide some functionality
and aims to solve both technical and non-technical based problem domains. A good
framework offers versatile, extensible and easy to use environment for the development
of applications. SOA based frameworks apply service oriented principles to its
application design and implementations. These frameworks cover necessary
infrastructure components for service creation, consistent service-based application
development, and other required features.

5.1 SOA Framework Descriptions

SOA frameworks especially based on Web services is rather a new development and
consideration area, which requires understanding of SOA principles clearly and able to
apply them in order to have a capable framework infrastructure. At present, the industry
is moving to the building of sophisticated frameworks which covers all the necessities of
service based application development, rather than having tools which fulfill only some
functionality of service orientation. The following part will describe the offerings and
functionalities of the chosen service based frameworks.

5.1.1 SAP NetWeaver

SAP NetWeaver is an application development and integration platform [35] offered by
SAP AG to support Enterprise Services Architecture (ESA) through enterprise service
orchestration and consumption of services in composite application. Enterprise Services
Architecture is SAP’s blueprint for building and managing service based applications and
providing enterprise solutions by utilizing service oriented architecture principles.

The fundamental feature of the Enterprise Services Architecture is to provide an
abstraction of business events and activities from the actual functionality of applications
[36]. These business activities are modeled as enterprise services and they are differing
from application services in a sense that enterprise services are formed by aggregation of
Web services and provide building blocks for automating enterprise scale business
scenarios. Composite applications are developed by composition of existing enterprise
services and defined as new applications to support composite level business processes.

SAP NetWeaver provides a platform for the creation, deployment and management of
composite applications. It supports enterprise service oriented integration and application
platform requirements and provides standard based interoperability with other platforms
including .NET and IBM WebSphere.

5. Frameworks for Service Oriented Architecture

 - 60 -

SAP NetWeaver has tools, methodologies, rules, user interface patterns, and services that
provide a unified application development and management platform for enterprises and
organizations. It utilizes Internet standards including HTTP, XML, and Web services.

It provides a unified environment for modeling of business processes, model-driven
implementation of them, and a repository that includes enterprise business scenarios. It
allows integration of diverse SAP and non-SAP software components and development
of standard software in which predefined business processes are packaged and formed as
an application. mySAP Business Suite and xApps (extended Applications) are examples
of such standard software. xApps defines common standard enterprise services such as
supply management and merger-and acquisition integration.

SAP NetWeaver involves a variety of components, each of them has specialized focus
areas and provides functionalities for a fully integrated development environment. The
following figure illustrates abstraction of SAP NetWeaver components [37].

Figure 5.1: SAP NetWeaver Architecture

C
om

po
si

te
 A

pp
lic

at
io

n
Fr

am
ew

or
k

PEOPLE INTEGRATION

Multi Channel Access

Portal Collaboration

INFORMATION INTEGRATION

Business Intelligence Knowledge Mgmt

Master Data Mgmt

PROCESS INTEGRATION

Integration Broker Business Process
Mgmt

APPLICATION PLATFORM

J2EE ABAP

DB and OS Abstraction

Life C
ycle M

gm
t

SAP NetWeaver

WebSphere

.NET

…

5. Frameworks for Service Oriented Architecture

 - 61 -

In general, these components provide application integration and development
capabilities for enterprises. Integration components aim to supply tools necessary for
application integration and specialized functionalities. Development components are
software tools for creation and execution of the application. These components are
described as follows:

− SAP Enterprise Portal (SAP EP)

SAP Enterprise Portal (SAP EP) is a process-centric portal framework that supports role-
based user interfaces and collaboration of the users with shared folders, forums and email
lists. It provides knowledge and content management functionalities for the enterprise by
aggregating diverse information from many places into one organized place. SAP EP is
based on portlet technology, which SAP calls as iViews.

− SAP Mobile Infrastructure (SAP MI)

SAP Mobile Infrastructure (SAP MI) enables accessing to various mobile devices
through a single interface. It provides browser based front end for various mobile
business applications to be able to access multiple backend connectivity of devices.

− SAP Business Intelligence (SAP BI)

SAP Business Intelligence (SAP BI) provides mechanism for gathering of information
from enterprises and evaluation of this information to form into meaningful and
functional small units of data. Businesses realize this data through tools that create
reports and queries from SAP BI repository. It creates a unified view of information from
many resources. SAP BI is useful for performance determination and some other types of
measurements. SAP BI is integrated with SAP EP in a way that the result data of some
operation can be seen as iViews within the portal framework, or the content of an iView
can be stored to SAP BI repository.

− SAP Master Data Management (SAP MDM)

SAP Master Data Management (SAP MDM) provides data integrity and consistency
across the enterprise. It harmonizes the information obtained from distributed
environments to build real-time master data warehouses and repositories. Master data is
defined as the data that is not belong to any business transaction, such as address
information and product descriptions. SAP MDM merges the content and centrally
manages the master data to have reliable information integration across business network.

− SAP Exchange Infrastructure (SAP XI)

SAP Exchange Infrastructure (SAP XI) is a message oriented middleware which provides
a framework for routing the flow of messages between each application, if it is required
by usage of adapters, with supporting security and guaranteed delivery.

5. Frameworks for Service Oriented Architecture

 - 62 -

It is used to integrate processes, facilitate invocation of remote functionalities and e-
business interactions. SAP XI has its own integration directory in which the process
descriptions are stored centrally. As well, it provides central configuration of the system
and collaboration knowledge.

− SAP Composite Application Framework (SAP CAF)

SAP Composite Application Framework (SAP CAF) is a model-driven development
environment for creating composite applications with utilizing SAP NetWeaver Visual
Composer, a tool that provides user interface modeling environment for SAP CAF. SAP
CAF contains a metadata repository that includes object definitions, process descriptions
and other related information. It is a runtime framework with modeling and generation
tools for developing composite applications which operates on existing services and
applications.

− SAP Web Application Server (SAP Web AS)

SAP Web Application Server (SAP Web AS) is a toolset which provides the execution
environment at runtime for other components of SAP NetWeaver. It executes Java and
ABAP (Advanced Business Application Programming) code, and supports Web service
development with model driven user interface.

− SAP NetWeaver Developer Studio

SAP NetWeaver Developer Studio is an Eclipse based integrated development
environment for building programs in Java language with additional editing, building and
debugging programs. It also supports creation of user interfaces for wireless and
handheld devices, and developing portal interfaces.

− SAP Solution Manager

SAP Solution Manager provides a framework for configuration and management of an
application through its life cycle, from installation to deployment and monitoring. It is
also capable of monitoring processes and upgrading the application structure.

Enterprise Services Architecture (ESA) is the SAP’s blueprint based on Service Oriented
Architecture (SOA). SOA supports an abstract model, in which the three main entities,
including service provider, service consumer and registry, collaborate to form service
oriented application structure. ESA extends the single service description to enterprise
services which provides abstraction of business activities or events [38]. Enterprise
services aggregates Web services to form meaningful building blocks for automation of
enterprise-scale business scenarios. Composite applications are developed from
enterprise services by composing functionality and information from existing systems to
support new business processes.

5. Frameworks for Service Oriented Architecture

 - 63 -

All enterprise services are built with Web services standards and can be described in a
central repository. These services are created and managed by tools provided by SAP
NetWeaver. SAP NetWeaver provides comprehensive integration and application
platform by utilizing its tools and components to design, build, implement, and execute
enterprise business processes with ensuring open standards support and interoperability
with other platforms.

SAP NetWeaver provides Web services based runtime infrastructure, allows development
of user interfaces, and integration of processes and applications, and provides a common
ESA service bus for communication, transaction handling, and debugging. SAP
NetWeaver components are integrated with each other in a loosely coupled way and
collaborates for building service oriented application structure.

The following figure illustrates the functional areas of SAP NetWeaver components
within the ESA enterprise [39].

Figure 5.2: Functional Areas of SAP NetWeaver in Enterprise Services Architecture

SAP NetWeaver allows the development of service based application structures. Using
only SAP NetWeaver to create services does not guarantee the creation of service
oriented architectures, as it is needed to follow the principles of SOA.

An important entity of SOA is the registry, which gathers the offered services from
enterprise and allows service consumers to discover them. SAP NetWeaver supports
UDDI and allows creation of different service repositories, including repositories for
application services available for enterprise services development, enterprise services
available within the organization, and enterprise services available to the outside of the
organization.

Composite App Framework, Business Intelligence, Knowledge Management,
Integration Broker, Business Process Management, Master Data Management

Role-
specific UI

Composite
Application

Interactive
Form

B2B
Process

Payroll
(BPO)

Financials
(ASP)

CRM SCM ERP ….

Portal, Collaboration, Multi-Channel Access External
System

W
eb

 S
er

vi
ce

s T
ec

hn
ol

og
y

Internal and
external

users

Service
Consumers

Enterprise
services

Application
services

5. Frameworks for Service Oriented Architecture

 - 64 -

The following diagram, illustrates the fundamental service publishing and consuming
concepts of SOA within the SAP NetWeaver enabled enterprise. The figure is based on
the previous figure, and it expresses related specific functional areas of SAP NetWeaver.

Figure 5.3: Service Interactions in SOA Based Enterprise Services Architecture

SAP NetWeaver is a comprehensive platform which enables and manages the
orchestration of services, mapping, and data transformation within the enterprise between
the provider and the consumer of the enterprise services.

5.1.2 Apache Beehive Project

Beehive is a lightweight, metadata driven and open source framework proposed by
Apache Software Foundation for J2EE and SOA based applications [40]. It leverages the
features of JDK 5.0, particularly JSR 175 metadata annotations [41] and builds on
essential Apache projects including Tomcat, Struts, and Axis.

Originally evolved from BEA WebLogic Workshop product, Beehive aims to simplify
enterprise Java application development and provide a model for building service
oriented architectures.

Beehive offers three application building unit: controls framework for creating and
consuming J2EE components, a simplified metadata driven Web services development
framework, and Struts based Java Page Flow technology for creating Web based user
interfaces and applications. These components can be built individually or all in the same
application in order to have a system able to access enterprise resources and integrate
various modules through supporting services.

 ….

Publish

PublishConsume

Consume

Application
Services

Enterprise
Services

External
Services

Consumer

5. Frameworks for Service Oriented Architecture

 - 65 -

• Controls

The Control architecture is a lightweight component framework based on annotated
JavaBeans, which provides client model for accessing a variety of J2EE resource types.
Controls have unified access to Enterprise Java Beans (EJBs), JMS Queues and Topics,
Web services, databases via JDBC, and enterprise resources via JCA.

The framework provides functions such as Java Bean based client access, configuration
through JSR-175 metadata and external configuration data, automatic resource
management, context services, and an extensible authoring model for creating new
Control types. The goal of Controls is to enable collaboration where the base J2EE
distributed system architecture and other related components can be designed and built,
then assembled into exposed Web user interfaces, Web services, or individual
applications.

The definition of a new resource type in the Control architecture is composed of three
distinct classes:

− Control Public Interface: it is source file that defines the set of operations,
events, extensibility model, and properties associated with the Control type.

− Control Implementation Class: it is source file that provides the implementation
of the operations and extensibility model described by the Control Public
Interface.

− Control Bean Generated Class: it is a code-generated Java Bean class that is
derived from the Control Public Interface and the Control Implementation Class
by a Control compiler.

These three classes work together to fulfill the runtime responsibilities. The client
interacts with the Control by invoking operations defined on the Control Public Interface.
Control Bean Generated Class is automatically created by the compiler and manages
accessing remote resource.

Figure 5.4: Relationships of Classes in Controls Architecture

Control Bean Class

Dynamic property values

Property getters
Property setters

Control Public Interface

Resource Operations

Control Implementation Class

Resource proxy
Local client state

Operations implementation

5. Frameworks for Service Oriented Architecture

 - 66 -

The following diagram illustrates Control architectural elements and the process flow.

Figure 5.5: Control Architectural Elements and Flow

The Controls architecture supports a composition model, based on JavaBeans Runtime
Containment and Services Protocol. This means that it is possible for new types of
Control Beans to be defined that are built through composition of one or more other
types. In this model, JavaBeans are associated with a Bean-Context that manages the
composition hierarchy and also manages any contextual services requested by the
contained beans.

The Controls architecture offers two client models with slightly different characteristics:
in the programming model the client takes explicit responsibility for construction of
Control instances and event routing, whereas in declarative model, the Control container
provides initialization and routing services on behalf of the client by the help of JSR-175
metadata annotations.

The Controls architecture provides a packaging model to distribute Controls that offer
client access to provided services and components. An Integrated Development
Environment (IDE) can discover packaged controls to present them in a list of available
resource types for client use.

• Java Page Flow

Java Page Flow (JPF) is a web application framework based on Apache Struts [42] with a
group of Java Server Pages (JSP) to present the visual interface to users and a Java class
(Controller) that drives and coordinates the application.

Control
Public

Interface

Control
Implementation

Class

ControlBean
Generated Class

Client Resource
Operations

Events

Actions
Data

Property Accessors

JSR 175 Metadata and / or
External Configuration

5. Frameworks for Service Oriented Architecture

 - 67 -

Java Page Flow is based on JSR-175 metadata and supports features such as state
management and integration with Controls, Java Server Faces, and other modules within
the application. It has the following characteristics:

− Page Flows are state-full
− Page Flows are modular
− Page Flows are nest-able
− Supports rich data binding and integration possibilities
− Action and Exception Handling

Java Page Flow is built on top of Apache Struts, and can cooperate and interact with it
inside a Web application. Page flows leverages the features of Struts, on the other hand
overcome the difficulties faced with Struts based application development. Page flows
are as well based on Model-View-Controller (MVC) design pattern that separates
application functionality into three distinct roles: Model represents the business data and
the rules associated with accessing and modifying the data, View is the user interface, and
Controller manages and controls the user interaction with model and view layers within
the application.

The interception point of the user with the Web application is defined by action methods
of the particular controller class. An action can be navigation of the user to a specified
JSP page, performing conditional logic, validating data and handling exceptions that arise
in the application. The business logic in the controller class is separated from the
presentation through JSP files, which provides an easy-to-use framework for building
dynamic Web applications.

• Metadata Driven Java Web Services

Beehive Web services are the implementation of the JSR-181 specification [43], which
simply the Web service development process and offers implementations of the most
common Web service features, including conforming to basic SOAP and WSDL
standards, separating the public contract and the private implementation, and creating
asynchronous communication between the Web service and its clients.

The fundamental aspect of Beehive Web service development is that the functionality of
an ordinary Java class is exposed as a Web service by specifying metadata annotations
that decorate the class and its methods. The metadata annotations replace the deployment
descriptors and encapsulate the Web service APIs.

The specification does not specify some advanced concerns such as security,
internationalization and localization in current specification. Beehive is in Beta 1.0
version and still evolving. An additional development is the Pollinate project
(http://www.eclipse.org/pollinate/) which enables usage of Eclipse IDE plug-ins to easily
build applications based on the Apache Beehive application framework.

5. Frameworks for Service Oriented Architecture

 - 68 -

5.1.3 Rogue Wave Lightweight Enterprise Integration Framework

The Lightweight Enterprise Integration Framework (LEIF) is a lightweight, cross-
platform framework offered by Rogue Wave Software for integrating C++ applications
with other applications built on variety of technologies across the enterprise [44]. It is
based on standard technologies including XML and Web services and enables process-
based communication across platforms such as .NET and J2EE.

LEIF framework consists of three tiers that deal with different aspects of system
integration [45]:

− The Data Tier provides for data handling through C++ interface. A code
generator produces C++ classes for a particular XML document type as defined
by an XML schema, allowing to process XML documents through C++.

− The Network Tier provides for transmitting and consuming network data. A code

generator produces Web service clients able to send requests to any well-defined
and locatable Web service on the network.

− The Service Tier provides for development of network services, including but not

limited to Web services. A code generator produces service code that hides the
details of XML, SOAP, and network protocols, allowing developers to
concentrate on business logic. A C++ servlet container hosts the completed
services.

The architecture of LEIF is based on these three layers which facilitate integration of
legacy code as services and allowing SOA applications. Currently it is in version 2.1,
LEIF is able to dynamically transport messages, and implement WSDL message patterns
entirely. It allows asynchronous and synchronous message interaction with improved
XML Schema and WSDL support. The following figure illustrates LEIF tiers.

Figure 5.6: LEIF Tiers

Service Tier

SOAPworX code generator
(service servers)

Bobcat service container

Bobcat servlet API

components

Network Tier

SOAPworX code generator
(service clients)

SourcePro Net

Networking components

Data Tier

XML Object Link code
generator (C++ data binding

for XML)

SourcePro Core
Basic programming

components

5. Frameworks for Service Oriented Architecture

 - 69 -

LEIF provides browser based user interface to its code generators from a single point of
access. Through using this interface, LEIF provides creation of different types projects,
including Data tier project, which generates a C++ data binding from an XML Schema,
Network tier project, which generates client code for a Web service from a WSDL file,
Service tier project, which generates server code for a Web service from a WSDL file,
and finally C++ servlet framework for generation of a framework for a servlet that can
run in the Service Tier container.

5.2 Evaluation of Frameworks

Capabilities of the framework are important for the development of a sophisticated
service oriented application, as naturally the application may expand its structure through
accessing various resources in enterprise and handling different data formats, platforms
and proprietary software modules. The framework should support visual, declarative and
service driven programming model and allow orchestration of services and development
of composite applications.

SOA based frameworks may include tools for service creation, modeling of services and
user interfaces, integration of processes and connectivity to databases, legacy and other
type of applications. These tools provide runtime for building and maintaining the
services within the SOA across disparate and heterogeneous environments. Process
information is essential in such environment to achieve reusing of service logic in an
effective manner and formation of dynamic execution atmosphere.

SAP NetWeaver is a sophisticated and well-developed platform which covers all the
necessities needed for the development of a service based application. The main
drawback is that it is vendor specific and may oblige the developer to use SAP specific
proprietary modules within the framework. Although the components offered within SAP
NetWeaver are essential and required for building an enterprise level SOA application,
for a small size project, all these components may not be required.

Apache Beehive project is still evolving and in current version it may not be applicable
for the development of standalone applications. It provides open source and standards
based development environment, which gives flexibility to the developer. Beehive
focuses on core requirements of J2EE platform and enhances the way of application
development through offered components. Ease of use feature of Beehive is essential for
building service based enterprise applications.

The key characteristic of Rogue Wave LEIF framework is the usage of C++
programming language for service development. LEIF provides an environment for
integration of C++ applications through utilizing service logic. The weakness of the
framework is that it does not support direct mechanism for creation of processes and
orchestration of services. While the user interface is not a required component for SOA,
still it is a capability of a framework to allow remote client access for an application.
LEIF does not provide this feature as well.

5. Frameworks for Service Oriented Architecture

 - 70 -

The capabilities of the frameworks are summarized in the following table.

 SAP NetWeaver Apache Beehive Rogue Wave LEIF
Framework
Ownership

Vendor Specific

Open Source

Vendor Specific

Service
Development
Support

Supports Java and ABAP
based Web service
development

A specialized Java Web
service development tool
built upon Apache Axis
project

A component that
creates C++ service
from its WSDL
document – limited
support for service
creation (need WSDL
to build the service)

Language
Interfaces
for Service
Invocation

Java and ABAP
Languages

Java Language

C++ Language

Metadata and
Data
Handling
Support

Supports metadata and
provides advance level
data handling features

Supports standard based
metadata management
through usage of JSR-
175 Specification

Fully XML and XML
Schema based data
handling – no direct
mechanism for
metadata definitions

User Interface /
Portal Support

Supports through SAP
Enterprise Portal (SAP
EP)

Supports through Java
Page Flow (JPF)
Framework

No Web based User
Interface support

Process and
Application
Integration
Support

Specialized frameworks
and tools for process
creation, management and
application integration
support

Controls are specialized
components used for
accessing resources and
applications – process
information can be
created by utilizing
Controls and JPF.

No direct support for
modeling process
information; supports
integration of
applications through
created services.

Modeling
Approaches
and
Supporting
Tools

Specialized tools for user
interface and process flow
modeling

No specialized tool
support, but it is possible
to derive meta-models
for user interface and
process flow

No specialized tool
support for definition of
process flow

Specialization

A platform for
development and
management of model-
driven service oriented
applications

A framework for
development and
management of model-
driven service oriented
applications

A framework
specialized for
integrating diverse
application and
business logics through
services.

Table 5.1: Comparison of SOA Frameworks

 - 71 -

6. Case Study: A Prototypical SOA Implementation

The aim of this case study is to provide a prototypical SOA implementation in which the
fundamental requirements of service based application development are investigated and
proved. Therefore, a sample Student Information System (SIS) has been developed to
illustrate essential characteristics of SOA including utilization of service based
infrastructure, interoperability of different platforms and software modules, service based
integration, and reusability of loosely coupled service business logic.

The case study is prototypical, which means that it is satisfactory practical and
demonstrates the core aspects of SOA based application. The application utilize Web
service technologies in order to allow communication and interaction of two diverse and
independently located applications, and build an architecture that can tolerate changing of
the infrastructure, consent to flexible extensibility of the application by adding other
business logics from enterprise, and provide and consume the offered services to form a
service based interaction of applications.

Student Information System (SIS) is based on an example scenario which envisages that
the system provides students an online access to resources related to their educational
activities and targeted information needed to carry out certain educational transactions.
Technically speaking, SIS is an independent and standalone application which assembles
the required services for a student from enterprise and allows students to consume them
to fulfill their educational requirements.

A typical Student Information System may contain activities and functions such as
address and profile updating, student unofficial grade summary, adding and dropping
courses and course schedules. SIS is designed and implemented to support the following
functions: sign-in to system, choosing the program and department that offer services for
students, and registration-dropping of courses that a particular study department provides.

SIS is the system which allows end-users to consume gathered services. To build a SOA,
it is needed to have another computing system, or module, which provides services for
students to consume them. For this aim, the infoAsset Broker System is chosen, which is a
system platform for the construction of personalized content portals in Internet as well as
corporate knowledge portals in Intranet [46]. It is developed by close cooperation
between infoAsset AG (http://www.infoasset.de/) and Software System Institute (STS)
research department (http://www.sts.tu-harburg.de/) of Technical University of Hamburg-
Harburg (TUHH). In this case study, a Web service is developed which interacts with the
Broker system to obtain the required information and passes this information to SIS by
applying service oriented architecture principles.

6. Case Study: A Prototypical SOA Implementation

 - 72 -

6.1 Description of Implementation Infrastructure

SIS is implemented by using Apache Beehive open source project, which offers a
framework for construction of service based applications. The Web service application is
as well developed using Metadata-driven Web Service component of Beehive
framework. Within the implementation infrastructure, these three applications, which are
Broker, SIS and Broker Web service, collaborate together to achieve formation of a
single application logic. The end user only face with the SIS graphical user interfaces
without having knowledge about Broker and Broker Web service implementation.

The following figure illustrates the implementation infrastructure:

Figure 6.1: Case Study Implementation Infrastructure

6.1.1 InfoAsset Broker Architecture

The infoAsset Broker is Java based and platform independent server software which
communicates with client through Web browsers, PDAs, or WAP based interfaces, by
utilizing HTTP protocol. Core Broker is supported with File systems, data bases and
content management information repositories. Database access is achieved through Java
Data Base Connectivity (JDBC) and corresponding APIs.

The Broker composed of four main components, and each of them is separated through
clearly defined interfaces. These components are described as follows:

− Web Server component: it is an integrated Web server to the core Broker and
handles the communication between client and the system. It routes the requests
to the corresponding handler and returns back the results.

− Handler component: it handles the incoming client requests and routes these

requests to specified Broker services. Handler component works together with the
Template component to generate client responses. A handler can be in two types:
visible handler is for creating a visible output within a template, and invisible
handler which changes the state of some object or figures out some data.

infoAsset
Broker

Student
Information

System (SIS)

Broker
Web Service

Tomcat Servlet Container

Client

6. Case Study: A Prototypical SOA Implementation

 - 73 -

− Template component: generates the user interface for the client in the requested

output format, which can be HTML, WML, or other type. Templates support
multiple languages.

− Services component: it is one of the main component of Broker. The Services

object instance exist only once within the Broker and provides access for business
objects, called as Asset [47]. There are many kind of asset can be defined, such as
person, document, and group. An asset container is responsible for the life cycle
of specified asset kind and called as the plural form of asset type, such as persons,
documents and groups.

Figure 6.2 demonstrates the components of Broker within the Broker client-server
architecture [46].

Figure 6.2: The infoAsset Broker Architecture with its Components

Within the Broker, there are already defined asset kinds including Course, CalendarItem
and Program, which are required business objects for the case study. Accessing these
objects within Broker is done through Services object, a singleton object for the whole
core Broker system. Services object can be accessible from handler, asset or an asset
container. In order to access Services object from outside of the Broker system, a new
mechanism is required. The difficulty for the integration of Broker system with Web
service implementation is that Broker has its own integrated Web server and as these
applications do not have a common runtime environment, they can not communicate and
allow object passing with each other’s system infrastructure.

Broker Services

Handler

Web Server

Templates
(HTML, WML …)

Customizing
Data

Store

Client

6. Case Study: A Prototypical SOA Implementation

 - 74 -

6.1.2 Integration of InfoAsset Broker with Apache Tomcat

The Web service provides the functionalities of Broker to the enterprise and allows
consuming of Broker business logic by other services and applications to accomplish the
desired functionalities. The Web service implementation is Beehive based standalone
application running on Apache Tomcat Servlet Container [48]. In order to be able to
access Services object of Broker system from Web service implementation, both of these
systems are required to be executed in common runtime environment.

Integration of Broker system with Tomcat Web server has been achieved in Lars
Diestelhorst’s Master Thesis project [49]. For this aim, two source files have been
created, called as BrokerContextListener.java and BrokerServlet.java. The idea of
integration is that Tomcat notifies the BrokerContextListener at startup, which then
initializes the actual Broker object and registers the created instance of Broker at the
current context. When the BrokerServlet needs to handle a request from client, the Broker
instance is retrieved from the current context. The following sequence diagram illustrates
this process.

Figure 6.3: Sequence Diagram for Broker – Tomcat Integration

Each Web application running under Tomcat Servlet container has the ability to share the
same context and communicate with each other through object passing. In order to access
Services object of Broker, the object is defined as a global resource in JNDI (Java
Naming and Directory Interface) Context, and other required configuration is done to
reference the object from other Web applications running under Tomcat.

: BrokerContextListener

contextInitialized(…)

: Broker
new

: ServletContext

: BrokerServlet

Init(…)
getAttribute (“Broker”)

setAttribute (“Broker”, b:Broker)

service(…) doSomething(…)

6. Case Study: A Prototypical SOA Implementation

 - 75 -

6.1.3 Broker Web Service Development

Broker Web service application utilizes the Learning Interfaces of Broker system. These
interfaces are located in the package de.infoasset.broker.interfaces.learning and propose
many useful asset kinds including course, calendarItem and studyProgram. The detailed
explanations of these interfaces can be accessible from Leif M. Koch’s Master Thesis
[50].

Broker Web service is Beehive based Web service implementation which access the
Services object of Broker and utilize the Learning and other required interfaces. The Web
service implementation infrastructure comprises of one source file which executes the
service logic with the file extension .jws (Java Web Service), and other utility files. The
configuration of Web service environment is done with JSR-181 Java Metadata
Annotations, as shown in the following source code snapshot.

Figure 6.4: Sample Broker Web Service Code with Metadata Annotations

The following class diagram represents the operations of Broker Web service.

Figure 6.5: Class Diagram for Broker Web Service Operations

AccessServices

- Services services

+ getServices()

BrokerWebService

+ login(user:String, password:String)
+ getRecentTem()
+ getStudyProgram(abbr:String)
+ getCourses(abbr:String)
+ getCourse(courseId:String)
+ registerCourse(courseId:String, user:String)
+ dropCourse(courseId:String, user:String)
+ getCoursesofPerson(user:String)

AccessServices is a
utility class for getting
Broker Services object

use

package de.infoasset.broker.webservices;
………
@WebService
@SOAPBinding(style=SOAPBinding.Style.RPC, use=SOAPBinding.Use.ENCODED)
public class BrokerWebService {
 @WebMethod
 public boolean login(String user, String password) {
 boolean loggedIn = false;
 Person p = AccessServices.getServices().getPersons().getPersonByLogin(user);
 if (password.equals(p.getPassword())){
 loggedIn = true;
 }
 return loggedIn ;
 }
……..
}

6. Case Study: A Prototypical SOA Implementation

 - 76 -

The following is the simplified sequence diagram which illustrates SIS, Broker Web
service and Broker interaction for the Login process.

Figure 6.6: Sequence Diagram for Login Process

6.1.4 Student Information System Web Application

Student Information System (SIS) is the Web application which provides user interface to
allow the students to login to the system and register or drop the offered courses for the
current term. SIS is developed using Beehive Java Page Flow (JPF) technology. The
application includes JSP pages to present the graphical interface to the user, a Controller
which navigates and manages the JSP pages, and JavaBean files required for the
interaction with the Broker Web service.

SIS Web application is based on Model-View-Controller Java design pattern, in which
the JSP pages acts as the View, the Controller processes the user’s request and interacts
with the Model, which is the Broker.

The overall architecture of Case Study qualifies the fundamental requirements of Service
Oriented Architecture. The Broker provides its business logic to the outside through
Broker Web service, and SIS consumes the Broker Web service to gain the functionality
of Broker. The following figure illustrates the simplified SIS application structure and its
relationships with Broker and Broker Web service.

6: Return user
information

: SISClient : BrokerWebService

1: Connect to Web service

: AccessServices

2: Login request
3: Navigate to Broker

6: Return Result

: Broker

4: Find user

5: Return user
information

7: Process
Login

4.1:
Get user

and
password

6. Case Study: A Prototypical SOA Implementation

 - 77 -

Figure 6.7: Simplified SIS Application Structure within Service Oriented Architecture

The following screenshots aim to introduce and illustrate the SIS and Broker applications
that discussed within case study.

Figure 6.8: Screenshot for infoAsset Broker Main Page

Login Page Main Page Registration
Page

begin success Navigate
user

Broker Web
Service

Broker

Service
Consumer

Service
Provider

Student Information
System (SIS)

Controller JavaBeans

6. Case Study: A Prototypical SOA Implementation

 - 78 -

Figure 6.9: Screenshot for Student Information System Login Page

Figure 6.10: Screenshot for Student Information System Main Page

6. Case Study: A Prototypical SOA Implementation

 - 79 -

Figure 6.11: Screenshot for Student Information System Registration Page

Figure 6.12: Screenshot for Student Information System Registration Processing

6. Case Study: A Prototypical SOA Implementation

 - 80 -

6.2 Extensibility of the Architecture

The architecture built for this case study is based on Service Oriented Architecture, and it
is likely to extend it by integrating other application’s business logic and Web services.
For this aim, the availability of Amazon Web services [51] are analyzed and investigated.

Amazon does not utilize SOAP style Web service; rather it is based on Representational
State Transfer (REST) style interface. REST is based on XML query protocol and
operates on HTTP request-response model.

The main difference between REST and SOAP style Web services is that REST Web
services are resource oriented, in which the resources can be identified and located by a
Universal Resource Identifier (URI), and the operations are defined by the HTTP
specification [52], on the other hand, activity oriented services focus on actions rather
than on the resources upon which they act.

 - 81 -

7. Strategies and Concepts for Service Orientation in Enterprise

Service orientation in enterprise is an approach to build an application structure in which
the services that an organization provides to its clients, customers, communicating
partners and other organizations are the fundamental assets for the needs of business.
SOA implementation brings to enterprises competitive advantages in a sense that services
can easily react to the changing of business requirements and allows structuring an agile
and responsive system.

SOA implementation surrounds different approaches and strategies that an organization
may follow when building an enterprise application. Especially SOA with Web services
are nowadays way of implementation environment which replaces the traditional
application development and integration approaches.

The elements of SOA implementation environment involves service oriented modeling,
service oriented integration, business process management systems, and service
development and management, as shown in following figure.

Figure 7.1: Service Oriented Enterprise

The architecture of software should provide the required infrastructure for integrating
different parts of the enterprise to form an application without human involvement. SOA
provides this feature with the usage of reusable services. However, the architecture can
be structured in a variety of ways. In the following part, different approaches to enterprise
integration will be discussed by means of mainly Web services as a SOA implementation
technology.

Service Oriented
Modeling

Service Oriented
Integration

Process Orientation

in SOA

Service Oriented
Development and

Management

Other
Considerations:

 Security,

Transaction
Management,

Interoperability

Service Oriented Enterprise

7. Strategies and Concepts for Service Orientation in Enterprise

 - 82 -

7.1 Service Oriented Architectures for Enterprise Integration

Integration of business systems running on different locations is the most challenging
aspect of application development in an enterprise. As the requirements of businesses
grows to support e-commerce, Supply Chain Management, Customer Relationship
Management (CRM), usage of sophisticated Internet technologies, and other necessities
of the organizations, service based architectures to application integration and
exchanging information within the enterprise are gaining momentum.

Application integration requires understanding of the business domains and necessities of
the enterprise to provide a long term, enabled solution and build up architecture
applicable for different computing environments. To develop such architecture which
involves real-time combination of several applications and functionalities is a complex
process. Traditional approaches to application integration such as direct combination of
applications and databases are not sufficient to prove this aim. SOA solves this problem
by providing services that utilizes applications broken down to component level and
leverages combination of several approaches and technologies.

Nowadays approach to application integration is moving towards from information-
oriented to service-based integration. Information-oriented approach involves direct
integration of databases and information-producing, proprietary APIs, without any need
to change the application structure [53]. It deals with the simple exchange of information
between two or more systems. Service-based integration combines the applications at the
service level including its structure, transactions and distributed objects by leveraging
Internet technologies to form composite applications, processes, and flow of information
from many resources in enterprise.

Service based integration allows well-defined interfaces exposed as services and
available through Internet for an application. It may also require necessary changing in
both target and source application structures, which makes service based integration
exclusive and more sophisticated than traditional approaches. Nevertheless, this approach
offers high-quality opportunities when implementing solutions to integration problems. It
broadens the application domain from an individual department to the enterprise-wide
resources to structure of an enabled architecture satisfying business needs.

With services, it is achievable to have an environment in which the functionalities of the
businesses are executed autonomously, accessing information is straightforward and
rapid, and utilizing of enterprise resources without restriction of its physical locations is
undemanding. Although this intention is not fully applicable yet to current computing
system implementations, as the technology cultivates and the methodologies become
more mature, application integration based on service orientation allows this target
realizable in the future. Apart from its technologic aspects of the application integration,
the business with SOA has the ability to do a real-time business and satisfy the customer
needs and expectations.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 83 -

Application integration is primarily categorized into Business-to-Business Application
Integration (B2B), Enterprise Application Integration (EAI) and Business Process
Management (BPM) technologies. All these approaches provide techniques to deal with
application semantics, accurate information routing between applications, and processing
of this information to clarify integration behavior.

7.1.1 E-business Integration

Business-to-Business (B2B) Integration is the combination of two or more application
logics to share the information flow and application functionalities in an automated
manner between different communicating partners. The partners individually have
defined rules and regulations for distribution of the services and application logics in
enterprise.

E-business integration as well shows variety in the level of application integration which
means that the integration involves business rules integration and sharing a collaboration
middleware, and takes place at information and process level [54]:

− Information integration approach provides a platform for exchanging relevant
business data and documents to support business proposals. It is the initial step in
application integration, and message brokers, data replication and migration
engines utilizes this technique.

− Business rules integration approach allows developers to expose existing rules or

methods to other applications that may need them to support a virtual e-business
system. As an example, a CORBA implementation between parties provides a
standard mechanism to share application services.

− Process integration provides a set of processes that function above both business

rules and information integration. It offers a model that forms a layer and resides
on top of middleware and allows both logical and physical information flows over
existing business systems.

− Collaboration middleware allows collaboration of geographically dispersed

workgroup with the opportunity to share messages and other information in real
time to support a business need. As an example, customer relationship
management, online customer service, and virtual product development support
this kind of application development. Collaboration uses a centralized set of
middleware to manage the movement of information, and shares same of common
characteristics with process automation.

Traditional e-business integration mostly involves utilizing an API that is strongly-typed
and not flexible to support the changing of the businesses. The requirement for dynamic
e-business integration involves having a computing structure which allows integration of
partner systems through enabled interfaces.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 84 -

The interfaces that support B2B integration should be aware of the processes and data
flow within the organization. The simple form of integration is to support data exchange
and extracting information from one of the application databases, processing it and
updating the information in another one. As the needs for compound application structure
become comprehensible for an enterprise, service-based integration provides mechanisms
to share common business logic and create composite applications by leveraging services
gathered from many remote and heterogeneous systems. The tools and techniques of B2B
integration give the business partners the opportunity to create an infrastructure in which
the services can be created, tested and deployed. If it is required, this infrastructure
should allow the enterprise applications be changed in order to support business needs.

The initial technological development to B2B integration is Electronic Data Interchange
(EDI) [1] which was established to enable the data exchange electronically over the
network. It defines the format of the messages and the way of exchanging data between
involving partners to communicate. EDI does not define network details and protocols for
the enterprise. The organizations using EDI have to build their own private networks and
allow other parties to connect into them. This approach was quite common in the earlier
period; however, it was expensive to implement EDI and resulted in proprietary
application structures and closed systems.

EDI is used mainly by large organizations and before the invention of Internet it was seen
as the only option for e-business and communication between two geographically or
physically distributed points. The following figure illustrates the EDI approach.

Figure 7.2: EDI in Enterprise

Before the development of Web services, CORBA, COM/DCOM and RMI are the
common approaches for B2B transactions subsequent to EDI. These technologies provide
better solutions for enterprise communication; however, they have as well difficulties
which make them not a widely-accepted solution for enterprise integration.

The advantages that these technologies bring to enterprise are the usage of Internet,
practicing the common agreed network protocol, approved service interfaces and
progressing of communication infrastructures from information-oriented to service-based
integration approaches. The main disadvantage is they are not flexible for usage of
firewalls, and do not provide enhanced interoperability options.

Business
Partner

Business
Partner

EDI
Message

Private
Network

7. Strategies and Concepts for Service Orientation in Enterprise

 - 85 -

Figure 7.3: CORBA, RMI and DCOM in Enterprise

Web services technology solves some of the problems faced with the technologies
discussed above when building B2B integration applications. SOAP, one of the
technologies of Web services, standardizes the data format and the protocol by applying
XML, which is a platform-independent language for description of data, and uses other
standard Internet technologies. Web services provide set of specifications for the
interoperability and ease of integration of diverse applications for business-to-business
communication.

Figure 7.4: Simple Object Access Protocol (SOAP) in Enterprise

The main drawback with Web services is that they do not provide the capabilities to
express business collaboration and process information. For this aim, electronic business
XML (ebXML) has been proposed by United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) joint with Organization for the Advancement of
Structured Information Standards (OASIS) in 2001 [55].

ebXML proposes an XML based framework for e-business conversation, message
interactions within computing environments and definition of business processes between
diverse organizations. It provides a common structures and message syntax across all
enterprise, and standard services for security, error handling and exceptions.

The framework utilizes a business process model, which can be done with UML or other
modeling languages, used for capturing process information. The ebXML Business
Process Specification Schema (BPSS) is produced as a result of this process modeling by
applying some modeling techniques and tools, and generated as an XML document for
the representation of use cases.

Business
Partner

Business
Partner

CORBA / RMI /
DCOM Method

Invocation

Internet

Firewall Firewall

Business
Partner

Business
Partner

SOAP
Messages

over HTTP

Internet

7. Strategies and Concepts for Service Orientation in Enterprise

 - 86 -

The Collaboration-Protocol Profile (CPP) is an XML document which describes the
organization’s functional and technical properties including the information about the
business processes, protocol details for the transportation of the data and messaging, and
the security aspects of the computing environment. It is used by other organizations to
discover the offered services and engage in collaboration with the organization.

The Collaboration-Protocol Agreement (CPA) is as well an XML document used for
definition of system level agreement for data interchange between partners based on their
CPP documents. When both of the parties agree on the common CPA, communication
and conversation can take place.

The offered services and processes can be discovered using ebXML registry, which
demonstrates similarities with UDDI specification. ebXML registry stores information
about organization, its services, business semantics, and processes for other partners to
discover and consume them. Both ebXML registry and UDDI are the specifications of
OASIS consortium and offer overlapping functionalities, except for some differences in
the architectures.

The ebXML Messaging Service Specification provides a mechanism to handle the flow of
information between organizations, and describes the characteristics of exchanged
business messages. The message package in ebXML is the extension of SOAP messages
and done by specifying schemas for the SOAP header. The package contains the SOAP
envelope and the payload, which describe any required organization specific information.

The messaging service is required at runtime for the collaboration to ensue. The
following figure illustrates simplified steps of the partner interactions in ebXML.

Figure 7.5: Business Collaboration Steps with ebXML

ebXML
Registry

Organization B Organization A

Define business
process, design and

build ebXML service

Register CPP Query about
Organization A.

Retrieve CPP Register CPP

Implement
service

Propose CPA

Agree CPA

Engage in business using
messaging service

7. Strategies and Concepts for Service Orientation in Enterprise

 - 87 -

The technologies for e-business integration are in continuing development to support
business requirements in a sophisticated manner. The following table compares the
discussed technologies in terms of supporting e-business integration.

EDI CORBA, RMI
COM/DCOM

Web Services ebXML

Message based
communication

Selecting message
format applicable
for both business
partners

Runs on private
network

Expensive to
implement

Information
oriented integration

RPC based
communication

Standardization of
protocol (e.g. IIOP)

Usage of Internet,
except for
configuration of
firewalls

Offered standard
services

Service based
business rules
integration

Lack of
interoperability
options

Standardization of
data format and
communication
protocol

Usage of open and
standard Internet
technologies

Interoperability
options

Standard based
message and service
description

Registry of services

Service based
integration

Capabilities to
express business
collaboration and
process information

Registry of services
and processes

Reliable and secure
messaging

Offered standard
services

Process based
integration

Table 7.1: Comparison of e-business Integration Technologies

Web services include basically the technologies for service creation, description and
registry of services. ebXML overlaps some aspects of the Web services and provides the
utilization of processes for an effective and operable e-business integration. However,
ebXML could not achieve to be an extensively accepted and common solution for the
needs of the organizations. Business Process Management System technologies utilize
Web services and offer additional technologies for business collaboration and usage of
process information. These concepts and technologies will be discussed in the following
section.

7.1.2 Enterprise Application Integration

Enterprise Application Integration (EAI) is a specialized form of integration technique in
which separate applications can unify to build a cooperating application structure. These
applications can share and exchange the information among diverse homogeneous and
heterogeneous enterprises to provide application logic in order to fulfill the needs of the
businesses and organizations.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 88 -

An enterprise in general includes many specialized software that may have propriety
architectures, and they do not allow easily sharing of its business logic and functionalities
with other applications. As an example, packaged applications including SAP and Oracle
ERP, CRM (Customer Relationship Management) and SCM (Supply Chain
Management) applications, legacy systems and Portal implementations are dedicated
applications that work individually to perform a particular function for the organization.
Integration and interoperability of these applications is demanding as all of them have
different interfaces and each system produces disparate information.

A likely approach to combine these separate applications is to use particular technologies
that focus on the required functionality of the application and produce solutions along
with the needs of the business. For instance, Java Database Connection (JDBC) can be
used to call another application’s database tables, or Business Application Programming
Interface (BAPI) from SAP allows other applications to access SAP packaged application
software. Using J2EE Connector Architecture (JCA) is one technique to integrate these
interfaces with other applications [56].

EAI offers mainly two topologies for integrating applications [57]:

 Application-to-Application integration: This approach is based on point-to-
point integration and suitable if there are not many applications to integrate, as it
combines the applications directly and bind one interface to other one to use the
functionality and processes that it provides.

Figure 7.6: Point-to-Point EAI Topology

 Integration Broker: Because of the complexity of application-to-application
integration method, integration broker approach, also known as “hub-and-spoke”
model, provides a centralized system in which each application that needs to
communicate with another one initially send the message to the broker, which
converts and routes the message to the recipient application. The broker holds
software components called as Adapters for transformation of the messages in
order to be comprehensible by application interfaces. This approach is more
loosely coupled compared to point-to-point integration method of EAI.

ERP
System

CRM
Application

Legacy
System

Data
Source

SCM
Application

Internet
Application

7. Strategies and Concepts for Service Orientation in Enterprise

 - 89 -

Figure 7.7: Integration Broker EAI Topology

A variation of Integration Broker method, called as Integration Bus approach, is
architected to form an integration bus in which each application has its own adapters and
talk to a common, centralized system.

Figure 7.8: Integration Bus EAI Topology

The main drawbacks for EAI products are that they are expensive to implement and
dependent on considerations and effort so not to have failures in building an integration
solution. These products are proprietary applications which make them difficult to
interoperate with other applications and expand the application structure to support an
enterprise wide functional scope.

Web services provide better solutions to integrate diverse applications by delivering open
and standard technologies which replace the traditional EAI products. Service oriented
solution to EAI reestablishes multiple application architectures that rely on varied
programming languages and operation environments by offering reusable and platform
independent services.

ERP
System

CRM
Application

Legacy
System

Data
Source

SCM
Application

Internet
Application

Integration
Broker

ERP
System

Adapter

CRM
Application

Adapter

Legacy
System

Adapter

SCM
Application

Adapter

Internet
Application

Adapter

Integration Bus

7. Strategies and Concepts for Service Orientation in Enterprise

 - 90 -

Web services can be used as an individual solution to integrate two or more application
logic. The principles of service orientation oblige that the traditional three-tier application
structure provides an abstraction of service layer on top of its business logic to connect to
various other applications including tightly coupled GUIs, mobile devices, and process
engines. Services enable to share the information without affecting the business logic of
the application, however, service orientation requires that the application provides
necessary infrastructure for services to operate.

Figure 7.9: Web Services for Enterprise Application Integration

Using Web services in EAI provides straightforward solutions with considering business
requirements and strategies for an economical and undemanding application structure in
which reusable services are used for integration logic rather than proprietary integration
products. Web services connect the systems directly through common data format and
standards and allow application modules to use common service repository that stores
and retrieves individual service descriptions. Applications discover the required services
from this repository and easily bind to them by SOAP messages.

An additional approach to apply Web services in EAI field is to use Enterprise Service
Bus (ESB), a middleware solution offered from vendors such as BEA, IBM, SAP, IONA
and Systinet, and capable of providing infrastructural elements to distributed services on
the network. The ESB approach offers asynchronous, message oriented communication
infrastructure that deals with message routing, orchestration, and service management. It
allows loosely coupled, document oriented message exchange between diverse and
independent systems.

Data Access Layer

Business Logic Layer

Presentation Layer

Application

Data Access Layer

Business Logic Layer

Application

GUI Applications
Mobile Devices

Business Process
Engine

Services

7. Strategies and Concepts for Service Orientation in Enterprise

 - 91 -

ESB provides certain capabilities [58], which includes routing, addressing, synchronous
and mainly asynchronous messaging infrastructure, connectivity to EAI middleware,
protocol transformation, language interfaces for service invocation, security options such
as authentication, authorization and confidentiality, messaging processing framework,
modeling options for services such as business object models, public versus private
models for B2B integration, and development and deployment tooling, to connect new
and existing software applications within and across enterprise, with a rich set of features
and enabling management and monitoring of interactions between applications.

Organizations are using ESB as it provides common and standard-based communication
and integration services which facilitate interoperability between applications executed
on different platforms and with different programming models. The architecture of ESB
is centered on a bus, and applications and services plug into the bus using standards based
technologies such as SOAP, HTTP, JMS (Java Messaging Service), and JCA (Java
Connector Architecture) [59]. The following figure illustrates the ESB architecture.

Figure 7.10: Enterprise Service Bus Architecture

The basic ESB architecture usually contains a distributed ESB engine, responsible for
message delivery and service invocation as well as quality of services on these
operations, distributed ESB services, a run-time configuration, and centralized
administration control. Typical distributed ESB services are service locator/routing
directory, transactional support, routing rules, mediations, and transformations.
Additional ESB services can include security and monitoring.

Legacy System /
Packaged

Application

Service
Orchestration

Web based
Applications and

Portals

Data Services
and

Adapters

J2EE / .NET
Applications

Web
Services

JCA

JMS / JCA,
SOAP / HTTP SOAP / HTTP

SOAP / HTTP SOAP /
HTTP

SOAP / HTTP

Service 1 Service 2 Service 3

Run-time
Engine

Run-time
Engine

Run-time
Engine Run-time

Configuration

Service 4

Distribution

Administration
and Control

Enterprise Service Bus

7. Strategies and Concepts for Service Orientation in Enterprise

 - 92 -

Run-time configuration defines configuration and distribution of ESB components, which
includes engine and services, and manages ESB metadata. Centralized administration and
control is usually provided through the GUI that allows viewing and modifying ESB
metadata. Service providers and consumers connect to the ESB either directly through the
ESB interfaces or using bus adapters.

ESB can be seen as the replacement of traditional EAI products by applying service
oriented integration principles. The foremost architectural consideration of SOA is to
provide a registry in which service consumers can discover service providers and bind to
them to execute the services. SOA does not offer a central control mechanism for service
consumers and providers, on the other hand, the communication takes place peer-to-peer
interaction of individual parties. ESB is particular case of SOA wherein the registry
notion is not present; however, still it is capable of articulating other significant
characteristics of service oriented architecture.

7.1.3 Portal Oriented Integration

Portal oriented integration aims to provide a single user interface for internal applications
and external enterprise computing systems without requiring a direct integration of them.
It aggregates diverse applications and forms a single access to these resources within the
enterprise mostly through a Web browser. The portal application has the capability to
access packaged applications, databases and other resources in enterprise by the usage of
Web server, middleware technologies and Web enabled frameworks.

The main difference of portal oriented integration methodologies with other integration
approaches is that portal orientation allows aggregating of information from multiple
enterprise systems to a single application or an interface without requiring real-time
exchange of information. A portal can be thought of a content aggregator customizable
by the end-user in terms of the applications that the portal contains and look-and-feel
aspects of the user interface. Portals are quite common especially in B2B area in which
the information is exchanged in an automated manner with the coordination of the end-
user. Yahoo [60] is an example portal application which gathers information and
resources from many sites within the enterprise and Internet for its users.

The remarkable development in Portal-based integration is to use Web services for
aggregation of content from different resources. Portlet and Web Services for Remote
Portlets [61] specifications defines the way to use Web services to generate mark-up
fragments which contains diverse application logics gathered from enterprise within the
portal application. A portlet is defined as user facing, interactive Web component
managed by a container, can process requests and generate dynamic content for the user.
Portlets communicate with users through the hosting portal server. Typically, portal
servers maintain a catalog of available portlets from which end users can select them for
placement on portal pages. The Java Portlet Specification (JSR-168) [62] defines a
standard API for J2EE based portal platforms.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 93 -

The portal invokes the requested portlets through the portlet container. The portal
framework creates the portal page with the fragments generated by the portlets and
returns the page to the end-user. The following figure illustrates this process [63].

Figure 7.11: Aggregating Mark-up Fragments from Local Portlets

Integration of content and applications into portals has been a challenging task which
requires significant programming effort. Portal frameworks allow dynamic integration of
business applications in a straightforward manner by accessing to the remote portlets
which interact with the required service and application logic. Web Services for Remote
Portlets (WSRP) specification defines the methodology for a portal to display remotely-
running portlets inside the portal page without requiring any additional programming by
the portal developer. Leveraging WSRP within service oriented architecture provides a
powerful combination in which presentation-oriented portlet fragments can be discovered
and reused without engaging in additional development or deployment activities.

Proxy Proxy

Portlet Container

Portal

Mark-up
fragments

Mark-up
fragments
aggregated into
complete Web
page

Web Browser

Portlet 2 Title

Portlet 2 HTML fragment

Portlet 1 Title

Portlet 1 HTML fragment

Portal Title

7. Strategies and Concepts for Service Orientation in Enterprise

 - 94 -

Once a remote portlet has been published, portal administrators can use their portal
administration tools to search the registry for Web services that implement the WSRP
interface and make some of the matching portlet Web services available for their users by
adding them to their portal’s portlet registry [64]. End-users can select the portlets from
the registry to be displayed on their personal pages just like local portlets.

Figure 7.12: Publishing, Finding, and Binding WSRP Services

This mechanism discussed above allows presentation-based, interactive Web services to
plug into portal framework for the aim of creating a single interface which includes the
functionalities offered by the providers in the Internet. WSRP allows interoperability of
portals by providing remote access to resources in enterprise in a standardized manner.

7.1.4 Business Process Oriented Integration

Business process oriented integration involves integration of application logics
encapsulated in remote systems through well-defined business processes located as an
upper layer on top of existing set of services within the enterprise. Process oriented
integration provides mechanism for the activation of processes in proper and sequential
order to fulfill the functionalities that the business needs. These processes are valuable for
the businesses as they express the accurate flow of information and the execution order of
business applications. They are built as a separate layer on existing applications including
object-based systems, packaged applications and services, and manage and control these
enterprise resources when they are executed. Processes are the assets of the businesses in
which the required functionalities are described as small, well-designed units by allowing
data exchange between participating systems.

Portal
Aggregation

Portlet
Proxy

Remote
Portlet

Portal
Aggregation

Portlet
Registry

Portlet
Registry Portlet Proxy Entry Portlet Entry

Portal
Administration

Portal
Administration

Registry

Portlet Entry

Portlet Entry

Portlet Entry

Portal 2 Portal 1

(2) Find & Bind

SOAP

(3) Invoke

(1) Publish

7. Strategies and Concepts for Service Orientation in Enterprise

 - 95 -

A Business Process is defined as a set of activities that have to be executed in some order
to accomplish a certain functionality or business goal within the environment of the
organizational structure and the enterprise. The process definition describes network of
activities, their relationships, participating units including applications, organizations and
people, data flow between activities, and properties that surrounds the process such as
conditions for a process to start and end of the execution. Business Process Management
(BPM) provides an infrastructure for the design, deployment, execution, maintenance,
and monitoring of business processes. BPM systems supplies necessary tools for
interpretation of process definitions, modeling, development and management of
processes while they are executed. The system ensures that the sequences of work items
are assigned to appropriate participants and resources are invoked where required.

Workflow is the automation of business processes. It can be seen that BPM systems offer
similar descriptions for the automation of processes provided by the Workflow
Management Coalition (WfMC), and become widespread especially after invention of
Web services. The Workflow Management Coalition, a non-profit, international
organization, identifies the common product structure and proposes specifications for the
use of workflow through common terminology, allowing interoperability and
connectivity between products [65]. Workflow management system defines and creates a
workflow instance from its process definition, which requires a process definition tool,
and executes this instance through the use of software, called as workflow engine. Process
definition tool is necessary to create and demonstrate the process description in a form
that the engine is able to execute. This tool utilizes a process definition language to model
the process definition in textual or graphical form or in a formal language notation.

BPM offers strategies that focus on definition of business processes and integration of
them within and between enterprises, rather than the development of tightly coupled
individual application structure. Business process integration involves integrating of
several applications by utilizing various metadata, platforms, and processes.

Figure 7.13: Process Based Integration Approach

Organization A Organization B Organization C

7. Strategies and Concepts for Service Orientation in Enterprise

 - 96 -

Web Services are the accepted technology for the interpretation of business processes.
BPM systems use Web services as the technology for the description of business
processes, and offer a new approach which replace traditional workflow systems that
applies proprietary process definition languages and runtime environments.
Orchestration and Choreography of Web services express combination of Web services
together in a consequential order to create an executable business process. The difference
between orchestration and choreography is that orchestration refers to an executable
business process which is controlled by one of the involved business parties; however
choreography describes the collaborative work of each involved parties within the whole
interaction of web services.

Figure 7.14: Web Service Orchestration and Choreography

Process definition language is used to describe the sequencing order in which the
participating Web services are invoked to accomplish a business function, and how the
operations of Web services are correlated to form a business conversation, as these
operations are stateless by nature. Although various process definition languages
proposed from organizations and vendors, still there is no standard and universally
accepted language for the description of business processes. Each of these languages has
different strength and weakness to express the business process.

One of the languages used for process definition is the Web Service Choreography
Interface (WSCI), [66] an XML-based language proposed jointly from Intalio, Sun
Microsystems, SAP and BEA Systems. The language describes the flow of messages
exchanged among interacting Web services by providing a global, message-oriented view
of a process definition.

It is a choreography language, which means it describes the observable behavior between
Web services without dealing with the definition of an executable business process and
transactional properties. WSCI describes the interdependencies among the Web service’s
operations so that any client can understand how to interact with such service in the
context of the given process, and can anticipate the expected behavior of such service at
any point in the process’s lifecycle.

Web Service Web Service

Web Service Orchestration Web Service Choreography

Business Process

Messages Messages

Business Process

Web Service

Message
Exchange

Business Process

7. Strategies and Concepts for Service Orientation in Enterprise

 - 97 -

WSCI describes the details of the behavior of the Web service within a process whose
execution can be initiated by the receipt of a message. A single WSCI interface describes
the message exchange from the point of view of the consequent Web service. The
following figure describes the relationship between WSCI interface and Web services.

Figure 7.15: WSCI Interface and Web Services

Most common process definition language is the Business Process Execution Language
for Web Services (BPEL4WS), [67] a specification written jointly by IBM, BEA,
Microsoft, SAP, and Siebel. It is a union language which features from IBM’s Web
Service Flow Language (WSFL) and Microsoft’s XLANG. BPEL4WS utilizes an XML-
based grammar to create process definition and is layered on top of WSDL to describe
the necessary Web service components for defining the messages being exchanged,
operations being executed and the required port types.

The language is used to support the two separate usage scenarios:

 Abstract process is for definition of the business protocol role and identification
the message exchange behavior between different parties involved in the protocol with
hiding their internal behavior.

 Executable process identifies the actual behavior of a participant in a business
interaction by defining the sequential order of the Web service executions between each
business partners. It defines how many service interactions with these partners are
coordinated and as well introduces systematic mechanisms for dealing with business
exceptions and processing faults.

BPEL4WS process definition contains a set of elements which describes the control flow,
asynchronous interactions, correlation, faults, compensation and other components within
the business process. The process definition defines process in terms of its interactions
with partners. A partner may provide services to the process, call for services from the
process, or contribute in a two-way interaction with the process. Partner links identify the
shape of a relationship with a partner by defining the message and port types used in the
interactions in both directions.

WSCI Interface

WSCI
Interface

WSCI
Interface Collaboration

Implementation Implementation

Implementation

Web
Service

 Web
Service

Web
Service

7. Strategies and Concepts for Service Orientation in Enterprise

 - 98 -

The following figure identifies the relationship between BPEL4WS process and its
partners.

Figure 7.16: BPEL4WS Process and Partners

There are other various specifications exist, such as WS Choreography Model, or process
definition languages, such as Business Process Modeling Language (BPML), which
support and extend Web services technologies in order to allow composition of services
to have state-full and long-running interaction between business partners in the
enterprise. BPM systems with Web services provides tools and well-defined strategies for
information passing between participating systems, modeling and visualizing of business
processes in application and enterprise level, and automation of them.

Process integration is more sophisticated than other approaches in a sense that an instance
of a business process covers many traditional application integration solutions and
extends the boundaries from communication of two or more application to the enterprise
level integration by providing a process model. The process model provides an
abstraction for the business rules and values, and determines how each system should
interact with each other in order to achieve the business goal.

Process based integration provides a satisfactorily integration approach for businesses
considering the requirements of the enterprise and allowing real-time integration with the
enabling middleware and points of combination. It is more business centric approach
which gives business individuals the possibility to configure the process model without
requiring demanding changes in the implementation model. As the processes constructed
from lower level services within the enterprise architecture, it is possible to build a
hierarchy of processes, from lower-level processes to higher-level processes, which deals
with specific and small-sized application integration, and makes it straightforward to
maintain individual activities of the process instance.

Web
Service Service Description

(WSDL Document)

Partner Link

Partner Link Web
Service Service Description

(WSDL Document)

Web
Service Service Description

(WSDL Document)

BPEL4WS
Process

Partner Link

Partner 1

Partner 2
Partner 3

7. Strategies and Concepts for Service Orientation in Enterprise

 - 99 -

7.1.5 Realization of SOA through Integration Approaches

SOA implementation can range from very primitive to very sophisticated realizations
consistent with the needs of the enterprise and organizations. The following table points
up different levels of SOA implementations.

Basic SOA

It is a realization of SOA that simply communicates through messages from
system to system. The concept of service is not applicable. EDI
implementations are examples of basic SOA.

Preliminary
SOA

It is an approach to SOA implementation in which the notion of service exist,
however, the execution environment does not apply the principles of SOA
completely. As an example, Enterprise Service Bus (ESB) implementations are
lack of registry of services, which makes them not a true SOA realization.

Central SOA

It is the SOA implementation that covers the all the requirements and principles
for a completed SOA realization. It is capable of moving information from
source to target systems, as well transformation and routing of services. EAI
with Web services offers central level SOA implementations.

Advanced
SOA

It is an advanced level realization of SOA which involves common directory for
discovering actual services, and allows brokering and managing them. It
provides real-time implementation of services and leverages application
behavior as if it is implemented locally. Portal based integration based on
WSRP is the example of advanced SOA.

Sophisticated
SOA

It is the SOA implementation which allows composition and orchestration of
services in order to build an application structure layered on top of services to
achieve specific business goal. It integrates diverse applications in enterprise
and creates a flow of services in the form of business processes. Business
process oriented integration is an example approach for a sophisticated SOA
implementation.

Table 7.2: Realization of SOA Implementations in Enterprise

7.2 Considerations for SOA Implementations

SOA implementation in enterprise is challenging as it involves fulfillment of many
additional features, functions, and quality of service (QoS) requirements to have an
enabled and proper execution environment. Core Web service technologies, such as
SOAP, WSDL and UDDI provide the basic background for a service to operate, however,
in enterprise level these technologies have to be extended to encompass enabling
execution of many types of applications and integration of them in order to accomplish
the complete vision of service enabled enterprise.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 100 -

Additional technologies, such as security, transactions, and reliable messaging, are
required considerations for an enterprise that builds on Web services, as the
standardization of these technologies are still in continuing progression. The
organizations including the World Wide Web Consortium (W3C) and Object
Management Group (OMG) define and propose various specifications for Web services
to cover all the required functionalities that an enterprise may need for successful
construction of SOA.

Quality of service (QoS) requirements for a Web service includes the following
considerations [68]:

− Availability: it is defined as the probability that a service is available at a
particular time.

− Accessibility: it is defined as the capability of a service to reply incoming
requests. It represents the successful instantiation of the service at a point in time.

− Integrity: it represents how the Web service maintains the correctness of the
interaction in respect to the source. Proper execution of Web service transactions
provides the correctness of interaction.

− Performance: it is the responsiveness of the system measured with the time
required to execute some function. It is calculated in terms of throughput and
latency. Throughput represents the number of Web service requests served at a
given time period. Latency is the round-trip time between sending a request and
receiving the response.

− Reliability: it represents the degree of being capable of maintaining the service
and service quality. In another sense, reliability refers to the assured and ordered
delivery for messages being sent and received by service requestors and service
providers.

Quality of Service (QoS) features improves the significance of SOA environment and
makes Web services better suited for use in more kinds of SOA-enabled applications. Not
every service based application require extended features for their execution, however, in
some cases, the application may not be functioned properly if some aspects of the
environment is not advanced, such as ensuring reliable messaging environment. Reliable
messaging guarantees that one or more messages were received the appropriate number
of times and followed correct message exchange pattern. Competing specifications are
proposed for Web services, such as WS-Reliability and WS-ReliableMessaging, to ensure
message delivery and ordering without duplications.

Other specifications in messaging area cover event notification and publish/subscribe
mechanism and extend the asynchronous messaging capability of Web services. Such
proposals include WS-Eventing and WS-Notification. Notification delivers messages
through an intermediary often called a message broker or event broker. Subscribers
identify the topics for which they wish to receive messages. Publishers send messages to
the channels or topics on which subscribers are listening. Notification is a messaging
mechanism that can be used to set up broadcast and publish/subscribe messaging.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 101 -

7.2.1 Service Control and Management

Service management is a required activity for an organization, as services may need
changes from time to time and if the number of services that an organization provides to
its partners is many, it is essential to define a mechanism to control and manage them. In
a dynamic service oriented environment, the messages a service accepts, the routing of
messages from one service to another and the usage area of the service may change over
time. Management covers all these aspects before putting the services into production.

Service management and monitoring includes policy configuration, distributed Service
Level Agreements (SLA) supervision between business partners, metadata management,
provisioning and routing of services. These capabilities involve both reporting and
changing the configuration parameters for a service which requires to find out what
applications are using the service at a given point in time. This is necessary to understand
the growing demand on the service for capacity planning and to provide information
about service utilization.

SLA is formed between two parties and states how services will be used and accounted
for and any prerequisites for use. Metadata management includes the description
information about a Web service necessary to construct a message body including its data
types and structures, and message headers so that a service consumer can invoke the
service. Metadata specifications include WS-Addressing, WS-Policy, and WS-
MetadataExchange and are necessary for the correct operation of an SOA based on Web
services. WS-Addressing defines endpoints and reference properties associated with
endpoints in communication patterns. WS-Policy is a framework which includes policy
declarations for various aspects of security, transactions, reliability, and quality of service
requirements with a WSDL definition. WS-MetadataExchange is for querying and
discovering metadata associated with a Web service, including the ability to fetch a
WSDL file and associated WS-Policy definitions.

7.2.2 Transaction Management

Transaction is defined as multiple operations on persistent data are completed as a unit,
whether succeed or fail together. Transaction processing technologies provide
mechanisms to recover for an application to a known state after some failures or
inconsistencies. Enterprise platforms, including J2EE, have transactional guarantees on
their behavior. For J2EE, Java Transaction API (JTA) provides standard API for
accessing the transactional capabilities provided in compliant software. In most cases,
for Web services, the underlying execution environment provides required transaction
processing capabilities. However, still it may be needed to have transactional context for
Web services so that multiple services can be grouped into a larger transactional unit and
can be coordinated across multiple execution environment. Web service transaction
specifications extend the transaction processing technologies by adjusting the two-phase
commit protocol for Web services, and define new extended transaction protocols for
supporting compensation-based and long-running business transactions.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 102 -

The specifications in this area include:

WS-Transactions:

− WS-AtomicTransactions: defines ACID transactions for a standard two-phase
commit protocol and short-lived executions.

− WS-BusinessActivity: defines transactions for uncertain commit and
compensation-based undo protocols for longer-lived executions.

− WS-Coordination: defines the management and coordinator for the WS-
Transaction family of protocols and their variations.

WS-Composite Application Framework (WS-CAF):

− WS-Context: defines a context management system for generic context.
− WS-CoordinationFramework: defines a management and coordinator for the

basic context specification and the transaction protocols defined in the WS-
TransactionManagement specification.

− WS-TransactionManagement: defines three transaction protocols for the
pluggable coordinator: ACID, long-running compensation based transactions, and
business process management.

Another specification is the Business Transaction Protocol (BTP), proposed by OASIS
and specifies that in a business transaction no single party controls all resources needed;
rather parties manage their own resources but coordinate in a defined manner to
accomplish the work scoped by a transaction. BTP provides two types of transaction:
atoms are business transactions where all participants have to agree before a transaction
can be committed, which means all participants in an atom are guaranteed to see the same
ending to the transaction; and cohesions which provides a central coordinator that
reviews the status of each member of the transaction. Even if some of the members
cannot successfully commit the transaction the coordinator can still decide to allow the
remaining members to commit.

These specifications overlap some functionality, such as they are all centered on an
extended coordinator notion, define atomic and compensation based long running
transactions. WS-CAF divides context management into a separate specification and adds
another protocol specifically designed for business process management. BTP proposal
defines a loosely coupled protocol that ensures that multiple Web service interactions are
correctly propagated and shared. The adoption of these new transaction protocols will
allow improved business process execution environment and standardization of these
technologies for the needs of enterprise.

7.2.3 Security

Security is a requirement in an enterprise to protect the application structure against
various threads. For Web services, as the proposals in this area are still in progression, it
is important to ensure the security by providing some mechanisms for message exchange
and surrounding execution environment.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 103 -

Basic mechanisms include encryption, authentication, authorization and logging for
problem definition. Internet security technologies comprise Secure Socket Layer (SSL)
and secure HTTP (HTTPS), which provides basic encryption-level security possibilities.
With J2EE, platform security is provided by the Java Authentication and Authorization
Service (JAAS) and supporting infrastructure.

XML has its own XML-based security technologies which can be applicable for Web
services as well. These technologies protect XML data and the message is secured while
it is exchanging as a SOAP message. XML Encryption provides confidentiality by
ensuring that the content of the document cannot be captured and read by unauthorized
persons. XML signature is another technique which provides integrity by ensuring that
service providers can determine whether or not the documents have been altered while
transportation and received only once.

The main proposal for Web services is Web Service Security (WS-Security), which
provides a framework for message level security on an end-to-end basis for Web services
messages. WS-Security headers include the ability to carry authentication formats such as
Kerberos tickets and can use XML Encryption and XML Signature technologies for
further protecting the message content. Other specifications exist to extend the WS-
Security specification:

− WS-SecurityPolicy: it defines the security requirements of a Web service, so the
consumer of the service preserves them.

− WS-Trust: it defines the ways to build a trustable and secure environment by
using required security tokens from trusted sources.

− WS-SecureConversation: it describes the requirements for multiple Web service
invocations to maintain a constant context and have a secure session.

− WS-Federation: it defines how to build a federated session so that a Web service
may require to be authenticated once in multiple security domains.

Security is important and required to control access to Web services and ensure the
confidentiality and integrity of Web services data, especially when multiple Web services
are executed collectively. Although there is no common standard yet for securing Web
services, the technologies discussed above will enhance the security possibilities of Web
service deployment environment.

7.3 Grid Computing

Grid Computing is based on a set of fundamental services that allow end users and
applications to share information and resources in heterogeneous computing
environments. Grid computing discipline involves the actual networking services and
connections of a potentially unlimited number of ubiquitous computing devices within a
“grid” [69]. End user sees computing resources as one large system and is able to have
single access to these resources, including software, data files, services, and licenses.

7. Strategies and Concepts for Service Orientation in Enterprise

 - 104 -

Grid participants share the distributed and coordinated heterogeneous resources in a
virtualized form. The resource virtualization can be organized into virtual organizations,
each one sharing its own resources cooperatively as a larger grid. Participants of the grid
can be members of several real and virtual organizations.

Figure 7.17: Resource Virtualization in Grid Computing

Grid computing is based on open set of standards and protocols. The Open Grid Services
Architecture (OGSA) Working Group proposed a service oriented approach for the
definition of the Grid Architecture, a technology independent blueprint [70] for the
implementation of the required services and their specific characteristics.

Problem
A

Problem
B

Software Application
Provider

Weather
Predication

Math Modeling
Application

Hardware Service
Provider

Computer
Cluster

Linux on
Demand

Network
Bandwidth

Financial
Modeling

Database
System

Financial Service
Provider

Dynamic
Virtual

Organization A
(formed to

provide weather
prediction)

Virtual Organizations are:
• Logical entities
• Limited lifetime
• Dynamically created to

solve a specific problem
• On demand resource

allocation and
provisioning for solving
the problem

Weather Prediction

Financial Modeling

User

User

Dynamic
Virtual

Organization B
(formed to

solve a
financial

modeling)

 - 105 -

8. Conclusion

Service Oriented Architecture (SOA) provides a common platform and execution
environment for heterogeneous applications built with diverse technologies. Service
orientation supports interoperability of these applications by hiding their internal
structures from each other, and creates a flexible and loosely coupled distributed systems.

Service oriented development is the natural evolution of component based software
development, and services are created from components. Service development is the
central part of service oriented application structure, and it is challenging as the interface
design for a service should be enough competent to support the needs of internal
computing systems, as well as the other unknown consumers from external organizations
and enterprise.

SOA offers creation of flexible, loosely coupled and reusable service logics, which makes
service based development valuable for many organizations. The businesses gain benefit
from SOA implementations, as the services are capable of expressing not only technical
properties of computing environment, but also can focus on representing and solving of
specialized business functionalities and problem domains. Remotely located services can
be composed into business processes, and the process flow is essential for an organization
to fulfill its business activities in an effective and computerized way.

SOA implementations in enterprise provide straightforward integration of application
logics and capable of building sophisticated application structures for the needs of
businesses and organizations. SOA is best realized in enterprise by Business Process
Management System technologies, as the process information is constructed by
utilization of individual services, and the business process is located on top of services.
Enterprise Application Integration based on Web services is as well an effective approach
to SOA realization as it replace the traditional middleware technologies and provides
improvement in building application structures.

Although SOA is independent from any specific technology, it enhance its vision with
Web service technologies, however, these technologies are still evolving and support for
mature SOA implementation based on Web services is the upcoming target and working
area of many organizations and computing environments.

Within this thesis study, a prototypical service based application has been developed to
illustrate the fundamental characteristics of SOA. At the basic level, the case study
proves the interoperability of different platforms, reusability of loosely coupled service
business logic, and consumption of service from other software modules to form a service
based interaction of applications.

8. Conclusion

 - 106 -

SOA can be implemented by combination of different tools which provides specialized
functionalities for the construction of SOA execution environment. A rather new trend is
to offer frameworks which support all required tools and models within the same
infrastructure. Currently in the industry many vendor specific SOA based frameworks
exist with diverse offerings, including integration platforms, SOA management and
monitoring suites, and collection of service design, creation and modeling tools.
Unfortunately, the open source developments in this area are still evolving and most of
the current implementations do not support complete SOA framework requirements.

SOA is becoming more adoptable and operable as the organizations continue to support
service based implementations. In the future, SOA will have a significant influence on
the development of enterprise application infrastructure with the facilitation of
developing technologies.

8.1 Further Studies

SOA has a broad influence in each stage of application development including analysis
and design of individual services, service deployment, creation of new applications from
services and implementation of services through service oriented strategies and
approaches. SOA obliges and applies its principles and architectural considerations to
these stages of application development. Within this context, it is possible to elaborate
and broaden the specialization of the applicable concepts and topics discussed within the
thesis study. As an example, Model Driven Architecture is an emerging concept which
can be analyzed and explained in more detailed way as a separate study with considering
its relationships with SOA.

Another further study can be related with Grid Computing, as it is a distinct topic which
has its own characteristics and strategies. Grid Computing is based on SOA, and it can be
a separate study to describe what it is with surrounding features and concepts.

 - 107 -

Appendix: List of Web Service Specifications

Several organizations are proposing specifications for the interoperability of diverse Web
service implementations and the adoption of Web services successfully. Here some of the
specifications will be described and organizations that propose them will be introduced.

Organization Description Specifications Web Site

World Wide Web
Consortium
(W3C)

A consortium of
several member
organizations that
progressing standards for
the Internet.

SOAP,
WSDL,
WS-Choreography,
WS-Addressing,
XML Encryption,
XML Signature
……

www.w3c.org

Web Services
Interoperability
Organization (WS-I)

A consortium of mostly
vendor companies
focusing on web services
interoperability and
compatibility.

WS-Security
WS-Transaction
WS-Coordination
WS-Attachments
WS-Inspection
WS-Referral
WS-Routing
……

www.ws-i.org

Organization for the
Advancement of
Structured
Information
Standards
(OASIS)

A consortium that
focuses on the
development of e-
business standards.

UDDI,
WS-Security,
WS-BPEL,
WS-Composite
Application
Framework,
WS-Notification,
WS-Reliability,
Web Services Policy
Language,
Web Services for
Remote Portlets,
Web Services
Distributed
Management,
Web Services Resource
Framework
…….

www.oasis-open.org

Table 1: Organizations That Propose Web Service Standards

Appendix: List of Web Service Specifications

 - 108 -

Description: provides transport-neutral mechanisms to address Web services and
messages, to identify Web service endpoints and to secure end-to-end endpoint
identification in messages. WS-Addressing replaces earlier proposals called WS-
Routing and WS-Referral.
Organization: World Wide Web Consortium

Web Services
Addressing
(WS-Addressing)

Web site: http://www.w3.org/Submission/ws-addressing/

Description: a framework that includes policy declarations for various aspects of
security, transactions, and reliability. WS-Policy provides a general purpose
model and corresponding syntax to describe and communicate the policies of a
Web Service.

• WS-PolicyAssertions specifies a set of common message policy
assertions that can be specified within a policy.

• WS-PolicyAttachment specifies three specific attachment mechanisms
for using policy expressions with existing XML Web Service
technologies.

Organizations: IBM, BEA, Microsoft, SAP

Web Services Policy
Framework
(WS-Policy)

Web site:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-policy.asp

Description: provides a protocol that allows Web services to subscribe to or
accept subscriptions for event notification messages.
Organizations: BEA, Microsoft, TIBCO, IBM

Web Services
Eventing
(WS-Eventing)

Web site:
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-
eventing/

Description: defines a set of specifications that standardize the way Web
Services interact using the notification pattern.
Organization: OASIS

Web Services
Notification
(WS-Notification)

Web site: http://ifr.sap.com/ws-notification/ws-notification.pdf

Description: a generic and open model for ensuring reliable message delivery
for Web Services with a chosen level of quality of service (QoS).
Organization: OASIS

Web Services
Reliability
(WS-Reliability)

Web site: http://www.oasis-open.org/committees/wsrm/charter.php

Table 2: List of Web Service Specifications (continue)

Appendix: List of Web Service Specifications

 - 109 -

Description: describes a protocol that allows messages to be delivered reliably
between distributed applications in the presence of software component, system,
or network failures.
Organizations: IBM, BEA, Microsoft, and TIBCO

Web Services
Reliable Messaging
(WS-
ReliableMessaging)

 Web site: http://www-128.ibm.com/developerworks/library/specification/ws-rm/

Description: defines a generic and open framework for modeling and accessing
stateful resources using Web Services. Additional related specifications that have
been developed that will be considered by OASIS for the WSRF.

• WS-ResourceProperties: This defines how the data associated with a
stateful resource can be queried and changed using Web Services
technologies.

• WS-ResourceLifetime: This defines two ways of destroying a WS-
Resource: immediate and scheduled. This allows designers flexibility to
design how their Web Services applications can clean up resources no
longer needed.

• WS-BaseFaults: This defines an XML Schema type for a base fault,
along with rules for how this fault type is used by Web Services.

• WS-ServiceGroup: This defines a means by which Web Services and
WS-Resources can be aggregated or grouped together for a domain
specific purpose.

Organization: OASIS

Web Services
Resource Framework
(WSRF)

Web site: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

Description: defines three request-response message pairs to retrieve three types
of metadata: one retrieves the WS-Policy associated with the receiving endpoint
or with a given target namespace, another retrieves either the WSDL associated
with the receiving endpoint or with a given target namespace, and a third
retrieves the XML Schema with a given target namespace. Together these
messages allow incremental retrieval of a Web service's metadata.
Organizations: BEA, IBM, Microsoft, and SAP

WS-
MetadataExchange

Web site:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
metadataexchange.pdf

Description: defines a multicast discovery protocol to locate services. By
default, probes are sent to a multicast group, and target services that match return
a response directly to the requestor.
Organizations: BEA, Microsoft, Canon and Intel

Web Services
Dynamic Discovery
(WS-Discovery)

Web site:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf

Table 2: List of Web Service Specifications (continue)

Appendix: List of Web Service Specifications

 - 110 -

Description: describes enhancements to SOAP messaging in order to provide
quality of protection through message integrity, and single message
authentication.
Organization: OASIS

Web Services
Security
(WS-Security)

Web site: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Description: defines security assertions detailing a Web service's requirements
so that the service requester can meet them.
Organizations: Microsoft, IBM, VeriSign

Web Services
Security Policy
(WS-SecurityPolicy)

Web site:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-securitypolicy.pdf

Description: defines how to establish overall trust of the security system by
acquiring any needed security tokens from trusted sources.
Organizations: IBM, BEA, VeriSign

Web Services
Trust
(WS-Trust)

Web site:
http://www-128.ibm.com/developerworks/library/specification/ws-trust/

Description: defines how to establish and maintain a persistent context for a
secure session over which multiple Web service invocations might be sent
without requiring expensive authentication each time.
Organizations: IBM, BEA, VeriSign

Web Services
Secure Conversation
(WS-
SecureConversation)

Web site:
http://www-128.ibm.com/developerworks/library/specification/ws-secon/

Description: defines how to bridge multiple security domains into a federated
session so that a Web service only has to be authenticated once to access Web
services deployed in multiple security domains.
Organizations: IBM, BEA, VeriSign, Microsoft

Web Services
Federation
(WS-Federation)

Web site:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-federation.asp

Description: describes the data and the relationships between them to define a
choreography that describes the sequence and conditions.
Organization: World Wide Web Consortium

WS Choreography
Model

Web site: http://www.w3.org/TR/2004/WD-ws-chor-model-20040324/

Table 2: List of Web Service Specifications (continue)

Appendix: List of Web Service Specifications

 - 111 -

Description: an XML-based language that describes peer-to-peer collaborations
of Web Services participants by defining their common and complementary
observable behavior
Organization: World Wide Web Consortium

WS Choreography
Description
Language

Web site: http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

Description: an XML specification of a protocol for managing complex, B2B
transactions over the Internet.
Organization: OASIS

Business Transaction
Protocol (BTP)

Web site:
http://www.oasis-open.org/committees/business-
transactions/documents/primer/Primerhtml/BTP%20Primer%20D1%2020020602
.html

Description: an open, multi-level framework for standard coordination of long-
running business processes across multiple, incompatible transaction processing
models and architectures. It is divided into three parts:

• WS-Context: defines a standalone context management system for
generic context (that is, for non-transaction protocol contexts such as
security, device and network IDs, or database and file IDs).

• WS-CoordinationFramework: defines a coordinator for the basic
context specification and the pluggable transaction protocols in the WS-
TransactionManagement specification.

• WS-TransactionManagement: defines three transaction protocols for
the pluggable coordinator: ACID, long-running actions (compensation),
and business process management.

Organization: OASIS

WS-Composite
Application
Framework
(WS-CAF)

Web site: http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

Description: provides the definition of the atomic transaction coordination type
that is to be used with the extensible coordination framework described in the
WS-Coordination specification.
Organizations: IBM, Microsoft, BEA

Web Services
Atomic Transaction
(WS-
AtomicTransaction)

 Web site:

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
AtomicTransaction.pdf

Table 2: List of Web Service Specifications (continue)

Appendix: List of Web Service Specifications

 - 112 -

Description: describes an extensible framework for providing protocols that
coordinate the actions of distributed applications. The framework enables
existing transaction processing, workflow, and other systems for coordination to
hide their proprietary protocols and to operate in a heterogeneous environment.
Organizations: IBM, Microsoft, BEA

Web Services
Coordination
(WS-Coordination)

Web site:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Description: provides the definition of the business activity coordination type
that is to be used with the extensible coordination framework described in the
WS-Coordination specification.
Organizations: IBM, Microsoft, BEA

Web Services
BusinessActivity
(WS-BusinesActivity)

Web site:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
BusinessActivity.pdf

Description: provides a graphical notation for expressing business processes in a
Business Process Diagram (BPD).
Organization: BPMI.org

Business Process
Modeling Notation
(BPMN)

Web site:
http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf

Description: a meta-language for the modeling of business processes, and
provides an abstracted execution model for collaborative and transactional
business processes.
Organization: BPMI.org

Business Process
Modeling Language
(BPML)

Web site: http://www.bpmi.org/BPML.htm

Table 2: List of Web Service Specifications

These specifications listed above are based on Web services and aims to extend Web
service functionalities in order to provide a satisfactorily execution environment and
development of application structure. As well, there are many other specifications exist.

 - 113 -

References

[1] James McGovern, Sameer Tyagi, Michael E. Stevens, Sunil Mathew Java Web
 Services Architecture, Morgan Kaufmann Publishers, 2003

[2] L. Bass, P. Clements, R. Kazman Software Architecture in Practice,
 Addision-Wesley, 1997

[3] Raphael Malveau, Thomas J. Mowbray Software Architecture: Basic Training,
 Prentice Hall PTR, Apr. 16, 2004

[4] E. Yourdon, L. Constantine Structured Design, Prentice Hall, 1975

[5] G. Booch Object Oriented Design with Applications, Benjamin-Cummings
 Publishing, 1990

[6] C. Szyperski Component Software: Beyond Object-Oriented Programming,
 Addision-Wesley, 1998

[7] Dirk Slama, Karl Banke, Dirk Krafzig Service Oriented Architecture: Inventory
 of Distributed Computing Concepts, Prentice Hall PTR, Dec. 10, 2004

[8] Bieber, Carpenter, Stevens Jini Technology Architectural Overview, Sun
 Microsystems, 2001

[9] World Wide Web Consortium (W3C), Web Services Architecture,
 11 February 2004, http://www.w3.org/TR/ws-arch/

[10] Ali Arsanjani How to Identify, Specify and Realize Services for your SOA (Part
 II and III), IBM, 2005, http://www.ebizq.net/topics/dev_tools/features/5632.html

[11] Sun Microsystems, Jini Network Technology,
 http://www.sun.com/software/jini/

[12] Sun Microsystems, Java 2 Platform Enterprise Edition Specification, Version 5.0
 http://java.sun.com/j2ee/

[13] Jeff A. Estefan, Exploring Open Software Standards for Enterprise e-business
 Computing, August 28, 2000, IBM International Technical Support Organization.

[14] Sun Microsystems, Java Message Service Specification, Version 1.1
 http://java.sun.com/products/jms/docs.html

[15] Sun Microsystems, Remote Method Invocation Architecture and Functional
 Specification, http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

 - 114 -

[16] Microsoft Corporation, Component Object Model (COM),
 http://www.microsoft.com/com/default.mspx

[17] Sara Williams, Charlie Kindel The Component Object Model: A Technical
 Overview, Microsoft Corporation, October 1994.

[18] Microsoft Corporation, DCOM Technical Overview, November 1996

[19] Object Management Group, Common Object Request Broker Architecture: Core
 Specification, Version 3.0.3, March 2004
 http://www.omg.org/technology/documents/corba_spec_catalog.htm

[20] World Wide Web Consortium (W3C), Extensible Markup Language (XML)
 Specification, Version 1.0, 04 February 2004, http://www.w3.org/TR/REC-xml/

[21] World Wide Web Consortium (W3C), SOAP Specification, Version 1.2,
 24 June 2003, http://www.w3.org/TR/soap/

[22] World Wide Web Consortium (W3C), Web Services Description Language
 Specification, Version 1.1, 15 March 2001, http://www.w3.org/TR/wsdl

[23] OASIS UDDI Technical Committee, Universal Description, Discovery and
 Integration Specification, Version 3.0.2, 2004, http://uddi.org/pubs/uddi_v3.htm

[24] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo, T.
 Newling Patterns: Service Oriented Architecture and Web Services,
 IBM Redbook, April 2004

[25] M. Fowler UML Distilled: Applying the Standard Object Modeling Language,
 Addision-Wesley, 1997

[26] B. Meyer Object Oriented Software Construction, Prentice Hall, 1997

[27] Boris Lublinsky SOA Design: Meeting in the Middle, August 20, 2004

[28] Greg Lomow, Eric Newcomer Introduction to SOA with Web Services,
 Addison Wesley, 2005

[29] Lawrence Wilkes, Richard Veryard Service Oriented Architecture:
 Considerations for Agile Systems, CBDI Forum, April 2004

[30] Object Management Group, Unified Modeling Language Specifications
 Home page: http://www.uml.org/

 - 115 -

[31] Object Management Group, Unified Modeling Language Specification,
 Version 2.0, October 8, 2004

[32] Simon Johnston, UML 2.0 Profile for Software Services, IBM, 13 April 2005

[33] Object Management Group, Model Driven Architecture Specifications,
 Home page: http://www.omg.org/mda/specs.htm

[34] The Middleware Company, SOA Blueprints Specification, Version 0.5, June 2004
 http://www.middlewareresearch.com/soa-blueprints/

[35] SAP AG, SAP NetWeaver, http://www.sap.com/solutions/netweaver/index.epx

[36] Franz-Josef Fritz an Introduction to the Principles of Enterprise Services
 Architecture (ESA), 2004, SAP AG.

[37] Laurie Nolan Realization of the ESA Vision, 2004, SAP AG

[38] Kartik Iyengar, Creating a Comprehensive Collaborative Platform with SAP
 NetWeaver, Part II, SAP Developer Network, 11 January 2005

[39] Kaj van de Loo, Implementing an Enterprise Services Architecture, 27 July 2004

[40] Apache Software Foundation, Beehive Project, Version 1.0
 http://incubator.apache.org/beehive/

[41] Sun Microsystems, Java Community Process, JSR 175: A Metadata Facility for
 the Java Programming Language, 30 September 2004
 http://www.jcp.org/en/jsr/detail?id=175

[42] Apache Software Foundation, the Apache Struts Web Application Framework,
 http://struts.apache.org/

[43] Sun Microsystems, Java Community Process, JSR 181: Web Services Metadata
 for the Java Platform, 27 Jun, 2005, http://www.jcp.org/en/jsr/detail?id=181

[44] Rogue Wave Software, The Lightweight Enterprise Integration Framework
 (LEIF), evaluation version 2.1,
 http://www.roguewave.com/products/leif/index.cfm

[45] Rogue Wave Software, the Lightweight Enterprise Integration Framework
 (LEIF) software documentation

[46] infoAsset AG The infoAsset Broker Technical White Paper, 7 April 2001

 - 116 -

[47] Holm Wegner, The infoAsset Broker Documentation, 2000

[48] Apache Software Foundation, Tomcat Project, http://jakarta.apache.org/tomcat/

[49] Lars Diestelhorst, Wissensmanagement für die Entwicklung von
 Feststoffprozessen: Assetorientierte Analyse, Design und Implementierung eines
 Information-Brokers, Software System Institute, Technical University Hamburg-
 Harburg, Master Thesis, 24 June 2004

[50] Leif M. Koch, Wissensportalsoftware als Learning Management System,
 Technical University Hamburg-Harburg, Master Thesis, October 2002

[51] Amazon Web Services Home Page, www.amazon.com/webservices

[52] James M. Snell, Resource-Oriented vs. Activity-Oriented Web Services, Oct. 2004

[53] David S. Linthicum Approaching Application Integration,
 Addision Wesley, Feb. 13, 2004

[54] David S. Linthicum Approaching E-business Integration,
 Addision Wesley, Nov. 13, 2000

[55] UN/CEFACT, OASIS, ebXML Technical Architecture Specification, v1.0.4,
 16 February 2001, http://www.ebxml.org/specdrafts/approved_specs.htm

[56] Abraham Kang, Enterprise Application Integration Using J2EE, 9 August 2002

[57] Manoj Seth, Web Services – A Fit for EAI (Part 1 and 2), October 2002
 http://www.developer.com/tech/article.php/10923_1489501_1

[58] Martin Keen, Amit Acharya, Susan Bishop, Alan Hopkins, Sven Milinski, Chris
 Nott, Rick Robinson, Jonathan Adams, Paul Verschueren, Patterns: Implementing
 an SOA Using an Enterprise Service Bus, IBM Red Book, July 2004

[59] Naveen Balani, Model and Build ESB SOA Frameworks, 15 March 2005

[60] Yahoo Portal Application: www.yahoo.com

[61] OASIS, Web Services for Remote Portlets Specification, v1.0, August 2003
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

[62] Sun Microsystems, Java Community Process, JSR 168, Portlet Specification,
 v1.0, October 2003, http://www.jcp.org/en/jsr/detail?id=168

[63] Bryan Castle, Introduction to Web Services for Remote Portlets, 15 April 2005

 - 117 -

[64] Thomas Schaeck, Web Services for Remote Portlets (WSRP) Whitepaper,
 22 September 2002, IBM Corporation

[65] Workflow Management Coalition, the Workflow Reference Model,
 Document Number WFMC-TC00-1003, January-1995, http://www.wfmc.org/

[66] World Wide Web Consortium (W3C), Web Service Choreography Interface
 (WSCI) Specification, Version 1.0, 8 August 2002, http://www.w3.org/TR/wsci/

[67] OASIS, Business Process Execution Language for Web Services (BPEL4WS)

 Specification, Version 1.1, 5 May 2003,
 http://dev2dev.bea.com/webservices/BPEL4WS.html

[68] A. Mani, A. Nagarajan Understanding Quality of Service for Web Services,
 January 2002, IBM DeveloperWorks

[69] Joshy Joseph, Craig Fellenstein, Introduction to Grid Computing,
 Prentice Hall PTR, Apr 16, 2004

[70] Global Grid Forum (GGF), the Open Grid Services Architecture, Informational
 Document, version 1.0, 29 January 2005, http://www.globus.org/ogsa/

