

Reengineering of the RACER Proxy
Iterative Query Answering

Jog Ratna Maharjan

Submitted in partial fulfillment of the requirements for the degree
Master of Science in Information and Media Technologies

Supervised by
Prof. Dr. Ralf Möller

Atila Kaya

Software Technology and Systems (STS)
Technical University of Hamburg-Harburg (TUHH)

Hamburg, February 2005

Reengineering of RACER Proxy
for Iterative Query Answering

ABSTRACT

In an attempt to improve the existing system with more functionality and increased
efficiency, the concept of RACER proxy was developed, which further evolved as the
RACER system itself advanced.

The need for the system to accept multiple connections simultaneously from the multi-
platform clients by means of heterogeneous message exchange protocols (e.g. SOAP)
was one of the reasons for reengineering of the RACER proxy system. But more
importantly, it was the evolution of RACER system itself with advance query answering
feature that stimulated the project of reengineering the proxy system.

The whole reengineering process was carried out following standard incremental
software engineering paradigm, from analysis to final testing and this document is the
reflection of the whole work process in the same sequential order.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 i

Reengineering of RACER Proxy
for Iterative Query Answering

DECLARATION

I declare that:
This work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, Feb 2005
Jog Ratna Maharjan

STS – Technical University of Hamburg-Harburg (TUHH), 2005 ii

Reengineering of RACER Proxy
for Iterative Query Answering

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my project supervisor Prof. Dr. Ralf
Möller, Technical University of Hamburg-Harburg, for his unique way of inspiring
students through clarity of thought, enthusiasm and caring. His technical excellence on
the subject, unwavering faith and constant encouragement were very helpful to complete
this project successfully.

Atila Kaya, my project advisor, is due a special note of thanks for introducing me to the
RACER, Proxy systems and for all his guidance and support throughout the project. This
project work was enabled and sustained by his vision and ideas.

I would like to acknowledge Christian Finckler, Fachhochschule Wedel the developer
of primary RACER proxy, for providing the basic infrastructure to start the project.

I wish to extend my thanks to my colleague Tejas Doshi, for working side by side from
analysis till the final presentation.

I wish to thank Jan Galinski for his comments and ideas on the various topics during
development and finally packing individual project components into single system.

Finally, thank you to all of my professors and friends for their contribution to this work.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 iii

Reengineering of RACER Proxy
for Iterative Query Answering

CONTENTS
ABSTRACT ... i
DECLARATION .. ii
ACKNOWLEDGEMENT .. iii
CONTENTS ... iv
LIST OF FIGURES...v
Introduction ...1

RACER.. 1
nRQL... 3
RACER Client .. 3
RACER Proxy .. 4

Motivation ..6
Lehman’s Laws [LB 1985] ... 6
Resource Overload Propagation ... 6
1. Iterative Query Answering .. 7
2. Message Interchange Interface (Web services) .. 8

Reengineering ..10
Analysis ... 10

Multi-session queries ..11
Server unavailability...11
Standard Interfaces...12

Design .. 14
Parameter Logging ...14
Architecture ..16
Components ..17

Demonstration ...21
Scenario... 21
Execution Process ... 22

Query 1 ...22
Query 2 ...24
Query 3 ...24

Conclusion & Outlook...26
Features... 26
Further More .. 27

REFERENCE ..28
Literature & WWW Addresses... 28
Related Projects .. 28
Software tools.. 28

APPENDIX ..29
A. “Family.racer” knowledge base file (TBOX & ABOX).. 29
B. Complete output of Demo ... 30
C. Interface between RACER client and RACER proxy .. 32

STS – Technical University of Hamburg-Harburg (TUHH), 2005 iv

Reengineering of RACER Proxy
for Iterative Query Answering

LIST OF FIGURES

Fig 1.1 RACER client server query model ...1
Fig 1.2 Concept hierarchy for the “family” TBox [RACER Manual 1.7.19 2004]..................................2
Fig 1.3 Depiction of the” ABox smith-family”. [RACER Manual 1.7.19 2004].......................................2
Fig 1.4 RICE showing both the query and result. ...4
Fig 1.5 Relaying of requests & responses with introduction of RACER Proxy4
Fig 1.6 RACER proxy routing requests from multiple clients & re-routing responses from multiple

servers ..5

Fig 2.1 RACER & client interaction in" tuple-at-a-time" mode ...7
Fig 2.2 RACER proxy message interchange interfaces...9

Fig 3.1 RACER, Proxy & client interaction in” tuple-at-a-time” mode ..10
Fig 3.2 Message interchange interfaces between client, proxy and the RACER...................................13
Fig 3.3 RACER, Proxy & client interaction with storage ...15
Fig 3.4 New RACER Proxy Architecture...16

Fig 4.1 Interaction between Client, Proxy and RACER server ..21

Fig APPNEDIX C. Interface between RACER Client and the RACER Proxy32

STS – Technical University of Hamburg-Harburg (TUHH), 2005 v

Reengineering of RACER Proxy
for Iterative Query Answering

Chapter 1

Introduction

A typical RACER query interaction could be visualized as a simple two tier client/server
model constituted by a RACER server and a RACER client. Requests and responses
between them are being transferred as (n)RQL statements.

RACER
Client

RACER
Server

 RACER Request

RACER Response

Fig 1.1 RACER client server query model

In above figure Fig 1.1, the client prepares a typical nRQL (pronounced nercle) query,
analogous to an SQL query, to be sent to the server. The server holds the knowledge base
for answering that query. The knowledge base stored on the server can be transferred to
the server prior to the query or even along with the query itself. Upon arrival of the query
on the server, the server computes the results and returns the response back to the client
once again as same nRQL statement.

Before getting in-depth details regarding this project work, let us get familiar with the
major components of this interaction system in this chapter. Following sections in this
chapter provides brief overview of these aforementioned terminologies as well as some
more that will be used in later chapters.

RACER

RACER (Renamed ABox and Concept Expression Reasoner) system was developed by
Prof. Dr.Ralf Möller and Volker Haarslev in 1999 at University of Hamburg, Germany.
Since then it is being used in many research projects “as a knowledge representation
system that implements a highly optimized tableau calculus for very expressive
description logic”. [RACER Manual 1.7.19 2004].

RACER system provides reasoning for many TBoxes and ABoxes. A collection of
concept axioms is called a TBox (Terminological Box) and a collection of assertional
axioms is called an ABox (Assertional Box). [for details ref. A. “Family.racer”
knowledge base file (TBOX & ABOX), APPENDIX]

STS – Technical University of Hamburg-Harburg (TUHH), 2005 1

Reengineering of RACER Proxy
for Iterative Query Answering

Given a TBox, different queries can be answered. Based on the logical semantics of the
representation language, different kinds of queries are defined as inference problems.

Fig 1.2 Concept hierarchy for the “family” TBox [RACER Manual 1.7.19 2004]

Some of the possible queries are;

• Concept consistency w.r.t. a TBox: i.e. is the set of objects described by a
concept empty?

• Concept subsumption w.r.t. a TBox: Is there a subset relationship between the
set of objects described by two concepts?

Fig 1.3 Depiction of the” ABox smith-family”. [RACER Manual 1.7.19 2004]

If also an ABox is given, among others, further more types of queries are possible like;

• Check the consistency of an ABox w.r.t. a TBox: Are the restrictions given in
an ABox w.r.t. a TBox too strong, i.e., do they contradict each other? Other
queries are only possible w.r.t. consistent ABoxes.

• Instance retrieval w.r.t. an ABox and a TBox: Find all individuals from an

ABox such that the objects they stand for can be proven to be a member of a
set of objects described by a certain query concept.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 2

Reengineering of RACER Proxy
for Iterative Query Answering

nRQL

nRQL (new RACER Query Language) is the language of RACER for message
interchange. It is derived from the previous standard RACER Query Language (RQL).
Based on the complexity of the query syntax, a nRQL queries can be classified as unary,
binary atoms queries or the complex queries.

A typical simple nRQL request query, which a client in above Fig 1.1 could have send
looks like;

(retrieve (?x) (?x woman))

This query asks the server to return all the instance of woman from the “ABox” located
on RACER Server. For which the RACER server loaded with “family knowledge base”
would reply back another nRQL statement with variable value binding list as follows;

(((?x EVE)) ((?x DORIS)) ((?x ALICE)) ((?x BETTY)))

It is not just the complexity of the query which is used to categorize the queries.
nRQL statements can be further categorized as Statements and Queries depending upon
the state of knowledge base after its execution.

Statements are those nRQL statements which can change the stored knowledge base
(ABOX or TBOX) after its execution, analogous to the “UPDATE” statements in SQL.
Whereas queries are those nRQL statements which don’t alter the internal knowledge
base structure (ABOX or TBOX) stored in the RACER server after its execution,
analogous to “SELECT” statements in SQL.

In this project we mainly focus more on the queries than the statements, mainly unary
atom queries and few complex queries with two atoms.

RACER Client

RACER client is a multi-platform (both hardware and operating system) system which
can make socket connection (basically TCP or HTTP) to server over any network
protocols supported by the RACER server or by the intermediary systems between the
server and the client.

There already exist some client implementations which provide the interface to send and
receive nRQL queries to/from the RACER server respectively. Some of them are simple
command prompt based interfaces like DIG client, whereas some have extensive GUI
interface even showing detail hierarchical knowledge base structure stored on the server.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 3

Reengineering of RACER Proxy
for Iterative Query Answering

RICE (RACER Interactive Client Environment) is one of such simple java based GUI
RACER client with extensive features. It not only provides facility to send (n)RQL
queries to the RACER server directly (or through the RACER proxy) , but also shows a
list of “TBoxes” and the desired “ABoxes” of the loaded knowledge base.

Fig 1.4 RICE showing both the query and result.

 RACER Proxy

The basic objective of the development of RACER proxy was similar to most other
proxy systems. Like a web or mail proxy, the RACER proxy was primarily developed to
relay the messages to and forth between RACER server and client.

Fig 1.5 Relaying of requests & responses with introduction of RACER Proxy

The primary proxy (or the middleware) takes the RACER queries from one or more
RACER clients as input then forwards those queries one by one to the RACER server.
The server in turn processes those incoming query and sends back the generated results

RACER
Server RACER

Proxy

1 2RACER

Client
4 3

RACER request RACER response

STS – Technical University of Hamburg-Harburg (TUHH), 2005 4

Reengineering of RACER Proxy
for Iterative Query Answering

to the proxy without having to care about the end client platform or even the message
exchange protocol that the end client is using to send the request at the first place. Some
of the overload on the server side regarding clients is reduced even with this simple
message-relay proxy.

As any other proxies, the primary RACER proxy was able to handle multiple client
requests simultaneously. Although it didn’t use any dynamic message processing system
for the en-queued messages (which has not yet been processed), it used simple FIFO
queue to store those newly arrived requests. Once the RACER server became free, the
proxy controller used to read and remove these requests from the queue for further
processing. This was one the immediate benefit of having RACER proxy over the
normal client/server system, where there was limitation of handling only one client
request at a time.

The proxy provided support for the multiple connections not only on the client side but
also supported multiple RACER servers loaded with same knowledge base. The advent
of the proxy system with the support of multiple servers provided load safe redundant
backup for the RACER server. If one of the RACER servers failed or became busy,
while arrival of the new request, then the request could be easily routed to another
available server.

Client (1) RACER (1)

RACER
Proxy

Fig 1.6 RACER proxy routing requests from multiple clients & re-routing responses

from multiple servers

RACER proxy was able to provide primitive load sharing functionality, by routing the
queries to the first available RACER server. But in the case of statements it still sent an
incoming statement to all RACER servers, so that they all have the same state after
processing the statement.
This feature in turn increases the efficiency of the whole RACER interaction model.

Client (x) RACER (x)

RACER (m)
 Query

STS – Technical University of Hamburg-Harburg (TUHH), 2005 5

Reengineering of RACER Proxy
for Iterative Query Answering

Chapter 2

Motivation

The demand of more and more features in an existing system and further implications
introduced by the implementation of those features in the system are two major factors
identified by Lehman & Balady (1985) for the reengineering of any software.

Lehman’s Laws [LB 1985]

1. Continuing change
“A program that is used in a real-world environment must change, or become
progressively less useful in that environment.”

2. Increasing complexity
“As a program evolves, it becomes more complex, and extra resources are needed to
preserve and simplify its structure.”

Not being far from this software evolution theory, Reengineering of the RACER proxy
was also stimulated by following two factors;

1. Need for the support of the RACER server’s new "Iterative Query Answering" feature.
2. Need to incorporate new web service module for message interchange.

Resource Overload Propagation
The previous version of RACER 1.7.x suffered a problem of generating complete result
set for every query it received in a single execution. It not just used heavy resource of the
RACER system while processing huge result set, but the heavy resource usage was
propagated to the proxy system also.
Frequent queries with a huge result sets could exceed the threshold resource of the
proxy, even RACER system itself and finally cease the system.

The heavy resources usage was not just within the system; this bulk result set caused
heavy network congestion between the client and the server while transferring such huge
result sets.

Much worse scenario would be;
What if the client’s requirement was just a partial subset (maybe first 10) out of the huge
result set(10 thousand) that was generated by the server?

STS – Technical University of Hamburg-Harburg (TUHH), 2005 6

Reengineering of RACER Proxy
for Iterative Query Answering

The generation of such huge result at the first place was resource overhead on the server
side, but the transfer of such huge result till proxy and relaying back to client would be
much more overload on the whole interaction path of the system.
Devoid of such feature in the system, makes system less useful and maybe one day might
be totally abandoned, that is what Lehman’s first law of “Continuing Change” describes.

1. Iterative Query Answering

In order to alleviate the above problem of resource overhead propagation, and following
“Continuing Change” Law to make the RACER more useful, RACER server introduced
the feature to generate and return partial results from the server side itself. Out of many
querying features introduced in version 1.8, “tuple-at-a-time” query feature allows any
RACER client to get partial results at a time.

Fig 2.1 RACER & client interaction in” tuple-at-a-time” mode

1. RACER client sends some nRQL query request to the RACER server running at
tuple-at-a-time mode.

2. RACER server returns a unique (for that particular server) query handle for that
RACER query as a response to the client.

3. The client sends request to get first tuple along with the query handle that it got
from the RACER in previous step.

4. In return, the RACER will return the first tuple from the generated result set for

that query.

RACER
RACER Server (1)
Client

Query handle
Query

Result
Next Tuple

STS – Technical University of Hamburg-Harburg (TUHH), 2005 7

Reengineering of RACER Proxy
for Iterative Query Answering

5. If the client requires more result tuples, it can continuously send get-next-tuple /
get-all-remaining-tuple requests to the server.
This kind of repetitively delivering the result, tuple by tuple or as tuple bundle, as
requested is called iterative query answering.

The introduction of “tuple-at-a-time” feature alleviated the problem to some extent, to
get the partial result set directly from the server. But still, each of the clients running on
multiplatform will have to be remodeled to adapt this new feature. The query and re-
query format and result set retrieval specification changes will have to be adapted by
each of the clients, which were developed in different languages and was working on
multiple platforms. This type of redesigning of the client for each new feature that is
being added or will be added in future could be very cumbersome and unfeasible in long
run. There would be great potential of heterogeneous RACER clients, some working on
previous version specifications and some implementing even future features at the same
time. The synchronization of these client’s updates would be still more troublesome once
RACER enters into commercial market scenario with multiple commercial client
applications. This was what Lehman’s second law of “Increasing complexity”
forecasted.

In order to simplify the complexity, the adoption of this new “iterative query answering
feature” was shifted to the RACER proxy system. That would not only reduce the
cumbersome of updating all the RACER clients widely distributed but also reduce both
the client and the server side processing load with efficient centralized processing.

2. Message Interchange Interface (Web services)

Prior to redesign, RACER proxy was accessible to RACER clients by means of socket
connections only, either using TCP or HTTP connection protocol. As an enhancement in
RACER proxy, there was a concurrent development of web services module going on to
support the OWL-QL [RACER OWL-QL Interface, 2005]. OWL-QL (Web Ontology
Language – Query Language) is not only an xml based query language for the semantic
web but also a protocol describing query-answer dialogs.
In order to incorporate particular section of that module called RACER Proxy web
service interface [RACER Proxy WS Interface, 2005] on the same proxy system, the
proxy needed to provide much simpler and efficient medium for the interchanging
messages.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 8

Reengineering of RACER Proxy
for Iterative Query Answering

TCP/HTTP
Client

RACER
Server (1)

TCP

Fig 2.2 RACER proxy message interchange interfaces

So, on analyzing Fig 2.2, the need of redesigning of an interface was not just limited
between RACER server and the proxy, but it required some standard interface between
RACER clients and the proxy for actually using this new query answering feature.

Considering above two requirements to be fulfilled, the my project can be defined as

“Reengineering of the RACER proxy to support iterative query answering
for clients using Web Service*”.

* In coordination with [RACER OWL-QL Interface, 2005] & [RACER Proxy WS Interface, 2005]
projects.

TCP RACER
Proxy HTTP

?

Web Service
Client OWL – QL Module

STS – Technical University of Hamburg-Harburg (TUHH), 2005 9

Reengineering of RACER Proxy
for Iterative Query Answering

Chapter 3

Reengineering
This chapter provides details regarding analysis to final implementation and testing of
the reengineered proxy. The formation of requirements and possible solutions were
determined during the analysis phase. Based on the outcome of the analysis of the initial
system, the architecture design was developed during the design phase. The
implementation phase was just the realization of the architectural design in JAVA.

Analysis
The introduction of the proxy in the “iterative query answering” model (ref Fig 2.1
RACER & client interaction in” tuple-at-a-time” mode) changed the whole interaction
scenario.

RACER

Fig 3.1 RACER, Proxy & client interaction in” tuple-at-a-time” mode

The introduction of proxy in between the clients and the server reduced the interaction
between a client and the server by transferring all the iterative interaction responsibilities
to the proxy. The simple request/response scenario changed, once proxy had to handle
multiple client requests and multiple RACER’s in the iterative query answering model.

RACER Client Server (1)
RACER
Proxy

1

RACER
Server (2)

Query handle

2

Query

Result
Next Tuple/Bundle Size (1 or more than 1)

STS – Technical University of Hamburg-Harburg (TUHH), 2005 10

Reengineering of RACER Proxy
for Iterative Query Answering

Following initial requirements have been determined during top level analysis.

Requirements

1) Identification of the queries and client sessions
2) Request query routing during multi-session query.
3) Re-routing strategy in case of server unavailability
4) Standard interface medium between client & the proxy for message interchanges.

Multi-session queries
The previous scenario of relaying the message to and from the proxy system within a
single session no more existed, once iterative query answering feature was introduced.
As shown in the figure Fig 3.1, there can be certain period of delay between the first
iterative query request and the second one. So, same client can participate in multiple
query sessions.

Due to this multi-session interaction nature, routing of the incoming query requests from
the client needs to be handled carefully. The proxy could no longer route the incoming
requests (queries) to any of the available RACER server as before (ref. Fig 1.6).
The proxy must first determine whether it is a normal query or an iterative query request.
If the request is an iterative one, then it has to route to the same RACER system, which
processed its initial query.

Server unavailability
Continuing with the iterative query, what could be the consequences if the desired
RACER server becomes unavailable during the second iterative query in the Fig 3.1
The most likely solution to deal with such probable situation by the proxy can be;

(a) Waiting long enough for the RACER server to become available
(b) Or sending the iterative query to next available server, without any delay.

The first option (a) seems a simple solution without much overhead, but in the worst case
it could lead to the deadlock situation if the desired server never becomes available. In a
scenario where the desired server breaks down or needs to process a long running query
resulting very large result set, then the query will never be answered.

The second option (b) seems better than the first (a) because it doesn’t arises the
deadlock problem, unless all of RACER servers break down or remains busy forever.
The option can be favored much more because of the efficient response time, as there
isn’t any delay even if the desired server is found busy. Finally, as the query can be
immediately routed to the next available server, it provides better resource utilization and
good load sharing.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 11

Reengineering of RACER Proxy
for Iterative Query Answering

Similar to the prior option, this option is also not devoid of few overhead.

Even though all RACER servers are loaded with same knowledge base, not all of them
can respond to the subsequent iterative query. None of the RACER servers, except the
desired and unfortunately unavailable server, can give the correct result corresponding to
the query handle passed as quest query from proxy to the server. The query handle (i.e.
some unique name) that was generated by the desired server during the first query is
never propagated to other servers, which made other servers unaware of the mapping of
certain query handle to that query.
It is also not compulsory that all of the servers will generate same query handle (like
“QUERY – ID“, with unique ID) for any particular query that is send concurrently to all
RACER servers.

So the solution (b) which at the beginning seemed very impressive could only be used at
the cost of heavy overhead of resources. In case of unavailability of the desired server,
the proxy would have to send initial query once again to new RACER server in order to
get the new query handle, and then only could retrieve desired results.

Standard Interfaces
The interfacing medium between the client and the proxy as well as between the proxy
and the server needs to be defined precisely. For the latter part, new RACER‘s API
[RACER Query 1.8, 2004] for iterative query retrieval, serves as standard for the
interface. Standard nRQL statements and queries based on the new server API can be
sent over TCP socket connection to the RACER server.

Whereas between the client (web service) and the proxy, there existed many components
as intermediaries, that abstracted the client query request and even the client connection
itself. Following figure Fig 3.2 depicts two of such major components that can exist
between the client and the RACER Proxy. [For details ref C. Interface between RACER
client and RACER proxy, APPENDIX].

RProxy
web services

Interface

RACER Server
v.1.8.x

nRQL

OWL-
webservice

RACER
Proxy

nRQL

RACER
Client

Intermediary components between client and the RACER Proxy
Racer proxy interface for application level call from “Rproxy WS Interface”
TCP socket interface for the proxy to connect to RACER

STS – Technical University of Hamburg-Harburg (TUHH), 2005 12

Reengineering of RACER Proxy
for Iterative Query Answering

Fig 3.2 Message interchange interfaces between client, proxy and the RACER

The connection between “RProxy web services Interface” & RACER Proxy in above
figure Fig 3.2 could be implemented as one of followings;

(a) Socket connection (TCP)
(b) Remote Procedure Call (RPC)
(c) Application level function call

At first glance, options TCP & RPC, both seems nice as it provides flexibility to run
those intermediary components apart from the proxy, in distributed environment. But if
those intermediary components are be to finally coordinated into single package along
with the proxy, then simple application level functional call would result in a much
efficient and secure message interchange interface.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 13

Reengineering of RACER Proxy
for Iterative Query Answering

Design

With through analysis of existing primary proxy system and considering the pros and the
cons of the possible alternatives for implementing new features on the system, the
architecture of the previous RACER proxy system was redesigned to the some extent.

Parameter Logging
For handling new multi-session querying feature by the proxy, proxy needs some storage
medium to log information regarding this multi-session query.
The information that the proxy needs to keep track related with the query are as follows;

Parameters Description

QDID Query Dialog ID, a unique numerical value provided by the “RACER
proxy web service interface” [C. Interface between RACER client and
RACER proxy], which acts as the client connection for each request from
that interface.

QDID is pass along the nRQL query during first request and again
attached along with the bundle size in every subsequent request related to
that query.

RID RACER ID, a unique numerical index value corresponding to the
RACER server that processed the given query.

QHID Query Handler ID, a unique value returned by the RACER server 1.8.x
(running on tuple-at-a-time mode) on the initial retrieval query.

The logging of above parameters for every new query that arrives at the proxy would
help the proxy to re-route further iterative calls related with that query to correct RACER
server. The previous scenario of figure Fig. 3.1 is modified with the proxy storage table
and QDID in Fig. 3.3.

The previous analysis scenario of server unavailability still cannot be fulfilled with just
above parameters. In case of the server unavailability, after allowed number of retries the
request must be fulfilled by next available server. In order start this query re-routing to
new server from the beginning, the proxy requires still two more parameters as shown in
the table below;

Parameters Description

Query nRQL, initial Query

MBS MaxBundleSize, the cumulative number of results returned till date for
that particular QDID, or the sum total of the bundle size request till
date.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 14

Reengineering of RACER Proxy
for Iterative Query Answering

With the original nRQL query stored, the proxy can route the initial query to the next
available server from the start.
With MaxBundleSize parameter, which actually stores the cumulative result Bundle size
delivered till now for that query, provides an offset to make a request query “the get-
next-n-remaining-tuple” during the server unavailability.

Fig 3.3 RACER, Proxy & client interaction with storage

Query Dailog ID(QDID)

RACER
Server (1)

RACER
Proxy

RACER
Client

RACER
Server (2)

Query Handle(QHID)
Query (nrQL)

Result
Next Tuple/Bundle Size (1 or more than 1)

1

2

 QDID
 QHID
 RID 1

 Query
 MBS

STS – Technical University of Hamburg-Harburg (TUHH), 2005 15

Reengineering of RACER Proxy
for Iterative Query Answering

Architecture
Following figure highlights the significant functional components of the reengineered
proxy.

Reengineerd RACER Proxy

pTable

rLocker

appClient

rControllernRQL

aList
QDialog rProxy

Locator

rLocks

rMessage
Evaluator

rTCPRequest

rTCPResponse

rProxy (RACER Proxy)

Server 1

Server 2

TCP

rResetter

rpReq (2)

rpReq (1)

Client

Normal component with some responsibility
Shared component that can have only single instance

Normal object containing significant data
Component that keeps running once called until task completes

Queue or list of objects containing significant data

Fig 3.4 New RACER Proxy Architecture

Most of the functional components in the reengineered proxy were basically derived
from the existing ones with basic modification to meet the requirements determined in
the analysis phase in the previous section.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 16

Reengineering of RACER Proxy
for Iterative Query Answering

Components

1. rProxy (RACER Proxy): RACER Proxy component is the main proxy server, which
wraps all the major components of the proxy system. It invokes rController (RACER
Controller) which is responsible to setup the connection with the RACER server based
on the configuration parameters provided to it. It also starts port listener thread to accept
incoming TCP/HTTP request on the designated ports provided by the configuration.

2. rProxyLocator (RACER Proxy Locator): It’s a locator component responsible to start
the RACER Proxy component (rProxy), if it is not already started. It provides an
interface for “QDailog” (Racer Proxy Web Service Interface) [for details see, C.
Interface between RACER client and RACER proxy, APPENDIX] to call application
level functions with the help of appClient (Applciation Client Interface).

In the case of iterative query, it reads the parameter values from the cache queue which
stores pTable (Proxy Table) data corresponding to that iterative query. From the
response message included within rpReq (RACER Proxy Request) it enters or updates
following query parameter pTable data in the cache;
QDID (initial or server unavailable),
QHID (initial or server unavailable),
RID (initial or server unavailable)
Query (during first query),
maxBundleSize (initial or iterative).

3. appClient (Application Client Interface): It’s an application connection interface
component, with utility functions to send queries to the server. In the case of
simultaneous application calls from many clients, it stores the rpReq (RACER Proxy
Request) into its local queue (rpReq (1) Queue), which will be later forwarded to
rController (RACER Controller).

4. rController (RACER Controller): This component is responsible for controlling
connections from the proxy to the RACER server. It invokes a thread
rMessageEvaluator (RACER Message Evaluator) which is responsible for further
message processing, and in meantime relays the rest message from the appClient to
rLocker (RACER Locker) to find the available free RACER server.

5. rLocker (RACER Locker): Checks the first available RACER and makes it busy by
setting value of the index corresponding to that RACER in a vector rLocks(RACER
Locks) as false.
In the case of an iterative query, it checks status of desired RACER server and locks if
available, else waits for 100 milliseconds and retries for at most 3 times. If it finds that
the server is still not available, then it invokes rResetter (RACER Query Resetter)
component.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 17

Reengineering of RACER Proxy
for Iterative Query Answering

Once locking phase is completed, then it stores the rpReq into the rpReq(2) Queue for
further processing.

6. pTable (Proxy Table): pTable (or query information storage table as described in
parameter logging section before) holds all the necessary parameters regarding the query
session.

7. rResetter (RACER Resetter): This component is responsible to make request to next
free RACER server, if the desired RACER is found busy for long time. It gets all
parameters (Query,Maxbundlsize) from the rpRequest.

8. rMessageEvaluator (RACER Message Evaluator): This component is continuously
running, to read rpRquest(2) queue for latest rpReqeust. It forwards the rpRequest as
rTCPRqeust message over TCP connection to the desired RACER server.
Once response message is received from RACER, it calls rController to unlock the
RACER.

9. rpReq (RACER Proxy Request): This is the main data component (message
component), routed among the proxy components, holding all the significant query and
response parameters related with that particular query. Both rTCPRequest and
rTCPResponse messages are derived from this component.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 18

Reengineering of RACER Proxy
for Iterative Query Answering

Implementation

All of the aforementioned components in the design phase were converted into the
JAVA classes in the implementation phase. Following are the list of major classes that
were developed or modified to meet the new requirements.

 Class Name Purpose Access/Type
1 RacerProxy The main Proxy class, which wraps all

other classes
Public
Singleton class

2 RacerProxyLocator - Starts proxy (if not started)

- acts as interface for application
connection.

- updates and adds ProxyTable (pTable)
data into Cache (HashMap).

Public

3 AppClient - Locally queues incoming requests

- Provides utility functions for querying

Public

4 RacerController Sets up connection with the RACER
server

Public
Singleton class

5 RacerLocker Contains synchronized functions which;
- Locks the message processing RACER
server by setting boolean value on rLocks
(Array).

- & Unlocks it after arrival of response.

Public

6 ProxyTable - Holds query request parameter values Public
7 Racer Resetter Contains single static function

to query next available server, if the
desired server becomes unavailable

Public

8 RacerMessageEvaluator - Processes the request messages
(rpRequest) available in the ArrayList.

- sends/gets request/responses to/from
RACER with TCP connection

Public
extends Thread

9 RacerProxyRequest Encapsulates all query as well as
response related data and serves as basic
message interchange object within the
whole proxy.

Public

Apart from these major classes many utility classes were also created for formatting
RACER messages.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 19

Reengineering of RACER Proxy
for Iterative Query Answering

Testing

Unit testing and integration testing was performed using predefined nRQL queries.
The proxy system supported both unary and binary atom queries ranging from simple to
complex query types.

1. Unary query:
(retrieve (?x) (?x woman)) [BUNDLE SIZE = 2]

2. Binary complex query:
(retrieve (?x ?y) (?x ?y has-father)) [BUNDLE SIZE = 2]

Unit testing was carried out using above mentioned nRQL queries directly instead of its
OWL counterparts. Test class was created with above mentioned queries.

Integration testing was performed in coordination with the RACER Proxy Web Service
Interface [RACER Proxy WS Interface, 2005] component.
The absence of RACER OWL-QL Interface [RACER OWL-QL Interface, 2005] was
fulfilled by a dummy translator class which returned above mentioned nRQL queries to
RACER Proxy Web Service Interface.

Both tests resulted into following desired outputs;

1. Unary query:
 ((?x EVE))
((?x DORIS))

2. Binary query
(((?X EVE) (?Y CHARLES)))
NIL

Details of the execution and processing of one of the test cases is presented in the
following chapter named Demonstration.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 20

Reengineering of RACER Proxy
for Iterative Query Answering

Chapter 4

Demonstration

This demo execution is done in coordination with the “RACER Proxy Web Service
Interface” [RACER Proxy WS Interface, 2005] and simulated “RACER OWL-QL
Interface” [RACER OWL-QL Interface, 2005]. The infamous “family knowledge base”
(ref. A. “Family.racer” knowledge base, APPENDIX) has been loaded into the RACER
server.

Scenario
There exist two clients, who subsequently need to retrieve number of woman entries
stored in the family knowledge base stored in the RACER server.

(a) Query 1
Client 1: Get first 3 woman’s entries from the family knowledge base stored in the
RACER server.

(b) Query 2
Client 2: Get first 2 woman’s entries from the family knowledge base stored in the
RACER server.

(c) Query 3
Client 2: Get next 2 woman’s entries (3rd & 4th) from the family knowledge base stored
in the RACER server.

OWL-
webservice

RACER
Client

(1)
RProxy

web services
Interface

 QDialog

RACER
Client

(2)

Cache

nRQL RACER Server

pTable

Fig 4.1 Interact

STS – Technical University of Hamb
nRQL

v.1.8.x

aList

RACER Proxy

rProxy
Message

ion between Client, Proxy and RACER server

urg-Harburg (TUHH), 2005 21

Reengineering of RACER Proxy
for Iterative Query Answering

Execution Process

Query 1

The first RACER client (client 1) sends a request query to retrieve. The query will first
be processed by the interfaces between the client and proxy, which in turn will convert
the OWL query into infamous nRQL as follows;

(retrieve (?x) (?x woman))

• Then the “Racer proxy web service interface” initiates the connection with the
RACER proxy. If there isn’t any instance of the RACER proxy yet, then new
instance of proxy is created which starts the RACER proxy itself.

OUTPUT

1/3/05 10:20:10 PM: Racer Proxy Started
1/3/05 10:20:10 PM: TCP-Connection to Racer localhost:8088
established
1/3/05 10:20:11 PM: EMail-Messanger started
1/3/05 10:20:11 PM: TCP-Messanger started

• As soon as proxy gets started it set ups the connection with the RACER server.

OUTPUT

1/3/05 10:20:11 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 34
1/3/05 10:20:11 PM: TCP-Connector on port 7010 started
1/3/05 10:20:11 PM: [RACER -> PROXY] message from racer
localhost:8088 received

Once the connection between, “web service interface”, proxy and the RACER server is
setup, the “web service interface” sends the above nRQL query along with the Query
Dialog ID (QDID).

• Once proxy receives the nRQL statement then it checks the RACER server
processing mode. If it is not running on “tuple-at-a-time” mode then it sets it to
“tuple-at-a-time” mode.

OUTPUT

1/3/05 10:20:13 PM: [WEBSERVICE -> PROXY] Connection received
with query: (retrieve (?x) (?x woman))
1/3/05 10:20:13 PM: [PROXY -> RACER] Set TUPLE-AT-A-TIME-MODE
1/3/05 10:20:13 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 19
1/3/05 10:20:13 PM: [RACER -> PROXY] message from racer
localhost:8088 received

STS – Technical University of Hamburg-Harburg (TUHH), 2005 22

Reengineering of RACER Proxy
for Iterative Query Answering

1/3/05 10:20:15 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 27
1/3/05 10:20:15 PM: [RACER -> PROXY] message from racer
localhost:8088 received

• After this initial setup only, the proxy formats the query as nRQL request

message and sends it to the RACER server, which returns back the initial nRQL
response as Query Handle (QHID).

OUTPUT

1/3/05 10:20:17 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 28
1/3/05 10:20:17 PM: [RACER -> PROXY] message from racer
localhost:8088 received

The proxy stores this QHID, QDID, Query and the available RACER ID for future
purpose into “pTable” (object).

• It then signals connection successful to the “web service interface”.

OUTPUT

1/3/05 10:20:19 PM: [PROXY -> WEBSERVICE] Connection successful

• The “web service interface” now initiates the iterative query with QDID & the

bundle size to be retrieved from the server.

OUTPUT

1/3/05 10:20:19 PM: [WEBSERVICE -> PROXY] Query received: [QUERY
ID: 18306082, maxBundleSize: 3]

• In the response, the proxy sends a subsequent query to get the first result from the

previous server with the corresponding QHID (retrieved from the “pTable”).

OUTPUT

1/3/05 10:20:19 PM: [PROXY] Query GET-NEXT-TUPLE: QUERY-2
1/3/05 10:20:19 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 27
1/3/05 10:20:19 PM: [RACER -> PROXY] message from racer
localhost:8088 received

STS – Technical University of Hamburg-Harburg (TUHH), 2005 23

Reengineering of RACER Proxy
for Iterative Query Answering

• As the requirement was 3 results, so we need to retrieve still 2 more tuples, for

which proxy prepares and sends another query to the same server (after updating
the “pTable” for the previous result).

OUTPUT

1/3/05 10:20:21 PM: [PROXY] Query GET-NEXT-N-REMAINING-TUPLES:
QUERY-2 SIZE: 2
1/3/05 10:20:21 PM: [PROXY -> RACER] message to
racerlocalhost:8088 sent, body-Size: 42
1/3/05 10:20:21 PM: [RACER -> PROXY] message from racer
localhost:8088 received

• It then updates the “pTable” and sends back the result to the “web service

interface” as tuple bundles.

OUTPUT

1/3/05 10:20:23 PM: Proxy Data
Query ID: QUERY-2
Query Dailog ID: 18306082
Racer ID: 0
MaxBundle: 3

1/3/05 10:20:23 PM: [PROXY -> WEBSERVICE] Response sent: QID
QUERY-2

Query 2

The second query requested by the client 2 requires only first two tuples to be returned.
The “web service interface” had already received first three tuples before for previous
identical query. So, the request can be easily fulfilled by the “web service interface”
alone, by returning the two tuples from its previously cached result without any
interaction with the proxy. [RACER Proxy WS Interface, 2005]

Query 3

The second client requires still two more results from the server, but the cache of the
web service interface holds just three results out of which first two have already been
delivered to this client. The web service interface cache ran short of just one more result.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 24

Reengineering of RACER Proxy
for Iterative Query Answering

• The “web service interface” sends the request for one more result to the proxy.

OUTPUT
1/3/05 10:20:23 PM: [WEBSERVICE -> PROXY] Query received: [QUERY ID:
18306082, maxBundleSize: 1]

• The proxy creates and sends the request to retrieve next one tuple as requested by

QDID

OUTPUT
1/3/05 10:20:23 PM: [PROXY] Query GET-NEXT-N-REMAINING-TUPLES: QUERY-2
SIZE: 1
1/3/05 10:20:23 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 42
1/3/05 10:20:23 PM: [RACER -> PROXY] message from racer localhost:8088
received

• The proxy updates Ptable after it gets response from the RACER. & sends the
response back to “web service interface”.

OUTPUT
1/3/05 10:20:25 PM: Proxy Data
Query ID: QUERY-2
Query Dailog ID: 18306082
Racer ID: 0
MaxBundle: 4

1/3/05 10:20:25 PM: [PROXY -> WEBSERVICE] Response sent: QID QUERY-2

Complete output, including client side output can be found on the APPENDIX [B.
Complete output of Demo].

.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 25

Reengineering of RACER Proxy
for Iterative Query Answering

Chapter 5

Conclusion & Outlook
Features

Apart from fulfilling the major objectives to deliver partial result sets as desired by the
client relayed through proxy system to the web service client module, reengineered
proxy provides some more significant features;

1. Abstraction of RACER

The change in either on the server side or on the client side was completely hidden by
the RACER proxy system. The introduction of OWL-QL query handling feature was
done without any intervention on the RACER system features.
No extra features (OWL-QL translator & Web Service module) had to be added on the
server, which in turn decreased the server load. The proxy system acted like a bridge for
the technological developments on both sides.

2. Server based caching

There was no result caching overhead on the proxy because of “tuple-at-a-time”
processing mode on the server. The proxy don’t have to hold whole result set in the
memory (primary) instead the list of references (Query Dailog ID, Query ID and the
Server ID) was enough to retrieve new results from the server as the client requested.

3. General load balancing

The proxy would always route the query to the first available server, there on subsequent
iterative query related to that query will be routed to the previous destined server only.
But incase of “server failure” scenario if the timeout occurs then query can be rerouted to
the next available server.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 26

Reengineering of RACER Proxy
for Iterative Query Answering

Further More

As RACER proxy is in its primitive stage, there is a good scope of enhancement by both
addition of new features and by extending the existing ones to meet desired requirements
in days to come. The introduction of the “iterative query answering” within proxy itself
induces many existing features to be further enhanced. Following are few notable
enhancements that are possible in the system:

• nRQL Statements: Handling nRQL statements from the “web service module”.

• Inheritence: Expanding the current “Iterative query answering” feature to both
TCP and HTTP client connections.

• Load Balancing: Using heuristic and adaptive algorithms instead of selecting
first available server during the initial query request. The cache table in
reengineered proxy can be used as look up table for criteria determination.

• Load Sharing: Different RACER servers holding different knowledge bases and
routing the request to one of the particular RACER servers which holds the
desired knowledge bases.

• Caching: Proxy based caching to store fetched query results, so that frequently
asked query results can be further delivered to also TCP and HTTP requests.

STS – Technical University of Hamburg-Harburg (TUHH), 2005 27

Reengineering of RACER Proxy
for Iterative Query Answering

REFERENCE
Literature & WWW Addresses

• [RACER Manual 1.7.19 2004] RACER User's Guide and Reference Manual
http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-manual-1-7-19.pdf

• [RACER Query 1.8 2004] RACER (v.1.8) Query Guide *

• [Eclipse 2003] The Java developer's guide to Eclipse, Addison-Wesley

 Sherry Shavor

• [LB 1985] Lehman's Laws, Slide no. 6
http://www.iam.unibe.ch/~scg/Teaching/OORPT/01Intro-long.ppt.pdf

Related Projects
• [RACER Proxy WS Interface, 2005] RACER Proxy Web Service Interface,

Master’s student project by Tejas Doshi in the STS Department.

• [RACER OWL-QL Interface, 2005] Einsatz von Web-Services im Semantic Web
am Beispiel der RACER Engine und OWL-QL.
Abschluss Diplom Arbeit, by Jan Galinski in the STS Department.

Software tools
• RACER 1.8.x Server (Windows) **, V. Haarslev, R. Möller, M. Wessel

[RACER 1.7.23] http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-1-7-23-
windows.zip

• RICE , RACER Interactive Client Environment, Academic Medical Center, dept.
of Medical Informatics
http://www.b1g-systems.com/ronald/rice

• RACER Proxy (Experimental), Christian Finckler, Univ. of Applied Sc. in Wedel
http://www.sts.tu-harburg.de/~r.f.moeller/racer/RacerProxy.zip

• J2SE 1.4, Java application development platform, Sun Microsystems
http://dlc.sun.com/jdk/j2sdk-1_4_2_07-windows-i586-p.exe

• Eclipse 3.0, open extensible IDE, Eclipse Foundation
http://www.eclipse.org/downloads/index.php

* Not available publicly till date
** 1.8.x is not available publicly till date, latest available 1.7.23

STS – Technical University of Hamburg-Harburg (TUHH), 2005 28

http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-manual-1-7-19.pdf
https://hhas21.rrz.uni-hamburg.de/DB=1.18/SET=1/TTL=8/MAT=/NOMAT=T/CLK?IKT=1008&TRM=Addison%2DWesley
http://www.iam.unibe.ch/~scg/Teaching/OORPT/01Intro-long.ppt.pdf
http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-1-7-23-windows.zip
http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-1-7-23-windows.zip
http://www.b1g-systems.com/ronald/rice
http://www.sts.tu-harburg.de/~r.f.moeller/racer/RacerProxy.zip
http://dlc.sun.com/jdk/j2sdk-1_4_2_07-windows-i586-p.exe
http://www.eclipse.org/downloads/index.php

Reengineering of RACER Proxy
for Iterative Query Answering

APPENDIX
A. “Family.racer” knowledge base file (TBOX & ABOX)

(in-knowledge-base family smith-family)
(signature :atomic-concepts (human person female male woman man
 parent mother father
 grandmother aunt uncle
 sister brother
 only-child)
 :roles ((has-descendant :transitive t)
 (has-child :parent has-descendant
 :domain parent
 :range person)
 (has-sibling :domain (or sister brother)
 :range (or sister brother))
 (has-sister :parent has-sibling
 :range (some has-gender female))
 (has-brother :parent has-sibling
 :range (some has-gender male))
 (has-gender :feature t))
 :individuals (alice betty charles doris eve))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))

(equivalent grandmother
 (and mother
 (some has-child
 (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

(instance charles brother)
(related charles betty has-sibling)

(related doris eve has-sister)
(related eve doris has-sister)

STS – Technical University of Hamburg-Harburg (TUHH), 2005 29

Reengineering of RACER Proxy
for Iterative Query Answering

B. Complete output of Demo

CLIENT 1 #####
Session created..
1/3/05 10:20:10 PM: Racer Proxy Started
1/3/05 10:20:10 PM: TCP-Connection to Racer localhost:8088 established
1/3/05 10:20:11 PM: EMail-Messanger started
1/3/05 10:20:11 PM: TCP-Messanger started
QDlg created..

1/3/05 10:20:11 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 34
1/3/05 10:20:11 PM: TCP-Connector on port 7010 started
1/3/05 10:20:11 PM: [RACER -> PROXY] message from racer localhost:8088
received

1/3/05 10:20:13 PM: ===
1/3/05 10:20:13 PM: [PROXY -> RACER] Set TUPLE-AT-A-TIME-MODE
1/3/05 10:20:13 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 19
1/3/05 10:20:13 PM: [RACER -> PROXY] message from racer localhost:8088
received
1/3/05 10:20:15 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 27
1/3/05 10:20:15 PM: [RACER -> PROXY] message from racer localhost:8088
received
1

/3/05 10:20:17 PM: ===

1/3/05 10:20:17 PM: [WEBSERVICE -> PROXY] Connection received with
query: (retrieve (?x) (?x woman))
1/3/05 10:20:17 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 28
1/3/05 10:20:17 PM: [RACER -> PROXY] message from racer localhost:8088
received
1/3/05 10:20:19 PM: [PROXY -> WEBSERVICE] Connection successful

1/3/05 10:20:19 PM: [WEBSERVICE -> PROXY] Query received: [QUERY ID:
18306082, maxBundleSize: 3]

1/3/05 10:20:19 PM: [PROXY] Query GET-NEXT-TUPLE: QUERY-2
1/3/05 10:20:19 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 27
1/3/05 10:20:19 PM: [RACER -> PROXY] message from racer localhost:8088
received
1/3/05 10:20:21 PM: [PROXY] Query GET-NEXT-N-REMAINING-TUPLES: QUERY-2
SIZE: 2
1/3/05 10:20:21 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 42
1/3/05 10:20:21 PM: [RACER -> PROXY] message from racer localhost:8088
received

1/3/05 10:20:23 PM: Proxy Data
Query ID: QUERY-2
Query Dailog ID: 18306082
Racer ID: 0
MaxBundle: 3

STS – Technical University of Hamburg-Harburg (TUHH), 2005 30

Reengineering of RACER Proxy
for Iterative Query Answering

1/3/05 10:20:23 PM: [PROXY -> WEBSERVICE] Response sent: QID QUERY-2

CLIENT 1 - output #####
client1 Request1: (retrieve (?x) (?x woman)) answerBundleSize: 3
Response1:
((?X BETTY))
((?X ALICE))
((?X EVE))
##########

CLIENT 2 #####
Session created..
CLIENT 2 - output #####
client2 Request1: (retrieve (?x) (?x woman)) answerBundleSize: 2
Response1:
((?X BETTY))
((?X ALICE))
##########

1/3/05 10:20:23 PM: [WEBSERVICE -> PROXY] Query received: [QUERY ID:
18306082, maxBundleSize: 1]
1/3/05 10:20:23 PM: [PROXY] Query GET-NEXT-N-REMAINING-TUPLES: QUERY-2
SIZE: 1
1/3/05 10:20:23 PM: [PROXY -> RACER] message to racerlocalhost:8088
sent, body-Size: 42
1/3/05 10:20:23 PM: [RACER -> PROXY] message from racer localhost:8088
received

1/3/05 10:20:25 PM: Proxy Data
Query ID: QUERY-2
Query Dailog ID: 18306082
Racer ID: 0
MaxBundle: 4

1/3/05 10:20:25 PM: [PROXY -> WEBSERVICE] Response sent: QID QUERY-2

CLIENT 2 - output #####
client2 Request2: (retrieve (?x) (?x woman)) answerBundleSize: 2
Response2:
((?X EVE))
((?X DORIS))
##########

STS – Technical University of Hamburg-Harburg (TUHH), 2005 31

Reengineering of RACER Proxy
for Iterative Query Answering

C. Interface between RACER client and RACER proxy

Fig APPNEDIX C. Interface between RACER Client and the RACER Proxy

Translator

Enhanced
RacerProxy

Session
Recycler

OWL-QL

nRQL

nRQL
Session

Enhanced
OWL-webservice

racerOWL
Manager

QueryDialog
Manager

Manager
session

rProxyLocator

QueryDialog
Recycler

QDialog

OWLReq-ResBean

Client
OWL-QL

OWL-
webservice

This figure is taken from the presentation „ Enhancement of the Racer Proxy
web services Interface for Iterative Query Answering“ by Tejas Doshi,
(2005-01-04, STS, Hamburg)

STS – Technical University of Hamburg-Harburg (TUHH), 2005 32

	ABSTRACT
	DECLARATION
	ACKNOWLEDGEMENT
	C
	LIST OF FIGURES
	Introduction
	RACER
	nRQL
	RACER Client
	RACER Proxy

	Motivation
	Lehman’s Laws [LB 1985]
	Resource Overload Propagation
	1. Iterative Query Answering
	2. Message Interchange Interface (Web services)

	Reengineering
	Analysis
	Multi-session queries
	Server unavailability
	Standard Interfaces

	Design
	Parameter Logging
	Architecture
	Components

	Demonstration
	Scenario
	Execution Process
	Query 1
	Query 2
	Query 3

	Conclusion & Outlook
	Features
	Further More

	REFERENCE
	Literature & WWW Addresses
	Related Projects
	Software tools

	APPENDIX
	A. “Family.racer” knowledge base file (TBOX & ABOX)
	B. Complete output of Demo
	C. Interface between RACER client and RACER proxy

