

A Study on Query Completeness and Answering Time

In Knowledgebases and Databases

A paper submitted in partial fulfillment of the project work requirement for the MS
degree in Information and Media Technologies

By:
Ramzi RIZK

Matriculation Number: 27365

Supervised by:

Prof. Dr. Ralf MOELLER
Software Systems Department

HAMBURG-HARBURG UNIVERSITY OF TECHNOLOGY

 2

Abstract

 This paper discusses various issues related to differences in querying between a
knowledgebase reasoner from the description logic family (Racer) and a relational
database (MySQL). It covers generating a relational schema to represent structured data,
generating data to populate the created database, and finally running several queries on
both the database, and the knowledgebase reasoner. Three different database schemas
will be created and tested. The paper discusses the advantages and disadvantages of both
approaches, with respect to query scope, size, hierarchy and implicit and explicit
relationships. Finally, the two approaches are compared in terms of query answering time
and completeness.

 3

Declaration

 I hereby declare that I am the author of this paper, titled “A Study on Query
Completeness and Answering Time in Knowledgebases and Databases”. All literary
or content related quotations are clearly pointed out and no other sources are used.

Ramzi Rizk

Hamburg, May 1, 2005

 4

Acknowledgement

 I would like to thank Prof. Dr. Moeller for giving me the opportunity to work on
this project, and for his valuable and continuous feedback and help in enhancing the
scope of this work. I would also like to thank Mr. Michael Wessel, for being always
available, and readily offering support and advice.

 5

Table of Contents
TABLE OF FIGURES ... 7
TABLE OF TABLES ... 8
1. INTRODUCTION .. 9

1.1 MOTIVATION AND SCOPE.. 9
1.2 DESIGN OF CONTRIBUTION ... 10
1.3 TOOLS AND PACKAGES USED ... 10
1.4 STRUCTURE OF THIS PAPER .. 11

2. MAPPING FROM OWL TO MYSQL... 12
2.1 REQUIREMENTS .. 12
2.2 TYPICAL TECHNIQUES .. 12

2.2.1 Horizontal Database.. 13
2.2.2 Vertical Database .. 13
2.2.3 Horizontal Class .. 13
2.2.4 Table per Property ... 13

2.3 IMPLEMENTED TECHNIQUE ... 13
2.3.1 First Schema .. 16
2.3.2 Second Schema... 17
2.3.3 Third Schema ... 18

2.4 ISSUES .. 19
2.5 ROOM FOR IMPROVEMENT .. 20

3. TEST DATA ... 21
3.1 MODIFYING THE GENERATOR AND CREATING WRITERS .. 21
3.2 LOADING THE DATA ... 22
3.3 EXPERIMENTAL SETUP.. 22
3.4 RACER QUERYING MODES.. 23

3.4.1 Mode 0 ... 23
3.4.2 Mode 1 ... 23
3.4.3 Mode 3 ... 23

4. THE QUERIES... 24
4.1 QUERY 1 ... 24
4.2 QUERY 2 ... 26
4.3 QUERY 3 ... 27
4.4 QUERY 4 ... 28
4.5 QUERY 5 ... 30
4.6 QUERY 6 ... 31
4.7 QUERY 7 ... 32
4.8 QUERY 8 ... 33
4.9 QUERY 9 ... 34
4.10 QUERY 10 ... 35
4.11 QUERY 11 ... 36
4.12 QUERY 12 ... 38
4.13 QUERY 13 ... 39
4.4 QUERY 14 ... 40

5. CONCLUSION... 42
5.1 ANSWERING TIME... 42
5.2 COMPLETENESS .. 43

 6

5.3 SUGGESTIONS ... 44
REFERENCES ... 45

 7

Table of Figures

FIGURE 1: PART OF THE TBOX GRAPH, HIERARCHIES FOR “PERSON” AND “ORGANIZATION”........................ 15
FIGURE 2: TABLES “GRADUATESTUDENT”, “STUDENT” AND “PERSON” IN DB-1... 17
FIGURE 3: TABLE “PERSON” IN DB-2.. 18
FIGURE 4: TABLES "UNIVERSITY" AND "ORGANIZATION" IN DB-2... 18
FIGURE 5: TABLES "UNDERGRADUATESTUDENT" AND "STUDENT" IN DB-3 .. 19

 8

Table of Tables

TABLE 1: LOADING TIME (MS) FOR RACER AND THE DATABASES .. 22
TABLE 2: QUERY 1 RESULTS FOR 14 DEPARTMENTS .. 25
TABLE 3: QUERY 1 RESULTS FOR 2 DEPARTMENTS .. 25
TABLE 4: QUERY 2 RESULTS FOR 14 DEPARTMENTS .. 26
TABLE 5: QUERY 2 RESULTS FOR 2 DEPARTMENTS .. 27
TABLE 6: QUERY 3 RESULTS FOR 14 DEPARTMENTS .. 28
TABLE 7: QUERY 3 RESULTS FOR 2 DEPARTMENTS .. 28
TABLE 8: QUERY 4 RESULTS FOR 14 DEPARTMENTS .. 29
TABLE 9: QUERY 4 RESULTS FOR 2 DEPARTMENTS .. 29
TABLE 10: QUERY 5 RESULTS FOR 14 DEPARTMENTS .. 30
TABLE 11:QUERY 5 RESULTS FOR 2 DEPARTMENTS... 30
TABLE 12: QUERY 6 RESULTS FOR 14 DEPARTMENTS .. 31
TABLE 13: QUERY 6 RESULTS FOR 2 DEPARTMENTS .. 31
TABLE 14: QUERY 7 RESULTS FOR 14 DEPARTMENTS .. 32
TABLE 15: QUERY 7 RESULTS FOR 2 DEPARTMENTS .. 33
TABLE 16: QUERY 8 RESULTS FOR 14 DEPARTMENTS .. 34
TABLE 17: QUERY 8 RESULTS FOR 2 DEPARTMENTS .. 34
TABLE 18: QUERY 9 RESULTS FOR 14 DEPARTMENTS .. 35
TABLE 19: QUERY 9 RESULTS FOR 2 DEPARTMENTS .. 35
TABLE 20: QUERY 10 RESULTS FOR 14 DEPARTMENTS .. 36
TABLE 21: QUERY 10 RESULTS FOR 2 DEPARTMENTS .. 36
TABLE 22: QUERY 11 RESULTS FOR 14 DEPARTMENTS .. 37
TABLE 23: QUERY 11 RESULTS FOR 2 DEPARTMENTS .. 37
TABLE 24: QUERY 12 RESULTS FOR 14 DEPARTMENTS .. 38
TABLE 25: QUERY 12 RESULTS FOR 2 DEPARTMENTS .. 39
TABLE 26: QUERY 13 RESULTS FOR 14 DEPARTMENTS .. 39
TABLE 27: QUERY 13 RESULTS FOR 2 DEPARTMENTS .. 40
TABLE 28: QUERY 14 RESULTS FOR 14 DEPARTMENTS .. 41
TABLE 29: QUERY 14 RESULTS FOR 2 DEPARTMENTS .. 41

 9

1. Introduction

1.1 Motivation and Scope

 Databases have, for years, been at the forefront of data storage and querying
technologies. Advanced research has led to databases that can resolve queries involving
copious amounts of data, and return relevant results within a fraction of a second.

Knowledge representation systems from the description logic family offer an
alternative approach to the issue of querying data. In contrast to the closed-world
assumptions of a database system, knowledge reasoners have open-world assumptions.
This means that what is not known is not necessarily false. Furthermore, the semantic
knowledge available to these knowledgebase reasoners allow for queries about the
structure of an ontology, in addition to the usual extensional queries associated with
typical relational databases. Knowledgebase reasoners can infer, or realize new
knowledge by combining available data with knowledge pertaining to relations that exist
between the particulars of that data.

Knowledge representation systems from the description logic family, such as

Racer [Racer, 05], have both Aboxes, and TBoxes. A TBox can be roughly compared to
the schema of a database, while as an Abox could be compared to the actual data that
populates the tables of this schema. Racer allows users to query both.

The “Description Logic Handbook” [Baader et al.] explains this clearly and

briefly: “In a simplified view, an ABox can be seen as an instance of a relational database
with only unary or binary relations. However, contrary to the “closed-world semantics”
of classical databases, the semantics of ABoxes is an “open-world semantics”, since
normally knowledge representation systems are applied in situations where one cannot
assume that the knowledge in the KB is complete. Moreover, the TBox imposes semantic
relationships between the concepts and roles in the ABox that do not have counterparts in
database semantics.”

Therefore, from the given data, one could already assume that knowledge

reasoners would be able to infer new relations between data, based on the semantic
structures provided. This is not available in database systems, which are merely storage
and retrieval systems in their essence (data-mining and data warehousing aside). So, it
seems natural to attempt and compare these differences. That would only be possible by
generating the same data, in the same form for both a knowledgebase reasoner, and a
relational database, and running some identical queries on both. This paper covers that
benchmarking exercise.

Racer was chosen as the knowledgebase representation system on which to carry

out this exercise. The database schemas and queries will be created and carried out on
MySQL.

 10

1.2 Design of Contribution

 To successfully carry out the benchmarking exercise mentioned above, several
steps had to be taken. First of all, identical database schemas and knowledge base TBoxes
had to be created. This was accomplished using an OWL [W3C, 05] based schema which
will be discussed in detail later. Data had to be generated that would be used to populate
both the database and the knowledgebase reasoner. Finally, the main point of this project
was to run several queries on both systems, and compare them in terms of speed and
completeness.

1.3 Tools and Packages Used

 Several tools and packages were available for me to use throughout this project.

• Racer: According to “The Racer Manual” [Harslev et al. 04], “The Racer system
is a knowledge representation system that implements a highly optimized tableau
calculus for a very expressive description logic. It offers reasoning services for
multiple TBoxes and for multiple ABoxes as well. The system implements the
description logic ALCQHIR+ also known as SHIQ. This is the basic logic ALC
augmented with qualifying number restrictions, role hierarchies, inverse roles, and
transitive roles.”

• JRacer: Provides a Java layer for accessing the services of Racer [Harslev et al.,

04]. JRacer was used to populate Racer, and to time and run the queries.

• Rice: An interactive client environment for Racer developed by Ronal Cornet
from the Academic Medical Center in Amsterdam [Rice, 04].

• Generator: The Lehigh University Benchmark data generator [UBA, 04] is a

random data generator. It was modified to generate data that complies with both
the database schemas, and the Racer TBoxes. The data is based on the Lehigh
University Benchmark [Lehigh] which will also be discussed in details later.

• nRQL: Is the New Racer Query Language. It offers advanced querying

capabilities for Racer.

• MySQL: Is a popular, free, open source, relational database [MySQL, 05]. It was
used to host the database schemas and the data, and to run the test queries. Java
applications were developed that connected to MySQL, and ran and timed the
queries.

 11

1.4 Structure of This Paper

 This paper proceeds according to the following structure: Chapter 2 covers the
mapping of an owl document containing the Lehigh University Benchmark ontology to a
relational database. General approaches are discussed, and then the three designs that I
used are introduced. Some issues that arose are also mentioned. Chapter 3 discusses the
task of generating identical random data to populate the database and Racer. It also
describes the experimental setting for this project. Chapter 4 presents the test queries
used, lists their results, and provides a query-by-query analysis of these results. Finally,
chapter 5 concludes with a general analysis of the observations and results of this project
work, as well as some suggestions as to what these results imply.

 An addendum accompanies this paper on CD-Rom. It contains the script files for
creating the databases, the modified generator which produces the sample data, and the
sample data that was used in the testing. The CD-Rom also contains all the queries used
in this project work.

 12

2. Mapping from OWL to MySQL

2.1 Requirements

 Racer can read, and translate OWL documents. Furthermore, the Lehigh
University Benchmark (from hereon LUBM) is available in the form of an OWL
document [UnivBench, 04]. Coupled with the fact that a generator already exists that
creates OWL data based on this University Benchmark, and that standard queries created
by the Lehigh University Benchmark team were a quasi standard for testing this
ontology, it seemed natural to want to build on this, by adapting all of the above to work
with MySQL.

The LUBM models a university with departments, students, faculty, staff,
courses, and research groups. The general schema has five main categories: “Person”,
“Schedule”, “Work”, “Publication” and “Organization”. Each of these is expanded in
detail. The LUBM provides an OWL ontology document that pertains to that structure.
That ontology is the basis of the database schemas developed here.

 OWL (Web Ontology Language) is a W3C standard for the semantic web. OWL
describes classes, and the properties of those classes. Some properties are explicitly
anointed to particular classes, while as other properties are not assigned to a specific
class, and can be employed at the user’s discretion. Throughout this paper, “classes” and
“properties” refers to OWL classes and properties. Furthermore, OWL allows for
relations to exist between the properties. Again, “property relations” or “relations
between properties” refer to OWL properties and the relations between them. "inverseOf”
and “subPropertyOf” are examples of such relations. These are discussed extensively in
the following sections.

 The first task involved creating a database schema that would closely follow the
structure of the university benchmark. Several techniques exist which can be used to
model an OWL ontology in databases. The following section lists some of the more
popular methods used.

2.2 Typical Techniques

 There are several standard approaches that would have been possible, to some
extent, to be applied in mapping the LUBM from OWL to a relational database structure.
[Heflin and Pan, 04], [Beckett and Grant, 01], and [Melnik, 01] discuss several
techniques and strategies to be employed for mapping, with varying results. Some of
these techniques include:

 13

2.2.1 Horizontal Database

 This technique proposes using a single table to contain all the data. It is called
horizontal because each property has its own column. A tuple is created for every class
instance. This leads to a lot of empty spaces in tuples, since not every class uses all the
properties. Furthermore, the size of such a table would render loading time very
expensive.

2.2.2 Vertical Database

 This technique proposes having a tuple for each property and/or class instance.
One column would identify the class/property and another would contain the value. Once
again, these resulting tables are too big, and too general. However, it is an improvement
over the Horizontal design, with fewer columns, less empty space, and possibly less
redundancy, especially if class instances contain multiple values for some specific
property. Instead of reinserting the entire data for each value (Horizontal database), a new
tuple, containing only that particular value, would be added.

2.2.3 Horizontal Class

 Similar to the Horizontal database approach, this technique differs in that a table
is created for each class type in the ontology. The properties that relate to the particular
class make up the columns of the respective database table. Already this design is an
improvement over the previous two since each table relates to a distinct class. Less loss
of space and smaller tables naturally ensue. However, there remains the issue of
properties that are not specified as belonging to any particular class. Including these in
each and every table would be an expensive necessity. This approach formed the basis of
the design ultimately employed in this project.

2.2.4 Table per Property

 In this case, a table for each property is created, with class/value pairs in that
table. This solves the issue of having lots of empty spaces due to unused columns. It
would involve more joins, necessarily, due to the larger number of tables. Furthermore,
retrieving all the properties of a single class instance now becomes a rather tedious
process.

2.3 Implemented Technique

 Such techniques as discussed above are usually employed to map OWL
documents to relational databases. However, they are typically used as generic solutions.

 14

In the case of this project work, automation was out of the question, because the
university benchmark OWL ontology doesn't provide full and infallible data. Rather, a lot
of the structure is inherently implied, or implemented in the generator. Furthermore, I
was working with a specific ontology, and therefore was in possession of the specific
classes and properties. That allowed me to design a specific database schema (or several)
that represent the university benchmark exclusively. My hybrid design would naturally
apply some of the general concepts mentioned in section 2.2, however, at the same time,
it would be more specialized, and not so abstract, since it is representing a particular
ontology. Hopefully, such a design would preserve, and provide, the logical relationships
between the classes (class hierarchy) that came with that ontology.

The basis of this design was the 43 classes of the LUBM ontology. Each of these
classes was represented in a table. So far, this design could be considered similar to the
“horizontal class” approach. Since the design is based on data from the LUBM ontology
as well as the TBox taxonomy of Racer’s interpretation of that document (which was
produced using Rice), more knowledge becomes available to me. The graph in Figure 1
provides an overview of the general structure, including some aspects of class hierarchy
that were vague in the ontology file itself, or could not have been deduced, but which the
reasoner realized.

 15

Figure 1: part of the TBox graph, hierarchies for “Person” and “Organization”

 From the OWL ontology, I derived the 43 classes that would make up the 43
tables. That was one of the basic constraints on the database design: every class of the
ontology would be represented by one and only one table. The tables in the database
would be named after their respective classes in the ontology. Furthermore, those tables
would have to contain the properties that were explicitly attached to them in the ontology.
The reason behind this decision is quite simple. By limiting the design to 43 classes, the
SQL queries would generally be similar to the LUBM queries in terms of scope and
complexity. Furthermore, the syntax of these queries would not need much modification.

 The TBox taxonomy provided the class hierarchy, parts of which were explicitly
stated in the ontology file, while as the rest was implicit, and inferred by Racer. An
example of such an inference is the ‘child’ relation between “GraduateStudent” and
“Student”. The ontology does not mention this relation, but it is implied from their
structure. This provided an improvement over the design in the benchmark [Guo et al.,
03], since class hierarchy would be represented in my database schema.

 16

 To implement this, I took advantage of each instance’s “about” attribute, which
was in the form of a unique URL. In the database schemas, this URL is to be found in the
“globalName” column. Therefore, for example, every entry in table “Student” was also
represented in table “Person” (“globalName”, “name”, “age”,, with the two referencing
each other using the “globalName” column. The same applies for instances of
“University” and “Organization”, “Course” and “Work”, etc.

 As mentioned previously, properties were attributed to classes according to
explicit allocations in the owl ontology. This meant that any property listed as belonging
to a class would definitely be found as a column in the respective table. However, some
of these properties (property “memberOf” is an example) would have to be listed again in
other tables. This leads to a varying case of redundancy which will be discussed
presently.

 As for properties that were not attributed to specific classes, I took the liberty of
creating columns that would represent them in the relevant class (classes). This was
based, by and far, on the data from the synthetic data generator.

 This laid the ground rules for creating the database schema. However, the above
constraints and specifications were not enough. Accordingly, I designed and used three
different database schemas. All three were similar in essence, but had various small
differences.

 For brevity, the detailed structure of all the tables is not listed in this paper. Only
tables that are used in examples are shown in figures, for clarification purposes. The
CD-Rom accompanying this paper contains the entire SQL code required to create the
following three schemas.

2.3.1 First Schema

 This first schema (from hereon DB-1) was designed with the intention of having
minimal redundancy. Only class hierarchy is inherent in this design, while as the relations
between properties, which were mentioned above, are ignored. Referring to Fig.1 for an
example again: in the case of wanting to create an undergraduate student, the process is
iterative. First of all, the “globalname” is inserted into the table “UndergraduateStudent”
(which only has that one column), then, information that is general to a student, such as
the courses he takes, university he attends, and name of his advisor are inserted into
“Student”, with “globalname” as a unique identifier, and as a means to access it from
“UndergraduateStudent”. Then, a tuple is created in “Person”, again with “globalname”
and any information that is general to a member of table “Person”. The process is similar
for other classes, and is discussed in more details in the data generation section of this
paper. Figure 2 shows the structure of the three tables discussed here.

 17

GraduateStudent Student Person
globalName globalName globalName

 memberOf name
 takesCourse Age
 advisor undegraduateDegreeFrom
 graduateDegreeFrom
 doctoralDegreeFrom
 officeNumber
 researchInterest
 telephone
 title
 emailAddress

Figure 2: Tables “GraduateStudent”, “Student” and “Person” in DB-1

 This way, there is minimal repetition of data, on the one hand, and a clear
structure on the other. Granted, a user must still know about these relations to exploit
them.

 This design will produce the smallest database possible while adhering to the
basic rules mentioned in the previous section. DB-1 is minimally redundant, but the
design could still be improved. However, the main target remains to have as accurate a
recreation of the knowledgebase taxonomy as possible, even if that means making a few
design missteps.

2.3.2 Second Schema

 The second schema (DB-2) builds upon the first. However, it adds information
detailing the relations between the properties in the OWL ontology. DB-2 will represent
the “inverseOf” relationship between properties “memberOf” and “member” as well as
that between “degreefrom” and “has Alumnus”. It will also represent the
“subPropertyOf” relationship between “memberOf” (parent) and “worksFor” and
“headOf” (sub-properties), as well as the one between “degreeFrom” and
“undergraduateDegreeFrom”, “graduateDegreeFrom” and “doctoralDegreeFrom”.

Particularly, the “degreeFrom” property won’t be represented by a column,
nevertheless, this implementation allows its’ sub-properties to also have an “inverseOf”
relation with “hasAlumnus”. This latter property is added to the table “University”.

“MemberOf” is added to table “Person” and contains the data found in its’
children. The children will also share an “inverseOf” relation with “member”, which is
added to table “Organization”.

 18

Person
globalName

name
Age

undegraduateDegreeFrom
graduateDegreeFrom
doctoralDegreeFrom

officeNumber
researchInterest

telephone
title

emailAddress
memberOf

Figure 3: Table “Person” in DB-2

As stated before, this design does not alter the general schema (by

adding/removing tables). It merely adds the “inverseOf” properties, and sub-property
relations, and allows us to generate data for a property based on its’ inverse. A reasoner
would deduce the inverse from the ontology, but in the case of a database, it has to be
explicitly added. As for the sub-properties, their addition also allows for easier data
access and manipulation by simulating a property hierarchy.

University Organization
globalName globalName
has Alumnus name

 affiliatedOrganizationOf
 subOrganizationOf
 orgPublication
 Member

Figure 4: Tables "University" and "Organization" in DB-2

The downside to this design lies in the fact that several tuples become redundant.

All the data that is added can be deduced with the proper knowledge of the schema, but
specifying it explicitly simplifies the process, and keeps in line with having syntactically
similar queries.

2.3.3 Third Schema

 This schema (DB-3) again builds on the first and second. It is built in a way very
similar to the horizontal class technique. It can be considered to have an incremental,
expanding structure; however, it is fully redundant. This means that instead of simply
adding new columns to a child, with a link to the parent, the child itself would contain all
the data found in the parent, as well as any new data relevant to it. The benefits of such a

 19

design would be that we no longer need to query several tables of the class hierarchy. For
example, the “Person” table would have the same columns as in DB-2, however all the
data found in table “Person” will now be also available in table “Student”, in addition to
any extra tuples that relate particularly to “Student”. “UndergraduateStudent” for
example will now contain the “takesCourse” column, so we no longer need to query the
“Student” table for that information. This design also implements property hierarchy and
relations (inverseOf, subPropertyOf). “UndergraduateStudent” and “Student” may seem
identical, but the latter contains data of both graduate and undergraduate students, while
as the former, as its’ name implies, only contains undergraduate students.

UndergraduateStudent Student
globalName globalName
memberOf memberOf

takesCourse takesCourse
advisor advisor
name name
Age Age

undegraduateDegreeFrom undegraduateDegreeFrom
graduateDegreeFrom graduateDegreeFrom
doctoralDegreeFrom doctoralDegreeFrom

officeNumber officeNumber
researchInterest researchInterest

telephone telephone
title title

emailAddress emailAddress

Figure 5: Tables "UndergraduateStudent" and "Student" in DB-3

 Although, from a design point of view, the redundancy in this schema is
unacceptable, it should prove to be beneficial by limiting the number of joins (which is
advantageous in large databases), and allowing queries to focus on specific tables. It is
also interesting, from a theoretical point of view, to compare querying this database in
particular to querying Racer, since the queries require less joins.

2.4 Issues

 There are several points worth mentioning here. First of all, the fact that I was
aware of the general shape and structure of both the schema, and the data that would
populate it, allowed me to manipulate the design in a way that would simulate a little bit
of the semantic knowledge that would be available to Racer. On the other hand, one
could assume that all databases are designed with an eye on their use.

 An example of these liberties would lie in the class “ResearchAssistant”. I was
aware that all research assistants were graduate students (from the data generator). This
allowed me to avoid duplicity, by not adding instances of “ResearchAssistant” to table

 20

“Person”. Granted, the generator didn’t generate any additional data for it, but it would
have been possible to just add the “globalname” to “Person”, after each insert on
“ResearchAssistant”. This assumption made use of explicit knowledge pertaining to the
structure of the automatically generated data.

 Another point to be noted is that the databases were not optimized (by means of
indexing, or otherwise). This meant that the answering time could only be improved by
applying various tweaks and updates.

 Also, due to the redundant nature of the generated data, it wasn’t possible to
enforce referential integrity on some of the tables, however, the generator already ensures
that no duplicate data would be generated so that is not a crucial problem.

Therefore, although the design is not absolutely generic, it fulfills the
requirements of the TBox taxonomy, OWL ontology, and the generated data.

2.5 Room for Improvement

 If it weren’t for the constraints set by trying to follow the TBox taxonomy as
closely as possible, it would have been feasible to design a database that represents the
ontology with no redundancy, and optimize it to provide results quickly. For example, the
fact that each student may take more than one course leads to redundancy, because the
same student information has to be introduced again for each extra course. It would have
been simple to extract the “takesCourse” column to another table, and reference it from
the “Student” table. However, that would have meant creating a table which wasn’t
included in the original ontology, breaking the constraint of representing 43 classes in 43
tables.

Two other arguments against such a change should be noted. Firstly, the design
would break from the structure of the original OWL files, and would force us to greatly
modify the test queries, and secondly it would not really lead to improvement in terms of
completeness. This will be discussed in detail later on.

 On the other hand, by using the first, or second, schema in an object-relational
database, the issue of redundancy due to certain columns - “takesCourse” in table
“Student” of the previous example applies - could be avoided by using nested tables.

 21

3. Test Data and Experiment Settings

 The LUBM synthetic data generator is a tool developed by the Lehigh University
to generate data for the university benchmark ontology. It can produce the data in OWL,
which Racer can read. In order to carry out a successful comparison, it was essential to
produce identical data for the databases and Racer. I modified the LUBM generator for
that purpose.

3.1 Modifying the Generator and Creating Writers

 The generator is a java program, consisting briefly of a Writer object and a
Generator object. Upon instantiation, a specific type of Writer (producing a specific type
of file) is chosen and registered with the Generator. The generator then proceeds with
creating the data, and writing it to the registered Writer object.

 The first part of the modification consisted of changing the generator so that it
would produce the data four times instead of one. The generator typically sent the data to
a specific writer object chosen by the user, in order to output the data in a particular
format. In this case, however, each copy needed to be sent to four different writers.

 Four writer instances exist: the first produces OWL files, while as the remaining
three produce the SQL inserts for each of the three databases. These three new writers
extended the abstract Writer class, and functioned similarly to the OWL writer. The
major difference was that, in these writers, different methods were called based upon
which instance was being generated.

For example, assume that the generator is creating an instance of a graduate
student. The OWL writer would simply add the appropriate XML tags, and write it to the
stream. In the case of the SQL writers, a method createGradStud() would be called. This
method would write the appropriate insert statements (for either DB-1, DB-2 or DB-3),
and then call createStudent(). The same process occurs until an insert is made into one of
the main five tables representing the schema’s five main categories. The inserts follow
the class hierarchy already mentioned in the previous chapter.

Furthermore, inserts that fulfill requirements such as property relations and

property hierarchies (DB-2, DB-3) are also added to the stream along the way.

Finally, the generator was also modified to immediately create the data in the four

required formats. The user, therefore, no longer needs to specify the file types. The data
intended for DB-1 has the file extension “.sql1”, likewise, DB-2 data has “.sql2” and DB-
3 data has “.sql3”. A distinct file is produced for every set of individuals of one
department of a university.

 22

3.2 Loading the Data

 Small java applications were used to load the ontology and the data onto the
databases and Racer, and to time the loading process. Table 1 lists the loading times.

 Racer DB1 DB2 DB3
Ontology 732 4105 4350 4712

Data 20625 14320 19182 41754

Table 1: Loading time (ms) for Racer and the databases

 Two data sets were queried. The first data set constituted of one university
containing 14 departments. The second data set had only 2 departments of the same
university. Table 2 lists the loading times for the first data set. The loading time for the
data was distributed evenly among the departments, so a single department took around
1.5 seconds to load into Racer, 1 second to load into DB-1, 1.4 seconds for DB-2 and
almost 3 seconds for DB-3. The difference in load time for the three databases is
attributed to the increased number of inserts.

 The first data set was made up of 87020 class instances and 353720 property
instances. The second set had 13188 class instances and 54856 property instances. It
should also be noted that due to redundancy, the data that populated the databases was
significantly larger than the one that populated Racer.

3.3 Experimental Setup

 The experiment was run on a Pentium M, with 1.4 GHz, 512 MB of Ram and 20
GB of free space. The system ran under a Windows XP professional edition operating
system.

 Each query was run three times (once for each mode) in racer, and once for each
of the three database schemas. The queries were also run for each of the two datasets.

 Two distinct settings were used to run the queries. In the first setting, each query
was run separately so as to prevent caching and other optimization techniques from
influencing the results. The database, or racer, was restarted before running each query.
By closing the connection to MySQL between queries, the database makes no use of
cache. Furthermore, by restarting Racer, each query would have to prepare the entire
index structure before running.

 The second setting has two aspects. First of all, the queries are all run
sequentially, and without restarting the systems. This allows both the database and Racer
queries to take advantage of caching in some instances. Furthermore, in Racer, a query is
run, before running the benchmark queries, to allow Racer to prepare the index structure,
and check for ABox coherence. This rids the benchmark queries of any overhead, and

 23

allows us to calculate the pure answering time required for each query. The following
table lists the time needed to run this preparation query, and therefore, the time needed
for racer to prepare the index structure.

 Racer Mode 0 Racer Mode 1 Racer Mode 3

2 Departments 6042 7010 223400
14 Departments 76850 71300

Table 2: Preparation time for Racer

 The query answering time was calculated by starting a counter right before
sending the request (query) and stopping it right after the query resolved.

3.4 Racer Querying Modes

 Racer offers various modes, with varying degrees of completeness, for query
answering. For evaluating the queries in Racer, three query modes were chosen, modes 0,
1 and 3. The RacerPro User’s Guide [Racer Systems, 05] defines these three modes as
follows:

3.4.1 Mode 0

 Told information querying: “In this setting, to answer a nRQL query, only the
syntactic, told information from and ABox will be used, which is given by the syntactic
format of the ABox axioms.” This means that no information that is not explicitly stated
in the ABox will be retrieved. However, transitive roles and inverse-of roles are resolved,
and this fact will play a factor in the queries below.

3.4.2 Mode 1

 Told information querying plus exploited TBox information for concept names:
“This is like the previous setting, but now the TBox information is taken into account for
concept membership assertions of the form (instance i C), where C is an atomic concept /
concept name. If C is a concept name, nRQL will use the classified TBox to compute the
set of atomic-concept-synonyms, as well as the set of atomic-concept-ancestors, and put
all these implied concept name membership assertions into the ABox as well.”

3.4.3 Mode 3

 Complete ABox querying. This querying mode returns complete results.
However, it is much more expensive, time-wise than the previous two. Furthermore, there
are limits to the amount of data that can be queried in this mode.

 24

4. The Queries

 Fourteen queries were used in this experiment. These were the benchmark queries
from the LUBM [LehighQueries, 04], and are used predominantly when working with the
university benchmark. The queries test the data repositories in aspects of scope and
selectivity.

 I translated the queries from their original (KIF-like) structure to nRQL and SQL,
with slight modifications to account for small structural differences. Care was taken not
to change the core of the queries. In that sense, the properties chosen remain the same,
and the query complexity is generally unchanged. In the database a query was allowed to
span several tables, and perform multiple joins, as long as it didn’t use knowledge of
properties that wasn’t specifically stated in the original queries.

 Each query was run on all three databases, as well as on Racer, operating in the
three querying modes. Due to its’ size, however, I was not able to run mode 3 for the
larger repository.

Listed below are all 14 queries. The queries are first defined (definitions from
[Guo et al., 03]), and then presented in the format in which they were executed. Two
tables follow, one for the results of querying 14 departments, and the second for querying
2 departments. Some remarks conclude each section.

Two different answering times are listed per query. The first, “Full Time” is the

result of running each query by itself, without any optimization. The second, “Opt. Time”
is the result of running the queries after preparing the index structure (in the case of
Racer), and taking advantage of caching to improve response time. It should be noted that
the following query: (retrieve (?x) (?x top)) , was run in each of the three Racer modes
before running the actual queries, in order to prepare the index structure.

Note: For nRQL queries, the concept or role names were shortened for brevity.
The actual name should be of the form: “|http://www.lehigh.edu/%7Ezhp2/2004/0401
/univ-bench.owl#(name here)|” . In the queries below, the name was used without the
preceding URL.

4.1 Query 1

 All the graduate students who take GraduateCourse0 at Department0 of
University0

 nRQL query:

 (retrieve (?x) (and (?x GraduateStudent) (?x GraduateCourse0 takesCourse)))

 25

DB-1 query:

select globalname from GraduateStudent where globalname in

(select globalname from student where takescourse=
"http://www.Department0.University0.edu/GraduateCourse0")

DB-2 query: (same as DB-1)
DB-3 query:

select globalname from GraduateStudent where takescourse=

"http://www.Department0.University0.edu/GraduateCourse0”

Table 3: Query 1 results for 14 departments

Expected: 2 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 2 100 5408 10
Racer Mode 1 2 100 7291 10
Racer Mode 3 2 100 68949 40

DB1 2 100 1612 1583
DB2 2 100 1641 2204
DB3 2 100 90 150

Table 4: Query 1 results for 2 departments

 In DB-1 and DB-2, a join is needed with table “Student” since that is where the
“takesCourse” column is located. Due to that, the queries take much longer to resolve
than DB-3, and also more time than Racer in modes 0 and 1, in the larger repository. In
the smaller repository, the database returns the results fairly quickly, and faster than
Racer. The optimized time takes away most of the time cost for the racer queries. This is
the same for all the ensuing queries, and is due to the fact that the index structure,
checking for ABox coherence, etc, have all been already carried out.

Expected: 2 14 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 2 100 45866 161
Racer Mode 1 2 100 52926 400
Racer Mode 3

DB1 2 100 68208 66996
DB2 2 100 71323 66666
DB3 2 100 440 461

 26

4.2 Query 2

 All the graduate students who are now studying at the university from which they
obtained their bachelor’s degrees

nRQL query:

(retrieve (?x) (and (?x GraduateStudent)
 (?y University)

 (?z Department)
 (?x ?z memberOf)
 (?z ?y subOrganizationOf)
 (?x ?y undergraduateDegreeFrom)))

DB-1 query:

select t.globalname from student t where memberof in

(select globalname from organization where suborganizationof in
(select undergraduatedegreefrom from person where globalname in
(select globalname from graduatestudent where
globalname=t.globalname)))

DB-2 query:

select globalname from person where (globalname in

(select globalname from graduatestudent)
and undergraduatedegreefrom in
(select suborganizationof from organization where
globalname=memberof))

DB-3 query:

select globalname from graduatestudent where undergraduatedegreefrom in
(select suborganizationof from department where globalname=memberof)

Expected: 0 14 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 0 100 48711 663
Racer Mode 1 0 100 62537 962
Racer Mode 3

DB1
DB2 0 100 29742 31165
DB3 0 100 54682 54759

Table 5: Query 2 results for 14 departments

 27

Expected: 0 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 100 5698 90
Racer Mode 1 0 100 5498 321
Racer Mode 3 0 100 126622 13179

DB1 0 100 48630 56422
DB2 0 100 761 1151
DB3 0 100 1422 1612

Table 6: Query 2 results for 2 departments

 DB-1 fails to return a result in the larger repository that is due to the large
amounts of data involved in the joins. The triangular pattern of this query makes it
particularly costly. In the second, modes 0 and 1 return results much faster than DB-1 as
well. DB-2 and DB-3 return the results fairly quickly in the second, but not so quickly in
the first. This is the first case where queries could have been simplified by using other
approaches to achieve the same result. Again, a dramatic decrease in answering time
results from preparing Racer before running the queries.

4.3 Query 3

 All the publications of AssistantProfessor0 at Department0 of University 0

nRQL query:

(retrieve (?x) (and (?x Publication) (?x AssistantProfessor0 publicationAuthor)))

DB-1 query:

select globalname from publication where publicationauthor=

"http://www.Department0.University0.edu/AssistantProfessor0”

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-1 and DB-2)

 28

Expected: 6 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 6 100 34370 20
Racer Mode 1 6 100 44093 30
Racer Mode 3

DB1 6 100 360 1202
DB2 6 100 431 350
DB3 6 100 460 671

Table 7: Query 3 results for 14 departments

Expected: 6 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 6 100 6659 421
Racer Mode 1 6 100 4546 20
Racer Mode 3 6 100 53026 90

DB1 6 100 80 460
DB2 6 100 100 70
DB3 6 100 110 110

Table 8: Query 3 results for 2 departments

 We observe for the first time a great difference in response time between Racer
and the databases; this is simply due to the fact that we are only querying one table. This
is a direct result of designing the schemas with class hierarchy in mind. Racer would, on
the other hand, check each subclass of “Publication”, taking more time to return a result.
This time difference is, as always, almost completely erased in the optimized time. Note
that there isn’t a very significant change in response time for the database queries with
and without caches.

4.4 Query 4

 All the professors at Department0 of University0 and their email addresses and
telephone numbers

nRQL query:

(retrieve ((datatype-fillers (name ?x))

 (datatype-fillers (emailAddress ?x))
 (datatype-fillers (telephone ?x)))
 (and (?x Professor)
 (?x http://www.Department0.University0.edu worksFor)))

 29

DB-1 query:

select name, emailaddress, telephone from person where globalname in

(select globalname from employee where globalname in
(select globalname from professor) and
worksfor="http://www.Department0.University0.edu")

DB-2 query:

select name, emailaddress, telephone from person where globalname in

(select globalname from professor) and
memberof="http://www.Department0.University0.edu"

DB-3 query:

select distinct(name), emailaddress, telephone from professor where

worksfor="http://www.Department0.University0.edu"

Expected: 34 14 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 0 0 30644 20
Racer Mode 1 34 100 43332 581
Racer Mode 3

DB1 34 100 60417 61709
DB2 34 100 811 170
DB3 34 100 360 290

Table 9: Query 4 results for 14 departments

Expected: 34 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 3125 10
Racer Mode 1 34 100 3005 551
Racer Mode 3 34 100 59095 731

DB1 34 100 1973 1833
DB2 34 100 340 80
DB3 34 100 70 90

Table 10: Query 4 results for 2 departments

 Racer fails in mode 0, because the search requires results from subclasses of
“Professor”. The implementation of sub-properties in DB-2 renders it significantly faster
than DB-1 due to lesser number of joins required. DB-3 needs no joins whatsoever, and
returns results very quickly. However, care must be taken to select distinct results needed

 30

in db3 due to the redundancy factor. Datatype fillers are an advantage in nRQL, since that
same data requires an extra join in DB-1 and DB-2.

4.5 Query 5

 All the members of Department0 at University0

nRQL query:

(retrieve (?x)(and (?x Person)
 (?x http://www.Department0.University0.edu memberOf)))

DB-1 query: (no query)
DB-2 query:

select globalname from person where

memberof="http://www.Department0.University0.edu"

DB-3 query: (same as DB-2)

Expected: 719 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 21551 10
Racer Mode 1 719 100 104100 621
Racer Mode 3

DB1
DB2 719 100 561 20
DB3 719 100 911 611

Table 11: Query 5 results for 14 departments

Expected: 719 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 2524 40
Racer Mode 1 719 100 42451 673
Racer Mode 3 719 100 325618 2847

DB1
DB2 719 100 271 10
DB3 719 100 332 231

Table 12: Query 5 results for 2 departments

 The first syntactic weakness in DB-1 is exposed in this query. Since “memberOf”
is in fact the union of two sub-properties: “memberOf” in “Student” and “worksFor” in

 31

“Employee”, we are not able to query directly for it. On the other hand, DB-2 and DB-3
resolve much faster than racer since no reasoning is required, rather, merely a select
statement on one table.

4.6 Query 6

 All the students

nRQL query:

(retrieve (?x) (?x Student))

DB-1 query:

select distinct(globalname) from student

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-1 and DB-2)

Expected: 8492 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 43823 20
Racer Mode 1 8492 100 56421 2732
Racer Mode 3

DB1 8492 100 691 240
DB2 8492 100 631 221
DB3 8492 100 821 1062

Table 13: Query 6 results for 14 departments

Expected: 1351 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 2574 60
Racer Mode 1 1351 100 266603 721
Racer Mode 3 1351 100 631818 962

DB1 1351 100 270 80
DB2 1351 100 360 40
DB3 1351 100 390 350

Table 14: Query 6 results for 2 departments

 While mode 0 doesn’t return (no reasoning), modes 1 and 2 take a relatively long
time. Class hierarchy is inherent in the database schemas, and as such, all students are
found in table “student”. The queries resolve quickly. Again, there is a need to request

 32

distinct results since there are multiple entries/student, due to the fact that each student
takes several courses.

4.7 Query 7

 All the students who take the courses of AssociateProfessor0 at Department0 of
University0

nRQL query:

(retrieve (?x) (and (?x Student)

(?y Course)
(http://www.Department0.University0.edu/AssociateProfessor0 ?y
teacherOf)

 (?x ?y takesCourse)))

DB-1 query:

select distinct(globalname) from student where takescourse in

(select teacherof from faculty where globalname=
"http://www.Department0.University0.edu/AssociateProfessor0")

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-2)

Expected: 41 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 16425 510
Racer Mode 1 41 100 13832 40
Racer Mode 3

DB1 41 100 51103 51394
DB2 41 100 51815 51073
DB3 41 100 52476 51464

Table 15: Query 7 results for 14 departments

 33

Expected: 41 2 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 0 0 2354 10
Racer Mode 1 41 100 2544 50
Racer Mode 3 41 100 281285 331

DB1 41 100 1222 1282
DB2 41 100 1251 1292
DB3 41 100 1221 1512

Table 16: Query 7 results for 2 departments

 Racer modes 0 and 1 resolve much faster than the database in the first repository.
In the second, with less data, the databases resolve faster, although modes 0 and 1 return
in comparable times.

4.8 Query 8

 All the students of University0 and their email addresses

nRQL query:

(retrieve (?x (datatype-fillers (emailAddress ?x)))

 (and (?x Student)
 (?y Department)
 (?x ?y memberOf)
 (?y http://www.University0.edu subOrganizationOf)))

DB-1 query:

select globalname, emailaddress from person where globalname in

(select globalname from student where memberof in
(select globalname from department where globalname in
(select globalname from organization where
suborganizationof="http://www.University0.edu")))

DB-2 query:

select globalname,emailaddress from person where globalname in

(select globalname from student) and memberof in
(select globalname from department where globalname in
(select globalname from organization where
suborganizationof="http://www.University0.edu"))

DB-3 query:

 34

 select distinct(globalname), emailaddress from student where memberof in

(select globalname from department where
suborganizationof="http://www.University0.edu")

Expected: 8492 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 57650 120
Racer Mode 1 8492 100 84120 11247
Racer Mode 3

DB1 8492 100 755236 754665
DB2 8492 100 194430 189342
DB3 8492 100 128675 127513

Table 17: Query 8 results for 14 departments

Expected: 1351 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 1733 50
Racer Mode 1 1351 100 9572 2068
Racer Mode 3 1351 100 87790 1600

DB1 1351 100 19268 19528
DB2 1351 100 4266 4266
DB3 1351 100 1853 1803

Table 18: Query 8 results for 2 departments

 This query spans two of the largest classes, and therefore takes a lot of time in
DB-1. No results are returned in mode 0, naturally, however, mode 1 returns much faster
than the database in the case of the large repository. One interesting note is that the
database queries resolve because we explicitly state that the departments have
“suborganizationOf” relation with University0, otherwise, only Racer mode 1 and 3
would have returned results.

4.9 Query 9

 All the students who take the courses of their advisors

nRQL query:

(retrieve (?x)(and (?x Student)

 (?y Faculty)
 (?z Course)
 (?x ?y advisor)

 35

 (?x ?z takesCourse)
 (?y ?z teacherOf)))

DB-1 query:

select distinct(globalname) from student where takescourse in

(select teacherof from faculty where globalname=advisor)

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-1 and DB-2)

Expected: 213 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 59463 510
Racer Mode 1 213 100 62551 1722
Racer Mode 3

DB1 213 100 57783 57483
DB2 213 100 58074 57533
DB3 213 100 59375 57793

Table 19: Query 9 results for 14 departments

Expected: 25 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 4947 631
Racer Mode 1 25 100 6720 120
Racer Mode 3 25 100 92664 711

DB1 25 100 1603 1372
DB2 25 100 1452 1372
DB3 25 100 1612 1382

Table 20: Query 9 results for 2 departments

 The databases all take similar times to return results. Racer queries take longer
however, due to the reasoning involved with “student” and its’ subclasses.

4.10 Query 10

 All the students who take GraduateCourse0 at Department0 of University0

 36

nRQL query:

(retrieve (?x) (and (?x Student)

(?x http://www.Department0.University0.edu/GraduateCourse0
takesCourse)))

DB-1 query:

select globalname from student where

takescourse="http://www.Department0.University0.edu/GraduateCourse0"

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-1 and DB-2)

Expected: 2 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 39905 10
Racer Mode 1 2 100 38401 10
Racer Mode 3

DB1 2 100 371 30
DB2 2 100 711 30
DB3 2 100 290 40

Table 21: Query 10 results for 14 departments

Expected: 2 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 3244 90
Racer Mode 1 2 100 4216 10
Racer Mode 3 2 100 69800 20

DB1 2 100 140 10
DB2 2 100 170 10
DB3 2 100 130 5

Table 22: Query 10 results for 2 departments

 There is a significant difference in querying time between Racer and the
databases. It is interesting to compare the results to those of query 1. The differences can
be attributed purely to reasoning about the sub-classes, which is implicit in the databases,
but necessary in Racer (mode 0 fails because of that).

4.11 Query 11

 All the research groups at University0

 37

nRQL query:

(retrieve (?x) (and (?x ResearchGroup)

 (?x http://www.University0.edu subOrganizationOf)))

DB-1 query:

select globalname from researchGroup where globalname in

(select globalname from organization where
suborganizationof="http://www.University0.edu")

DB-2 query: (same as DB-1)
DB-3 query: (same as DB-1 and DB-2)

Expected: 217 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 217 100 42050 802
Racer Mode 1 217 100 65225 771
Racer Mode 3

DB1 0 0 111 440
DB2 0 0 3114 3165
DB3 0 0 3204 3455

Table 23: Query 11 results for 14 departments

Expected: 28 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 28 100 4637 40
Racer Mode 1 28 100 4496 20
Racer Mode 3 28 100 102387 30

DB1 0 0 30 40
DB2 0 0 130 101
DB3 0 0 60 220

Table 24: Query 11 results for 2 departments

 This query plays to racer’s advantage. Even mode 0 returns a result, since
transitive roles do resolve even at that degree of completeness. The transitive relation
between organizations is not implemented explicitly; therefore the databases can not
return a result.

 38

4.12 Query 12

 All the department chairs of University0

nRQL query:

(retrieve (?x) (and (?x Chair)

 (?y Department)
 (?x ?y memberOf)
 (?y http://www.University0.edu subOrganizationOf)))

DB-1 query:

select globalname from chair where globalname in

(select globalname from employee where worksfor in
(select globalname from organization where
suborganizationof="http://www.University0.edu"))

DB-2 query: (same as DB-1)
DB-3 query:

select globalname from chair where worksfor in

(select globalname from organization where
suborganizationof="http://www.University0.edu")

Expected: 15 14 Departments

 Answers Completeness Time Time
Racer Mode 0 0 0 47537 390
Racer Mode 1 0 0 41236 391
Racer Mode 3

DB1 0 0 40 30
DB2 0 0 30 90
DB3 0 0 30 30

Table 25: Query 12 results for 14 departments

 39

Expected: 2 2 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 0 0 7701 80
Racer Mode 1 0 0 6890 70
Racer Mode 3 2 100 90540 40819

DB1 0 0 30 40
DB2 0 0 91 60
DB3 0 0 20 50

Table 26: Query 12 results for 2 departments

 Only mode 3, with complete querying returns a result. Table “Chair”, as noted in
the benchmark, contains no data. Mode 3 therefore refers to the TBox to realize this
query.

4.13 Query 13

 All the alumni of University0

nRQL query:

(retrieve (?x) (and (?x Person)

 (http://www.University0.edu ?x hasAlumnus)))

DB-1 query: (no query)
DB-2 query:

select globalname from person where globalname in

(select hasalumnus from university where
globalname="http://www.University0.edu")

DB-3 query: (same as DB-2)

Expected: 2 14 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 0 0 43850 10
Racer Mode 1 2 100 45962 40
Racer Mode 3

DB1
DB2 2 100 45616 44914
DB3 2 100 47243 44594

Table 27: Query 13 results for 14 departments

 40

Expected: 0 2 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 0 0 3184 50
Racer Mode 1 0 100 3075 10
Racer Mode 3 0 100 87816 170

DB1
DB2 0 100 1151 1101
DB3 0 100 1081 1082

Table 28: Query 13 results for 2 departments

 DB-2 and DB-3 implement the “hasalumnus” property in their schemas, therefore,
they do return results. No appropriate query can be used for DB-1, without including
properties that weren’t mentioned in the original query definition. Note that, in the
second case, even though there are no results, mode 0 has 0% completeness, this is due to
the fact that mode 0 fails in this query (as shown in querying the first repository). Even
though mode 0 does resolve inverse-of roles, the problem lies in the fact that it doesn’t
resolve that a “FullProfessor” is a “Person”. Query times are also comparable (except for
mode 3). The reasoning entailed in the racer queries is offset by the joins entailed in the
database queries.

4.4 Query 14

 All the undergraduate students of University0

nRQL query:

(retrieve (?x) (?x UndergraduateStudent))

DB-1 query:

select globalname from undergraduatestudent

DB-2 query: (same as DB-1)
DB-3 query:

select distinct(globalname) from undergraduatestudent

 41

Expected: 6487 14 Departments
 Answers Completeness Full Time Opt. Time

Racer Mode 0 6487 100 46394 1620
Racer Mode 1 6487 100 58992 2340
Racer Mode 3

DB1 6487 100 260 231
DB2 6487 100 291 681
DB3 6487 100 301 1292

Table 29: Query 14 results for 14 departments

Expected: 1048 2 Departments

 Answers Completeness Full Time Opt. Time
Racer Mode 0 1048 100 5720 112
Racer Mode 1 1048 100 3347 783
Racer Mode 3 1048 100 73231 703

DB1 1048 100 140 70
DB2 1048 100 160 60
DB3 1048 100 153 140

Table 30: Query 14 results for 2 departments

 This is a straightforward query. The time, however, is worth noting. Since we are
only querying a single table for a single tuple, the database queries all resolve very
quickly. Extra reasoning leads to a delay in the case of racer.

 42

5. Conclusion

 Some interesting facts can be discerned from the queries above. In concluding this
project work, I will divide the conclusion into the two main categories that marked the
benchmarking: speed and completeness, and discuss accordingly.

5.1 Answering Time

 Speed was sacrificed in many aspects of this benchmarking. First and foremost,
the databases could have been optimized in several ways. I mentioned before that the
design followed some strict rules, in order to stay in line with the LUBM ontology, with a
few alterations, those schemas could have been rendered much more efficient. Also,
indexing, increasing cache size, and other optimization techniques could have been used.
However, in creating the schemas, a major goal was to have them simulate the ontology,
and keep them on equal footing with Racer, so as to get the fairest and most balanced
results.

 A quick look at the queries showed that the database ones are generally faster than
Racer (in nRQL modes 0, 1 or 3). Some special cases resulted in long query times. Again,
with a change of the database schema, those queries could be allowed to run much faster.
It’s all a matter of design. As for Racer, by preparing the index structure beforehand, the
queries also resolve at very high speeds and become comparable to (and even faster than)
the database (index preparation time notwithstanding). Allowing caches in databases had
some effect, in some queries, since the cache would only speed up certain queries, and
wouldn’t have the overall effect that preparing the index structure in Racer has on those
queries.

 Also noticeable, is the difference between the three racer modes themselves, and
the three database modes themselves. Generally, racer mode 0 had the fastest results (if
not always complete), followed by mode 1, then mode 3. This was to be expected. With
respect to the databases, the speed varied depending on the queries. Being directly
proportional to number and size of joins, DB-1 suffered when faced with long queries
(that would be solved in DB-2 or DB-3 using a simple select). One should note that DB-2
and DB-3 take longer to load initially, since they contain more insert statements, and that
the databases are redundant, and significantly larger than DB-1. The speed difference,
however, seems to make up for that.

 Finally, speed depends by and large on the processing capabilities of machines,
and therefore, can only improve with time.

 43

5.2 Completeness

 Speed can always be improved. Completeness, on the other hand, is paramount.
The databases returned complete results, when they actually could return a result.
Otherwise, it was complete failure. This is natural, since databases are not reasoners, they
can only deduce what has already been input to them. This is where Racer showed its
fangs. In dealing with transitive relations, the databases couldn’t return any result. On the
other hand, even mode 0 was able to return complete results for that query. Again, in
Query 12, the databases failed completely, in this case, however, only racer mode 3
succeeded in getting a result. Although expensive, time wise, mode 3 nonetheless proves
its worth by solving the queries that others can’t.

One point to be mentioned is that we can get the queries to do anything we want,
with enough knowledge. Reasoning isn’t making up new data, it’s simply realizing new
information from the coupling of the existent data and the rules the data follows. For
racer, even in mode 0, one could easily use nRQL rules to syntactically augment the
ABox and get the desired results.

In case of Query 12, one could also immediately search for the property “headOf”
in “Professor”, and get full, complete results (in mode 1, at least). Likewise in the
databases, in Query 11, we could have pointed out, in the query that the
“ResearchGroups” are sub-organizations of “Department” which itself is a sub-
organization of “University”. It is again important to note that Racer (in all modes)
recognizes that relation, where as a database needs explicit informing.

A major advantage for Racer then, is that the user needs only to know the classes
and properties involved. For the same query on a database, more knowledge is needed,
such as tables where the specific property is found. That makes Racer queries much more
natural.

The bottom line is, a database schema can be designed any which way the user
wants. It could be geared towards solving particularly tough queries using some explicit
setup. Triggers could be used, stored procedures too. After all, it is only fair to assume
that the designer would have an inkling of how the system he’s designing is going to be
used. It would be reasonable, however, to assume that a certain level of abstractness
would be preferable. This is where Racer comes in; only a high level view of the
ontology is needed. So, instead of knowing that “takesCourse” is specific to “Student”, in
Racer, the user could simply ask for any person taking a particular course.

To put it in terms of specific databases and modes, DB-1 allows for simple

traversing of the class hierarchy downwards, to traverse it upwards, more knowledge is
needed. This is an advantage over Racer in mode 0, but is available in modes 1 and 3.
DB-2 attempts to simulate the “inverseOf” and “subPropertyOf” relations. Again, this is
available in all three Racer modes. However, Racer has the advantage of recognizing
transitive relations, the equivalent of which cannot be simply simulated in a database.
DB-3 serves only to reduce the query complexity, at the added expense of redundancy

 44

and larger database size. Therefore, it is clear that a simple database structure cannot
compete with Racer, and each specific relation needs to be implemented additionally.

5.3 Suggestions

In summation, this benchmark showed that database querying is still more
practical in simple cases, and somewhat more efficient. However, a lot of limitations lay
in the database path, due to the high dependence on explicit knowledge. Knowledgebase
reasoners, and Racer in particular, excelled in solving those queries that could not be
solved by any of the others databases.

I would suggest using a database in most general cases. Of the three database

schemas designed, I believe that the second strikes the balance between size, speed, and
query time. With a few design tweaks (separate table for “takesCourse”, “member”, etc),
it can solve a multitude of queries. For those that don’t resolve, using Racer in mode 3
returns complete results.

An argument could also be made for using a knowledgebase reasoner of the

description logic family all the time, since it allows a higher level of querying and relies
less on the need to know all the minute details of a schema.

So, it seems, as always, that one must tread lightly in the middle of the road, and

keep an open eye on both sides.

 45

References

• [Racer, 05] Ralf Moeller Home page.
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

• [Baader et al.] Franz Baader, et al. "The Description Logic Handbook."

• [W3C, 05] World Wide Web Consortium. Web Ontology Language (OWL). Feb.

2005 http://www.w3.org/2004/OWL/

• [Harslev et al. 04] Volker Haarslev, Ralf Moeller, and Michael Wessel. "RACER

User’s Guide and Reference Manual Version 1.7.19." April 26, 2004
http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-manual-1-7-19.pdf

• [Rice, 04] Ronal Cornet Home page. Racer Interactive Client Environment. 2004

http://www.b1g-systems.com/ronald/rice/

• [UBA, 04] The Lehigh University Benchmark data generator (v 1.6). Dept. of

Computer Science and Engineering, Lehigh University. 2004
http://swat.cse.lehigh.edu/projects/lubm/uba1.6.zip

• [Lehigh] The Lehigh University Benchmark (LUBM). Dept. of Computer Science

and Engineering, Lehigh University.
http://swat.cse.lehigh.edu/projects/lubm/index.htm

• [MySQL, 05] MySQL Home page. 2005 http://www.mysql.com/

• [Heflin and Pan, 04] J. Heflin and Z. Pan. "DLDB: Extending Relational

Databases to Support Semantic Web Queries." Technical Report LU-CSE-04-006,
Dept. of Computer Science and Engineering, Lehigh University. 2004
http://www3.lehigh.edu/images/userImages/jgs2/Page_3813/LU-CSE-04-006.pdf

• [Beckett and Grant, 01] D. Beckett and J. Grant, "Mapping Semantic Web Data

with RDBMSes." 2001
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/

• [Melnik, 01] S. Melnik, Storing RDF in a relation database. Online posting. Dec.

2001, http://www-db.stanford.edu/~melnik/rdf/db.html

• [Guo et al., 03] Y. Guo, J. Heflin, and Z. Pan. "Benchmarking DAML+OIL

Repositories." Second International Semantic Web Conference, ISWC 2003,
LNCS 2870. Springer (c), 2003, pp. 613-627.
http://www.cse.lehigh.edu/~heflin/pubs/iswc2003.pdf

 46

• [Racer Systems, 05] Racer Systems GmbH & Co. KG. Home page. "RacerPro
User's Guide Version 1.8." April 10,2005 http://www.racer-systems.com

• [UnivBench, 04] The Lehigh University Benchmark OWL ontology. Dept. of

Computer Science and Engineering, Lehigh University. 2004
http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl

