

Project Work

Probabilistic Extension For Rule Language

Submitted By: Sevkan Taskan
Submitted To: Prof. Ralf Moeller
Submitted Subject: Probabilistic Extension For Rule Language
Submitted Date: 07/10/2005

Technische Universität Hamburg-Harburg

I should l ike to thank my supervisor, Prof. Ralf Moeller for his

supervision, direction and encouragement throughout the whole process

of my project work. Without his valued crit icism and help, I would not

have finished the project.

Many Thanks

Sevkan Taskan

Table Of Contents

1 INTRODUCTION……………………………………………………………………..1

2 PROBABILISTIC DATALOG……………………………………………………...3

2.1 Abstract…………………………………………………………………3

2.2 Syntax and Semantics……………………………………………..……5

2.2.1 Syntax…………………………………………………………………..5

2.2.2 Semantics………………………………………….................................7

2.3 Four Valued Probabilistic Datalog…….……………...........................11

2.4 Conversion of Four- valued into Two-valued pDatalog……..……......12

3 OWL LITE…………………………………………………………………………….14

3.1 Acknowledgement…………………………………………………….14

3.1.1 Ontology…...………………………………………………………….14

3.2 Abstract………………………………………………………………..15

3.3 OWL LITE Synopsis………………………………………………….17

3.3.1 Annotation Properties…………………………………………………17

3.3.2 Class Intersection………………………………………………...........17

3.3.3 Datatypes ……………………………………………………………..18

3.3.4 Equality and Inequality………………………………………………..18

3.3.5 Header Information……………………………………………………18

3.3.6 Property Characteristics………………………………………….........18

3.3.7 Property Restrictions…………………………………………….........19

 I

3.3.8 RDF-Schema……………………………………………………..........19

3.3.9 Restricted Cardinality…………………………………………………19

3.3.10 Versioning……………………………………………………………..20

3.4 Language Description of OWL LITE…………………………………20

3.4.1 Annotation Properties…………………………………………………20

3.4.2 Class Intersection……………………………………………………...20

3.4.3 Datatypes……………………………………………………………...21

3.4.4 Equality and Inequality………………………………………………..21

3.4.5 Header Information……………………………………………………22

3.4.6 Property Characteristics……………………………………………….22

3.4.7 Property Restrictions………………………………………………….23

3.4.8 RDF-Schema……………………………………………………….....24

3.4.9 Restricted Cardinality…………………………………………………25

3.4.10 Versioning……………………………………………………………..26

3.5 Results of OWL LITE………………………………………………...26

4 MAPPING OWL LITE ONTO pDATALOG…………………………...………27

5 nRQL …………………………………………………………………………………..30

5.1 Abstract………………………………………………………………..30

5.2 The nRQL Language………………………………………………….31

5.2.1 Query Atoms…………………………………………………………..31

5.2.1.1 Concept Query Atoms………………………………………………...31

5.2.1.2 Constraint Query Atoms………………………………………………32

 II

5.2.1.3 Role Query Atoms…………………………………………………….33

5.2.2 Query Head Projection Operators……………………………………..33

5.2.3 Complex Queries……………………………………………………...34

5.2.4 Defined Queries……………………………………………………….36

5.2.5 ABox Augmentation with Simple Rules………………………….......37

5.2.5.1 ABox…………………………………………………………………..37

5.2.5.2 ABox Augmentation…………………………………………………..38

5.2.6 Pseudo-Nominals……………………………………………………...39

5.2.7 Complex TBox Queries……………………………………………….39

5.2.7.1 TBox…………………………………………………………………..39

5.2.7.2 Complex Queries……………………………………………………...40

5.2.8 The Substrate Representation Layer…………………………………..41

5.2.8.1 The Data Substrate…………………………………………………….41

5.2.8.2 The Mirror Data Substrate…………………………………………….42

5.2.8.3 The RCC Substrate……………………………………………………43

5.3 Racer System with nRQL……………………………………………..44

6 PROBABILISTIC EXTENSION FOR nRQL………..…………………………45

7 CONCLUSION…….....……………………………………………………………...53

8 REFERENCES..55

 III

Sevkan TASKAN
27834 Project Work

1

1 INTRODUCTION

The goal of the project is to design and develop a knowledge system with the

probabilistic extension for rule languages. This project checks whether there is a

possibility to implement probabilistic extension for rule languages where as these can

be pDATALOG and nRQL query language [See: 63] which is already used by Racer

System [See: 64].

The scope of the project will figure out in what ways the nRQL can handle or allow an

application to use ontologies that are convertible to / compatible with the format

specified by the probabilistic Datalog.

As in every research, the first step of this project work is started by collecting the

related information about web ontology languages, their semantics, syntaxes and the

restrictions [See: 9, 14, 24, 25, 46, 47, 52, 74, and 75]. But the web ontology

languages are not only considered but also the logical part which is mostly composed

of the probabilistic Datalog is also studied. Before dealing with the probabilistic

Datalog, Datalog [See: 36] and the probability theory are also researched.

The overview of the sections can be classified as probabilistic Datalog [See: 1,

Chapter 2 in this volume, 6, 12, 30, 35, 36, 58], OWL LITE web ontology language

[See: Chapter 3 in this volume, 8, 14, 40, 42, 46, 47, 52, 53, 55, 74, 75], probabilistic

Datalog with OWL LITE [See: Chapter 4 in this volume,13, 29, 34], nRQL [See:

Chapter 5 in this volume, 63] possibility of implementing probabilistic extension for

rule language [See Chapter 6 in this volume].

Sevkan TASKAN
27834 Project Work

2

The OWL LITE web ontology language and probabilistic Datalog with OWL LITE

sections are mentioned because of having the opportunity of getting the basic

knowledge how a logic language can be implemented into web needs by paying

attentions to the steps and procedures that are taken under notation while

implementing a language onto another or extending a language by the help of other

languages.

Another reason why OWL LITE web ontology language is chosen, is the being an

extension of RDF [See: 27, 28, 71, 73], RDF-Schema [See: 27, 28, 46, 73] and the

revision of DAML-OIL [See: 16, 27, 28, 35, 36, 72]. Therefore, RacerPRo can also

read RDF, RDF-Schema and DAML-OIL languages. The way that was chosen in

order to reach the goal of the project, is trying to find out the similarities and

differences of the related concepts which can light the idea to find a way of

implementing the probabilistic extension under some restrictions and some given

models.

The brief information about nRQL, in which the structures, semantics, synopsis and

the other related query tools like ABoxes [See: 15, 23, 63 page 53, 64 page 139],

TBoxes [23, 63 page 53, 64 page 142] are explained, gives the vague scene for the

“probabilistic extension for rule language” part of the project.

These fields of computer science are not explored enough and these concepts are

newly known. The aim of the project is to search and figure out the new coming

possibilities that will be the combination of the known concepts in order to create

more expressive and powerful languages. For the following parts of the project work,

we assume that the reader is familiar with given topics.

Sevkan TASKAN
27834 Project Work

3

2 PROBABILISTIC DATALOG

2.1 Abstract

As a first step the usage of probability and also the explanation why probabilities are

used in Information Retrieval (IR) [See: 5, 12, 29, and 34], are pointed out. The

uncertain information which Information Retrieval deals with is the first concept which

must be taken under notation. Also another typical problem of Information Retrieval is

how well the query is matched to the data or how relevant the result is for the given

query. Also the answers and the questions are focused on the information which can

be sometimes certain or uncertain. Therefore, probability theory [See: 51] seems to

be the efficient way of solving problems with regard to uncertainty. But nevertheless

writing the ways of recovering the problems is not as difficult as implementing into the

open world assumptions. The probability takes place under the concept of ranking

principle in IR but in this report the concept of probability ranking principle or

probabilistic indexing or probabilistic inference is not included.

But the idea of this first paragraph is just to point out the needs of probability and

probabilistic theory to quantify the uncertainty. Then these terms can be added to the

Datalog to create our probabilistic Datalog. For more detail about the indexing,

ranking or inference, the following concepts of Computer Science can be researched:

Probability Theory, Bayes’ Decision Rule, BII (Binary Independence Indexing),

BIR(Binary Independence Retrieval), DIA (Darmstadt Indexing), n-Poisson Indexing

[See: 5, 12, 66].

Sevkan TASKAN
27834 Project Work

4

After point out the place of the probability in Information Retrieval [See: 12], the main

topic “Probabilistic Datalog (pDatalog) can be discussed in the following paragraphs.

The informal description of Probabilistic Datalog (pDatalog) is a combination of

classical Datalog with probability theory where Datalog is a variant of function-free

Horn logic.

Interference of probability theory comes to a conclusion which is inconsistency or

certain restriction which is occurred at the former version that is based on extensional

semantics. In order to gain the efficient result the latter steps in pDatalog requires

intensional semantics [See: 69].

Combination of Datalog, probability theory and the intensional semantics with the

logical rules are the milestones of probabilistic Datalog. In probabilistic Datalog

probabilistic weight is attached to every fact or rule. Therefore, there is a link between

the term and the assignment of probabilistic weight which is linked to the fact. The

probabilistic weight of the related fact is computed by the means of intensional

semantics.

The advantages of probabilistic Datalog:

o Enables the modelling of the new hypermedia retrieval,

o Enables the classical probabilistic models of Information Retrieval (IR),

o Provides powerful inference,

o Can be used as a query language for Information Retrieval or database

system.

Sevkan TASKAN
27834 Project Work

5

2.2 Syntax and Semantics

In this part syntaxes and semantics of “Probabilistic Datalog” are described [See: 6,

29, 30, 34] so that it will be easier to compare or map onto nRQL in the following

sections.

2.2.1 Syntax

In order to describe the pDatalog syntaxes, the syntaxes of Datalog can be given and

the differences they have or the similarities can be shown.

In Datalog the variables are starting with capital letters. Constants which can be

alphanumeric strings or numbers are starting with lower-case letters. Predicates

which are the alphanumeric strings are starting with lower-case letters. Variables,

constants and predicates are the basic elements of Datalog.

A term can be either a variable or a constant (alphanumeric strings or numbers).But

in Datalog a ground term can only be a constant.

An atom is one of the syntaxes that consists of an n-ary predicate symbol and the list

of arguments that each one is a term where;

Atom = p (t1,…,tn),

N-ary predicate symbol = p,

List of arguments = (t1,........, tn),

Term = ti.

A literal is an atom p (t1,….…,tn) or a negated atom ¬ p (t1,….…,tn).

A finite list of literals is called clause.

Four types of clauses are declared in the syntax.

Sevkan TASKAN
27834 Project Work

6

1) Ground Clause: This is the clause in which variables can not be found.

2) Negative Clauses: These are the clauses that consist of only negative

literals.

3) Positive Clauses: These are the clauses that consist of only positive

literals.

4) Unit Clause: This is the clause that consists of only one literal.

Facts are the ground clauses which also have to be unit clauses.

Rules are the clauses with one positive literal. The positive literal part of the rule is

called “head” and the list of negative literal of the rule is called “body” or sometimes

“subgoals”.

Rules have the form which is composed of the “head” and the subgoals of the “body”.

These terms denote literals

with variables and constants as arguments. A rule can be

seen as a clause.

Example:

father(X, Y) :parent(X, Y) & male(X)

This denotes that father(x, y) is true if both parent(x, y) and male(x) are true for two

constants x and y.

father (X, Y) The head of this rule

parent (X, Y) One of the body literal (Conjunction)

male (X) One of the body literal (Conjunction)

Sevkan TASKAN
27834 Project Work

7

Also a fact can be a rule if the fact satisfies the condition which has constants in the

head and an empty body.

Example:

parent (jo, mary).

The last syntaxes before passing to the semantics of Probabilistic Datalog are the

predicates. The set of predicates is the disjoint sets of IPred and EPred where the “I”

stands for the intensional part and “E” stands for the extensional part. All elements of

each predicate group denote their own predicate groups in which they are defined by

the means of the rules.

Up to this point, the syntaxes of the pure Datalog are described and also some parts

which are different from probabilistic Datalog but still the syntaxes of probabilistic

Datalog are not discussed totally. As it is mentioned at the introduction part,

probabilistic Datalog is an extension of stratified Datalog with the probability concept.

The negation literal can be added to the syntax. Therefore the stratified Datalog

takes place and allows using negation literals in rule bodies. A probabilistic Datalog

program P is composed of two different sets which are PE and PI. PI is the part which

is the set of stratified Datalog rules and PE is the set of probabilistic ground facts with

probabilistic weight. First step with syntaxes of Datalog follows the path to the

stratified Datalog and ends with probabilistic Datalog.

2.2.2 Semantics

Semantics are the probability distributions over the set of all possible worlds which

are the well-founded models of union of deterministic part which is “True” or “False”

and the subset of nondeterministic part.

Possible world can contain atoms ….

Sevkan TASKAN
27834 Project Work

8

a……………. ¬ a ………… none (unknown) ………………. Both (inconsistent)

An example for possible world semantics [See 34 page 31]:

0.9 docTerm (d1, ir). (Ground facts with probabilistic weights)

P (W1) = 0.9 :{ docTerm (d1, ir)}
P (W2) = 0.1 :{}

Possible interpretations [See 34, page 32]:

0.9 docTerm (d1, ir).
0.5 docTerm (d1, db).

I1:
P (W1) = 0.45 : {docTerm (d1, ir)}
P (W2) = 0.45 : {docTerm (d1, ir), docTerm (d1, db)}
P (W3) = 0.05 : {docTerm (d1, db)}
P (W3) = 0.05 : {}
I2:
P (W1) = 0.5 : {docTerm (d1, ir)}
P (W2) = 0.4 : {docTerm (d1, ir), docTerm (d1, db)}
P (W3) = 0.1 : {docTerm (d1, db)}
I3:
P (W1) = 0.4 : {docTerm (d1, ir)
P (W2) = 0.5 : {docTerm (d1, ir), docTerm (d1, db)}
P (W3) = 0.1 : {}

Semantics are divided into two sets:

1) Intensional Semantics: In this semantic the weight of intensional database

 fact is shown as the function of weights of the underlying ground facts,

An example for the implementation of intensional semantics [See 34 page 26,
27]:

Event keys and event expressions:

0.9 docTerm (d1, ir). [dT (d1, ir)]
0.5 docTerm (d1, db). [dT (d1, db)]

0.7 l ink (d2, d1). [l (d2, d1)]

Sevkan TASKAN
27834 Project Work

9

?- docTerm (D, ir) & docTerm (D, db).

gives
d1 [dT (d1, ir) & dT (d1, db)] 0.9 0.5 = 0.45

about (D, T) :- docTerm (D,T).
about (D, T) :- l ink (D, D1) & about (D1, T)

?- about (D, ir) & about (D, db).

gives
d2 [l (d2, d1) & dT (d1, ir) & l (d2, d1) & dT (d1, db)] 0.7 ·0.9 ·0.5
= 0.315
d1 [dT (d1, ir) & dT (d1, db)] 0.9 ·0.5 = 0.45

Remark: computation of probabilities for event expressions [See 34 page 30]

1. Transformation of expression into disjunctive normal form

2. Application of sieve formula:
ci - conjunct of event keys

P (c1 v. . v cn) = ∑
=

−−
n

i

i

1

1)1(∑
≤〈〈≤

∧∧
njj

jij ccP
1....11

1)....(

2) Extensional Semantics: In this semantic the weight of derived fact is shown

 as the function of the weights of bodies or subgoals.

 An example for an Extensional Semantics [See 34 page 25]:

 0.9 docTerm (d1, ir). 0.5 docTerm (d1, db). 0.7 l ink (d2, d1).

about (D, T) :- docTerm (D, T).
about (D, T) :- l ink (D, D1) & about (D1, T)

q (D) :- about (D, ir) & about (D, db).

P(q(d2))= P(about(d2,ir))P(about(d2,db))= (0.7 0.9)(0.7 0.5)

Remark: extensional semantics only correct for treelike inference structures.

Sevkan TASKAN
27834 Project Work

10

Computation of probabilities in pDatalog is based on event keys and event

expressions. By having event keys and event expressions, disjoint or duplicated

events are recognized (“intensional semantics”) during the computation of the

probabilistic weight. So these concepts in pDatalog prevent to yield irrelevant

probabilities.

The scenario goes like that;

 All facts and instantiated rules are basic events.

 Each of fact and instantiated rule have assigned a unique key event.

 Each derived fact is associated with an event expression.

An event expression is a Boolean combination of the event keys of the underlying

basic events. Therefore, this scenario is just like a trigger for the probabilistic Datalog

in order to prevent the systems and this can be occurred because of the disjoint or

duplicated events.

From the previous pages it is known that the probabilistic weight gives the probability

of the predicate to be true. But just for being an example of disjoint event, to apply

the probabilistic Datalog rules for the hyperlink structure (recursive definition in

pDatalog). Applying the probability theory for the hyperlink structure can easily cause

trouble, because if the multiple rules for the some head and the events are

independent, the probabilities are multiplied which are related to the given

predicates. But another question rises up; therefore it deals with a hyperlink structure,

is there any possibility of having the probability for the given two links twice. The

answer is known that would be “Yes”. That is why some simple approaches are not

enough or not capable of distinguishing.

Sevkan TASKAN
27834 Project Work

11

Problems rise up for the probabilistic independence of the bodies of the rules not only

for the disjoint events.

As it is mentioned in the abstract part;

Interference of probability theory comes to a conclusion which is inconsistency or

certain restriction which is occurred at the former version that is based on extensional

semantics.

In order to gain the efficient result the latter steps in pDatalog requires intensional

semantics. By applying the intensional semantics onto probabilistic Datalog, given

Boolean expression can help to identify the events that occur more than once or

disjoint events. The background of this operation the basic events are just dealt with,

unique event keys, derived facts for IDB predicates and the Boolean combination of

the events keys for the related EDB facts.

This scenario is just the same scenario that it was already mentioned in this semantic

part of the probabilistic Datalog but this time the scenario is just implemented with

intensional database predicates and the extensional database predicates.

2.3 Four Valued Probabilistic Datalog

In this last section of Probabilistic Datalog which is the four-valued probabilistic

Datalog [See 30, 35] the possible world assumption is changed from the closed-world

assumption [See: 63 page 46, 65] into an open-world assumption [See: 63 page 46,

70] . As it is understandable from the title four different values are available for the

facts which are true, false, unknown and inconsistent.

If the evidence can prove that the information is both true and false for the given fact,

than the fact has the truth value “inconsistent”. If no information is supplied, the fact

has the truth value” unknown”.

Sevkan TASKAN
27834 Project Work

12

Example: For facts, probabilities for true, false and inconsistent are specified.

o 0.6/0.3/0.1 male (mark).

Mark is a male with probability 0.6, not a male with probability 0.3, and the

knowledge is inconsistent with probability 0.1.

o !female (john).

John is not a female and also from this fact it is easy to derive that men are

not women because here, the negated head stands for the probabilities “0/1/0”

which respectively true, false and inconsistent.

o 0.9 male (anthony).

Anthony is a male with probability the “0.9” and not a male with the probability

“0.1”, it is easy to derive the other format from the given form which is the short

form for “0.9/0.1/0”.

The deterministic datalog program has a chance to contain the four truth values.

2.4 Conversion of Four- valued into Two-valued pDATALOG

Also another scenario that can be occurred, is having a set of possible worlds for the

corresponding deterministic Datalog (where this will be true or false) with the

probabilistic distribution.

Program which is adapted for four-valued Probabilistic logic can be easily

implemented into two-valued Probabilistic Datalog program. In two-valued

Probabilistic Datalog program, two distinct predicates can be obtained which is either

a positive knowledge or a negative knowledge.

Sevkan TASKAN
27834 Project Work

13

Two distinct predicates: Positive (a) and negative knowledge (¬ a).

For each fact in two-valued probabilistic Datalog three different values can be

obtained which are true, false and inconsistent.

Sevkan TASKAN
27834 Project Work

14

3 OWL LITE

3.1 Acknowledgement

OWL LITE is a type of web ontology. Before OWL LITE, a little bit information is given

about what the ontology is.

3.1.1 Ontology

An ontology is a representation of terms and relationships of these terms [See: 14,

46] .Ontology is an artifact language which is created by engineers. It is formed by

the specific vocabulary which is used to describe the truth or any event and also the

set of assumptions which are related to the meaning of these vocabularies. An

ontology is a bridge between the terms and what the terms stand for in the given

scenario. It just connects the terms within the given relationships and constitutes a

meaningful language for a certain domain.

Therefore, ontology is used to describe a certain domain by the specification. These

specifications are composed of the formal-machine models and the understandings

of a certain domain.

The structure of an ontology can be described by the main components of itself. The

main components in the ontologies are names and constraints. An ontology consists

of facts and axioms. The description of classes and the relationships between each

other, the description of attributes and the relations between elements are included in

the ontology. That is why OWL web ontology language can easily support the

vocabularies, terms and the understandings of the content of the given information by

the help of the properties. Object and datatype properties can be an example.

Sevkan TASKAN
27834 Project Work

15

3.2 Abstract

This section of the project work describes the first impression and the basic concepts

of the OWL LITE web ontology language [See: 8, 9, 52, and 75]. OWL LITE like the

other web ontology languages is designed for the applications which are processed

the content of the given information. In another way OWL is needed when the

application needs to process the content of the given information .There are some

reasons for choosing OWL [See: 53] instead of RDF, RDF-Schema and XML

.Because OWL has more opportunities to represent the understandings and the

semantics [See: 47] than RDF, RDF-Schema and XML. RDF-Schema is converted

into a full knowledge representation language for the web by OWL. In the later

subsections of this section, this part is explained in details by descriptions, semantics

and synopsis of OWL LITE.

The OWL web ontology language has an efficient machine interpretability of web

content by applying a formal semantics. These formal semantics create the

sublanguages of OWL which are named OWL LITE, OWL DL and OWL FULL.

Now OWL LITE is considered as a starting point of the project work with regard to the

probabilistic Datalog (pDatalog). Another reason for choosing OWL is being a

revision of DAML-OIL web ontology which is related to RACER system. After

collecting the necessary and the efficient information, the vague picture of the

research topics with clear ideas can be seen.

OWL LITE is a sublanguage of OWL DL that supports the subset of OWL language

constructs. OWL LITE is mostly the choice of the implementers or the users who

want to start with language feature with its basics. Therefore the users who need to

have simple constraint features and the classification hierarchies choose the OWL

Sevkan TASKAN
27834 Project Work

16

LITE .Because OWL LITE has a simple and quicker migration path for the

taxonomies.

Also the most of the used features in OWL and DAML-OIL can easily be found in

OWL LITE concept within the descriptions, semantics and synopsis.

There are relations that are already proved between the sublanguages of OWL.

These relations are related with the expressions and conclusions that are gained by

applications. But there is an important point about these relations that it has to be

mentioned; their inverses are not valid and can not be applied to another scenario.

The set of relations are:

• Every legal OWL LITE ontology is a legal OWL DL ontology.

If the specification of a legal OWL LITE ontology is managed then it can be

easily assumed that this ontology which is done under the descriptions,

semantics and synopsis of OWL LITE can be thought like OWL DL. So the

way can be found to implement any subjects of OWL DL into this ontology

under the rules and restrictions if it is possible.

• Every valid OWL LITE conclusion is a valid OWL DL conclusion.

If the specification of a valid OWL LITE conclusion is managed then it can be

easily pronounced as OWL DL conclusion. One step further from LITE to DL

and DL to FULL can be derived. By implementing these conclusions the users

or the implementers can add different concepts into the OWL languages like

probabilistic Datalog (pDatalog). This will be explained under the name of a

section in the project work as a basement of our target topic of implementing

probabilistic extension (pDatalog) for rule languages (nRQL).

Sevkan TASKAN
27834 Project Work

17

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

• Every legal OWL DL ontology is a legal OWL Full ontology.

3.3 OWL LITE Synopsis

In this section, an overview of the language features for OWL LITE is given. After just

naming them in this section, the following section will explain them shortly.

The following lists are the vocabularies of OWL LITE which are added for describing

classes, relations between classes, cardinalities, equalities, properties, typing of

properties, characteristics of properties [See: 55, 74] .

If the terms are already present in RDF–Schema and RDF, “Rdf” and “Rdfs” as

prefixes are used in OWL LITE Synopsis.

3.3.1 Annotation Properties

The related language features of annotation properties are listed as the followings:

• AnnotationProperty

• Rdfs:comment

• Rdfs:isDefinedBy

• Rdfs:label

• Rdfs:seeAlso

• OntologyProperty

3.3.2 Class Intersection

The related language feature of class intersection is listed as the following:

• IntersectionOf

Sevkan TASKAN
27834 Project Work

18

3.3.3 Datatypes

The related language feature of datatype is listed as the following:

• Xsd:datatypes

3.3.4 Equality and Inequality

The related language features of Equality and Inequality are listed as the followings:

• AllDifferent

• DifferentFrom

• DistinctMembers

• EquivalentClass

• EquivalentProperty

• SameAs

3.3.5 Header Information

The related language features of header information are listed as the followings:

• Imports

• Ontology

3.3.6 Property Characteristics

The related language features of Property Characteristics are listed as the followings:

• DatatypeProperty

• FunctionalProperty

• InverseFunctionalProperty

• InverseOf

• ObjectProperty

Sevkan TASKAN
27834 Project Work

19

• SymmetricProperty

• TransitiveProperty

3.3.7 Property Restrictions

The related language features of Property Restrictions are listed as the followings:

• AllValuesFrom

• OnProperty

• Restriction

• SomeValuesFrom

3.3.8 RDF-Schema

The related language features of RDF-Schema are listed as the followings:

• Class (Thing, Nothing)

• Individual

• Rdfs:domain

• Rdf:Property

• Rdfs:range

• Rdfs:subClassOf

• Rdfs:subPropertyOf

3.3.9 Restricted Cardinality

The related language features of restricted cardinality are listed as the followings:

• Cardinality (only 0 or 1)

• MaxCardinality (only 0 or 1)

• MinCardinality (only 0 or 1)

Sevkan TASKAN
27834 Project Work

20

3.3.10 Versioning

The related language features of versioning are listed as the followings:

• BackwardCompatibleWith

• DeprecatedClass

• DeprecatedProperty

• IncompatibleWith

• PriorVersion

• VersionInfo

3.4 Language Description of OWL LITE

This section consists of the description of OWL LITE language features which are

named and classified in the synopsis section. Some of the OWL language features

with some restrictions and limitations are used by OWL LITE. These are situated as

the followings.

3.4.1 Annotation Properties
Annotations are allowed on classes, individuals and also ontology headers by OWL

LITE with some certain usage restrictions.

3.4.2 Class Intersection
An intersection constructor takes place in OWL LITE but as it is mentioned for the

annotations properties again the usage of this class intersection is limited.

In OWL LITE just the intersection of “named” restrictions and classes can take

places. This explanation is also named as a term “IntersectionOf”.

Sevkan TASKAN
27834 Project Work

21

3.4.3 Datatypes
In OWL LITE, the sets of data values are denoted by the OWL datatypes. OWL

Datatypes are XML Schema datatypes like string (xsd: string) or float (xsd: float) and

the other types.

3.4.4 Equality and Inequality
The following steps consist of the equality and inequality features of the OWL LITE.

• AllDifferent

This feature is used if the distinct objects with the enforcement of names

assumptions of the given distinct objects are occurred. Implementing this feature into

OWL LITE, getting individuals with mutual distinction can be seen if it is necessary for

the application or the scenario of the content of the information which is given.

• DifferentFrom

This feature is used if an individual is wanted to be stated different from the other

individuals.

• DistinctMembers

This feature is used if the all members of the given list are wanted to be stated

distinct.

• EquivalentClass

This feature is used if two different classes are wanted to be stated equivalent. All

equivalent classes have the same instances and also in some cases this is used to

create synonymous classes.

• EquivalentProperty

All properties that are already mentioned for EquivalentClass are also applicable for

this feature but instead of classes all the statements will be applied to the properties.

Sevkan TASKAN
27834 Project Work

22

This feature is used if two different properties are wanted to be stated equivalent.

Also in some cases this feature can be used to create synonymous properties.

• SameAs

This feature is used if two individuals are wanted to be stated same. Different names

can refer to the same individual by using these features

3.4.5 Header Information
The notions of ontology inclusions and information are supported by OWL LITE by

the help of this feature.

3.4.6 Property Characteristics

• DatatypeProperty

This feature is used if an instance of a class is wanted to be related to an instance of
the datatype.

• FunctionalProperty

This feature is used for the property that has at most one value for each individual.

But that does not mean that it must have at least one value for its individual, no value

for an individual can be accepted. Having a unique value can be stated by this

property.

• InverseFunctionalProperty

If a property is inverse functional then it means that the inverse of the given property

is also functional. By this way properties can be stated as inverse functional.

Sevkan TASKAN
27834 Project Work

23

• InverseOf

This feature is used to state one property as an inverse on another property.

• ObjectProperty

This feature is used to relate an instance of a class to another instance of a class.

• SymmetricProperty

This feature is used to state the property as symmetric.

• TransitiveProperty

This feature is used to state the property as transitive.

3.4.7 Property Restrictions

• AllValuesFrom

This feature is used with respect to a class if a restriction is wanted to be putted on to

a property. This draws a local range restriction for the related class on which the

property is applied. In other word a second individual can be implied as an instance

of the restriction class where the instance of the first class is related with the

property.

• OnProperty

This feature is used to put an indication to the restricted property on which element it

is applied by.

• Restriction

This feature is just used in order to figure out the usage of the properties with respect

to the instances of the classes.

Sevkan TASKAN
27834 Project Work

24

• SomeValuesFrom

This feature is used to apply a partial restriction on to the property again with respect

to the classes. It also stands for the clue of having a restriction on at least one value

which is certain for the given property.

3.4.8 RDF-Schema
• Class (Thing, Nothing)

A set of individuals are built up the each classes which are defined on the behalf of

the ontology. The set of all individuals are represented as owl: Thing and the empty

set is represented as owl: Nothing.

• Individual

Informal description individuals are the bridges that are used to relate one individual

to another. They are instances of properties and the classes which are ready to be

related to each other. In OWL LITE individuals can have same identities or different

identities.

• Rdfs:domain

This is used to show the property limitation of each individual.

• Rdf:Property

This feature is used to state the relationships which can be observed from individuals

to individuals or data values.

• Rdfs:range

This feature is used to create the range of limitations of the individuals where they

can be occurred as their own values.

Sevkan TASKAN
27834 Project Work

25

• Rdfs:subClassOf

This feature is used to show class hierarchies that one class is a subclass of another

class.

• Rdfs:subPropertyOf

This feature is used to show the property hierarchies that one property is a

subproperty of another property or more then one property.

3.4.9 Restricted Cardinality
OWL LITE has the cardinality restrictions. The cardinality which is related to OWL

LITE can only have a chance to get a value of “0” or “1”.The arbitrary values can not

be taken places in the cardinalities of OWL LITE

• Cardinality

This feature is used to show the availability of the properties on a class under the

satisfied conditions of having both maxcardinality and mincardinality of the values of

“1” or “0”.

• MaxCardinality

This is feature is also called a functional or unique property. As a structure it shows

the instance of the class which has at most one related individual by the applied

property, where it has a maxcardinality with the value of “1”.

• MinCardinality

This feature is used if the property is needed for all the instances of the class.

It means that any instance of the given class can easily be connected to at least one

individual if the property has minCardinality with value of “1” which is respected by

the related class.

Sevkan TASKAN
27834 Project Work

26

3.4.10 Versioning
OWL extends this vocabulary which is already mentioned by RDF to describe the

versioning information.

3.5 Results of OWL LITE

This section consists of the conclusion of having OWL LITE, design goals and some

important hints about OWL LITE.

One of the additional aspects of OWL LITE which differs itself from RDF is being

scalable to web needs. In another word it can be easily distributed through many

systems and can be extensible. By applying logical expressions, local and optional

properties, OWL LITE extends RDF-Schema in to a proper well-defined language

which is suitable for web needs.

Some of the design goals of OWL LITE can be written as the followings:

• Ease of use

• Interoperability

• Adaptability to the existing standards

• Internationalism

• Complexity

• Shareable

As a conclusion OWL LITE has DL-based semantics and reasoning which are done

via DL-engines. But it has also a restricted cardinality which can not be adapted

except the value of “1” or ”0”. There is no explicit negation in OWL LITE but negation

can be encoded by using disjointness and the disjunction can be encoded with

negation and conjunction.

Sevkan TASKAN
27834 Project Work

27

4 Mapping OWL LITE onto pDatalog

In this section of the project work the implementation of the probabilistic extension to

OWL LITE is presented. Although these are still ongoing research areas in which the

users and the implementers are trying to extend, map or combine the probabilistic

extension (probabilistic Datalog) onto OWL web ontology languages. Some

probabilities of the successful implementations are proved by the related people in

these research paperworks [See: 13, 34]. The one which its subsections are already

mentioned in this project, is the mapping probabilistic Datalog onto OWL LITE. This

already proved implementation [See: 34] can be a light to seeking the probabilities of

implementing probabilistic extension (pDATALOG) for the rule language (nRQL query

language of Racer system).

Also after this section, nRQL query language which is used by Racer system will be

explained with its semantics, synopsis, structures, descriptions and restrictions as in

the same way and mentality where it has been done for the mapping pDatalog on

OWL LITE by the researchers. So as a first step of all related research areas, where

the goal of the project is just to combine or extend one of the web ontologies with

another one is just passed by brief researches of each topic. Before mapping or

extending one onto another one all the restrictions and the expressiveness of each

language should have to be figured out in details in order to create the efficient

combination where it is sufficient under the possible circumstances, predicates or

rules which are given.

Sevkan TASKAN
27834 Project Work

28

The main solution of mapping the probabilistic datalog is done through the additional

OWL classes. Implementing these additional classes into the OWL, the problem of

marking the probabilities of each OWL is solved.

The classes, properties, individuals and literals are observed in details for a

successful implementation. Then the basic ideas which are composed of unary and

binary datalog predicates for classes and the properties plus the constants are

matched for the mapping procedure. Besides these terms the properties are studied

in details and applied for the given scenario like inverse, transitive and symmetric.

After all these documentations, the restrictions and the barriers which are situated in

front of OWL LITE are pointed out like the cardinality and existential.

But these difficulties can be solved by the four-valued probabilistic Datalog which is

based on the open-world assumptions. The way of implementing the solution of this

problem can be the set of rules that are defined to use for solving the problem of

OWL LITE restrictions onto probabilistic Datalog rules. The pDatalog rules can be

used for the cases where OWL LITE is not sufficient. As a result of this compensation

the lack of OWL LITE languages for some cases can be covered where the rules

would be solution in order to handle the cases. The whole procedures that are

mentioned in this paragraph are named as the mapping probabilistic Datalog onto

OWL LITE.

But that does not mean that the mapping pDatalog onto OWL LITE has a chance to

handle every case. Therefore many primitives can not be mapped onto Datalog.

However the inconsistencies like existential quantifiers and the cardinality restrictions

can be detected by the help of the four-valued probabilistic datalog.

Sevkan TASKAN
27834 Project Work

29

The procedure starts with the alternation of classes and properties into unary and

binary predicates and it is followed by mapping the primitives as much as it would be

possible under the given conditions and the detections of the inconsistencies.

But at the end of these whole procedure cycles the OWL with the extension of

probability and the rule is created.

Sevkan TASKAN
27834 Project Work

30

5 nRQL

5.1 Abstract

In this section the brief information about nRQL is given like the objects, variables,

features, notations and the other important topics. Because of this reason, this

section is started with a quick overview of nRQL under the title of abstract.

As a first step it can be told that nRQL is the expressive query language of

RacerPro’s [See: 63 page 1]. Retrieving information from the queries is done through

the ABoxes and TBoxes. nRQL allows using query variables which ABox individuals

hold and has the mission of satisfying the given queries. On the other hand the

vocabulary which is used in the queries is supported by the TBoxes. From this point it

can be easily pointed out that conjunctive queries are supported by nRQL via the

usage of role terms and concepts.

The main features of nRQL [See: 63 page 55] can be listed as follows:

• Special support is given for querying OWL knowledge bases,

• Support is given for the hybrid queries,

• Complex TBox queries are allowed,

• Support is given for the concrete domains,

• Role chains and complex predicate expressions are available,

• Complex queries are available which are built from simple query atoms under

well-defined syntaxes and semantics,

• Negation as failure (NAF) [See: 63 page 46] semantics are available.

Sevkan TASKAN
27834 Project Work

31

5.2 The nRQL Language

5.2.1 Query Atoms

Query atoms are the basic expressions of the nRQL language [See: 63 page 57].

Sometimes they are also called simply atoms. These query atoms can be either

unary or binary atoms. One object is referenced by the unary atoms and on the other

hand the two objects are referenced by the binary atoms. A variable or an ABox

individual can be an object.

In nRQL language, the total number of available atoms is three. Each available atom

can be negated as failure and ordinary negation.

5.2.1.1 Concept Query Atoms

Concept query atoms are the only query atoms which are unary in nRQL query

languages.

In concept query atoms there are “query head” and “query body” as terminologies.

The query body is satisfied if the variable is bound to the givens. After this phase of

the procedure is satisfied the Racer systems return a list of binding list for the given

query. The query head has the responsibility for specifying the format of the returned

binding list.

For the transactions of these queries the variables are employed by the active

domain semantics where the variables are held by the ABox individuals in the related

ABoxes. From this point the possibility of using ABox individuals in the queries can

be seen. But choosing the names for the given ABox individuals has to be done very

carefully because some specific certain names are reserved in nRQL. Also in

Sevkan TASKAN
27834 Project Work

32

concept query atoms the arbitrary concept expressions can be used but not only

atomic names.

5.2.1.2 Constraint Query Atoms

Constraint query atoms are one of the query atoms which are binary in nRQL

language. The goal of these query atoms is pointing out the addresses of the

concrete domain parts of the knowledge bases. There are some conditions that the

constraint query atoms can be used in nRQL. ABoxes, which have TBoxes that do

not contain a signature, can be used in the constraint query atoms. The other

possibility is to have a signature without containing an individuals-section.

In constraint query language two other features are situated which are called role and

feature chain. Nevertheless the feature chains are just like a special case of role

chains, so they can be named as role chains only.

Role chains take place in the constraint query atoms in which conditions two single

attribute names are not wanted to be used. Because of having a chain only the

concrete domain attribute is passed by as the last argument in each chain of the role

chains.

The feature chains which are a special case of role chains are functional roles

therefore at any place nRQL query can apply on them where a role is used.

As a last remark of this part it is mentioned that in constraint query atoms, not only

the simple predicate names should have to used, also the complex predicate

expressions can be used by nRQL language.

Sevkan TASKAN
27834 Project Work

33

5.2.1.3 Role Query Atoms

The role query atoms are the last query atoms in nRQL language. Also these query

atoms are binary atoms because two objects are referenced. In these atoms role

declarations are done in TBoxes.

The role terms can be used in role query atoms but not only the role name. This

scenario is just the same for the concept query atoms with the arbitrary concept

expressions. In DL’s always the negated concepts are preferred instead of the

negated roles. However negated roles can be used for ABox querying with nRQL.

Because nRQL can compare the given ABox individuals with the role relationship and

finds out the result for the related ABox query. Nevertheless negated roles and

negated roles in ABoxes are not offered by RacerPro. There is also one difference

between the role query atoms and the other two query atoms. The role query atom

can be inverted but the others can not be.

5.2.2 Query Head Projection Operators

For retrieving the values of the concrete domain filler attributes of ABox individuals,

these projection operators are used. These operators which are called head

projection operators [See: 63 page 68] have place in the head query which are a list

of objects. The background of needing these operators is coming from the demand

for retrieving the values of concrete domain objects. Also variables can not be bound

to the concrete domain objects or the values just only to the ABox individuals. But

besides these arguments a concrete domain object can be added to the ABox where

it can be the filler of the concrete domain attribute. This instance is called a told value

Sevkan TASKAN
27834 Project Work

34

or a concrete domain. As a scenario, the list of concrete domain objects is yield by

applying these operators and the list of concrete domain values is yield by retrieving

the told values of the concrete domain objects. Moreover, in OWL told values of

datatype properties are used for modelling environment. Sometimes fillers, told-fillers,

datatype-fillers are used instead of told values. RacerPro can handle the use of

datatype properties in OWL with the concept query atoms. The system uses the

concept expression to support the extended concept expression syntax in nRQL.

Also other property from OWL is annotations-property which is used to annotate

resources and also to represent meta information. Again the retrieval of the values of

annotation properties can be done by nRQL in the same way as it is already declared

for concrete domain objects.

If the attribute projection operator is wanted to be discussed in more details we

should have to mention that the concrete domain objects from the ABox which are

retrieved by the attribute projection operator have to be from the ABox that are known

to be fillers of the concrete domain attribute. So they have to be matched each other

before retrieving the concrete domain objects.

5.2.3 Complex Queries

The following constructors and queries [See: 63 page 76-90] are offered by nRQL to

be used to combine the query atoms.

• And

nRQL offers the “and” constructor to define the compound or complex queries.

Unique name assumption is used for the variables by the RacerPro and

according to UNA each variable has to be held by one object in ABox. But

Sevkan TASKAN
27834 Project Work

35

again via RacerPro, the switching off this mechanism for one or all variables

can be done whenever it is wanted.

• Union

nRQL offers the “union” constructor to combine the results of queries into one

result set. The mechanism for the union constructor: The operator is

responsible for computing the union of the answer sets according to the

related arguments. But nevertheless the union set can only be efficient and

clean if the computed sets have the same arities, in other way the union will

compute the wrong the sets for the given arguments. At this point the

responsibility of nRQL acts under the proof of having the related sets for the

union constructor by considering the name of the variables which are taken as

an argument in the queries.

• NEG

nRQL offers the “neg” constructor to implement a negation as failure

semantics in the queries. This semantic is mostly used in many applications to

measure the completeness of the modelling in an ABox. But this negation

constructor is different from the DL’s negation.

Negation operator can be used with the role query atoms. As it is told for the

union constructor again the arities of the answer sets are also important. If the

Neg to the binary or the unary atoms are wanted to be applied respectively it

will return the binary or unary set as an answer. Also this operator can be

applied to the binary constraint query atoms after mentioning the role query

atoms. But it is obvious that ABox individual with a negated query atom

behaves like a variable on which the unique name assumptions can not be

applied.

Sevkan TASKAN
27834 Project Work

36

• Inv

nRQL offers the “inv” constructor to reverse the role query atoms.

• The Projection Operator for Query Bodies

First of all, this operator is different from the operator that is already mentioned

with the head projections queries. In these projections nRQL computes the

answer sets for the given query expression in which each chain the first

arguments give the bindings computed. The resultant set is figure out after

computation of the first arguments. By the help of this resultant set before

retrieving the binding list, duplication or reordering can be applied as a plus.

5.2.4 Defined Queries

A simple mechanism is used for the specifications of defined queries [See: 63 page

90-96]. In this simply mechanism two parameters take place “formal” and “actual”

parameters. The given lists of the parameters are called the formal parameters and

these lists can be composed of only variables and individuals. On the other hand in

an expression the parameters are called the actual parameters. Actual and formal

parameters have to match each other in a proper definition.

Another query in nRQL is the syntactically ambiguous queries. As it is easy to

understand from its name, these queries are ambiguous from a binary role query

atom. Let’s think about a scenario for this type of queries. A defined query with one

arity as well as a concept with the same name as the defined query is given. nRQL

will pop up a warning after it assumes that the user refers to the concept name. Also

when the same situation is occurred with two arity as well as the role with same

name as the define query. Still nRQL will pop up a warning for this ambiguity but

again after it assumes that the user refers to the role. But a question can be raised

Sevkan TASKAN
27834 Project Work

37

up. What will happen if the user really wants to refer to the defined query that has the

same name as well as the concept and the role? Then the user must use the

substitute operator to solve this ambiguity.

Also by the way, already defined queries can be easily used to define new

queries.Related to the negation still some problems for the defined queries are left

but again this problem can be solved by the projection. Before creating the

complement of the query body, a projection has been carried out. Therefore it would

be a chance to get the unary complement instead of the binary complement.

nRQL API’s can manipulate and access the defined queries but still up to date there

was no opportunity to create TBox queries. Instead of that in ABox queries,

definitions can be made. These definitions are local and also the defined queries are

kept in the related TBoxes. As the TBoxes are changing the definitions are also

changing as usual. Also there is a way to put the definition into a different TBox

rather than the related one by using the optional keyword.

5.2.5 ABox Augmentation with Simple Rules

In this section before starting with the given title, rough information about ABox is

given. After this part, it is confident to deal with the term which is one of the

milestones of nRQL like ABox where as the other one which is TBox will be explained

in the following parts.

5.2.5.1 ABox

ABox is the collection of assertional axioms. In another way it can be easily said that

ABox contains the extensional knowledge about the assertions. These assertions are

concept and the role assertions. For instance in the concept assertions the concept

Sevkan TASKAN
27834 Project Work

38

expressions are allowed. But in the role assertions where the role is a role expression

is not allowed. As a quick overview for the ABox reasoning the realization (data-flow

techniques), instance checks, non-subsumption and the graph transformation can be

added. The reasoning task of ABox which is the instance checking is done to verify

whether the given individual belongs to the specified concept or not. It is just like a

checking mechanism for the individuals. By the help of this instance checking the KB

consistency is found where it shows that at least one individual has to be addressed

to the one of the concepts. Besides the consistency, realization and the retrieval can

be figured out by the help of instance checking. But the reasoning can be turned into

a little bit complicated phase for the computation because of the individuals.

Reasoning services have to take the whole responsibilities of the KB for the ABox

and TBox as well. As the time is passing the lack of a powerful knowledge

representation language for the different components that specify the knowledge, is

cured by the hybrid reasoning. But it is not an easy way for the knowledge

representation while the knowledge components are dealt with the strict interactions.

5.2.5.2 ABox Augmentation

Simple ABox augmentation rules [See: 63 page 96-98] are offered by nRQL to add

new ABox assertions to the already existent ABox. If the rules are fired successfully

that means that the rules are applicable and after the triggers a set of rule is added to

the related ABox. If the RacerPro is set into the mode, the adding procedure is done

automatically. Also several nRQL API’s are used to implement different rule

applications for the application programs or the users in order to help the adding

procedures like under which criteria and how the consequences are added to the

ABoxes.

Sevkan TASKAN
27834 Project Work

39

nRQL is not responsible for checking whether the rule is applicable or not. The

control of the firing rules is in the hands of the application programs and the users. All

the nRQL rules have the antecedents and the consequences. The consequence has

the syntax of the ABox assertional axioms where as the antecedent is just like a

query body. Generally speaking the variables of ABox axioms from the antecedence

(rule body) is called the consequence.

5.2.6 Pseudo-Nominals

In some cases having special individuals in order to refer just for an ordinary

expressions can be a plus for a program. RacerPro has the Pseudo-Nominals [See:

63 page 98] as the answer for the given sentence. The Pseudo-Nominals which are

the specific individuals can be used to refer within RacerPro expressions, can be

handled by the ABox retrieval operations only.

5.2.7 Complex TBox Queries

As the same situation like the ABoxes, in this section rough information about

TBoxes is given. After having this opportunity, complex TBox queries [See: 63 page

99-104] can be discussed in details.

5.2.7.1 TBox

Namely it is the short form of the terminological box. TBox is the collection of the

concept axiom where as the ABox is the collection of assertional axioms. It shows

how the concepts and roles are related to each other. One of the most important

elements in DL knowledge base is the operation which is used to build the

terminology. TBoxes give the shape of the forms and the meanings of the declaration

which are closely related to the operations. These basic declarations in a TBox are

Sevkan TASKAN
27834 Project Work

40

known as the concept definitions. The concept definition is always renewed itself

according to the previous defined concepts. Also in TBoxes these concept definitions

are used to build up the needed and the efficient conditions for the individuals. Due to

TBoxes only just one definition is allowed for the concept name which is acyclic. The

necessity of using the concept name is based on the ontological decision and also

another effect can be the idea of having a terminology for the important aspects in

TBoxes. Also these concept names can be ordered by one of the reasoning services

of TBoxes which is the subsumption. These names can be started from the specific

ones and ended with the very simple and uncomplicated ones.

In a sense acyclic TBoxes can be expanded or unfolded. These two restrictions are

mostly common for DL knowledge bases. That is why the argument which is concept

definition has some more importance in DL. Just only the atomic concepts are

replaced into the complex expressions during the expansions of the defined

concepts. But these expansions allow the complexity therefore the solution depends

on the brief study on subsumption where it is one of the reasoning services for

TBoxes. The other TBox reasoning can be the classification of clustering and the

order of nodes also besides that the transformation of general axioms can be added

to these groups.

After this quick overview of TBox as the definition, concepts, terminologies and the

reasoning services, the topic under the name of complex TBox queries in nRQL can

be explained in more details.

5.2.7.2 Complex Queries

Relationship patterns of superclass and subclass can be searched in the taxonomies

of TBoxes in nRQL. These taxonomies of TBox are called directed acyclic graphs.

Sevkan TASKAN
27834 Project Work

41

These directed acyclic graphs are composed of the equivalent concepts and the

directsubsumer of relationship which are respectively represented by the nodes and

the edges.

The related scenario for the “taxonomy of TBox” is acted by the role membership

axioms (with what the edges are represented) and concept membership axioms.

From the equivalence class the name of the node can be chosen. nRQL can query

this taxonomy ABox and also the full of nRQL can query the taxonomy TBox with

some limitations of the available concept expressions.

5.2.8 The Substrate Representation Layer

The association of a RacerPro ABox with an additional representation layer is done

through layer which is called substrate representation layer [See: 63 page 104-117].

Mostly the support for the representation of semi-structured data is given by the

substrate layer.

The following three types of substrates are offered by nRQL.

5.2.8.1 The Data Substrate

These types of substrates are pretty much similar to the ABoxes. The nodes and

edge-labelled directed graphs are seen in these types. Optional description which is

called “label” can be applied to the nodes, but the edges has no opportunity not to

have a label. It is a must for the edges to have a label in this substrate model. These

data substrate labels can be a list of data literals or just a simple data literal. In these

data substrate labels, strings and numbers are allowed as well as the characters.

LISP supports the data literals for the data substrate data labels. There is a common

Sevkan TASKAN
27834 Project Work

42

idea that a boolean formula in CNF is pretty much the same as the data substrate

label. But also besides the CNF the nRQL can allow to use the data predicates.

 Up to that part the information about the data substrate layer is given to add the

label but the way of creation is not included till this part. The first step is creating a

data substrate node with an appropriate name. A valid name can be created by the

symbols, numbers or characters. Then the next step will be the labelling the current

node with the description. In the meantime ABox individual creation is needed with

the addition of the concept assertion to the ABox which associates with the related

data substrate.

After the creation is completed it is always assumed that the object from the created

substrate realm is needed whenever the individuals or the variables are used by the

users or the application programs.

The reason of the assumption is coming from parallel bounding of ABoxes and the

substrate variables. That is why when a binding is made for the variables, the

program automatically establishes the corresponding bindings for the related

bindings.

Also the data substrate variable satisfies the given data node query expression which

acts in the same way as the role and the concept expression for ABox query atoms.

The structure is again built up from the nodes and the edges label.

5.2.8.2 The Mirror Data Substrate

The mirror data substrate is used when the automatically creation of the data substrate

objects for ABox individuals is necessary. The creation is done for the given ABox

with respectively objects and the descriptions of the substrates. This facility is used

Sevkan TASKAN
27834 Project Work

43

mostly by the OWL knowledge bases. As a result RacerPro can handle the automatic

creation of the appropriate ABox from the given OWL file. If the RacerPro is set in to

this mode then it means that for every element in OWL knowledge bases, RacerPro

is responsible for creating the related data substrate objects.

The node of the data substrate is created for each concrete domain object, value and

also for the ABox individuals in the mirror data substrates. On the other hand edges

are created for the constrained axioms in the mirror data substrates.

After these creations the problem is to distinguish the type of the data substrate

objects and these problems are solved by applying the special markers to the

appropriate data labels for the given objects. These special markers are applied for

the each Abox individuals, concrete domain values and the concrete domain objects.

From the notation of these special markers it is so obvious to understand for which

case it is applied.

5.2.8.3 The RCC Substrate

The region connection calculus is used to describe and to give the reasoning

between the spatial objects. This substrate model is designed for the applications in

which cases they represent the object with the spatial characters. So by this RCC

substrate which is a special case of data substrate, nRQL can have a chance to

support the demands.

RCC networks yield the RCC substrate to create and to query. The difference from

other substrates can be explained by having edge labels as constraints. These edge

labels are labelled by RCC relationships but as an opposite fact nodes are not

constrained.

Sevkan TASKAN
27834 Project Work

44

These relations can be specified as flat lists or single symbols that represent the

disjunctions. The coarser knowledge between two spatial objects can be expressed

by the disjunction of these relationships. RCC network can react with ABox

individuals in order to describe and to reason the spatial descriptions which are

associated with the related spatial objects. But as a remark RCC layer is invisible

from the Abox’s view.

5.3 Racer System with nRQL

As the last step for nRQL, rough information about Racer System which uses the

nRQL as a query language is given. Racer System is the description knowledge

reasoning system which uses the SHIQ Logic. This logic has some parts from the

OWL DL. Racer systems also support the multiple TBoxes and ABoxes with the

newly added feature “concrete domains”. Concepts and the roles are the main

arguments that Racer systems use for the entities with formulated constraints.

Different knowledge bases formats are supported like OWL interface, RDF and XML.

Besides these KB’s several clients are available for the facilities of Racer System like

RICE and the protégé. Predefined queries and the functionalities are provided to

query the schema by the Racer. Racer is also used to prove facilities for the given

instances. As a last remark Racer does not only query the instances but also it allows

to reason.

Sevkan TASKAN
27834 Project Work

45

6 Probabilistic Extension For nRQL

In this part of the project, the overview of the availability of implementing the

probabilistic extension for nRQL is given. But before that some of the topics that are

already mentioned in this project, would like to be pointed out again where they can

be useful to see the vague scene a little bit plain to the eyes. It is mentioned [See: 63

page 1] that nRQL can offer the reasoning services for multiple ABoxes and TBoxes.

Besides that nRQL implements the description as SHIQ which is the basic logic of

ALC and supports OWL-DL almost completely. Maybe now it is not clear why these

three features of nRQL are mentioned again. But later on the pieces are going to

launch a total scene for the availability of implementing probabilistic extension in the

future works.

In nRQL there are some problems where one of them is the individuals in the class

expressions (so-called nominals), by which can be processed in RacerPro using so-

called ABoxes [See: 63 page 3]. But they are going to be the instances of a concept

with the same name [See: 63 page 50].

Second problem is the inability of RacerPro to process the user-defined datatypes

given in external XML schema specifications. Although all required datatypes of OWL

DL are supported.

So one of the strongest solutions of implementing the probabilistic extension can go

through the way of ABoxes with probabilistic extension which is more efficient and is

easy to compute by the help of some paperworks [See: 15, 30].

Sevkan TASKAN
27834 Project Work

46

The general idea of the paperwork [See: 15] is about ABoxes, but this time ABoxes

have other assertions which make them different from the others.

Also in the paperwork [See: 15] PALC as you guess “p” stands for the word

“probabilistic”, is mentioned. The ALC is just extended (Description logic which is

implemented by nRQL) with the probabilistic assertions. So this study gives another

opportunity to have the goal. In another way, the probabilistic assertions are stated

about the extension of concepts and roles. In [See: 15], details about the

implementation and terms onto ABoxes by figuring corollaries, examples and lemmas

are declared by the researchers. After the overview of this paperwork, it is easy to

have the confidence to say the possibility of having the probabilistic ABox reasoning

with the reduction of the solution space of the reasoning problem. Through the way of

this paperwork PALC is declared as the DL-framework with probabilistic ABoxes. If

nRQL can handle probabilistic ABoxes instead of ABoxes, all the instances of the

given domain which are represented by ABoxes that have the probabilities can be

used for the query tuple. Again some restrictions are occurred; one of them is the

feature of nRQL in which probabilistic ABoxes can be handled. If the semantics and

the syntax of the nRQL [See: Chapter 5 in this volume, 39, 56 page 6-9] can handle

the newly created ABox, so there will not be any problem to use the probabilistic

ABoxes with nRQL. Again the overview of the availability of implementing the

probabilistic extension through another way by using the probabilistic ABox can be

seen, but still the way of implementing, procedures, corollaries or the lemmas are not

situated for nRQL. It is just the research that matches the published, ongoing projects

and also the knowledge about the related topics.

Sevkan TASKAN
27834 Project Work

47

Racer can treat an ABox as a database and rewrites queries in order to support

TBOX information for the information retrieval [See: 39].

If ABox can be exchanged (database) with the probabilistic one, the database with

the weighting of the instances that are situated in the related ABox can be created.

The idea is just coming from the relations, if the probability to implement the

weighting of the object by using PALC through the ABox can be satisfied, maybe

nRQL can use the newly created ABox with the semantic of probability for the TBox

queries. Because the language nRQL augments and extends Racer’s functional API

for querying a knowledge base [See: 39 page 1]. Maybe using PALC instead ALC

may lead to have undecidable inference problems like the one that we have with ALC

[See: 38 page 6].

In the transaction of the queries, the variables are employed by the active semantics

where the variables are held by the ABox individuals in the related ABoxes [See: 63

page 58]. So the semantic of nRQL should have to handle the new semantic of ABox

with the probabilistic extension. ABox augmentation rules are offered by nRQL to add

new ABox assertions to the already existent ABox. So by the rules, the probabilistic

assertion onto existent ABoxes can be applied. If the rules of applying the

probabilistic assertion are fired that means that it is applicable and then these sets of

rules are going to be added to the ABox [See: 63 page 96]. But nRQL isn’t

responsible for checking the rules; these are under the responsibilities of the users or

the programmers. If a successful implementation of probabilistic ABox can be

implemented onto nRQL, the completeness of the modelling in an ABox is checked

by NEG [See: 63 page 58].

Sevkan TASKAN
27834 Project Work

48

On the other side of this thought the observation of nRQL is extremely need. What

can be the way of implementing the ABox in such a way that handles these kinds of

implementation situations?

The answer can be given like that;

The probabilistic extension for nRQL needs some restrictions, because it is not

possible to use the probabilistic weights directly for Abox. In nRQL the correctness of

all ABOXES is “1”. The first problem is to mention the probabilistic weightings with

ABOXES. Also pDATALOG allows for recursive rules, it provides powerful inference.

To apply the probabilistic extension, rules have to be declared by nRQL, but creating

rules by nRQL can not yield any problems because of being non-recursive. So the

first restriction is the recursive rules. Because if the query depends on the recursive

rules, it is not possible to solve the query from top to the bottom, it yields the user to

have inconsistencies and incorrect results. But one way of computing the recursive

rules is starting from bottom to the top; it still causes problems because for each

given links or nodes, the derived facts and their related nodes have to be searched

where it is not possible for a big decision tree.

For the implementation the most convenient environment is declared and it just works

under the given restrictions.

So for combining the probabilistic extension (pDATALOG) with nRQL, two basic

literals one for pDATALOG and one for ABox are needed. The binding between

these two literals can be done with the similar idea that is mentioned in [See: 30].

 In pDATALOG with ground facts also a probabilistic weighting can be given [See 30,

page 2].

Sevkan TASKAN
27834 Project Work

49

0.7 indterm (d1, ir). 0.8 indterm (d1, db)

It shows that document “d1” is about IR with probability 0.7 and about DB with

probability 0.8. Retrieving documents is done by means of rules and for our goal of

project; the rules are used as the bindings between the two literals. So the probability

which comes from ABox with “1” will combine with the probabilistic weight which

comes from pDATALOG literal.

q1(X):- indterm(X, ir) & indterm (X, db).

D1 fulfills predicate q1 with a certain probability for the given example.

The index terms are assumed independent so that the computation of the

probabilistic AND-combination and also the OR-combination is produced by the rules.

q2(X):- indterm(X, ir).

q2(X):- indterm(X, db).

In hypertext structures where we have directed links between single documents or

nodes, pDATALOG rules can be used for performing retrievals.

Assume that these links have probabilistic weights;

0.5 link (d2, d1). 0.4 link (d3, d2).

The idea of the given example: If we have a link from D1 to D2, and D2 is about a

certain topic, then there is a certain probability that D1 is about the same topic. This

probability is specified by the weight of the link predicate. Now we can formulate the

rules.

about (D, T):- indterm (D, T).

about (D, T):- link (D, D1) & about (D1, T).

Sevkan TASKAN
27834 Project Work

50

Up to this point the examples and the idea of the reasoning are taken from the

paperwork [See: 30].

This is the similar scenario for probabilistic extension for nRQL. The two literals

(ABox, pDATALOG), which can be assumed to be hung up in the space, can be

combined with a binding (like the link predicate) under some restrictions that will yield

the correct result after the computation. But this probabilistic extension can not be

implemented for the recursive rules which can not overcome with the inconsistencies.

Willing to apply the probabilistic theory for the given scenario leads the problems

which are occurred because of the repetition of the probability of the given links.

So for the project, the minimization is preferred in order to implement the probabilistic

extension for nRQL, because without any minimization it is not possible to implement

pDATALOG onto nRQL via ABoxes. This is called as “minimum model”. By creating

new concepts or models, the prototype of implementation can be done with some

restrictions and assumptions. In paperwork [See: 30] the researchers are called the

minimum model computed the perfect Herbrand model in order to reach their target.

The seeds of the idea for the availability of implementation of the probabilistic

extension for nRQL come from the mentioned model. For more details [See: 30, page

5].

As a short summary of the implementation, the direct-linked nodes are taken under

consideration because of avoiding recursion. The binding rules are generated by

nRQL which is in safe mode with non-recursive. The probabilistic weight is computed

by the two literals which are ABoxes and pDATALOG. So in a sense that one branch

of the whole tree is taken and tried to implement all the necessary concepts with

some restrictions onto it. This part can just be applicable for the given scenarios and

can not be implemented for the whole nRQL without any restrictions or given model.

Sevkan TASKAN
27834 Project Work

51

The rest of this chapter is just about an idea about probabilistic extension via OWL-

DL for rule languages. This part is just being a light for the coming projects in which

the probabilistic extension for rule language (Can be nRQL) would like to be

implemented via OWL-DL. This research project can be done for PhD thesis because

of the necessity of a long time and a brief study for the related topics.

Another research that can light the idea is [See: 61 page 18]. This paperwork

announces the ongoing project about the topic that can be very important for the

future paperworks. In this paperwork , it is situated that currently the researchers are

combining the probabilistic datalog (pDatalog) with OWL-DL so that complex

ontologies can be described , Then the new pOWL-DL can be combined (the way

that I named), with their ontology matching method with so-called schema matching

methods. Maybe the ways of procedures, corollaries and lemmas can be similar with

the ones that are done by the paperwork [See: 34].

The implementation of the probabilistic datalog rules onto OWL-DL is another

problem. Sometimes it is not possible to implement the probabilistic datalog rules

directly onto the web ontologies. Because of being an ongoing paperwork, the way of

solving problem is not established yet. But a similar problem with the probabilistic

datalog rules and DAML-OIL is solved in the paper [See: 33 page 27-49]. Direct

implementation is not possible so the researchers use the XSLT stylesheet to

implement the rules onto DAML-OIL. Then the DAML-OIL for the documents in XML

format is converted into documents in standard schema. Always there can be a way

of overcoming the difficulties if enough research and the knowledge about the

concepts and the sub-concepts which can be solution of the real problem in any way,

are known.

Sevkan TASKAN
27834 Project Work

52

So this section of Chapter 6 after explaining the implementation of pDATALOG for

nRQL via ABoxes has just the overview of the possibility of implementing probabilistic

extension onto rule languages via OWL-DL. This part doesn’t show the semantics or

the syntaxes of implementing pDatalog onto rule languages. It concerns the several

projects, paperworks and the results that can be the solution of the future paperworks

in which the OWL-DL is wanted to be used as a bridge for combining the probabilistic

extension for rule languages

Sevkan TASKAN
27834 Project Work

53

7 Conclusion

This part concerns the last thought and the result of the project. From the starting

point of the project the first aim is to find out the related documentation and

paperwork for the efficiency of the project. The most important point of the written

project is the mentality of the project; this project does not concern the whole idea of

explaining the way of implementing probabilistic datalog onto nRQL. The aim of the

project is to declare the related concepts in details, to match the similarities by the

help of the ongoing or the finished paperworks in order to create the part of scenario

which can be adapted for the conclusion of the project work. Also on the way through

the study the most difficult and the most time taking part is to find the

documentations, because under these topics, it is not easy to find documentations

which show exactly what we are looking for. So as a solution to figure out the data

that we are looking for, we found out the similar paperworks. After a deeper

understanding of the given paperworks, the similarities and the differences are

studied in details. Then by using the knowledge about the concepts, the availability of

the thoughts are tried to be launched through the conditions and the restrictions in

which they are assumed to be satisfied for all the way through the study. So this

project is a good researches paper for the given concepts, for each concept the

important syntaxes and semantics are declared in a very good and understandable

way. For the description of syntaxes and semantics, the reader is assumed to be

familiar with topics.

Sevkan TASKAN
27834 Project Work

54

Also all the references and the documents which are used to give lights to this project

paperwork are situated. Under the given conditions the availability of the

implementing our goal has been tried to explain in this project work.

The result of the project shows that in the near feature the probabilistic datalog can

be golden key for the other related concepts in description logic. Also the applications

are trying to adapt themselves to this part of the science which the reasoning can be

done by the probabilistic datalog. All the way through the project while searching for

resources, too many EU framework projects, in which the scope of the projects are

implementing the probabilistic datalog onto some other language in somewhat ways

are founded. This is another sign that the way implementing probabilistic datalog

onto some cases is not an easy job and there are lots of semantics, syntaxes and the

rules to be taken under notation. So under all these hard concepts, my thoughts

would like to be explained in a simple and a clear way. Hopefully the creation of a

good research paper for the given project is presented.

As the last sentences of this part, I would like to figure out that this field of the

science is not well defined and not studied for a long time. The history is too short to

have unlimited resources and paperworks. Nevertheless future will be the solution of

the ongoing projects and new thoughts would have their answers.

Sevkan TASKAN
27834 Project Work

55

8 References

1. A. Paskin Mark. Maximum Entropy Probabilistic Logic. University of California,

Berkeley.

2. Baader F., Calvanese D., McGuinness D., Nardi D. & Patel-Schneider P.,

editors (2003). The Description Logic Handbook. Cambridge, England:

Cambridge University Press.

3. Boley Harold, Dean Mike, Grosof Benjamin, Kifer Michael, Tabet Said &

Wagner Gerd. (2005, April 27-28). RuleML Overview and Position Statement.

Position Paper [96], W3C Workshop.

4. Boley Harold, Dean Mike, Grosof Benjamin, Sintek Michael, Spencer Bruce,

Tabet Said & Wagner Gerd. (2005, April 11). W3C Member Submission.

Available from http://www.w3.org/Submission/2005/SUBM-FOL-RuleML-

20050411.

5. Crestani F., Lalmas M., Van Rijsbergen C. J. & Campbell I. (1998). A Survey

of Probabilistic Models in Information Retrieval. ACM Computing Surveys

30(4): 528–552. Available from

http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani.

6. Crestani Fabio & Rölleke Thomas. Issues on the Implementation of General

Imaging on Top of Probabilistic Datalog. Padova, Italy: University of Padova,

Dortmund , Germany: University of Dortmund.

7. Cullot Nadine, Spaccapietra Stefano, Vangenot Christelle & Parent Christine.

Ontologies: A contribution to the DL/DB debate. University of Burgundy,

France. Swiss Federal Institute of Technology, Switzerland. University of

Lausanne, Switzerland.

Sevkan TASKAN
27834 Project Work

56

8. Dean Mike & Schreiber Guus, editors. (2004, February 10).OWL Web

Ontology Language Reference.W3C Recommendation.

9. De Bruijn Jos. (2005, May 2).Description Logics for the Semantic Web

(Lecture 6).Innsbruck, Austria: University of Innsbruck.

10. De Bruijn Jos, Mart´ın-Recuerda Francisco, Ehrig Marc, Polleres Axel &

Predoiu Livia, editors. (2005, February 8). Ontology Mediation Management

V1. Deliverable D4.4.1 (WP4), SEKT EU-IST-2003-506826 (SEKT:

Semantically Enabled Knowledge Technologies). Digital Enterprise Research

Institute, University of Innsbruck.

11. De Bruijn Jos, Foxvog Douglas, Lausen Holger , Oren Eyal, Roman

Dumitruand & Fensel Dieter.(2004). The WSML Family of Representation

Languages. Deliverable D16v0.2, WSML, http://www.wsmo.org/wsml.

Available from http://www.wsmo.org/2004/d16/v0.2/.

12. Dekhtyar Alexander. Probabilistic Information Retrieval Part I: Survey.

University of Maryland.

13. Ding Zhongli & Peng Yun. (2004). A Probabilistic Extension to Ontology

Language OWL. Department of Computer Science and Electrical Engineering,

University of Maryland Baltimore County.

14. Dr Bryant. Introduction to OWL. Available from http://

www.comp.rgu.ac.uk/staff/chb/teach.html.

15. Dürig Michael & Studer Thomas. Probabilistic ABOX Reasoning. University of

Bern, Switzerland.

16. F. Patel-Schneider Peter. (2001, January 11). A Model-Theoretic Semantics

for DAML+OIL.

Sevkan TASKAN
27834 Project Work

57

17. F. Patel-Schneider Peter. (2004, November 2).A Proposal for a SWRL

Extension to First-Order Logic.

18. F. Patel-Schneider Peter. (2005, April 11). A Proposal for a SWRL Extension

towards First-Order Logic.W3C Member Submission. Available from

http://www.w3.org/Submission/2005/SUBM-SWRL-FOL-20050411.

19. Franconi Enrico. Description Logics: Foundations of First Order Logic.

Department of Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

20. Franconi Enrico. Description Logics: Using First Order Logic. Department of

Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

21. Franconi Enrico. Description Logics: Introductory Lecture. Department of

Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

22. Franconi Enrico. Description Logics: Foundations of Propositional Logic.

Department of Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

23. Franconi Enrico. Description Logics: Propositional Description Logic.

Department of Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

24. Franconi Enrico. Description Logics: Structural Description Logics. Department

of Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

Sevkan TASKAN
27834 Project Work

58

25. Franconi Enrico. Description Logics: Logics and Ontologies. Department of

Computer Science, University of Manchester. Available from

http://www.cs.man.ac.uk/~franconi.

26. Fensel Dieter. (2004, June 14).A rule language for the semantic web.

27. Fikes Richard. & McGuinness D. L. . An axiomatic semantics for RDF, RDF

schema, and DAML+OIL.Technical report. KSL-01-01. Available from

http://www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomati%c-

semantics.html.

28. Fikes Richard & McGuinness D. L., editors.(2001, March). An Axiomatic

Semantics for RDF, RDF-S, and DAML+OIL.W3C Note. Available from

http://www.w3.org/TR/2001/NOTE-daml+oil-axioms-20011218.

29. Fuhr Norbert. (1999, April 29). Probabilistic Datalog: Implementing Logical

Information Retrieval for Advanced Applications. Dortmund, Germany:

University of Dortmund.

30. Fuhr Norbert. Probabilistic Datalog: A Logic for Powerful Retrieval Methods.

Dortmund, Germany: University of Dortmund.

31. Fuhr Norbert.XIRQL: Eine Anfragesprache für Information Retrieval in XML-

Dokumenten.Dortmund,Germany:University of Dortmund.

32. Fuhr Norbert & Nottelmann Henrik. Combining DAML+OIL, XSLT and

probabilistic logics for uncertain schema mappings in MIND. Duisburg,

Germany: University of Duisburg-Essen.

33. Fuhr Norbert & Nottelmann Henrik.(2003, August 19). Combining DAML+OIL,

XSLT and probabilistic logics for uncertain schema mappings in MIND

(ECDL). Trondheim, Norway

Sevkan TASKAN
27834 Project Work

59

34. Fuhr Norbert & Nottelmann Henrik. IR Models based on predicate logic.

Duisburg, Germany: University of Duisburg-Essen.

35. Fuhr Norbert & Nottelmann Henrik. pDAML+OIL: A probabilistic extension to

DAML+OIL based on probabilistic Datalog. Duisburg, Germany: University of

Duisburg-Essen.

36. Fuhr Norbert & Nottelmann Henrik (2003, December 16). Probabilistic logics

for defining and using P2P service descriptions. MMGPS Workshop. London,

UK.

37. Haarslev Volker. (2005). An Introduction to Description Logics. Department of

Computer Science and Software Engineering Concordia University, Canada.

38. Haarslev Volker & Möller Ralf. (2001). Description of the RACER system and

its applications. Hamburg-Harburg, Germany: Hamburg University of

Technology (TUHH).

39. Haarslev Volker1, Möller Ralf2 & Wessel Michael2. (2004). Querying the

semantic web with Racer + nRQL. 1 Montreal, Canada: Concordia University,

2 Hamburg-Harburg, Germany: Hamburg University of Technology (TUHH).

40. Harth Andreas & Decker Stefan. (2004, November 23).OWL Lite- Reasoning

with Rules. Working Draft. WSML. Available from

http://www.wsmo.org/2004/d20/d20.2/v0.1/20041123.

41. Heflin Jeff. Knowledge Representation Issues for the Semantic Web. Lehigh

University.

42. Hitzler Pascal, Angele Jurgen, Motik Boris & Studer Rudi. Bridging the

Paradigm Gap with Rules for OWL.

Sevkan TASKAN
27834 Project Work

60

43. Horrocks Ian, Grosof B. N., Decker S. & Volz R. (2003). Description logic

programs: combining logic programs with description logic. In Proc. of the

twelfth international conference on World Wide Web.

44. Horrocks Ian, Grosof B. N., Patel-Schneider Peter F., Boley Harold, Tabet

Said, & Dean Mike. (2003). SWRL: A semantic web rule language combining

45. OWL and RuleML. Daml draft v0.5, DAML. Available from

http://www.daml.org/2003/11/swrl/.

46. Horrocks Ian , Patel-Schneider Peter F. & Bechhofer Sean (2003, October

20).Tutorial on OWL. ISWC, Sanibel Island, Florida, USA.

47. Horrocks Ian, Patel-Schneider Peter F., & Hayes Patrick (2004, February 10).

OWL web ontology language semantics and abstract syntax.

Recommendation, W3C.

48. Horrocks Ian, Patel-Schneider Peter F., Parsia Bijan & Hendler James.

Semantic Web Architecture: Stack or Two Towers.

49. Horrocks Ian & Z. Pan Jeff . (2004). OWL-E: Extending OWL with expressive

datatype expressions. IMG Technical Report IMG/2004/KR-SW-01/v1.0,

Victoria University of Manchester. Available from http://dl-

web.man.ac.uk/Doc/IMGTR-OWLE.pdf.

50. J. Rapaport William. Holism, Conceptual-Role Semantics, and Syntactic

Semantics. New York, USA: State University of New York.

51. Kersting Kristian. Representational Power of Probabilistic-Logical Models:

From Upgrading to Downgrading. Freiburg, Germany: Albert-Ludwigs

University of Freiburg.

52. L. Costello Roger & B. Jacobs David. (2003). A Quick Introduction to OWL

Web Ontology Language. The MITRE Corporation.

Sevkan TASKAN
27834 Project Work

61

53. Liebig Thorsten & Noppens Olaf. Combining Browsing and Editing with

Reasoning and Explaining for OWL Lite Ontologies. Ulm, Germany: University

of ULM.

54. M. Jaeger. (1994). Probabilistic reasoning in terminological logics. In Proc. of

Knowledge Representation-94, pages 305-316.

55. McGuinness D. L. & Van Harmelen Frank. (2002, July 29).Feature Synopsis

for OWL Lite and OWL.W3C Working Draft. Available from

http://www.w3.org/TR/2002/WD-owl-features-20020729.

56. Moeller Ralf & Wessel Michael. (2005). A high performance semantic web

query answering engine. Hamburg-Harburg, Germany: Hamburg University of

Technology (TUHH).

57. Motik Boris, Sattler Ulrike, and Studer Rudi.(2004).Adding DL-safe rules to

OWL DL.

58. N. Nilsson. (1986). Probabilistic logic. AI, 28:71-87.

59. Nardi Daniele & J. Brachman Ronald. An Introduction to Description Logics.

60. Nottelmann Henrik. MIND: An architecture for multimedia information retrieval

in federated digital libraries. Dortmund, Germany: University of Dortmund.

61. Nottelmann1 Henrik & Straccia2 Umberto.(2004, November 9). A probabilistic,

logic-based framework for automated ontology matching.1 Duisburg, Germany:

Institute of Informatics and Interactive Systems, University of Duisburg-Essen,

2ISTI-CNR, Pisa, Italy.

62. R. Giugno, T. Lukasiewicz. (2002). P-SHOQ (D): A probabilistic extension of

SHOQ (D) for probabilistic ontologies in the semantic web. Technical report.

63. Racer Systems GmbH & Co. KG. (2005, April 14). RacerPro User’s Guide

Version 1.8. Available from http://www.racer-systems.com.

Sevkan TASKAN
27834 Project Work

62

64. Racer Systems GmbH & Co. KG. (2005, May 30).RacerPro Reference Manual

Version 1.8.

65. Seipel Dietmar. An Efficient Computation of the Extended Generalized Closed

World Assumption by Support-for-Negation Sets. Tübingen, Germany:

University of Tübingen.

66. Text Retrieval and Mining

67. U. Straccia . Uncertainty and Description Logic Programs: A Proposal for

Expressing Rules and Uncertainty on Top of Ontologies. Italy.

68. U. Straccia. (2004). Uncertainty in description logics. In Proc. of IPMU 04,

pages 251-258.

69. Von Fintel Kai & Heim Irene. Lecture Notes on Intensional Semantics.

Massachusetts Institute of Technology.

70. Vrandecic Denny, Haase Peter, Hitzler Pascal, Sure York & Studer Rudi. DLP

– An introduction. Karlsruhe, Germany: University of Karlsruhe.

71. W3C. (1999, February). Resource description framework (RDF) model and

syntax specification.Technical report, World Wide Web Consortium. Available

from http://www.w3.org/TR/1999/RC-rdf-syntax-19990222/.

72. W3C. (2001, March).DAML+OIL. Technical report, World Wide Web

Consortium. Available from http://www.w3.org/TR/daml+oil-reference.

73. W3C. (2002, April). RDF vocabulary description language 1.0: RDF Schema.

Technical report, World Wide Web Consortium. Available from

http://www.w3.org/TR/2004/RC-rdf-schema-20040210/.

74. W3C. (2004). OWL. Technical report, World Wide Web Consortium. Available

from http://www.w3.org/TR/2004/REC-owl-features-20040210/.

75. Web Ontology Language (OWL). (2003, June 18). Neuchâtel University.

Sevkan TASKAN
27834 Project Work

63

76. X. Li, P. Morie & D. Roth. (2005). Semantic integration in text: From

ambiguous names to identifiable entities. AI Magazine. Special Issue on

Semantic Integration.

77. Z. Pan Jeff. Requirements for a Semantic Web Rule Language. Manchester,

UK: University of Manchester.

	Table Of Contents
	INTRODUCTION……………………………………………………………………..1
	PROBABILISTIC DATALOG……………………………………………………...3
	Abstract…………………………………………………………………3
	Syntax and Semantics……………………………………………..……5
	Syntax…………………………………………………………………..5
	Semantics………………………………………….................................7

	Four Valued Probabilistic Datalog…….……………...................
	Conversion of Four- valued into Two-valued pDatalog……..……...

	OWL LITE…………………………………………………………………………….14
	Acknowledgement…………………………………………………….14
	Ontology…...………………………………………………………….14

	Abstract………………………………………………………………..15
	OWL LITE Synopsis………………………………………………….17
	Annotation Properties…………………………………………………17
	Class Intersection………………………………………………...........17
	Datatypes ……………………………………………………………..18
	Equality and Inequality………………………………………………..18
	Header Information……………………………………………………18
	Property Characteristics………………………………………….........18
	Property Restrictions…………………………………………….........19
	I
	RDF-Schema……………………………………………………..........19
	Restricted Cardinality…………………………………………………19
	Versioning……………………………………………………………..20

	Language Description of OWL LITE…………………………………20
	Annotation Properties…………………………………………………20
	Class Intersection……………………………………………………...20
	Datatypes……………………………………………………………...21
	Equality and Inequality………………………………………………..21
	Header Information……………………………………………………22
	Property Characteristics……………………………………………….22
	Property Restrictions………………………………………………….23
	RDF-Schema……………………………………………………….....24
	Restricted Cardinality…………………………………………………25
	Versioning……………………………………………………………..26

	Results of OWL LITE………………………………………………...26

	MAPPING OWL LITE ONTO pDATALOG…………………………...………27
	nRQL …………………………………………………………………………………..30
	Abstract………………………………………………………………..30
	The nRQL Language………………………………………………….31
	Query Atoms…………………………………………………………..31
	Concept Query Atoms………………………………………………...31
	Constraint Query Atoms………………………………………………32
	Role Query Atoms…………………………………………………….33

	Query Head Projection Operators……………………………………..33
	Complex Queries……………………………………………………...34
	Defined Queries……………………………………………………….36
	ABox Augmentation with Simple Rules………………………….......37
	ABox…………………………………………………………………..37
	ABox Augmentation…………………………………………………..38

	Pseudo-Nominals……………………………………………………...39
	Complex TBox Queries……………………………………………….39
	TBox…………………………………………………………………..39
	Complex Queries……………………………………………………...40

	The Substrate Representation Layer…………………………………..41
	The Data Substrate…………………………………………………….41
	The Mirror Data Substrate…………………………………………….42
	The RCC Substrate……………………………………………………43

	Racer System with nRQL……………………………………………..44

	PROBABILISTIC EXTENSION FOR nRQL………..…………………………45
	CONCLUSION…….....……………………………………………………………...53
	REFERENCES..
	INTRODUCTION
	PROBABILISTIC DATALOG
	Abstract
	Syntax and Semantics
	Syntax
	Semantics

	Four Valued Probabilistic Datalog
	Conversion of Four- valued into Two-valued pDATALOG

	OWL LITE
	Acknowledgement
	Ontology

	Abstract
	OWL LITE Synopsis
	Annotation Properties
	Class Intersection
	Datatypes
	Equality and Inequality
	Header Information
	Property Characteristics
	Property Restrictions
	RDF-Schema
	Restricted Cardinality
	Versioning

	Language Description of OWL LITE
	Annotation Properties
	Class Intersection
	Datatypes
	Equality and Inequality
	Header Information
	Property Characteristics
	Property Restrictions
	RDF-Schema
	Restricted Cardinality
	Versioning

	Results of OWL LITE

	Mapping OWL LITE onto pDatalog
	nRQL
	Abstract
	The nRQL Language
	Query Atoms
	Concept Query Atoms
	Constraint Query Atoms
	Role Query Atoms

	Query Head Projection Operators
	Complex Queries
	And

	Defined Queries
	ABox Augmentation with Simple Rules
	ABox
	ABox Augmentation

	Pseudo-Nominals
	Complex TBox Queries
	TBox
	Complex Queries

	The Substrate Representation Layer
	The Data Substrate
	The Mirror Data Substrate
	The RCC Substrate

	Racer System with nRQL

	Probabilistic Extension For nRQL
	Conclusion
	References

