

Prototyping an Infrastructure for MDA

Kai Yuan

Submitted in partial fulfillment of the requirements for the degree Master of

Science in Information and Media Technologies.

supervised By:

Prof. Dr. Ralf Moeller (STS)
Prof. Dr. Friedrich H. Vogt (Telematik)

Hamburg University of Science and Technology
Software Systems Institute (STS)

1

Abstract

Model Driven Architecture (MDA) is getting popular with its particular development
process in software development. Octopus, an OCL expression checking tool, can be
applied as MDA transformation engine to build an Octopus based MDA infrastructure. This
thesis explains how Octopus works as transformation engine in MDA infrastructure and
also presents two prototypes of Octopus based MDA infrastructure. One is MDA
infrastructure with UML statechart as input, the other one is for generating JBoss based
Web Service security deployment descriptor which is the case that MDA used in an
enterprise architecture.

2

Declaration

Hereby I declare that this project has been prepared by myself, all literal or content based
quotations are clearly pointed out, and no other sources or aids than the declared ones have
been used.

Hamburg, 5th Sep. 2005
Kai Yuan

3

Acknowledgement

I would like to thank Professor Ralf Moeller of STS for supervising this thesis and being
very helpful with finding a topic. Thanks also go to Professor Friedrich H. Vogt of
Telematik department for being the co-corrector.

Mr. Miguel Garcia of STS was very patient in providing advice and direction on the thesis,
thanks also go to him.

4

Table of Contents

1 Introduction ...6

1.1 Motivation ...6
1.2 Structure of this thesis...7

2 Background ..8
2.1 MDA (Model Driven Architecture) ...8

2.1.1 MDA software development process ...8
2.1.2 Transformation ...9

2.2 OCL ... 11
2.3 Octopus (OCL Tool for Precise UML Specifications)...........................13

3 Transformation from state chart to Java ..14
3.1 Analysis and Design ..14

3.1.1 Source: Statechart metamodel...14
3.1.2 Target: Java metamodel ...16
3.1.3 Transformation rule ..20

3.2 Java code generation ..21
3.3 Example: “Microwave oven” ...24

3.3.1 Microwave oven statechart...24
3.3.2 The final generated Java codes ..26

4 MDA in enterprise architecture..33
4.1 SecureUML..33
4.2 Web service authorization in JBoss ..35
4.3 JBoss deployment descriptor generation..38

4.3.1 SecureUML Octopus model...38
4.3.2 SLSB Octopus model ..40
4.3.3 Deployment descriptor snippet generation42

5 Conclusion ..49
6 Appendix ...51

6.1 Statechart metamodel ..51
6.1.1 Octopus model ...51
6.1.2 Constraints in OCL ..51

6.2 Java metamodel ...52
6.3 Main class for generating Microwave oven Java codes60

7 Bibliography ...70

5

List of Figures
Fig 2.1 MDA software development process [KWB03]9
Fig 2.2 Transformations in MDA process [KWB03]10
Fig 2.3 Model Transformation [Mod].. 11
Fig 2.4 OCL constraint expression [WK03] ...12
Fig 3.1 Statechart metamodel ...14
Fig 3.2 Java metamodel...17
Fig 3.3 Transformation rule ..20
Fig 3.4 Microwave oven statechart ..25
Fig 3.5 simplified microwave oven statechart ..26
Fig 4.1 Role-Based Access Control [LBD] ..33
Fig 4.2 SecureUML Metamodel [LBD]..34
Fig 4.3 secureUML model class diagram ..40
Fig 4.4 EJB model in UML class diagram ..41
Fig 4.5 the UML diagram of WebService endpoint security..................42

6

1 Introduction

1.1 Motivation

Guidelines for UML profile definition have been established by the OMG, and a growing
number of sophisticate profiles are being proposed (for QoS, EAI, Product Lines, Agent
Based Systems). Such profiles are valuable because they embody best-practices about the
software architecture they describe. However, the OMG guidelines and the profile
descriptions are not expressed in terms of a particular modeling infrastructure, given that
none has gained reference status. Given that Octopus has not only metamodeling support
(as Eclipse’s EMF has) but also OCL support, the OMG guidelines for implementing
profiles and the changes needed to the UML2 metamodel for a particular profile will be
materialized in terms of Octopus models. Therefore it is significant to build modeling
infrastructure with Octopus.

In this thesis two MDA infrastructure prototypes will be designed and implemented.

l Statechart based MDA infrastructure prototype

Most business logic work flows or business protocols are playing very important role in an
enterprise application. Usually they can be modeled as UML statechart. For example, the
business protocol of BPEL4WS can be modeled in statechart. A MDA infrastructure with
statechart as input model can output various target models, for example, Java model, which
can generate java source codes at the end. Therefore this MDA infrastructure prototype can
solve a set of problems with startchart as input model so that simplified the development of
business logic workflow.

l Apply Octopus based MDA infrastructure on an enterprise architecture.

In web-based enterprise applications, any business components are deployed on a
application server. And application servers today are getting powerful; they can control the
data persistent rule, manage transaction or manage security mechanisms (for example
authentication and authorization) via configurations or deployment descriptors. Developers
benefits a lot from those application server provided features, however, the configurations
and deployment descriptors are different software artifacts from those components which

7

developers concentrate on. So it would be nice if there is a MDA infrastructure that can
from a certain model, for example secureUML model for access control security, generate
the configuration codes automatically. This MDA prototype will get an input of secureUML
model and output the web service authorization concerned deployment descriptors snippet
automatically.

1.2 Structure of this thesis

In this chapter why we need an Octopus based MDA infrastructure is discussed. And the
two prototypes this thesis will bring are introduced briefly as well. Next chapter will
introduce some background technologies and concepts used in this thesis, such as MDA
and Octopus. In chapter three, the design and implementation of statechart based MDA
prototype is going to be explained. Chapter four will introduce how Octopus based MDA
infrastructure is used in an enterprise architecture. A prototype that getting a secureUML
model and EJB model as input generates a web service deployment descriptor on security
issue is analyzed as well. Finally, conclusion is given in the chapter five.

8

2 Background

Some technologies and concepts that are used throughout this thesis are introduced and
explained in this chapter. They are MDA (Model Driven Architecture), OCL (Object
constrain Language) and Octopus (OCL Tool for Precise UML Specifications).

2.1 MDA (Model Driven Architecture)

The Model Driven Architecture (MDA) is a framework for software development defined
by the Object Management Group (OMG). Model is one of the most important keys for
MDA. In an MDA setting, modeling software system drives the software development
process.

2.1.1 MDA software development process

There is no big difference from traditional software development process at the beginning
of MDA process: getting requirements and analyzing them.

Then, a model with a high level of abstraction that is independent of any implementation
technology will be built [KWB03]. This model is called Platform Independent Model
(PIM), it describes a software system that supports some business. In a PIM, no technical
details are defined, for example, if a relational database will act as the data store, or
whether EJB and Web services will be used at all in the system.

Next, the PIM is transformed into one or more Platform Specific Models (PSMs). A PSM
tailored to specify the system in terms of the implementation constructs that are available in
one specific implementation technology. For example, a relational database PSM can
contain “table”, “column” or “primary key”, a Java PSM would have specific terms like
“Class”, “interface” or “method/operation”. One PIM can be transformed into a number of
PSMs, it depends on how many implementation technologies are needed.

The last step is to transform a PSM to code.

The software development lifecycle following MDA guidelines is represented below in Fig
2.1:

9

Fig 2.1 MDA software development process [KWB03]

2.1.2 Transformation

As we can see in the full MDA process lifecycle, transformation is the most important part,
it directly influences the correctness of final codes. In this section, MDA transformation
will be explained briefly.

10

Fig 2.2 Transformations in MDA process [KWB03]

There are two transformations in MDA process, see Fig2.2. One is from PIM to PSMs, and
another one is transforming PSM into final codes. Because a PSM has already closely fit its
implementation technology, the second transformation is rather easy. However the first one
is more complex.

Transformation Definition

In general, we can say that a transformation definition consists of a collection of
transformation rules, which are unambiguous specifications of the way that (a part of) one
model can be used to create (a part of) another model. Based on these observations, we can
now define transformation, transformation rule, and transformation definition. [KWB03]

A transformation is the automatic generation of a target model from a source model,
according to a transformation definition.

A transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the target language.

A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.

The picture (Fig 2.3) shows the main principle of MDA Model transformation:

11

Fig 2.3 Model Transformation [Mod]

The transformation is between source and target models via a transformation engine, just
like what is shown in the picture. For example, from a UML activity model into a UML
statechart model. If we regard the transformation at a higher level, no matter what
metamodels the source or target have, which models have “instance of” relationship with.
And some transformation rules map both source and target metamodels to define how the
transformation should work between different metamodels.

In this way, once metamodels, transformation rules and a transformation engine are ready, a
kind of problems, instead of some certain problem, can be solved by the transformation.

2.2 OCL

The Object Constraint Language (OCL) is a notational language for analysis and design of
software systems. It is part of the industry standard Unified Modeling Language (UML)
that allows software developers to write constraints and queries over object models. [WK03]
These constraints are particularly useful, as they allow a developer to create a highly
specific set of rules that govern the aspects of an individual object. As many software
projects today require unique and complex rules that are written specifically for business
models, OCL is becoming an integral facet of object development.

OCL is a language that can express additional and necessary information about the models
and other artifacts used in object-oriented modeling, and should be used in conjunction
with UML diagrammatic models. Armed with OCL, UML can contain much more

12

information than it does alone. However, many OCL expressions cannot be presented in a
UML diagram format.

OCL is a declarative, side-effects-free language; that is, the state of a system does not
change because of an OCL expression. More importantly, a modeler can specify in OCL
exactly what is meant, without restricting the implementation of the system that is being
modeled. This enables a UML/OCL model to be completely platform-independent.

The OCL expression:

context Flight
inv: passengers->size() <= plane.numberOfSeats

constrains the UML model example in Fig 2.4, it means in each flight, the passenger
number cannot exceed the plane’s seats number.

Fig 2.4 OCL constraint expression [WK03]

In UML 2, OCL can be used to write not only constraints, but also be used anywhere in the
model to indicate a value. A value can be a simple value, such as an integer or a boolean,
but it may also be a reference to an object, a collection of values, or a collection of
references to objects. An OCL expression can represent, for example, a boolean value used
as a condition in a statechart, or an association in class diagram. An OCL expression can be
used to refer to a specific object in an interaction or object diagram. The next expression,
for example, defines the body of the operation availableSeats() of the class Flight in Fig
2.4:

13

context Flight::availableSeats() : Integer
body: plane.numberOfSeats - passengers->size()

From the examples above, we can realize that OCL is a precise, unambiguous language that
is easy for people who are not mathematicians or computer scientists to understand. It
doesn't use any mathematical symbols, while maintaining mathematical rigor in its
definition. OCL is a typed language, because it must be possible to check an OCL
expression included in a specification without having to produce an executable version of
the model.

2.3 Octopus (OCL Tool for Precise UML Specifications)

Octopus is a tool developed by Klasse Objecten, http://www.klasse.nl/. It offers two
important functionalities:

1. Octopus is able to statically check OCL expressions. It checks the syntax, as well as

the expression types, and the correct use of model elements like association roles and
attributes.

2. Octopus is able to transform the UML model, including the OCL expressions, into Java

code. A GUI program following the MVC (Model-View-Controller) pattern may also
be generated, with the Model being instances of classes for which Java code was also
generated to check the OCL constraints.

Octopus has its own text based repredentation of UML. For example, the class Flight in
Fig2.4 can be modeled in Octopus as (associations are omitted):

<class> Flight
<attributes>
+ flightnr: Integer;
<operations>
+ availableSeats(): Integer;
<endclass>

This text based .uml file in Octopus can be called Octopus model. In this thesis, Octopus
was used in model transformation as an engine.

14

3 Transformation from state chart to Java

3.1 Analysis and Design

As explained in last chapter, to carry out a model transformation, we need to have the
source and target metamodels and the transformation rule. In this section these three factors
will be explained in detail.

3.1.1 Source: Statechart metamodel

From section 2.1.2 we know that the relationship between source model and source
metamodel is “instance of”. In [KWB03], the authors describe metamodel as “language”,
and the model and languages have an “is written in” relation, in fact, the principles are the
same.

Since the statechart model will be the source model, to let the transformation work, a
statechart metamodel or statechart language is needed.

Fig 3.1 Statechart metamodel

Generally, in a UML statechart, there are 4 entries: State, Transition, Operation/Method and
OnEntry. And the statechart language can be modeled as shown on Fig 3.1. Operation can

15

be modeled as MethodDelcaration, which is a part of Java metamodel and will be explained
in next section. So the statechart metamodel (i.e. the definition of the statechart language)
can be represented by the UML class diagram (Fig3.1). With this metamodel, any
statecharts can be instantiated.

Octopus model

Because Octopus will work as transformation engine, the metamodel should be expressed
in Octopus way. Octopus can represent a class diagram in its own text based way. For
example, the State class and its associations with Transition class can be expressed as:

<endclass>
<class> State
<attributes>
+ name: String;
+ isInitial: Boolean;
<endclass>

<class> Transition<endclass>

<associations>
+ Transition.outgoing [0..*] <-> + State.start [1];
+ Transition.incoming [0..*] <-> + State.target [1];

For the full version of statechart metamodel in Octopus please check the corresponding
section in Appendix.

Constraints

As a source model for MDA transformation, it should be as precise as possible. Therefore
only the Octopus UML model above is not enough for the transformation using, some
constraints and additional information should be combined with this metamodel together.

One state can have either an incoming Transition or outgoing Transition or both. But
isolated states are not allowed. This constraint is defined with the following OCL.

16

context State
 inv notisolated:
 (not(self.incoming->isEmpty())) or
(not(self.outgoing->isEmpty()))
endpackage – statechart

Among all states, they must have different names, and there should be one and only one
state can be initial state. The unique name and initial state constraints are expressed with
OCL:

context State
 inv uniquename :
 self.allInstances()->isUnique(s: State| s.name)

context State
 inv onlyOneInitial:
 self.allInstances()->one(isInitial)

3.1.2 Target: Java metamodel

The goal of this MDA transformation is to get Java codes from a statecharts. Therefore, a
Java metamodel should act as the target model. The Java metamodel should contain all
entities in Java syntax. For instance, package declaration, type declaration, statements,
method declaration and method body and so on should be included.

The Eclipse JDT provides APIs to manipulate Java source code, detect errors, perform
compilations, and launch programs. Eclipse's JDT has its own Document Object Model
(DOM) in the same spirit of the well-known XML DOM: the Abstract Syntax Tree (AST).
It defines all java entities surrounding a CompilationUnit class and is helpful for
constructing the Java metamodel in Octopus.

A part of the whole Java metamodel is seen in Fig 3.2. Even though it is not the complete
model it has contained crucial Java elements to build a compilable Java compilation unit.
With the Java metamodel any Java codes can be generated out. As same as the source
model, the Java metamodel needs represented in Octopus model, which is the text based
uml file. Further uses of this metamodel include custom refactorings, or program
transformation in general.

17

Fig 3.2 Java metamodel

Octopus model

The complete .uml file (javametamodel.uml) is available in Appendix. Here only codes
related to a most common element in Java codes – Class (Type) are explained as example.

A Java class generally contains the class declaration, for example:
public class HelloWorld extends … {…}

and a class body. Typically, a class body contains some methods and fields. For example:

public class HelloWorld {
//class body – Fields :
private String firstName;
private String lastName;

//class body – methods :
public String sayHello{
 System.out.println(“Hello, ” +lastName);
}

}

With the help of Fig 3.2, it is not difficult to understand how a Java class is modeled in this
metamodel. A class is modeled as a TypeDeclaration, and it has a set of ordered
components of BodyDeclaration, which is super type of FieldDeclaration and
MethodDeclaration. The snippet of octopus model about Java class looks as follows:

18

+ <class> TypeDeclaration <specializes> AbstractTypeDeclaration
 <attributes>
 + isInterface :Boolean;
 <operations>
 + toJavaSource(): String;
 + getFields():OrderedSet(FieldDeclaration);
 + getMethods():OrderedSet(MethodDeclaration);
 <endclass>

+ <class> MethodDeclaration <specializes> BodyDeclaration
 <attributes>
 + isConstructor : Boolean;
 <operations>
 + isVarargs():Boolean;
 + parameters():OrderedSet(SingleVariableDeclaration);
 + toJavaSource():String;
 <endclass>

 + <class> FieldDeclaration <specializes> BodyDeclaration
 <operations>

+ toJavaSource():String;
 + fragments():OrderedSet(VariableDeclarationFragment);
 <endclass>

<associations>

--BodyDeclaration is a supertype, it could be fielddeclaration
or methoddeclaration--
+ TypeDeclaration.type [1] <aggregate> ->
BodyDeclaration.bodyDeclarations [0..*] <ordered>;

There is method called toJavaSource() in each class. This method is for code
generation, it will be explained in detail in code generation section.

Constraints

Since the Java metamodel contains much more classes and much more complex logic than
statechart metamodel, it has more constraints and OCL queries. In this section, only OCL
constraints and queries concerning TypeDeclaration will be discussed as example.

19

There is an attribute isInterface defined with boolean type in class
TypeDeclaration. This attribute distinguishes that if the class is an interface or not. By
default, it should be initialized as false. The following OCL codes do that.

context TypeDeclaration::isInterface:Boolean
 init: false

Also for the method getFields() declared in TypeDeclaration class, it should get
a list of fields declared in the class. It cannot be modeled in every detail neither with UML
class diagram nor Octopus model. However, an OCL query can handle with it easily. The
snippet below shows the query of method getFields() and getMethods(). In fact
the OCL query has defined the rule of the method implementation. From MDA
transformation perspective, this is rather helpful because it directly decides whether the
final generated codes are precise and runnable.

context
TypeDeclaration::getFields():OrderedSet(FieldDeclaration)
 body:
 self.bodyDeclarations->

select(oclIsTypeOf(FieldDeclaration))
 ->iterate(

bodyD:BodyDeclaration;
fieldSet:OrderedSet(FieldDeclaration) |
 fieldSet->append(bodyD.oclAsType(FieldDeclaration))
)

context
TypeDeclaration::getMethods():OrderedSet(MethodDeclaration)
 body:
 self.bodyDeclarations->

select(oclIsTypeOf(MethodDeclaration))
 ->iterate(
 bodyD:BodyDeclaration;
methodSet:OrderedSet(MethodDeclaration) |
 methodSet->append(bodyD.oclAsType(MethodDeclaration))
)

20

3.1.3 Transformation rule

After having source and target models in our left and right hands, we need something in
between to let the transformation work. This is transformation rule. This section will talk
about how to build the bridge between source and target models and connect them together.

Fig 3.1 explained the Statechart metamodel. And a MethodDeclaration class is associated
with OnEntry and Transition classes in that diagram. This MethodDeclaration class is one
element of Java metamodel. In statechart, one transition and onEntry can lead to an
operation execution and this operation will map a Java method in the final java model. That
is why the MethodDeclaration was introduced into statechart metamodel.

Fig 3.3 Transformation rule

Besides the connection to MethodDeclareation class, a new class which is called
StaeMachineInterface is introduced into the picture. This class is a subclass of
TypeDeclaration in Java model. As we have seen, some Java methods will be associated to
OnEntries and Transitions to make sure all methods used by statechart model are subject to
the well-formedness checks expressed in the metamodel (with OCL), any Java method used
by statechart should be declared in this StateMachineInterface. And later this interface is
implemented by the main business Java class. This interface will be explained in detail in
section “Microwave oven example”.

There are some constraints on the StateMachineInterface. For example, it should always be

21

a Java interface instead of a Java class. Moreover, from statechart model needs, the
methods declared in this interface should have no parameter.

The following OCL codes represent the constraints described above.

context StateMachineInterface
inv : isInterface
inv allMethodsParameterless :
getMethods().parameters()->size()=0

Since the final goal is to get Java codes from a given statechart, next section will elaborate
how Java codes are generated automatically.

3.2 Java code generation

In Chapter 2, background, the two transformations for MDA have been introduced. The
first one is from source model to target model. And the second one is what will be
explained in this section, transformation from target model to specific source codes.

In this case, the target model is Java model. OCL query can be used for transformation
from Java model to Java source codes. As known, source and target models are modeled in
Octopus. Octopus has the feature that automatically generates the Java codes based on
given models and OCL constrains. In fact the codes generated by Octopus are the
infrastructure of MDA. During the generation, OCL query will be transformed into Java
method implementation and finally the query result will be the Java method return value.
Therefore an operation called toJavaSource() with return type String was added
into each element needs generate codes of Java model. Simultaneously, OCL queries are
created for each operation. Thus, in MDA infrastructure generated by Octopus, once the
method toJavaSource()is called by an element of Java model, the Java codes will be
generated out and return as a String.

To getting more concrete feeling about code generation, an example will be analyzed in this
section to show how to generate a Java class with methods and fields.

A Java class is modeled as TypeDeclaration in Octopus Java model. Followings are the
Octopus model about class:

22

+ <class> TypeDeclaration <specializes> AbstractTypeDeclaration
 <attributes>
 + isInterface :Boolean;
 <operations>
 + toJavaSource(): String;
 + getFields():OrderedSet(FieldDeclaration);
 + getMethods():OrderedSet(MethodDeclaration);
 <endclass>

A TypeDeclaration can be an interface, and also can have super class, implement
other interface and a class can have different visibility properties, e.g. public,
protected and so on. All those possibilities should be considered in the OCL query of
operation toJavaSource() . Because Method and Field have their own
toJavaSource() method and OCL queries, in the OCL query following, to generate the
codes of methods and fields in the class, just simply calling the toJavaSource()
method. Followings are the complete OCL query of toJavaSource() of
TypeDeclaration. And it will return Java class with methods and fields.

context TypeDeclaration::toJavaSource():String
 body:
 let
 javaString:String = '',
 rear :String = '} \n',
 superinterfaces:OrderedSet(Type) = self.superInterfaceTypes

 in
 javaString.concat(
 if not self.annotation->isEmpty()
 then
 self.annotation.toJavaSource()
 else
 ''
 endif
 .concat('\n')).concat(
 self.modifiers->asOrderedSet()
 ->iterate(modifier:Modifier;
 name :String = ' '|
 name.concat(modifier.name.concat(' '))
) -- iterator end
)
 -- check isInterface

23

 .concat(
 if isInterface
 then -- $$$ interface
 ' interface
'.concat(self.typeName.identifier).concat(

 if superinterfaces->size() > 0 -- has super
interfaces
 then
 ' extends
'.concat(superinterfaces->first().toJavaSource())
 .concat(' { \n')
 else
 ' { \n '
 endif

)
 .concat(

 getMethods()->iterate(method:MethodDeclaration;
result:String = ''|

 result.concat(method.toJavaSource()))--iterator end
)

 else -- $$$ class
 ' class
'.concat(self.typeName.identifier).concat(
 if superinterfaces->size() > 0 -- has super
interfaces
 then

 ' implements '.concat(
 superinterfaces->iterate(
 interfaceType:Type;
 typeName:String = ''|

 typeName.concat(interfaceType.toJavaSource())
 .concat(
 if
(superinterfaces->indexOf(interfaceType)

24

 = superinterfaces->size())
 then
 ' { \n'
 else
 ', '
 endif
) -- now public... class Cname implements
a,b,c {
) -- iterator superinterfaces end
)
 else
 -- here "extends" could be added in future
within another if cause

 '-- testing String here --'
 endif

)
 .concat(

 getMethods()->iterate(method:MethodDeclaration;
result:String = ''|
 result.concat(method.toJavaSource()))
)
 endif

).concat(rear)

3.3 Example: “Microwave oven”

So far in this chapter, how to transform from statechart to Java source codes has been
analyzed. This section will show an example to present how to work with this
infrastructure.

3.3.1 Microwave oven statechart

In this example, a microwave oven Java package should be generated from the given
statechart. First of all let us take a look the statechart of microwave oven (Fig 3.4).

25

 4. Cooking Interrupted
entry ()/
turnOffLight
deEnergizePower _
Tube
clearTimer

1. Ready to Cook
entry ()/ turnOffLight

2. Door Open
entry ()/ turnOnLight 6. Cooking

extended
entry /
addOneMinuteTo _
Timer

5. Cooking Complete
entry ()/
' turnOffLight ;
deEnergizePowerTube ();
clearTimer ()'

3. Cooking

entry ()/
' turnOnLight ;
energizePowerTube () ;
setTimerForOneMinute ()'

doorClosed doorOpened

buttonPressed

buttonPressed

door closed

doorOpened

dooOpened
timerTimesOut

doorOpened

buttonPressed

buttonPressed timerTimesOut

4. Cooking Interrupted
entry /
turnOffLight
deEnergizePower _
Tube
clearTimer

1. Ready to Cook
entry / turnOffLight

2. Door Open
entry / turnOnLight 6. Cooking

extended
entry /
addOneMinuteTo _
Timer

5. Cooking Complete
entry /
' turnOffLight ;
deEnergizePowerTube ();
clearTimer ()'

3. Cooking

entry /
' turnOnLight ;
energizePowerTube () ;
setTimerForOneMinute ()'

doorClosed doorOpened

buttonPressed

buttonPressed

door closed

doorOpened

dooOpened
timerTimesOut

doorOpened

buttonPressed

buttonPressed timerTimesOut

Fig 3.4 Microwave oven statechart

The above statechart shows the all states switch of a microwave oven. To make the
example simpler and to show how to generate Java codes with the MDA infrastructure
more clearly, only two states with their transitions will be generated. The two states are
shown in Fig 3.5, they contain states, transitions and operations.

26

Fig 3.5 simplified microwave oven statechart

3.3.2 The final generated Java codes

The final Java source codes will be compatible with SUN JDK 1.5. There is a new feature
in JDK1.5, annotation. This feature also used by the microwave oven example for further
generation of AOP (Aspect-oriented programming) code.

In general, the Java classes of microwave oven example contain

1. IMicrowave.java, which defines the methods used by states’ transitions
2. Microwave.java, the main business class
3. OutgoingTransitions.java, defines the outgoingtransition annotation
4. States.java, which is an enumeration type contains all states
5. StateSpace.java, which defines the annotation for states
6. Transition.java, defines the annotation for transitions

In the final microwave codes, some classes and annotations are not needed to be generated
by MDA. They are predefined annotations StateSpace.java, Transition.java
and OutgoingTransitions.java. Followings are the annotation declarations.

StateSpace.java

package generated;
import java.lang.annotation.*;

27

@Documented
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface StateSpace {
 String[] states() ;
 String initial() ;
}

OutgoingTransitions.java.

package generated;
import java.lang.annotation.*;

@Documented
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface OutgoingTransitions {
 Transition[] value() ;
}

Transition.java

package generated;

import java.lang.annotation.*;

@Documented
@Target({ElementType.METHOD, ElementType.TYPE,
ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface Transition {
 States from() ;
 States to() ;
}

Besides the above annotation declaration files, all Java classes should be generated
automatically. Next the left three classes will be explained one by one.

States.java

28

States.java is an enumeration type, which is a new feature of Sun JDK 1.5 as well.
Any available states should be contained by this enumeration. And it is not possible for
user to use any state which is not defined in it. The generated codes of States.java should
look like:

package generated;

public enum States {

DOOROPEN,
READYTOCOOK,
COOKING,
COOKINGINTERRUPTED,
COOKINGCOMPLETE,
COOKINGEXTENDED;

}

IMicrowave.java

IMicrowave.java is an interface that contains all operations used by transitions and
onEntries. This interface will be implemented by the main business class
Microwave.java, and those methods declared in it will be implemented in
Microwave class.

The generated codes of IMicrowave.java interface should look like

package generated;

@StateSpace (

states =
{"DOOROPEN","READYTOCOOK","COOKING","COOKINGINTERRUPTED","COO
KINGCOMPLETE","COOKINGEXTENDED"},
initial = "READYTOCOOK"
)

 public interface IMicrowave {
 public void openDoor () ;
 public void closeDoor () ;
 //... other methods here.
}

29

Microwave.java

Microwave is the main business class, as described in IMicrowave interface, this class
will implement IMicrowave interface.

package generated;

public class Microwave implements IMicrowave {

And it should have a constructor to instantiate a Microwave oven object.

 public Microwave () {

 System.out.println("constructor");
}

Then all methods defined in the IMicrowave interface should be implemented in the
class. Also all state switch related to certain method should be represented in
annotation of the method. For example, the openDoor() and closeDoor()
methods and their annotations should look like following snippet. The state switch of each
method is based on the statechart Fig 3.4.

@OutgoingTransitions (

{@Transition (
from = States.READYTOCOOK, to = States.DOOROPEN),

@Transition (
from = States.COOKING,
to = States.COOKINGINTERRUPTED
),

@Transition (
from = States.COOKINGCOMPLETE, to = States.DOOROPEN),

@Transition (
from = States.COOKINGEXTENDED,
to = States.COOKINGINTERRUPTED

30

)
}

)
 public void openDoor () {
// here is the method body
}
@OutgoingTransitions (
{
@Transition (
from = States.DOOROPEN,to = States.READYTOCOOK),

@Transition (
from = States.COOKINGINTERRUPTED, to = States.READYTOCOOK)

})
 public void closeDoor () {
// here is the method body
}
}

Generating the classes above for the Microwave oven example comprises 3 steps:

1, generate the MDA infrastructure based on statechart model, Java model and their OCL
constraints with Octopus.

2, create a main class, instantiate all state objects, transition objects, method instances and
so on. For example to instantiate openDoor() method:

// #create methods public void openDoor()
 MethodDeclaration openDoor = new MethodDeclaration();
 Type returnType = new PrimitiveType();
 ArrayList modifiers = new ArrayList();
 modifiers.add(this.PUBLIC);
 MethodDeclaration iopenDoor =
getMethodDeclaration(modifiers,"openDoor", this.VOID);

To create states

// $$$ create states and add them into sms
 State s_DOOROPEN = new State();
 s_DOOROPEN.setName("DOOROPEN");
 State s_READYTOCOOK = new State();

31

 s_READYTOCOOK.setName("READYTOCOOK");
 s_READYTOCOOK.setInitial(true);
 State s_COOKING = new State();
 s_COOKING.setName("COOKING");
 State s_COOKINGINTERRUPTED = new State();
 s_COOKINGINTERRUPTED.setName("COOKINGINTERRUPTED");
 State s_COOKINGCOMPLETE = new State();
 s_COOKINGCOMPLETE.setName("COOKINGCOMPLETE");
 State s_COOKINGEXTENDED = new State();
 s_COOKINGEXTENDED.setName("COOKINGEXTENDED");

Create State machine stereotype and add states in:

 // $$$ create SMStereotype ins -> sms
 SMStereotype sms = new SMStereotype();
 // $$$ ADD STATES and interface INTO SMS
 sms.addToStates(s_DOOROPEN);
 sms.addToStates(s_READYTOCOOK);
 sms.addToStates(s_COOKING);
 sms.addToStates(s_COOKINGINTERRUPTED);
 sms.addToStates(s_COOKINGCOMPLETE);
 sms.addToStates(s_COOKINGEXTENDED);

For full version of the main class of microwave oven please check appendix corresponding
section.

3, Call toJavaSource() method of each class instance to get the final Java source
codes.

Since last section has explain the mechanism of generating Java codes, here it is very easy
to get the final codes once have CompilationUnit instance of Microwave class,
IMicrowave class and State class. The following snippet is the codes in main class to
generate Java codes. statesUnit, iMicrowaveUnit and microwaveCLSUnit in
the codes are instances of CompilationUnit.

this.write("src\\generated\\States.java",
statesUnit.toJavaSource());
this.write("src\\generated\\IMicrowave.java",
iMicrowaveUnit.toJavaSource());

32

this.write("src\\generated\\Microwave.java",
microwaveCLSUnit.toJavaSource());

33

4 MDA in enterprise architecture

An infrastructure of MDA based on statechart and Java source codes were explained in
Chapter 3. In fact, MDA can help transformation between any different software artifacts.
Enterprise applications, especially web based enterprise applications, are widely used today.
In an enterprise application, many different software artifacts are usually involved. For
example, a J2EE application, generally, there should be a deployment descriptor for all
enterprise java bean configuration. The EJBs and deployment descriptors are different
artifacts, and usually we should manually check that they agree with each other. One goal
of this thesis is to establish an MDA infrastructure target on enterprise architecture, to make
the transformation between different software artifacts automatic.

In this thesis, Web service based on JBoss was chosen as the target enterprise architecture.
This chapter will elaborate how to build an MDA infrastructure to automatically transform
from SecureUML model to JBoss web service authorization configuration.

4.1 SecureUML

Security is an important aspect, influencing application design and development.
SecureUML [LBD] is a modeling language for modeling access control policies and their
integration into a model-driven software development process.

Role-Based Access Control is the foundation of SecureUML. Fig 4.1 describes the data
model of RBAC.

Fig 4.1 Role-Based Access Control [LBD]

34

The model consists of five data types: users (USERS), roles (ROLES), objects (OBS),
operations (OPS) and permissions (PRMS). A user is defined as a person or a software
agent. A role is a job or function within an organization. It combines all privileges needed
to fulfill the respective job or function. Privileges are expressed in terms of the permissions
assigned to a role by entries to the relation Permission Assignment. A permission represents
the authorization to execute an operation on one or more protected objects or resources. An
object in this context is a system resource or a set of resources that are protected by the
security mechanism. An operation is an action on a protected object that can be initiated by
a system entity. The types of operations depend on the type of the protected objects. In a
file system, for example, there might be permissions to read, write or execute files. The
assignment of roles to users is defined by the relation User Assignment. The relation Role
Hierarchy defines an inheritance relationship between roles. A relation r1 inherits r2
implies that all permissions of role r2 are also permissions of role r1. [LBD]

SecureUML is based on an extended model for role-based access control (RBAC). RBAC
is a well-established access control model with widely-recognized advantages and it is
supported by a large number of software platforms. However, generally RBAC lacks
support for expressing access control conditions that refer to the state of a system, for
example, the state of a protected resource, parameter values, date or time. [LBD] Therefore,
the concept of authorization constraints was introduced. An authorization constraint is a
precondition for granting access to an operation. And OCL is the language to define the
authorization constraint.

Fig 4.2 SecureUML Metamodel [LBD]

35

The SecureUML metamodel, shown in Figure 4.2, is defined as an extension of the UML
metamodel. The entities of RBAC are represented directly as metamodel types. The
metamodel types User, Role and Permission as well as relations between these types are
used. In order to smoothly integrate SecureUML into other modeling languages, protected
resources are represented as follows: instead of defining a dedicated metamodel type to
represent them, every UML model element is allowed to take the role of a protected
resource. In addition, the ResourceSet type is introduced which represents a user-defined
set of model elements for defining permissions or authorization constraints.

A permission is a relation object connecting a role to a ModelElement or a ResourceSet.
The semantics of a permission are defined by the ActionType elements used to classify the
permission (refer to the association ActionTypeAssignment).[IO] Every action type
represents a class of security-relevant operations on a particular type of protected resource.
For example, the action type execute is obvious for the business method resource type,
whereas the action types read and change are normally used for the business attribute
resource type.

4.2 Web service authorization in JBoss

Web service is playing more and more important role in enterprise application integration
and B2B applications. And the common way to build a web service is exposing existing
components as service endpoints, for example, Stateless session beans (SLSB) and sevlets
can be exposed as web services.

After components were exposed as web service, the security issues should be addressed.
For example, how to make sure that a service caller has the certain right to access requested
resource or execute some operations. Usually, different application servers have their own
dialect in the deployment descriptor to define the security rules. In this section, it is
explained how to secure a web service endpoint exposed from a SLSB in JBoss.

Assume that we have a SLSB ToDoListEntryBean, which has methods update,
read, create and delete todolist entries, with authorization depending on the
invoker’s role. In this example, there are three roles, admin, owner and user. Admin
can execute any methods declared by the bean, owner have the right to execute update,
read and create methods but cannot delete todolist entries. User, however, only
read entry information from the bean. As explained above, this bean can be exposed as a
service endpoint. To secure this web service endpoint in JBoss, there are two steps.

36

Step 1, Secure the access to the SLSB in normal way, which means that just like it is not a
service endpoint.

In JBoss, this is done with ejb-jar.xml. In this configuration file, the method
permissions for the SLSB endpoint are setup. Note that it is neither necessary nor required
for the endpoint to have home/remote interfaces [JBo05].

The first part of the configuration is regarding the bean information, the configuration
snippet following shows how the bean is defined.

 <enterprise-beans>
 <session>
 <ejb-name> ToDoListEntryBean </ejb-name>
 <service-endpoint>myExample.endPoint</service-endpoint>
 <ejb-class>mypackage.ToDoListEntryBean </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-role-ref>
 <role-name>admin</role-name>
 </security-role-ref>
 </session>
 </enterprise-beans>

Besides the bean information, another configuration element is
<assembly-descriptor>. It contains <security-role> and
<method-permission> settting.

Since we have three different roles defined for accessing this bean, they are configured as
follows:

<security-role>

<role-name>admin</role-name>
<role-name>owner</role-name>
<role-name>user</role-name>

</security-role>

Each role defined in code fragment above is authorized to access certain methods against
the rule described. The mapping between role and methods are defined as follows.
method-permission setting:

37

<method-permission>
<role-name>user</role-name>
<method>

 <ejb-name>ToDoListEntryBean</ejb-name>
 <method-name>getEntryName</method-name>
 <method-name>getEntryValue</method-name>
 </method>
</method-permission>

<method-permission>
 <role-name>owner</role-name>
 <method>
 <ejb-name>ToDoListEntryBean</ejb-name>
 <method-name>getEntryName</method-name>
 <method-name>getEntryValue</method-name>
 <method-name>createEntry</method-name>
 <method-name>setEntryName</method-name>
 <method-name>setEntryValue</method-name>
 </method>
</method-permission>

<method-permission>
 <role-name>admin</role-name>
 <method>
 <ejb-name>ToDoListEntryBean</ejb-name>
 <method-name>deleteEntry</method-name>
 <method-name>getEntryName</method-name>
 <method-name>getEntryValue</method-name>
 <method-name>createEntry</method-name>
 <method-name>setEntryName</method-name>
 <method-name>setEntryValue</method-name>
 </method>
</method-permission>

Step 2, define the security domain for this deployment. The JBossWS security context is
configured in login-config.xml and uses the UsersRolesLoginModule
[JBo05].

<jboss>
 <security-domain>java:/jaas/JBossWS</security-domain>
 <enterprise-beans>

38

 <session>
 <ejb-name>ToDoListEntryBean</ejb-name>
 <jndi-name>ejb/ToDoListEntryBean</jndi-name>
 </session>
 </enterprise-beans>
</jboss>

4.3 JBoss deployment descriptor generation

In section 4.1 we have seen that SecureUML allows a more understandable modeling of
access control. And the web service endpoint security is mainly concerning the
authorization issue of the endpoint. Our goal is to automatically generate from a given
SecureUML model the JBoss deployment descriptor fragments, which target on securing a
service endpoint.

This section will focus on how to build the MDA infrastructure to reach this goal.

4.3.1 SecureUML Octopus model

As same as chapter 3, the transform engine is based on Octopus as well. The first thing
should do is create the octopus model of the source metamodel, in this case, the
secureUML metamodel.

Section 4.1 has explained the SecureUML metamodel in detail. The main entities of
SecureUML are Role, Permission, ActionType, ResourceType and
AuthorizationConstraint. They can be modeled in Octopus as follows:

+<class> Role
 <attributes>
 + name:String;
 <operations>
 + toEjbDescriptor():String;
<endclass>

+<class> Permission
 <attributes>
 + name:String;
<endclass>

+<class> ActionType

39

 <attributes>
 + name:String;
<endclass>

+<class> ResourceSet
 <attributes>
 + name:String;
<endclass>

+<class> ResourceType
 <attributes>
 + name:String;
<endclass>

+<class> AuthorizationConstraint
 <attributes>
 + name:String;
<endclass>

In class Role, there is an operation toEjbDescriptor() that has not been mentioned
during our discussion of SecureUML. This operation is for generating the role definition
snippet of deployment descriptor, and it will be explained in detail in section 4.3.

The relations among those SecureUML entities can be represented as follows in Octopus
model:

<associations>
+ Role.relatedRole [1..*] <->
Permission.permissionAssignment[0..*];

+ ActionType.actionTypeAssignment[1..*] <->
Permission.withPermission[0..*];

+ Permission.withPermission[0..*] <->
ResourceSet.protectObject[1..*];

+ ResourceType.classification[1] <aggregate> <->
ActionType.context[0..*];

The secureUML Octopus model can be represent in UML class diagram below:

40

Fig 4.3 secureUML model class diagram

4.3.2 SLSB Octopus model

Section 4.2 described how to secure an EJB based web service endpoint. Besides
SecureUML, EJB is another building block of the MDA infrastructure. Therefore the EJB
should be modeled into Octopus model as well. However, since we target on the
deployment descriptor, not all EJB information is required to be modeled. Considering the
EJB configuration in deployment descriptor, only the bean, methods and attributes are
necessary to be represented into Octopus model. The following Octopus model snippet
shows how the three elements look like.

+<class> EjbAttribute
 <attributes>
 + name:String;
<endclass>

+<class> EjbMethod

41

 <attributes>
 + name:String;
 + actionFlag:String;
<endclass>

+<class> EjbClass
 <attributes>
 + name:String;
<endclass>

The EjbClass and EjbAttribute are easy to understand. There is a special attribute
actionFlag in EjbMethod class. This attribute indicates the method type, for example,
update, read, create or delete. The method types are the mapping of
corresponding ActionTypes in SecureUML model. They help us to examine if a role
has the right to execute the requesting method.

Obviously, an EJB can have many attributes and methods. This association is represented
as follows in Octopus.

<associations>

+ EjbClass.ejbClass [1] <aggregate> ->
EjbAttribute.ejbAttribute[0..*];

+ EjbClass.ejbClass [1] <aggregate> ->
EjbMethod.ejbMethod[0..*];

The following figure shows the Ejb model in UML class diagram.

Fig 4.4 EJB model in UML class diagram

42

4.3.3 Deployment descriptor snippet generation

So far we have SecureUML and SLSB Octopus model in hand. Both of them are part of
source model. A bridge is missing to connect them. So a class WSEndpoint is introduced
into the picture. The whole picture of this MDA infrastructure has been drawn out as what
the Fig 4.5 shows.

Fig 4.5 the UML diagram of WebService endpoint security

The class WSEndpoint can have any number of roles, and also have an ejbClass
attribute. Following codes shows the WSEndpoint class Octopus model and associations
between WSEndpoint, Role and EjbClass in Octopus.

43

+<class> WSEndpoint

<operations>
 + secureRoleStart():String;
 + secureRoleEnd():String;
 + securityRoleDescriptor():String;
 + generateEjbAccessControl():String;
 + generateJBossLoginConf() :String;
<endclass>

<associations>
+ WSEndpoint.stereotype [1] <aggregate> -> Role.roles[0..*];
+ WSEndpoint.ws[1] -> EjbClass.ejbClass[1];

The operations declared in WSEndpoint class are for code generation purpose. In this
MDA infrastructure, code generation is still built based on OCL queries. Which means any
operations of WSEndpoint class will have an OCL query corresponded. Next, OCL
queries will be explained in detail.

From section 4.2, we know that there are a total of three parts which are relevant to web
service endpoint authorization in the deployment descriptor.

1) In ejb-jar.xml, <security-role> should be defined. This configuration code
can be generated by the OCL query of method toEjbDescriptor() of Role class. In
section 4.2 this method was mentioned. In the definition, all role names should be listed in
<security-role> element. The OCL query below outputs the role items.

context Role::toEjbDescriptor() : String
body: let roleString :String = '' in
roleString.concat('
<role-name>'.concat(self.name).concat('</role-name>\n'))

For the parent element <security-role>, it is a static element, so following simple
OCL queries just directly output the start and end elements.

context WSEndpoint::secureRoleStart() : String
body: '<security-role>\n'

context WSEndpoint::secureRoleEnd() : String
body: '</security-role>\n'

44

2) Still in ejb-jar.xml, all methods permissions should be defined. They look like:

<method-permission>
 <role-name>rolename</role-name>
 <method>
 <ejb-name>ejbname</ejb-name>
 <method-name>methodname</method-name>
 </method>
</method-permission>
Operations securityRoleDescriptor() and generateEjbAccessControl()
are responsible for generating this part of definition codes. Followings are the OCL queries
of the two operations.

context WSEndpoint:: securityRoleDescriptor() :String
body:let roleString :String = '' in
roleString.concat(secureRoleStart())
.concat(
 roles->iterate(role:Role;
 result:String = ' '|
 result.concat(role.toEjbDescriptor())
)
)
.concat(secureRoleStart())

The OCL query above outputs <role-name>rolename</role-name>. This query is
called by the following OCL query.

context WSEndpoint:: generateEjbAccessControl() : String
body:
roles->iterate(role:Role; resultStr:String = ''|
 resultStr.concat('\n<method-permission>\n')
 .concat(role.toEjbDescriptor())
 .concat('<method>\n')
 .concat('<ejb-name>').concat(ejbClass.name).concat('</ejb-
name>\n')
 .concat(role.permissionAssignment -> iterate(
 permission :Permission; result1:String = '' |
 result1.concat(
 permission.actionTypeAssignment -> iterate(
 actionType:ActionType;
 result2:String = '' |

45

 result2.concat(
 ejbClass.ejbMethod ->iterate(
 methd:EjbMethod;
 result3:String = ''|
 result3.concat(
 if methd.actionFlag =
actionType.name
 then
 '<method-name>'
 .concat(methd.name).concat('</method-name>\n')
 else
 ''
)
)
)
)
)
)
).concat('</method>\n') .concat('</method-permission>\n')
)

3) The last step defines the login configuration in login-config.xml.

From code generation perspective, in this step, the only dynamic codes are the ejb name
others are all static elements. Therefore the OCL query is rather simple.

context WSEndpoint:: generateJBossLoginConf() : String
body:
'<jboss>\n'
.concat('
<security-domain>java:/jaas/JBossWS</security-domain>\n')
.concat(' <enterprise-beans>\n')
.concat(' <session>\n')
.concat('
<ejb-name>').concat(ejbClass.name).concat('</ejb-name>\n')
.concat('
<jndi-name>ejb/').concat(ejbClass.name).concat('</jndi-name>\
n')
.concat(' </session>\n')
.concat(' </enterprise-beans>\n')

46

.concat('</jboss>\n')

After Octopus models and OCL queries are ready a main class is need to instantiate
SecureUML metamodel and EJB metamodel. The main class will be analyzed next.

As defined before, the ToDoListEntryBean has four types of method: read, update,
create and delete. In fact, the method type is the ActionType in secureUML model.
Therefore create ActionType objects as following:

private final ActionType ejbRead = new ActionType("read");
private final ActionType ejbUpdate = new ActionType("update");
private final ActionType ejbCreate = new ActionType("create");
private final ActionType ejbDelete = new ActionType("delete");

We have known that class WSEndpoint is the bridge connecting SecureUML and EjbClass.
So it should be instantiated first.
WSEndpoint wsEndpoint = new WSEndpoint();

Then create the EjbClass object with given name, and the attributes and methods.
//initialize the EJB : toDoListEntry
EjbClass toDoListEntry = new EjbClass("ToDoListEntryBean");

// attributes
EjbAttribute entryName = new EjbAttribute("entryName");
EjbAttribute entryValue = new EjbAttribute("entryValue");

// methods
 EjbMethod entryNameSetter = new
EjbMethod("setEntryName","update");
 EjbMethod entryNameGetter = new
EjbMethod("getEntryName","read");
 EjbMethod entryValueSetter = new
EjbMethod("setEntryValue","update");
 EjbMethod entryValueGetter = new
EjbMethod("getEntryValue","read");
 EjbMethod entryCreate = new
EjbMethod("createEntry","create");
 EjbMethod entryDelete = new
EjbMethod("deleteEntry","delete");

47

 toDoListEntry.addToEjbAttribute(entryName);
 toDoListEntry.addToEjbAttribute(entryValue);
 toDoListEntry.addToEjbMethod(entryNameSetter);
 toDoListEntry.addToEjbMethod(entryNameGetter);
 toDoListEntry.addToEjbMethod(entryValueSetter);
 toDoListEntry.addToEjbMethod(entryValueGetter);
 toDoListEntry.addToEjbMethod(entryCreate);
 toDoListEntry.addToEjbMethod(entryDelete);

So far, the ToDoListEntryBean with its attributes and methods have been instantiated. Then
all entities in secureUML model should be instantiated and initialized.

//roles
Role user = new Role("user"); // read only
Role owner = new Role("owner"); // read, update,create
Role admin = new Role("admin"); // read,update,create,delete

//Permission
Permission userPermission = new Permission("userPermission");
Permission ownerPermission = new Permission("ownerPermission");
Permission adminPermission = new Permission("adminPermission");

// assign actiontype and permission
userPermission.addToActionTypeAssignment(ejbRead);

 ownerPermission.addToActionTypeAssignment(userPermission.g
etActionTypeAssignment());
ownerPermission.addToActionTypeAssignment(ejbUpdate);
ownerPermission.addToActionTypeAssignment(ejbCreate);
adminPermission.addToActionTypeAssignment(ownerPermission.get
ActionTypeAssignment());
adminPermission.addToActionTypeAssignment(ejbDelete);

 // assign permission to roles
user.addToPermissionAssignment(userPermission);
owner.addToPermissionAssignment(ownerPermission);
admin.addToPermissionAssignment(adminPermission);

Finally, against the associations between WSEndpoint, Role and EjbClass, assign the

48

WSEndpoint object as following:

 wsEndpoint.addToRoles(user);
 wsEndpoint.addToRoles(owner);
 wsEndpoint.addToRoles(admin);
 wsEndpoint.setEjbClass(toDoListEntry);

Now invoking the certain method of wsEndpoint object, the predefined OCL query will
generate the corresponding security definition. For example, to generate the security-role
configuration in ejb-jar.xml deployment descriptor, we just call
wsEndpoint.securityRoleDescriptor();

To generate Ejb method access permission configuration, we can call
wsEndpoint.generateEjbAccessControl();

In the same way, to generate JBoss login-config definition, just call
wsEndpoint.generateJBossLoginConf();

49

5 Conclusion

Octopus is an OCL expression checking tool. It is able to transform the UML model,
including the OCL expressions, into Java code also. In this thesis, Octopus was used as a
MDA transformation engine. And OCL query worked as code generator.

As we have known, source metamodel, target metamodel and a transformation engine with
transformation rule are building blocks of a MDA transformation. The following diagram
shows how Octopus worked in a MDA infrastructure.

As the diagram shows, the steps to build the MDA infrastructure are:

1) Model the source and target metamodels in Octopus, the Octopus models also include

OCL constraints definitions.

Source
metamodel
(Octopus model)

Target
metamodel
(Octopus model)

MDA infrastructure Java codes

OCL constraints OCL queries OCL constraints

Stereotype
Classes (Octopus

Java Class

II

Target Java codes

I

50

2) Build a bridge to establish the connection between source and target Octopus models.
In fact, this step will build a stereotype. Operations which are responsible for
generation final codes should be defined in the stereotype class(es) as method(s). The
method(s) should have detailed OCL queries corresponded so that Octopus can
generate the code-generator method(s) with implementations.

3) Having the whole models in hand, the MDA infrastructure java codes can be generated

by Octopus automatically. The arrow with I in the diagram implies the generation
procedure.

4) To get the final source codes, just adding a Java class with Main method and

instantiating the stereotype class and calling the source codes generation methods
declared in the stereotype class. This procedure is what arrow II indicates in the
diagram above.

51

6 Appendix

6.1 Statechart metamodel

6.1.1 Octopus model

<package> statechart
<import> statemachine;
+ <class> SMStereotype
<operations>
+getJavaForInterface():String;

<endclass>
<class> State
<attributes>
+ name: String;
+ isInitial: Boolean;
<endclass>

<class> OnEntry<endclass>
<class> Transition<endclass>

<associations>
+ SMStereotype.sm [1] <-> StateMachineInterface.interface[1];
+ SMStereotype.sm [1] <-> State.states[1..*];
+ Transition.outgoing [0..*] <-> + State.start [1];
+ Transition.incoming [0..*] <-> + State.target [1];
+ State.state [1..*] <-> + OnEntry.onEntry [1];

<endpackage>

6.1.2 Constraints in OCL

package statechart
/**

52

 Only one state could be initial state
**/
context State
 inv onlyOneInitial:
 self.allInstances()->one(isInitial)

/**
 no duplicate names for states
**/
context State
 inv uniquename :
 self.allInstances()->isUnique(s: State| s.name)

/**
 no isolated state, one state either has an incoming or outgoing transition
**/
context State
 inv notisolated:
 (not(self.incoming->isEmpty())) or (not(self.outgoing->isEmpty()))
endpackage – statechart

6.2 Java metamodel

<package>javamodel
 + <class> CompilationUnit
 <operations>
 + toJavaSource():String;
 <endclass>

 + <class> PackageDeclaration
 <operations>
 + toJavaSource():String;
 <endclass>

 + <class> ImportDeclaration
 <operations>
 + toJavaSource():String;
 <endclass>

53

 + <abstract> <class> BodyDeclaration
 <attributes>
 + modifiers:OrderedSet(Modifier);
 <endclass>
 + <class> AnnotationTypeMemberDeclaration <specializes> BodyDeclaration <endclass>

 + <abstract> <class> AbstractTypeDeclaration <specializes> BodyDeclaration
 <operations>
 + toJavaSource(): String;
 <endclass>

 + <class> AnnotationTypeDeclaration <specializes> AbstractTypeDeclaration
<endclass>

 + <class> TypeDeclaration <specializes> AbstractTypeDeclaration
 <attributes>
 + isInterface :Boolean;
 <operations>
 + toJavaSource(): String;
 + getFields():OrderedSet(FieldDeclaration);
 + getMethods():OrderedSet(MethodDeclaration);
 <endclass>

 + <class> MethodDeclaration <specializes> BodyDeclaration
 <attributes>
 + isConstructor : Boolean;
 <operations>
 + isVarargs():Boolean;
 + parameters():OrderedSet(SingleVariableDeclaration);
 + toJavaSource():String;
 <endclass>
 + <class> FieldDeclaration <specializes> BodyDeclaration
 <operations>
 + fragments():OrderedSet(VariableDeclarationFragment);
 <endclass>

+ <class> Modifier
 <attributes>
 + name:String;
 <endclass>
 + <class> PublicModifier <specializes> Modifier <endclass>

54

 + <class> ProtectedModifier <specializes> Modifier <endclass>
 + <class> PrivateModifier <specializes> Modifier <endclass>
 + <class> StaticModifier <specializes> Modifier <endclass>
 + <class> AbstractModifier <specializes> Modifier <endclass>
 + <class> FinalModifier <specializes> Modifier <endclass>
 + <class> NativeModifier <specializes> Modifier <endclass>
 + <class> SynchronizedModifier <specializes> Modifier <endclass>
 + <class> TransiteModifier <specializes> Modifier <endclass>
 + <class> VolatileModifier <specializes> Modifier <endclass>
 + <class> StrictfpModifier <specializes> Modifier <endclass>

+ <abstract> <class> Name <specializes> Expression
 <attributes>
 -index : Integer; -- This index represents the position inside a qualified name.
 <operations>
 +isSimpleName():Boolean;
 +isQualifiedName():Boolean;
 +getFullyQualifiedName():String;
 +toJavaSource():String;
 <endclass>
 + <class> QualifiedName <specializes> Name
 <attributes>
 <operations>

 <endclass>

 + <class> SimpleName <specializes> Name
 <attributes>
 + identifier : String;
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> Annotation <specializes> Expression
 <operations>
 + isModifier():Boolean;
 + isAnnotation():Boolean;
 + isNormalAnnotation():Boolean;
 + isSingleMemberAnnotation():Boolean;
 + toJavaSource():String;
 <endclass>

55

 + <class> StringLiteral <specializes> Expression
 <attributes>
 + literalValue:String;
 + escaptedValue:String;
 <operations>
 + toJavaSource() :String;
 <endclass>
 + <class> ArrayInitializer <specializes> Expression
 <operations>
 + toJavaSource() :String;
 <endclass>
 + <class> NormalAnnotation <specializes> Annotation
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> SingleMemberAnnotation <specializes> Annotation
 <operations>
 + toJavaSource():String;
 <endclass>

 + <abstract> <class> Expression
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> MemberValuePair <endclass>

 + <class> EnumDeclaration <specializes> AbstractTypeDeclaration
 <operations>
 + toJavaSource() :String;
 <endclass>
 + <class> EnumConstantDeclaration <specializes> BodyDeclaration
 <endclass>

 + <class> Statement <endclass>

 + <class> Block <specializes> Statement
 <operations>
 + toJavaSource():String;
 <endclass>
 + <abstract> <class> Type
 <operations>

56

 + isArrayType():Boolean ;
 + isParameterizedType() :Boolean;
 + isPrimitiveType() :Boolean;
 + isQualifiedType() :Boolean;
 + isSimpleType() :Boolean;
 + isWildcardType() :Boolean;
 + toJavaSource():String;
 <endclass>

 + <class> PrimitiveType <specializes> Type
 <attributes>
 +name:String;
 <operations>
 + toJavaSource():String;
 <endclass>

 + <class>IntType<specializes>PrimitiveType<endclass>
 + <class>ByteType<specializes>PrimitiveType<endclass>
 + <class>ShortType<specializes>PrimitiveType<endclass>
 + <class>CharType<specializes>PrimitiveType<endclass>
 + <class>LongType<specializes>PrimitiveType<endclass>
 + <class>FloatType<specializes>PrimitiveType<endclass>
 + <class>DoubleType<specializes>PrimitiveType<endclass>
 + <class>BooleanType<specializes>PrimitiveType<endclass>
 + <class>VoidType<specializes>PrimitiveType <endclass>

 + <class> ArrayType <specializes> Type
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> QualifiedType <specializes> Type
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> SimpleType <specializes> Type
 <operations>
 + toJavaSource():String;
 <endclass>
 + <class> ParameterizedType <specializes> Type
 <operations>
 + toJavaSource():String;

57

 <endclass>
 + <class> WildcardType <specializes> Type
 <operations>
 + toJavaSource():String;
 <endclass>

 + <class> VariableDeclaration
 <attributes>
 - extraArrayDimensions: Integer;
 <endclass>

 + <class> VariableDeclarationFragment <specializes> VariableDeclaration
 <attributes>
 - extraArrayDimensions: Integer;
<endclass>

 + <class> SingleVariableDeclaration <specializes> VariableDeclaration
 <attributes>
 + variableArity :Boolean;
 - modifiers:OrderedSet(Modifier);
 - extraArrayDimensions:Integer;
 <endclass>

<associations>
 + QualifiedName.qualifiedname [1] -> + SimpleName.namepart [1] ;
 + QualifiedName.qualifiedname [1] -> + Name.qualifier [0..1] ;

 + PackageDeclaration.packageDeclaration [1] <aggregate> -> + Name.packageName
[1] ;
 + PackageDeclaration.packageDeclaration [1] <aggregate> -> +
Annotation.annotations[1..*]<ordered> ;

 + Annotation.annotation[1] <aggregate> -> Name.typeName[1];
 + NormalAnnotation.normalAnnotation [1] <aggregate> ->
MemberValuePair.values[0..*]<ordered>;
 + MemberValuePair.pair[1] -> SimpleName.name[1];
 + MemberValuePair.pair[1] -> Expression.value[1];
 + SingleMemberAnnotation.singleAnn[1] -> Expression.value[1];

 + BodyDeclaration.bodyDeclaration [1] -> Annotation.annotation [0..1] ;
+ ImportDeclaration.import [1] <aggregate> -> Name.name [1] ;

58

 + CompilationUnit.unit [1] -> + PackageDeclaration.packageInfo [0..1] ;
 + CompilationUnit.unit [1] <aggregate> -> ImportDeclaration.imports [0..*]
<ordered>;
 + CompilationUnit.unit [1] <composite> -> AbstractTypeDeclaration.types [1..*]
<ordered>;

 + TypeDeclaration.type [1] <aggregate> -> BodyDeclaration.bodyDeclarations [0..*]
<ordered>; --BodyDeclaration is a supertype, it could be fielddeclaration or
methoddeclaration--
 + AnnotationTypeMemberDeclaration.annotationTypeMember[1]
 <aggregate> -> Name.memberName[1];
 + AnnotationTypeMemberDeclaration.annotationTypeMember[1]
 <aggregate> -> Type.memberType[1];
 + AnnotationTypeMemberDeclaration.annotationTypeMember[1]
 <aggregate> -> Expression.optionalDefaultValue[0..1];

 + ArrayInitializer.array[1] <aggregate> -> Expression.expressions[0..*]<ordered>;

 + TypeDeclaration.type [1] <aggregate> -> Type.superInterfaceTypes[0..*]<ordered>;
 + TypeDeclaration.type [1] <aggregate> -> Type.superClassType[0..1];

 + EnumDeclaration.enumDeclaration[1] <composite> ->
EnumConstantDeclaration.enumConstants[0..*]<ordered>;
 + EnumConstantDeclaration.enumDeclaration[1] -> SimpleName.constantName[1];

 + AbstractTypeDeclaration.type [1] <aggregate> -> SimpleName.typeName [1] ;
 + AbstractTypeDeclaration.type [1] <aggregate> -> BodyDeclaration.bodyDeclarations
[0..*]<ordered> ;

 + VariableDeclaration.<noName> [1] -> SimpleName.name [1] ;
 + VariableDeclarationFragment.fragment [1] <aggregate> -> Name.variableName[1];

 + MethodDeclaration.methodDeclaration [1] -> SimpleName.name [1] ;
 + MethodDeclaration.methodDeclaration [1] -> Type.returnType [1] ;
 + MethodDeclaration.methodDeclaration [1] <aggregate> ->
SingleVariableDeclaration.parameters[0..*] <ordered>;
 + MethodDeclaration.methodDeclaration [1] -> Block.methodBody [0..1] ;
 + MethodDeclaration.methodDeclaration [1] -> Name.thrownExceptions[0..*]<ordered>;

 + SingleVariableDeclaration.variable [1] <aggregate> -> SimpleName.variableName[1];

59

 + SingleVariableDeclaration.variable [1] <aggregate> -> Type.type[1];
 + SingleVariableDeclaration.variable[1] -> Expression.Initializer[0..1];

 + Block.block[1] -> Statement.statements[0..*]<ordered>;

 + FieldDeclaration.field [1] <aggregate> -> SimpleName.name [1] ;
 + FieldDeclaration.field [1] <aggregate> -> Type.baseType [1] ;
 + FieldDeclaration.field [1] <aggregate> ->
VariableDeclarationFragment.variableDeclarationFragments [1..*]<ordered>;

 + SimpleType.simplyType [1] -> SimpleName.name[1];
 + QualifiedType.qulifiedType [1] -> SimpleName.name[1];
 + QualifiedType.qulifiedType [1] -> Type.qualifier[1];

 + PrimitiveType.primitiveType[1] <composite> -> IntType.intType[1];
 + PrimitiveType.primitiveType[1] <composite> -> ByteType.byteType[1];
 + PrimitiveType.primitiveType[1] <composite> -> ShortType.shortType[1];
 + PrimitiveType.primitiveType[1] <composite> -> CharType.charType[1];
 + PrimitiveType.primitiveType[1] <composite> -> LongType.longType[1];
 + PrimitiveType.primitiveType[1] <composite> -> FloatType.floatType[1];
 + PrimitiveType.primitiveType[1] <composite> -> BooleanType.booleanType[1];
 + PrimitiveType.primitiveType[1] <composite> -> VoidType.voidType[1];

 + Modifier.modifier[1] <composite> -> PublicModifier.publicModifier[1];
 + Modifier.modifier[1] <composite> -> ProtectedModifier.protectedModifier[1];
 + Modifier.modifier[1] <composite> -> PrivateModifier.privateModifier[1];
 + Modifier.modifier[1] <composite> -> StaticModifier.staticModifier[1];
 + Modifier.modifier[1] <composite> -> AbstractModifier.abstractModifier[1];
 + Modifier.modifier[1] <composite> -> FinalModifier.finalModifier[1];
 + Modifier.modifier[1] <composite> -> NativeModifier.nativeModifier[1];
 + Modifier.modifier[1] <composite> -> SynchronizedModifier.synchronizedModifier[1];
 + Modifier.modifier[1] <composite> -> TransiteModifier.transiteModifier[1];
 + Modifier.modifier[1] <composite> -> VolatileModifier.volatileModifier[1];
 + Modifier.modifier[1] <composite> -> StrictfpModifier.strictfpModifier[1];

<endpackage>

60

6.3 Main class for generating Microwave oven Java codes

import javamodel.internal.*;
import statechart.internal.*;
import statemachine.internal.*;
import java.util.*;
import java.io.*;

public class Test {

 // modifiers
 private final Modifier PUBLIC = new PublicModifier();
 private final Modifier PROTECTED = new ProtectedModifier();
 private final Modifier PRIVATE = new PrivateModifier();
 private final Modifier STATIC = new StaticModifier();
 private final Modifier ABSTRACT = new AbstractModifier();
 private final Modifier FINAL = new FinalModifier();
 private final Modifier NATIVE = new NativeModifier();
 private final Modifier SYNCHRONIZED = new SynchronizedModifier();
 private final Modifier TRANSITE = new TransiteModifier();
 private final Modifier VOLATILE = new VolatileModifier();
 private final Modifier STRICTFP = new StrictfpModifier();

 // primitive types
 private final Type INT = new IntType();
 private final Type BYTE = new ByteType();
 private final Type SHORT = new ShortType();
 private final Type CHAR = new CharType();
 private final Type LONG = new LongType();
 private final Type FLOAT = new FloatType();
 private final Type BOOLEAN = new BooleanType();
 private final Type VOID = new VoidType();
 public static void main(String[] args) {
 Test test = new Test();
 test.doMDA();
 }

 public void doMDA() {

61

 // #create methods public void openDoor()
 // ... method without "i" is for the class using, will be assigned later
 MethodDeclaration openDoor = new MethodDeclaration();
 Type returnType = new PrimitiveType();
 ArrayList modifiers = new ArrayList();
 modifiers.add(this.PUBLIC);
 MethodDeclaration iopenDoor = getMethodDeclaration(modifiers,
 "openDoor", this.VOID);

 // #create methods public void closeDoor()
 // ... method without "i" is for the class using, will be assigned later
 MethodDeclaration closeDoor = new MethodDeclaration();
 modifiers = new ArrayList();
 modifiers.add(this.PUBLIC);
 MethodDeclaration icloseDoor = getMethodDeclaration(modifiers,
 "closeDoor", this.VOID);

 // $$$ create states and add them into sms
 State s_DOOROPEN = new State();
 s_DOOROPEN.setName("DOOROPEN");
 State s_READYTOCOOK = new State();
 s_READYTOCOOK.setName("READYTOCOOK");
 s_READYTOCOOK.setInitial(true);
 State s_COOKING = new State();
 s_COOKING.setName("COOKING");
 State s_COOKINGINTERRUPTED = new State();
 s_COOKINGINTERRUPTED.setName("COOKINGINTERRUPTED");
 State s_COOKINGCOMPLETE = new State();
 s_COOKINGCOMPLETE.setName("COOKINGCOMPLETE");
 State s_COOKINGEXTENDED = new State();
 s_COOKINGEXTENDED.setName("COOKINGEXTENDED");

 // $$$ create the enum type with states
 EnumDeclaration states = this.getStatesEnum("States");
 states.addToEnumConstants(this.getEnumItem(s_DOOROPEN));
 states.addToEnumConstants(this.getEnumItem(s_READYTOCOOK));
 states.addToEnumConstants(this.getEnumItem(s_COOKING));
 states.addToEnumConstants(this.getEnumItem(s_COOKINGINTERRUPTED));
 states.addToEnumConstants(this.getEnumItem(s_COOKINGCOMPLETE));
 states.addToEnumConstants(this.getEnumItem(s_COOKINGEXTENDED));

62

 // $$$ create the statemachineinterface - IMicrowave
 StateMachineInterface iMicrowave = getStateMachineInterface("IMicrowave");

 // $$$ create statespaces annotation, and adding to IMicrowave
 NormalAnnotation stateSpaces = getStateSpaceAnnotation(states,
 s_READYTOCOOK);
 iMicrowave.setAnnotation(stateSpaces);
 // $$$ adding methods into interface
 iMicrowave.addToBodyDeclarations(iopenDoor);
 iMicrowave.addToBodyDeclarations(icloseDoor);

 // $$$ create Microwave Class - main business class
 TypeDeclaration microwaveCLS = getMainClass("Microwave", iMicrowave);

 // ...adding constructor
 MethodDeclaration constructor = getConstructor(microwaveCLS);
 microwaveCLS.addToBodyDeclarations(constructor);

 // $$$ createing all transition objects
 Transition tr_READYTOCOOK_DOOROPEN = getTransition(s_READYTOCOOK,
 s_DOOROPEN);
 Transition tr_COOKING_COOKINGINTERRUPTED = getTransition(s_COOKING,
 s_COOKINGINTERRUPTED);
 Transition tr_COOKINGCOMPLETE_DOOROPEN = getTransition(
 s_COOKINGCOMPLETE, s_DOOROPEN);
 Transition tr_COOKINGEXTENDED_COOKINGINTERRUPTED = getTransition(
 s_COOKINGEXTENDED, s_COOKINGINTERRUPTED);
 Transition tr_DOOROPEN_READYTOCOOK = getTransition(s_DOOROPEN,
 s_READYTOCOOK);
 Transition tr_COOKINGINTERRUPTED_READYTOCOOK = getTransition(
 s_COOKINGINTERRUPTED, s_READYTOCOOK);

 // $$$ creating all transition annotations from transition
 Annotation trAnn_READYTOCOOK_DOOROPEN = getTransitionAnnotation(states,
 tr_READYTOCOOK_DOOROPEN);
 Annotation trAnn_COOKING_COOKINGINTERRUPTED = getTransitionAnnotation(
 states, tr_COOKING_COOKINGINTERRUPTED);
 Annotation trAnn_COOKINGCOMPLETE_DOOROPEN = getTransitionAnnotation(
 states, tr_COOKINGCOMPLETE_DOOROPEN);
 Annotation trAnn_COOKINGEXTENDED_COOKINGINTERRUPTED =
getTransitionAnnotation(

63

 states, tr_COOKINGEXTENDED_COOKINGINTERRUPTED);
 Annotation trAnn_DOOROPEN_READYTOCOOK = getTransitionAnnotation(states,
 tr_DOOROPEN_READYTOCOOK);
 Annotation trAnn_COOKINGINTERRUPTED_READYTOCOOK = getTransitionAnnotation(
 states, tr_COOKINGINTERRUPTED_READYTOCOOK);

 // ... adding openDoor method together with the annotation
 Annotation annOpenDoor = getMethodAnnotation(new Annotation[] {
 trAnn_READYTOCOOK_DOOROPEN, trAnn_COOKING_COOKINGINTERRUPTED,
 trAnn_COOKINGCOMPLETE_DOOROPEN,
 trAnn_COOKINGEXTENDED_COOKINGINTERRUPTED });

 // ... adding closeDoor method together with the annotation
 Annotation annCloseDoor = getMethodAnnotation(new Annotation[] {
 trAnn_DOOROPEN_READYTOCOOK,
 trAnn_COOKINGINTERRUPTED_READYTOCOOK });

 closeDoor.setAnnotation(annCloseDoor);
 openDoor.setAnnotation(annOpenDoor);

 // $$$ create SMStereotype ins -> sms
 SMStereotype sms = new SMStereotype();
 // $$$ ADD STATES and interface INTO SMS
 sms.addToStates(s_DOOROPEN);
 sms.addToStates(s_READYTOCOOK);
 sms.addToStates(s_COOKING);
 sms.addToStates(s_COOKINGINTERRUPTED);
 sms.addToStates(s_COOKINGCOMPLETE);
 sms.addToStates(s_COOKINGEXTENDED);

 // assign the methods for class using, actually just add a empty method
 // body
 // then add those assigned methods into class
 openDoor = this.getEmptyMethodImplementation(openDoor, iopenDoor);
 closeDoor = this.getEmptyMethodImplementation(closeDoor, icloseDoor);

 microwaveCLS.addToBodyDeclarations(openDoor);
 microwaveCLS.addToBodyDeclarations(closeDoor);

 CompilationUnit statesUnit = new CompilationUnit();
 CompilationUnit iMicrowaveUnit = new CompilationUnit();

64

 CompilationUnit microwaveCLSUnit = new CompilationUnit();

 statesUnit.setPackageInfo(getPackage());
 statesUnit.addToTypes(states);

 iMicrowaveUnit.setPackageInfo(getPackage());
 iMicrowaveUnit.addToTypes(iMicrowave);

 microwaveCLSUnit.setPackageInfo(getPackage());
 microwaveCLSUnit.addToTypes(microwaveCLS);

 try {

 this.write("src\\generated\\States.java", statesUnit
 .toJavaSource());
 this.write("src\\generated\\IMicrowave.java", iMicrowaveUnit
 .toJavaSource());
 this.write("src\\generated\\Microwave.java", microwaveCLSUnit
 .toJavaSource());

 System.out
 .println("pls check the src/generated package for the generated
java source");
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 }

 private void write(String fileName, String text) throws IOException {
 PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(
 fileName)));

 out.print(text);
 out.close();
 }

 private PackageDeclaration getPackage() {
 PackageDeclaration myPackage = new PackageDeclaration();
 SimpleName packageName = new SimpleName();
 packageName.setIdentifier("generated");

65

 myPackage.setPackageName(packageName);
 return myPackage;
 }

 private MethodDeclaration getEmptyMethodImplementation(
 MethodDeclaration resultMethod, MethodDeclaration interfaceMethod) {

 interfaceMethod.copyInfoInto(resultMethod);
 Block blk = new Block();
 resultMethod.setMethodBody(blk);
 return resultMethod;
 }

 private Transition getTransition(State startState, State targetState) {
 Transition tr = new Transition();

 tr.setStart(startState);
 tr.setTarget(targetState);
 return tr;

 }

 private StateMachineInterface getStateMachineInterface(String identifier) {
 StateMachineInterface stateInterface = new StateMachineInterface();

 // interface modifer
 ArrayList interfaceModifiers = new ArrayList();
 interfaceModifiers.add(this.PUBLIC);
 // name
 SimpleName interfaceName = new SimpleName();
 interfaceName.setIdentifier(identifier);

 stateInterface.setInterface(true);
 stateInterface.setTypeName(interfaceName);
 stateInterface.setModifiers(interfaceModifiers);

 return stateInterface;

 }

 private MethodDeclaration getMethodDeclaration(List modifiers,

66

 String identfier, Type returnType) {
 MethodDeclaration method = new MethodDeclaration();

 SimpleName sn = new SimpleName();
 sn.setIdentifier(identfier);

 method.setConstructor(false);
 method.setModifiers(modifiers);
 method.setName(sn);
 method.setReturnType(returnType);

 return method;
 }

 private EnumDeclaration getStatesEnum(String typeName) {
 EnumDeclaration states = new EnumDeclaration();
 ArrayList modifiers = new ArrayList();
 modifiers.add(this.PUBLIC);
 states.setModifiers(modifiers);
 SimpleName enumName = new SimpleName();
 enumName.setIdentifier(typeName);
 states.setTypeName(enumName);
 return states;
 }

 private EnumConstantDeclaration getEnumItem(State state) {
 EnumConstantDeclaration item = new EnumConstantDeclaration();
 SimpleName itemName = new SimpleName();
 itemName.setIdentifier(state.getName());
 item.setConstantName(itemName);
 return item;
 }

 private TypeDeclaration getMainClass(String identifier,
 TypeDeclaration implementedInterface) {
 TypeDeclaration mainClass = new TypeDeclaration();
 ArrayList classModifiers = new ArrayList();
 classModifiers.add(this.PUBLIC);
 // name
 SimpleName className = new SimpleName();
 className.setIdentifier(identifier);

67

 mainClass.setInterface(false);
 mainClass.setTypeName(className);
 mainClass.setModifiers(classModifiers);

 // set implemented interface(s)
 SimpleName interfaceName = (SimpleName) implementedInterface
 .getTypeName();
 ArrayList superInterfaces = new ArrayList();
 SimpleType superInterface = new SimpleType();
 superInterface.setName(interfaceName);
 superInterfaces.add(superInterface);
 mainClass.setSuperInterfaceTypes(superInterfaces);
 return mainClass;
 }

 private MethodDeclaration getConstructor(TypeDeclaration cls) {
 MethodDeclaration constructor = new MethodDeclaration();
 constructor.setConstructor(true);
 constructor.addToModifiers(this.PUBLIC);
 constructor.setName(cls.getTypeName());
 SimpleType returnType = new SimpleType();
 SimpleName sn = new SimpleName();
 sn.setIdentifier("");
 returnType.setName(sn);
 Block emptyBlock = new Block();
 constructor.setMethodBody(emptyBlock);
 constructor.setReturnType(returnType);
 return constructor;
 }

 /*
 * @Statespace (states = { "READYTOCOOK", "DOOROPEN", "COOKING",
 * "COOKINGINTERRUPTED", "COOKINGCOMPLETE", "COOKINGEXTENDED" }, initial =
 * "READYTOCOOK")
 */
 private NormalAnnotation getStateSpaceAnnotation(EnumDeclaration stateEnum,
 State initState) {
 NormalAnnotation ss = new NormalAnnotation();
 SimpleName ssTypeName = new SimpleName();
 ssTypeName.setIdentifier("StateSpace");

68

 ss.setTypeName(ssTypeName);
 MemberValuePair mvp1 = new MemberValuePair();
 MemberValuePair mvp2 = new MemberValuePair();
 SimpleName memberName1 = new SimpleName();
 SimpleName memberName2 = new SimpleName();
 memberName1.setIdentifier("states");
 memberName2.setIdentifier("initial");
 mvp1.setName(memberName1);
 mvp2.setName(memberName2);
 StringLiteral string1 = new StringLiteral();
 StringLiteral string2 = new StringLiteral();
 String spaces = "";
 String init = "\"" + initState.getName() + "\"";
 List stateEnumList = stateEnum.getEnumConstants();
 Iterator it = stateEnumList.iterator();
 EnumConstantDeclaration tmp = null;
 while (it.hasNext()) {
 tmp = (EnumConstantDeclaration) it.next();
 if (spaces.equals(""))
 spaces += "{\"" + tmp.getConstantName().getIdentifier() + "\"";
 else
 spaces += ",\"" + tmp.getConstantName().getIdentifier() + "\"";

 }
 spaces += "}";
 string1.setLiteralValue(spaces);
 string2.setLiteralValue(init);
 mvp1.setValue(string1);
 mvp2.setValue(string2);
 ss.addToValues(mvp1);
 ss.addToValues(mvp2);
 return ss;
 }

 private SingleMemberAnnotation getMethodAnnotation(Annotation[] trans) {
 SingleMemberAnnotation annM = new SingleMemberAnnotation();
 SimpleName tranTypeName = new SimpleName();
 tranTypeName.setIdentifier("OutgoingTransitions");
 annM.setTypeName(tranTypeName);
 ArrayInitializer array = new ArrayInitializer();
 ArrayList tranList = new ArrayList();

69

 for (int i = 0; i < trans.length; i++) {
 tranList.add(trans[i]);
 }
 array.setExpressions(tranList);
 annM.setValue(array);
 return annM;
 }

 private NormalAnnotation getTransitionAnnotation(
 EnumDeclaration statesEnum, Transition tran) {
 State stateFrom = (State) tran.getStart();
 State stateTo = (State) tran.getTarget();
 NormalAnnotation tran1 = new NormalAnnotation();
 SimpleName tranTypeName = new SimpleName();
 tranTypeName.setIdentifier("Transition");
 tran1.setTypeName(tranTypeName);
 MemberValuePair mvp1 = new MemberValuePair();
 MemberValuePair mvp2 = new MemberValuePair();
 SimpleName memberName1 = new SimpleName();
 SimpleName memberName2 = new SimpleName();
 memberName1.setIdentifier("from");
 memberName2.setIdentifier("to");
 mvp1.setName(memberName1);
 mvp2.setName(memberName2);
 StringLiteral string1 = new StringLiteral();
 StringLiteral string2 = new StringLiteral();
 string1.setLiteralValue(statesEnum.getTypeName().getIdentifier() + "."
 + stateFrom.getName());
 string2.setLiteralValue(statesEnum.getTypeName().getIdentifier() + "."
 + stateTo.getName());
 mvp1.setValue(string1);
 mvp2.setValue(string2);
 tran1.addToValues(mvp1);
 tran1.addToValues(mvp2);
 return tran1;
 }
}

70

7 Bibliography

[KWB03] Anneke Kleppe, Jos Warmer & Wim Bast “MDA Explained. The Model
Driven Architecture: Practice and Promise” published by Addison
Wesley 2003

[WK03] Jos Warmer, Anneke Kleppe “Object Constraint Language, The: Getting
Your Models Ready for MDA, Second Edition” published by Addison
Wesley 2003

[Kla05] Klasse Objecten company internet at http://www.klasse.nl/english, 2005

[Mod] ModFact “QVT Project” internet at http://modfact.lip6.fr/qvtP.html

[LBD] Torsten Lodderstedt, David Basin, and Jürgen Doser “SecureUML: A
UML-Based Modeling Language for Model-Driven Security ”

[IO] Interactive Object “ArcStyler Cartridge Guide for MDA-Security ”

[JBo05] JBoss Inc. “WSSecureEndpoint” internet at
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSSecureEndpoint,2005

