
BACHELOR THESIS

Design and Implementation of a
Web Service Development Portal

–The case study DATAPORT

Submitted by:
Jun Zhang

Matriculation Number: 15239
Hamburg University of Science and Technology

Germany

Supervised by:

Prof. Dr. Joachim W. Schmidt
and

Dipl. Inform. Rainer Marrone
Software Systems Institute

Hamburg University of Science and Technology

Hamburg, 24.10.2005



Declaration

I declare that:

this work has been prepared by myself, all literally or content-related quotations from other
sources are clearly referenced, and no other sources or aids out of the declared reference are
used.

Hamburg, 24.10.2005

Jun Zhang



I would like to thank Professor Joachim W. Schmidt of STS for supervising this thesis and
being very helpful with guiding the project overall and finding a topic for my work.

Thanks also go to Dipl. Inform. Rainer Marrone, who guided me through the whole project
and this thesis and offered great help on developing the whole work.

Thanks also go to Birgit Guth, Jürgen Meincke and Werner Wendt from Dataport, who
provided useful information of Dataport and advices through this work.

Dr. Hans-Werner Sehring and Sebastian Boung of STS were very helpful in providing advices
during the project.



Contents

1 Introduction 1
1.1 Objectives and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

2 A Web Service Development Portal 3
2.1 Motivation of the Web Service Development Portal . . . . . . . . . . . . . . .3
2.2 Web Service Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2.2.1 What are Web Services . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2.2 Architecture of Web Service . . . . . . . . . . . . . . . . . . . . . . .5

2.3 Core Functions of the Web Service Development Portal . . . . . . . . . . . . .7
2.4 Implementation Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3 The infoAsset Broker 11
3.1 Concepts Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.2 Basic System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3.2.1 Architecture of the infoAsset Broker . . . . . . . . . . . . . . . . . . .14
3.2.2 Core Functions of the infoAsset Broker . . . . . . . . . . . . . . . . .15

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

4 Design and Implementation of the Web Service Development Portal 18
4.1 Analysis of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

4.1.1 General overview of the architecture of the GovernmentGateway . . . .19
4.1.2 Use cases of the Web Service Development Portal . . . . . . . . . . .20

4.2 Design for the Development Portal . . . . . . . . . . . . . . . . . . . . . . . .22
4.2.1 Document Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.2.2 Document State Model . . . . . . . . . . . . . . . . . . . . . . . . . .27
4.2.3 Document Publishment Workflow . . . . . . . . . . . . . . . . . . . .28
4.2.4 Extended Notification Service . . . . . . . . . . . . . . . . . . . . . .30
4.2.5 Authorisation Concept . . . . . . . . . . . . . . . . . . . . . . . . . .31

4.3 Implementation of the Development Portal . . . . . . . . . . . . . . . . . . . .33
4.3.1 Modification in the InfoAsset Broker . . . . . . . . . . . . . . . . . .33
4.3.2 User Interface of Document Publishment Workflow . . . . . . . . . . .35
4.3.3 Integration of the document access authorisation in the InfoAsset Broker40

i



4.3.4 Integration of a Web Service interface for the infoAsset Broker . . . . .41
4.4 Evaluation of the implementation . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4.1 Comparison of the two access environments of the portal . . . . . . . .42
4.4.2 The Authorisation Concept at document level . . . . . . . . . . . . . .43

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

5 Summary and Outlook 45
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Bibliography 48

Appendix 50
.1 New Methods in Class IMPDocument . . . . . . . . . . . . . . . . . . . . . .50

ii



List of Figures

2.1 Web Services building blocks (static view) [ZTP03] . . . . . . . . . . . . . . .5
2.2 Web Services building blocks (dynamic view) [ZTP03] . . . . . . . . . . . . .6

3.1 Schematic Diagram of infoAsset Broker [inf05] . . . . . . . . . . . . . . . . .12
3.2 Processing user request in the infoAsset Broker [Weg00] . . . . . . . . . . . .13
3.3 Schematic Composition of the infoAsset Broker Architecture [inf03] . . . . . .15
3.4 Detailed Architecture of the infoAsset Broker [inf03] . . . . . . . . . . . . . .16

4.1 Architecture of GovernmentGateway [Dat04] . . . . . . . . . . . . . . . . . .19
4.2 Use cases of the Web Service Development Portal . . . . . . . . . . . . . . . .21
4.3 Class Diagram Asset, AssetType [Weg02] . . . . . . . . . . . . . . . . . . . .23
4.4 Class Diagram of basic Document Asset . . . . . . . . . . . . . . . . . . . . .24
4.5 New Class Diagram of Document Asset . . . . . . . . . . . . . . . . . . . . .26
4.6 State Diagram for Document State Model, part 1 . . . . . . . . . . . . . . . .27
4.7 State Diagram for Document State Model, part 2 . . . . . . . . . . . . . . . .28
4.8 Activity Diagram for Workflow of “Fachliche Leitstelle” . . . . . . . . . . . .29
4.9 Activity Diagram for Workflow of normal infoAsset Broker user . . . . . . . .30
4.10 (Part of the) Conceptual Datenmodel in the infoAsset Broker [Mat03] . . . . .32
4.11 New document created with “Unpublished”Document State . . . . . . . . . . .36
4.12 New document with the Document State “Applied for publishment” . . . . . .36
4.13 “Fachliche Leitstelle”receives a new notification . . . . . . . . . . . . . . . . .37
4.14 Notification on new document applied for publishment . . . . . . . . . . . . .37
4.15 Detail page of the new document viewed by “Fachliche Leitstelle” . . . . . . .38
4.16 Denial reason of document publishment by the “Fachliche Leitstelle” . . . . .38
4.17 Document published . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.18 Document with State “Waiting for publishment” . . . . . . . . . . . . . . . . .39
4.19 Extended architecture of the inforAsset Broker . . . . . . . . . . . . . . . . .41

iii



Chapter 1

Introduction

Since the beginning of 2004 Dataport [Dat05] has become the official IT service provider for
the government Hamburg and Schleswig-Holstein. The information and communication ser-
vice areas of Dataport are: IT consult for equipment, planning, data protection and IT security,
application development for city governments and communes, computer center provider with
different platforms with high availability, system management, IT support for office work, net-
work infrastructure, network management, internet services like planning, realisation, hosting,
firewall and E-Mail service, telecommunication services, etc.

One of the most active areas of Dataport is the GovernmentGateway, which has already become
a productive field since 2003. The GovernmentGateway plays the role as a bridge between the
governments, citizens and companies. It acts as a Gateway and provides the citizens and com-
panies access of various online services and applications. For increasing the interoperability,
Web Service is used between the Inter-/Intranet and the backend.

Dataport has many Gateway application developers, not only developers from Dataport itself,
but also developers from customers, who develop client applications for interacting with ser-
vices provided by Dataport, i.e. client applications for Web Services. Since developers are
at different locations, it is necessary nowadays to provide a central point for supporting in-
formation exchange among all those developers. Because of the large number of service fields
provided by Dataport, it is important to manage those huge amount of information in art of doc-
uments, code examples, interface descriptions and database backups for sharing and retrieving.

As a solution for providing a central point, a Development Portal should be build. This Bache-
lor Thesis covers this project as a case study.

1.1 Objectives and Goals

As an initial idea, Dataport has suggested to build a UDDI management system as a portal. But
the goal of the portal is not only publishing Web Services, but also the management of all Web
Service related documents. More important is the requirement, that the dependencies between
documents should be traceable, which means, the portal should be able to dealing with seman-
tic relations between documents. Therefore, a portal, which provides document publishment,

1



document management and document retrieving with the option of tracing document depen-
dencies, is more comprehensive as a single UDDI management system.

The goal of this thesis is to design and build such kind of portal for the company Dataport. The
portal will be generally used as a Document Management Portal, which will also be integrated
into the GovernmentGateway for providing various information later. The major user groups
of this portal are both internal and external developers from Dataport, who are going to deposit
and share Web Service related documents (text documents, program source code, binary files,
etc.) in the portal, which is so-called Web Service Development Portal.

1.2 Structure of the Work

The structure of this thesis is described as follows:

Chapter two will provide the detailed motivation of this project followed by a general overview
of Web Services, required core functions and realisation ideas of this Web Service Develop-
ment Portal.

Chapter three deals with the standard architecture of the information portal platform infoAsset
Broker and its core functions.

Chapter four will describe the analysis, design and implementation of the Web Service De-
velopment Portal. The major focuses of this project will be described in detail. A general
overview of the GovernmentGateway will also be briefed. At the end of this chapter, a short
evaluation of the implemented Web Service Development Portal will be provided.

Chapter five, the final one, will summarize the entire work and provide an outlook for the future
development.

2



Chapter 2

A Web Service Development Portal

Since years, Information technology support can be found in almost every part of the civil ser-
vice in government area. After the born of the electronic Government, citizens and companies
are given the chance to join the public administration work from the government through all
kinds of electronic median over the Internet or Intranet. One example here is: citizens can
register/edit their resident status directly over the online GovernmentGateway of Hamburg. An
electronic payment system is also integrated into the GovernmentGateway, so that people can
conveniently pay the service fee online. Another example is: companies, who would like to
retrieve information on the real-time ship position at the Hamburg harbour, can buy that infor-
mation from the GovernmentGateway over the Internet or Intranet. With all those IT solutions,
the cost of such public administration will be reduced and the communication between citizens,
companies and the governments will be raised to another higher level.

To realise those solutions, we need portals, because portal is an union of information presen-
tation and application from the Internet and Intranet. As we are living in the time of the Web
Services and trying to solve IT interoperability problems, portals that support Web Services are
more than welcome. In this chapter I will introduce this bachelor project on building a Web
Service Development Portal that will be integrated into GovernmentGateway later.

2.1 Motivation of the Web Service Development Portal

In order to raise the level of the automation of all kinds of services or working processes, elec-
trical documents are used in almost every field. During the processing and managing of the
electrical documents, traceability and legality are very important in this area, thus, a portal for
appropriate deposition and archiving is indispensable.

Developers from Dataport and its customers are distributed in several offices and two fed-
eral states, the portal should meet the needs of distributed documents sharing and exchanging.
Since a portal is an aggregation of presentation of information and application in the Inter-
net, Intranet and Extranet, a document management portal is a suitable interface between the
customers and the providers. As mentioned in chapter one, the portal will be integrated into
the GovernmentGateway, therefore, interoperability turns out to be a necessary point and a
document management portal with Web Services support will be the best choice to reach the
requirements of this project.

3



2.2 Web Service Introduction

In the E-Business world there is a basic scenario: a provider offers a service to a customer,
with which the customer should make a Remote Procedure Calls (RPCs) against an object over
Internet, Intranet or Extranet. At the time as the eXtensible Markup Language (XML) has
not established yet, sending such kind of calls is depending on the platform of the provider,
for example: Distributed Component Object Model (DCOM) can only be used for windows
platform, Remote Method Invocation (RMI) can only be used under Java Runtime Environ-
ment, etc., which means, customer might have to use some kind of “middle man”to build up
a communication channel between two applications based on different platforms. But this has
been changed since XML came up to the stage, because XML is a standard language that is
supported by almost all kinds of platforms. Therefore after the XML-based Web Services be-
gan its arena, together with other platform-independent standard technologies like HyperText
Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL) and Universal Description, Discovery and Integration (UDDI), it’s a whole
lot easier to set up cross-platform communication. This chapter is going to give some basic
ideas on the Web Service technologies.

2.2.1 What are Web Services

Some of the definitions of the Web Service are:

A Web Service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards [Con04].

A Web Service is a service that communicates with clients through a set of standard protocols
and technologies. These web services standards are implemented in platforms and products
from all the major software vendors, making it possible for clients and services to commu-
nicate in a consistent way across a wide spectrum of platforms and operating environments
[Ort05].

A Web Service implements an interface that describes a collection of network-accessible oper-
ations through standard XML messaging [ZTP03].

A Web Service is a collection of protocols and standards used for exchanging data between
applications or systems [Wik05].

So basically, the Web Service is a service, which is based on XML technology combining with
lots of standard protocols and growing technologies, its idea is to use those well-established
and proven concepts to increase the interoperability between different applications on different
systems.

4



2.2.2 Architecture of Web Service

In the Web Service architecture there are some roles can be defined:

The service provider offers Web Services on the Internet, Intranet or Extranet. The services
will be described in the WSDL, which provides a standard interface for the communication. If
the provider want to let more requestor to find/reach the services, then the Web Services should
be published to a public discovery agency.

The service requestor or service consumer will look for Web Services offered by service
provider or search by the discovery agency for certain Web Services. They will become all
needed information from the exposed WSDL on how to bind to the service provider and how
to invoke the Web Services.

A discovery agency offers a repository for the service providers to register their Web Services,
therefore the service requestor can search through the repository and retrieve the desired infor-
mation on the Web Services.

WSDL

interface

binding and 
implementation

Discovery 
Agency

UDDI
WSIL

UDDI / SOAP
Inquiry API

UDDI / SOAP
Publish API

Service Requester Service Provider

SOAP / HTTP or other Transports

XML Namespaces XML Schema

XML Foundation

Figure 2.1: Web Services building blocks (static view) [ZTP03]

As we can see in figure 2.1, the WSDL is the key element in this picture, it provides a model
and a XML format for describing Web Services. WSDL enables one to separate the description
of the abstract functionality offered by a service from concrete details of a service description
such as ”how” and ”where” that functionality is offered.

WSDL describes a Web service in two fundamental blocks: one abstract and one concrete.
At the abstract level, WSDL describes a Web service in terms of the messages it sends and
receives. Messages are enclosed in some Operations. Datatypes are defined which will be used

5



in the messages. At the concrete level, a binding specifies transport and wire format details
for one or more interfaces. An endpoint associates a network address with a binding. And
finally, a service groups together endpoints that implement a common interface. For a detailed
introduction, please visit [Con05a].

The underlying communication protocol between requestor, provider and discovery agencies is
SOAP. SOAP is a standard protocol used to exchange information between applications regard-
less of the object models, programming languages and operation systems. SOAP uses XML
messaging type and by far in Remote Procedure Call (RPC) format.

SOAP is a lightweight protocol intended for exchanging structured information in a decentral-
ized, distributed environment. It uses XML technologies to define an extensible messaging
framework providing a message construct that can be exchanged over a variety of underlying
protocols. The framework has been designed to be independent of any particular programming
model and other implementation specific semantics [Con03].

The discovery agency uses UDDI or Web Service Inspection Language (WSIL) to offer the
repository for the provider. UDDI defines a structure for the registry, together with a publish-
ing and an inquiry Application Programming Interface (API) for accessing the registry. WSIL
is a lightweight alternative to UDDI.

UDDI represents a set of protocols and a public directory for the registration and real-time
lookup of Web services and other business processes. In many ways, UDDI models a “White
Pages”, providing a listing of services available within a network [Wav04]

Service
Requestor

SOAP
Runtime

Any
Transport

DA
(UDDI, WSIL)

WSDL Any
Transport

SOAP
Rntime

Service
Provider

Backend

create

obtain

develop

deploy

publish
find

get

develop

deploy

invoke

Figure 2.2: Web Services building blocks (dynamic view) [ZTP03]

In figure 2.2, the interactions between all the components are described in a UML sequence
diagram. As we can see, communication between service requestor and service provider in
the A2A solution is via XML document exchange over Hypertext Transfer Protocol (HTTP).
Hence, there is no human-to-machine interface at all and totally independent from the backend
platform.

6



2.3 Core Functions of the Web Service Development Portal

A portal system for document management should be build, which will be integrated into the
GovernmentGateway later and will also be used in other development projects. The Devel-
opment Portal should provide an aggregation of necessary information for all participated de-
velopers, whereas the traceability and legality must be ensured, hence, not every participant
is allowed to access everything. Since the access of the Development Portal come from both
Intranet and Internet, the GovernmentGateway should be used as the interface between the In-
ternet access and the Development Portal. Advantage of this idea is: the proved authorization
system of the GovernmentGateway can be used as the authentification mechanism for the De-
velopment Portal dealing with users from the GovernmentGateway.

The access (which is the read-access) of the Development Portal from Internet will be provided
over the GovernmentGateway. The access (which is the read-/write-access) of the Development
Portal from Intranet will be provided over a login-system from the Development Portal itself.
Access over GovernmentGateway will be authenticated by the Gateway, whereas the available
user-role will be carried forward and observed. A Web Service interface will be realised for
the information presentation from the Development Portal over the GovernmentGateway.

The Authorisation Concept should be designed as flat as possible for later extension. The
read-access shall be based on the document-level and the write-access shall be based on the
directory-level. Which means, that every single document should be able to be granted with
read-access to users (user group), no matter whether the user group is new or not.

Content dependencies and relationships between documents, especially between programming
code documents, should be presented with hyperlinks, through which an overview of the de-
pendencies and relationships can be provided as well a tracing function can be realised.

Documents in the Development Portal should not be deleted, instead of deletion, the docu-
ments should be able to be deactivated. Deactivated documents will not be shown in normal
utilisation, so that the view of documents can be reduced of the most important documents.
Deactivated documents though should be hyperlinked and be traceable.

A subscription service should be realised in the Development Portal, so that the users can be no-
tified if new documents are deposited or any modification are made on the documents, whereas
the users shall subscribe for those documents they are interested in.

The quality of documents in the Development Portal will be controlled. This will be reached
through a special user group in the Development Portal, called “Fachliche Leitstelle”, which
is a professional controller group. Developers create new documents, modify documents or
apply deactivation of documents, a request on the “Fachliche Leitstelle”will be followed. The
“Fachliche Leitstelle”will then decide if the documents can be published or the authors of the
documents should make some further modification on the documents. In the second case,
modification advices will be sent back to the developers. In the first case, the “Fachliche Leit-
stelle”will change the state of the documents, which means, the new documents will be pub-
lished, new version of a document will be published (which cause the old version of document
to be deactivated) or a document will be deactivated. The “Fachliche Leitstelle”at this place

7



can only change the state of the document but not the Meta-Data of the documents themselves.

Developers should also be able to search the documents. Documents can be searched by cat-
egories, keywords and classification, etc. as well as with full text search. Deactivated doc-
uments will not be included in the normal search process, but those will be included in the
detailed search process. Documents version should be shown in the search result to keep the
new version of documents traceable.

2.4 Implementation Choices

As realisation solution there are many successful portal software in the market, such like:
Plumtree Corporate Portal from Plumtree, Microsoft Sharepoint Server 2003 from Microsoft
and infoAsset Broker from infoAsset AG. Now i will introduce these three portals shortly and
our choice of solution comes after that.

Plumtree, Plumtree Corporate Portal, Search Server

The Plumtree Corporate Portal brings together people, processes and systems into compos-
ite applications, indexes and organizes content, and rationalises security and user informaiton.
The portal hosts the user experiences of composite applications, as well as the administration
framework. The architecture of the portal, alone in the industry, is entirely based on Web Ser-
vices.

Plumtree Search Server indexes all of the resources accessible through the portal pages, com-
munities and web applications deployed across the enterprise. These resources include:

• content indexed from file systems, web sites and document databases

• project documents and web pages created and stored by Plumtree Collaboration Server
and Plumtree Content Server

• applications, portlets, communities and users

With Search Server, portal and application users can access a wide expanse of content, services
and people in a single stroke, and the organization does not have to maintain separate indexes
for portal, collaboration and content management products. [Plu05]

Microsoft, SharePoint Portal Server 2003

Microsoft SharePoint Portal Server 2003 enables enterprises to develop an intelligent portal that
seamlessly connects users, teams and knowledge so that people can take advantage of relevant
information across business processes to help them work more efficiently. SharePoint Portal
Server 2003 provides an enterprise business solution that integrates information from various
systems into one solution through single sign-on and enterprise application integration capabil-
ities, with flexible deployment options and management tools. The portal facilitates end-to-end
collaboration by enabling aggregation, organization and search capabilities for people, teams
and information. Users can find relevant information quickly through customisation and per-
sonalisation of portal content and layout, as well as by audience targeting. Organizations can

8



target information, programs, and updates to audiences based on their organizational role, team
membership, interest, security group, or any other membership criteria that can be defined.

SharePoint Portal Server 2003 enables a single point of access to multiple systems such as Mi-
crosoft Office System programs, business intelligence and project management systems. The
portal, built on a scalable, highly distributed architecture, provides flexible tools for deploy-
ment, development and management, all of which enable the portal to grow with the organi-
zation’s needs. These integration features enable customers to harness information to make
use of their company’s resources. Users can extract and reuse timely and relevant information
from systems and reports, and quickly locate and access documents, projects, and best practices
across the company. The portal features search technology developed by Microsoft Research
that enables users to search file shares, web servers, Microsoft Exchange Server public fold-
ers, Lotus Notes, and Windows SharePoint Services sites out of the box. In addition, user can
organize documents and information by topic and browse for relevant content. Alerts notify
users when new information is added or existing information changes to help users better use
the data. [Mic05].

infoAsset AG, infoAsset Broker

The infoAsset Broker is a platform independent server software that is a pure Java-2 product,
which can use various file systems, database systems or content management systems as infor-
mation depository.

The data, business logic and presentation layers are strictly separated. A Web Service inter-
face is supported, which allows users of GovernmentGateway to authenticate themselves and
retrieve information from the broker. With the Web Service interface it enables the infoAsset
Broker to act as a backend information service and other web servers to take over the presenta-
tion layer.

Documents in the infoAsset Broker can be bidirectional linked, through which the knowledge
base and semantic relation can be presented over these hyperlinks. The built knowledge base in
the infoAsset Broker is visualised through Java Applet, and works also as part of the navigation
system. Such kind of hyperlinked knowledge base is almost indispensable in a portal where
the complexities of the information relationships are really high.

The requirement on a controller user group, the “Fachliche Leitstelle”, is also realised in the
infoAsset Broker. This “Fachliche Leitstelle”controls the state changes of documents, which
include acceptance or denial of publication of new documents and new versions of documents
or deactivation of documents. In case of a denial action, the “Fachliche Leitstelle”will send a
feedback to the author of the document with reasons of denial and advices. New documents in
the infoAsset Broker can be automatically published at a given time in the future, only if the
document is proved by the “Fachliche Leitstelle”.

Old or useless documents in the infoAsset Broker can be deactivated, through which those
documents will not be listed in the active directory. Those deactivated documents that do not
have any follow-up new versions can still be found through search function by searching after
historical documents. Those do have sequel versions can also be traced through the hyperlink

9



of historical documents of the new versions.

Subscription service is also provided in the infoAsset Broker, with which the users of the
Broker can trace the changes on documents they are interested in. Subscribed users will re-
ceive notifications when changes are made to the documents. User can choose how often they
want to be notified, provided time intervals are: immediately, daily, weekly or monthly. Noti-
fications can be retrieved directly in the infoAsset Broker user interface, they can also be sent
in E-Mail format at selected time interval.

The authorisation system in the infoAsset Broker is flat and flexible, which is also based on
document level. This allows the infoAsset Broker to be extended in future demands.

2.5 Summary

All three systems have their basic strength: modeling of business processes, user and user role
management and document management. All three systems have also their own templates sys-
tem, with which the presentation layer can be adapted in customer’s way.

The Plumtree Portal Server has a separate searchmachine, whereas a searchmachine with com-
plete functionality are fully integrated in both Microsoft SharePoint Server and infoAsset
Broker. Documents in both systems can be classified and categorized with keywords.

Among those three systems, only the infoAsset Broker provide the function of a controller user
group, which is called “Fachliche Leitstelle”, through which the document publication and de-
activation will be controlled.

The critical point for choosing a platform is the integration into the GovernmentGateway. The
authentification over GovernmentGateway is strong necessary, only then can the existed and
proved authorization and privacy protection concepts for external customer of the Govern-
mentGateway be taken over.

Above are three main differences between these three systems. As we can already see, only the
infoAsset Broker meets all the requirements of this project. To choose infoAsset Broker as the
realisation platform is therefore the final decision.

In the coming chapter three, I will introduce you more details of the infoAsset Broker.

10



Chapter 3

The infoAsset Broker

The basic motivations of the infoAsset Broker are based on problems from using and organizing
company knowledge resources. Those problems are:

• Explosive growth of knowledge and content Assets

• Documents and Data in the Intranet are deposited on different servers at different places,
which leads to a complex administration with higher costs

• In most cases there are no sustainable documentation systematices, neither is the reposi-
tory transparent enough

• Hierarchical data repository is not scalable with more complex content assets

• Access authorisation is not transparent, which is difficult to administrate

• Persons who have the know-hows are not identifiable

These problems result in:

• Existing knowledge resources are not used efficiently

• Neither completeness nor relevance are provided by information retrieval

The infoAsset Broker is an enterprise information portal platform for knowledge management,
which is a platform-independent server software for the construction of personalized content
portals for the Internet as well as corporate knowledge and information portals used in cor-
porate Intranets. It provides interactive knowledge maps, integrated document management,
skill management functions, automatic classification of documents and notification service de-
pends on personal interest as well. File systems, databases or content management systems can
serve as information repositories. A combination of these repositories can be used according
to customer needs [inf05]. With these features, problems briefed above are solved. An overall
schematic diagram of infoAsset Broker is shown in figure 3.1.

The following text describing Concepts, Basic System and Core Functions of the infoAsset
Broker are based on the original german text from [inf05].

11



Figure 3.1: Schematic Diagram of infoAsset Broker [inf05]

3.1 Concepts Introduction

Unified Asset Management
All information objects in the infoAsset Broker, for example, concepts, documents, directo-
ries, persons, groups, projects, are all concerned as ”Asset” consistently. This concept makes
it possible, that all the generic functions of the infoAsset Broker can be applied to all Assets,
regardless what type of information object the Asset is. Those generic functions are for exam-
ple: searching, hyperlinking, classification and event-based notification service.

Unified Link Management
All the Assets in the infoAsset Broker can be crosslinked. The Knowledge-Map and the seman-
tic relationship between Assets can be presented easily over the hyperlinks. The Unified Link
Management concept enables the heterogeneous link collection and tracing of information, no
matter the information is popular or not.

Separation of Content and Layout
The Template-Technology in the infoAsset Broker supports a clear separation of processing-
logic, contents and layout. Dynamic generated WML-/HTML-pages will be applied with a
standard layout, besides, this Template-Technology also enables the client-specified customi-
sation.

Placeholders are used in the Template-Technology for placing dynamic contents, the dynamic

12



contents are provided by the associated Handler. Handlers coordinate the user requests and
the responsible business processes. Incoming user requests are dispatched to different Han-
dlers. Each Handler can handle some specific request types, and start some related business
processes. When the processes are done, the response will be sent back by Handler using the
Template Engine. Figure 3.2 shows the processing of a user request.

Figure 3.2: Processing user request in the infoAsset Broker [Weg00]

Open Customisation of Information Objects
The schema of information objects for modeling Assets is flexible, the structure can be cus-
tomised on demand of the client.

Open System Interfaces
The interfaces of the infoAsset Broker standard software are open over all the system layers,
which enables a high extensibility in scope of Services, Tools and Content Management.

Object-Oriented Programming
The infoAsset Broker uses exclusively modern Object-Oriented Modeling Methods in design-
ing information structure, business logic and interfaces.

Easy Customisation
The infoAsset Broker is a generic standard software, and is applicable out of the box. Its simple
customisation mechanism provides an efficient platform for creating client-specific portals.

13



3.2 Basic System Description

The infoAsset Broker is a consolidated tool for utilising heterogeneous knowledge resources
in the corporation. With its Unified Asset Management, the infoAsset Broker integrates doc-
uments, persons, concepts and rating etc. together in one user interface, therefore it accesses
different data sources like file systems, databases or content management systems.

To utilise bulked information assets, thematic classification of the knowledge is needed. With
the infoAsset Broker can corporation-wide Taxonomy be created and managed. Terms and
concepts will be presented in a Knowledge-Map graphically and interactively. The Knowledge-
Map provides a structured and transparent presentation of the knowledge resources, with which
direct navigation over terms or concepts to information assets and know-hows is made possible.

The integrated Document-Management-Functions in the infoAsset Broker enables for example
Versioning, Publication and Classification of the normal Office-Documents. Documents in the
infoAsset Broker are hyperlinked with the authors of the documents, therefore, a bridge be-
tween explicit knowledge and personal experiences (implicit knowledge) is build, as a result,
knowledge can be discovered more effectively.

An useful Skill-Management is also build in the infoAsset Broker, so that the know-how porters
can be found quickly.

Groups can be created and managed easily in the infoAsset Broker. Groups have their own ac-
cess rights and are administrated decentrally, which reduces administration expenses at a high
level.

The access protection in the infoAsset Broker is based on the Group Memberships and Roles,
which assures the integrity of all the information objects as well as the collaboration with ex-
ternal partner, who can be granted access to certain part of the enterprise information portal.

3.2.1 Architecture of the infoAsset Broker

As an enterprise information portal, the infoAsset Broker is build completely in Java-2. It
provides the user the access to the portal through different kinds of end devices, for example:
Web-Browser, WAP-Handys, PDAs with WAP/Web-Browser etc.

The infoAsset Broker is build consequently after Client-Server-Architecture, which ensures the
scalability of the system. Figure 3.3 shows the schematic composition of the infoAsset Broker
architecture.

The clients of the infoAsset Broker communicate with the Broker Server only through HTTP-
Request and HTTP-Response, so that the communication is also possible over firewall. The
interactive Knowledge-Map of the infoAsset Broker needs Java in Web-Browser to be enabled,
besides, the Web-Browser should also be able to process JavaScript. Some supported Web-
Browser are for example: Netscape (6.1+), Microsoft Internet Explorer (5.0+), Mozilla (1.0+)
and Opera (6.0+).

14



Figure 3.3: Schematic Composition of the infoAsset Broker Architecture [inf03]

Recommended Server Platform are for example: Sun Solaris, HP-UX, Linux, Windows NT,
Windows 2000 Server, Windows 2003 Server. Supported repositories are for example: Oracle,
IBM DB2, MS SQL Server and MySQL. (All support fulltext search).

Another detailed Architecture of infoAsset Broker will be shown in figure 3.4:

3.2.2 Core Functions of the infoAsset Broker

Documents: collection and distribution of explicit knowledge
Multimedia-based documents, such as MS Word-Documents, images or video-clips, can be
uploaded onto the infoAsset Broker and become accessible.

The integrated Document-Management-Functions include full-text search, metadata-search,
versioning, publication and auto-categorisation by means of the Knowledge-Map.

Personal- and group-profile: description of implicit knowledge porter
The infoAsset Broker manages standardised and detailed personal-profile for users, anonymous
guest-users, colleagues, customers, etc.

The visibility and the level of detail of the personal-profiles in different groups can be adjusted
separately.

The Group-Management supports the presentation of areas, departments, project groups, com-

15



!"#$%&&'()*+$,'+)%+-.!(',(/+ 0 !"#$%&&'(1%213443 ) 5

!"#$%&'(!"#$%&'(!"#$%&'(!"#$%&'())))*'+,-$(.$/'01(20*'+,-$(.$/'01(20*'+,-$(.$/'01(20*'+,-$(.$/'01(20
-3#"*22($04'".('20-5067('78-+.09:;-3#"*22($04'".('20-5067('78-+.09:;-3#"*22($04'".('20-5067('78-+.09:;-3#"*22($04'".('20-5067('78-+.09:;

!"# $%&'() *+, -.() ///

012%)

31.( !'&() 4&%0)% ,&.( 51)%&12% ///

+00)1
+00)1

6271&.7)%
829&.7 4)%027 ///0)%:.')0 !)%:.')0

0)00.27

;&7<()%

0)%:)%

8.0=&1';)%

>)?!)%:)%

!)00.270 !)00.27
@)7)%.'
A&7<()%

B)9=(&1) ///

ABB4
*)C3)01

6271)71
,&7&D)%

6271&.7)% 6271)71"3)%E

F30.7)00
$?G)'10

4)%0.01)7')
+?01%&'1.27

8.&(2DHI
>2%JK(2L
,&7&D)9)71

!"#$
%&'()*+,'-.

/,,)

'30129.M&1.27

)01)'0,#'-2,3,/+$4*'02,3,

.71)%K&')0 F30.7)00H+45

/// ///

62%)
,)<.&

Figure 3.4: Detailed Architecture of the infoAsset Broker [inf03]

munities of practice, etc.

The granting of authorisation is based on groups, which means, the user owns the combined
authorisation of all the groups, in which the user has the membership.

Personal data, registration information and group membership can be exchanged with other
systems over LDAP (Lightweight Directory Access Protocol) optionally.

Concepts and Knowledge-Map: Structuring of Knowledge
The corporation-terminologies will be collected structured using the concepts in the infoAsset
Broker.

Concepts and their relationships build up the Knowledge-Map, which is a binding taxonomy
for the classification of the information objects.

Starting from just one concept, user can be guided systematically to further relevant informa-
tion, for example, knowledge porters and documents etc.

Community-Functions: Support of Teamwork
Topic Discussion-Forum and Online-Chats are provided for direct knowledge exchange. E-
Mails, MS Netmeeting and AOL Instant Messenger are integrated as well.

Personalised Services
Personal folders are offered for collecting, on-going working and rating of information objects
in any format.

Personalised rating system is useful by sorting documents after personal rating, which raises
hit-relevance of the search results.

16



Subscription Service and Alerting Extension
Users of the infoAsset Broker can subscribe to Assets (documents, persons, topics and groups)
they are interested in, so that they can be notified whenever there are changes be made on those
subscribed Assets through the Alerting Extension.

The Alerting Extension arranges an individual, automatic notification service for creation,
modification and deletion of the Assets. Users are allowed to choose when they want to be
notified and in what kind of format, they can choose daily, weekly or monthly notification, and
in online message report, E-Mail bulked report or sms report formats.

3.3 Summary

In this chapter i have introduced the concepts of the infoAsset Broker Enterprise Information
Portal, its architecture of the basic system and some core functions of the system. Besides
those core functions described above, there are some more advantages of the infoAsset Broker:

• Skill Management and Document Management are integrated and linked to each other,
it is easily enough to traverse from topics to documents and know-how porters.

• With the uniform search, different information objects can be searched from file systems,
databases, content management systems and discussion forums at the same time.

• Departments, project teams and knowledge groups can define their own areas in the
infoAsset Broker and administrate the areas by themselves.

• Part of the infoAsset Broker can be activated for external users, for example corporate
partners, supplier, etc.

• Selected contents can also be transferred offline to CD-ROM for customers.

• The open API (Application Programming Interface) allows the great possibility of ex-
tensibility.

As mentioned in chapter two, key advantages of the infoAsset Broker for applying to this
project are the Unified Link Management, the visualised navigation system upon Knowledge-
Map, personalised notification service, access controlling on document level, possibility of
easy integration into other systems and the great possibility of extensibility.

Provided the open extensibility, the infoAsset Broker will be modified for integrating into Gov-
ernmentGateway over Web Service Interface. The development of this project will be intro-
duced in detail in the coming chapter four, whereas the detailed describe over the extension of
Web Service interface will be found in the Bachelor Thesis from Helge Klimek [Kli05].

17



Chapter 4

Design and Implementation of the
Web Service Development Portal

In this chapter the whole development process of this project will be covered and explained in
detail.

The first part of the development process is the requirements analyzing. The user requirements
and system requirements will be defined. A general overview of the GovernmentGateway ar-
chitecture will be given here, so that a final vision of this project can be described. According
to these requirements, an Use Case Diagram will be introduced and explained.

In the second part the design depends on requirements will be given, this includes the document
model, document state model, document publishment workflow according to the Use Case, the
extended notification service and the authorisation concept for accessing documents.

How these designs are realised, will be covered in the last part. Modification on the infoAsset
Broker basic system will be introduced. Integration of the document authorisation into the
infoAsset Broker will be explained. And at last, the integration of the Web Services Interfaces
will be shortly briefed and some references of more details will be given. An evaluation of the
implemented portal will close this chapter.

4.1 Analysis of the project

The GovernmentGateway provides a central access to the Management-Softwares from the
company Dataport. The basic idea is to offer a centralised infrastructure, so that different
methods can be used from a centralised point. In this analysis section, the architecture of the
GovernmentGateway will be shortly briefed, followed by a detailed description over the iden-
tified Use Cases in the Web Services Development Portal.

18



27.08.20052 Dataport

DMZ A DMZ BInternet Intranet

Web-Farm

BM

App.-Server

SQL-Server

Cluster

FV Zos

FV Unix

FV WIN

FV......

Unternehmen

Ext. Behörden

Bürger

Figure 4.1: Architecture of GovernmentGateway [Dat04]

4.1.1 General overview of the architecture of the GovernmentGateway

Most of the civil services are based on different applications on different operation systems.
The idea of the GovernmentGateway is to make the existing applications reusable for the
E-Government. In order to realise this idea, the standard Web Services technologies like
SOAP/XML are used for accessing those applications without changing the existing processes.
The concept can be adopted under Windows, UNIX and z/OS operation systems.

Another character of the GovernmentGateway architecture is the asynchronous connection to
the case procedures. Data objects do not need to be mirrored or synchronized, which not only
increases the security level, but also makes the maintenance of the back-end easier. The citizen
becomes the response normally right after the request is sent. If the service is not available or
the request is being processed in the processing cue, E-Mail will be sent later to the customers
when the result becomes available. The customers can retrieve the result from their mailbox
at the GovernmentGateway over a secured SSL (Secured Socket Layer)-connection at any time.

As we can see in figure 4.1, the GovernmentGateway has adopted a layered architecture. The
presentation layer can be accessed over the Internet with almost all kinds of end devices, cus-
tomers here could be normal citizens, corporations and other public authorities. Between the
first and second firewall is the area of DMZ (Demilitarized Zone)-A, in which all the Web
Servers for the presentation layer are located. The application layer combined with database
layer reside in the DMZ-B between the second and the third firewall, interfaces, basic Gateway
functions, business logics, case-dependent procedures and database-cluster are located in this
layer. The last layer is behind the third firewall, in which all the back-end case-dependent pro-
cedures can be found.

19



An advantage of the GovernmentGateway is that the customers can access all the Internet ser-
vices from the cities, communes and communities at one point with one design. The customer
need only register for the GovernmentGateway once, and then can access all the services that
are relevant.

The result of this project, the Web Service Development Portal, will be settled in the back-end
area, as one of the case-dependent procedures. As mentioned in the last chapters, the access to
this case-dependent procedure will be realised over Web Services (SOAP Calls).

4.1.2 Use cases of the Web Service Development Portal

Use Case is a method for describing potential system requirements. Each use case provides
one or more scenarios that define how the system should interact with the end user or another
system to achieve a specific business goal.

Before creating Use Cases of the Web Service Development Portal, some basic actor groups
are identified:

• Basic Architecture Developer, who provide resources such as binary files or documenta-
tion for Gateway Procedure Developers (Developers that are responsible for case depen-
dent procedure of the GovernmentGateway).

• Gateway Procedure Developer, who provide resources like know-how for other Gateway
Procedure Developer.

• Web Services Standard Developer, who publish Standards, Styles and write Web Ser-
vices.

• Web Services Developer, are those internal developers, who write Web Services and also
provide documentation, know-how and source codes.

• Web Services Provider, who provide Web Services interfaces. Other developers can write
application depends on the published Web Services interfaces.

Part of these user group (Developers) are Client Developers from corporations, they use Web
Services for retrieving data from the Government and process data for further purposes.

These basic actor groups can be generalised into two Use Case actors, Document-Provider
and Document-Subscriber. The functional differences between the basic actor groups will be
differed through the User Roles. The generalisation makes it possible to leave the user group
structure flat, therefore the extensibility is provided.

20



Now let us take a look at the Use Case Diagram given in figure 4.2.

Figure 4.2: Use cases of the Web Service Development Portal

Document Feeding
Document-Provider creates new documents, in which the target user groups will be defined, so
that only the target user who owns the specified user roles in the target user groups can access
the documents. The special user group “Fachliche Leitstelle”will prove the new documents
before publishing.

In order to enrich the possibility of document retrieving, some methods are used in the infoAsset
Broker: documents will always be provided with meta-data, keywords can be associated to
documents, documents will be full-text indexed, documents can be associated with other doc-
uments, directories can be created for containing more documents.

Document Modification/Updating, Deactivation
Document-Provider who feeds new documents into the infoAsset Broker, is the owner of the
documents, which means that he can edit the documents (creates a new version of the docu-
ments with the modification) later. As rules defined, publishing a new version of document will
be proved by the “Fachliche Leitstelle”.

Since the documents should not be physically deleted from the system, documents that are
out-of-date can be deactivated. Deactivated documents can still be found through the extended
search function. Document-Provider (document owner) can apply for the deactivation, which
will have to be adjusted by the “Fachliche Leitstelle”.

Historical Document
Modification on document results in publishing a new version of the document, the meta-data
will be overtaken and the old version will be moved to the history-directory of the document.
The new version of the document will be indicated with a “Current”tag and always be shown
at the first, vice versa, the old version will be indicated with a “Historical”tag and can only be

21



retrieved over extended search function.

Document Retrieving
Document can be retrieved through the integrated search function or over the Knowledge-
Map. With the integrated search function, full-text indexed document can be searched through,
document can also be searched after meta-data. By traversing through the Knowledge-Map,
semantically associated documents can be found. Depending on user roles, search result will
be filtered.

Using Document
After retrieving the document, document information can be read online, attached files can be
downloaded.

Receiving notification on modification
User can subscribe to the Notification Service of the document, so that if any modification is
made to the document, the user can be notified.

Managing Document-Provider
Document-Provider will access the infoAsset Broker directly at the back-end. The special user
group “Fachliche Leitstelle”manages the Document-Provider and grant them certain user roles.

Managing User Roles from Document-Subscriber
Document-Subscriber access the infoAsset Broker over the GovernmentGateway, the User
Roles owned by the Document-Subscriber will be taken along. Those User Roles will also
be managed by the “Fachliche Leitstelle”.

4.2 Design for the Development Portal

According to the requirements of the project and analysis over the Use Cases, certain design
should be made based on the infoAsset Broker basic system, which include document model,
document state model, workflow of document publishment, extended notification service and
document authorisation concept. In this section, these designs will be described in detail.

4.2.1 Document Model

The Information Asset from the infoAsset Broker basic system has the following key characters
(following text are based on [Weg02]):

• Every Asset has one AssetType, which is not changeable after creation. The AssetType
will identified through its name, for example “Document”.

• Every Asset has its unique AssetId after creation. The AssetId will be used as a pri-
mary key in the relational model and will be generated random. An Asset is therefore
system-wide identifiable through the combination of AssetType and AssetId, for example
“document/klain3siam9”.

22



• Every Asset has a changeable name besides the AssetId. For Example a document will
be identified through its title.

• Besides default Attributes like “Name”, Asset has certain other Attributes and Relation-
ships to other AssetTypes, which are defined by its AssetType and Conceptual Model.

• Every Asset has an Attribute that indicates the last modification timestamp.

For managing Assets in the infoAsset Broker, AssetContainer are used for every type of As-
set. Functions provided by AssetContainer are creation, indentification, existence-proving and
destroying of Assets of each AssetType. The concept of Asset, AssetType and AssetContainer
will be shown in the figure 4.3.

Figure 4.3: Class Diagram Asset, AssetType [Weg02]

The main Asset being dealt with in this project is the Document Asset. The “Document”here
has a general meaning, it can represent Web Service Documents, XML (eXtensible Markup
Language) Documents, Binary Files, etc. The infoAsset Broker basic system provides some
basic attributes for the Document Asset (only relevant attributes will be described here):

• Name, a string value that can be given freely under the Broker naming rules, it will be
used partially to identify the document.

• Title, a string value that represent the document title, if it is given.

• DocumentKind, a string value within the predefined domain. It indicates which kind of
document the Asset Object is representing.

• DocumentStatus, a string value that shows the state of the document. These are private,
intern and public.

• Comment, a string value for adding short notice to the document.

23



• Concept, this reference attribute references to Concept Assets that build up part of the
Knowledge-Map.

• ExpiryDate, a date value that indicates the expiry date of the document if it is given.

• Directory, a reference to a Directory Asset, in which the document is included.

• Filename, a string value for name of the file, which is attached to the document.

• LocalFilename, a string value that represents the full relative path of the file attached to
the document on the infoAsset Broker server.

• Version, a string value that shows the version of this document.

• ParentVersion, a reference attribute to another Document Asset, which is the parent
version of the document.

• SuccessorVersion, a reference attribute to another Document Asset, which is the succes-
sor version of the document.

• Creator, a reference attribute to a Person Asset, who creates the document.

• LastEdior, a reference attribute to a Person Asset, who edits the document last time.

• LastEditedDate, a date value indicates date of last modification.

• LockedBy, a reference attribute to a Person Asset, who is modifying the document and
setting the write lock on the document.

The Class Diagram of the basic Document Asset is shown in figure 4.4.

Figure 4.4: Class Diagram of basic Document Asset

According to the core functions of the Web Services Development Portal, a new design of

24



Document Model based on the basic Document Asset Model in the infoAsset Broker is made.

For the purpose of timed publishing control of the document, some new date attributes are
added. The document state will be changed automatically upon those date attributes, if they
are given. Those new date value attributes are:

• ValidFromDate

• ReleasedDate

• PublishmentDate

How the document state will interact with these date attributes, will be explained in the follow-
ing part 4.2.2.

WSDL 2.0 [Con05a] introduces its new Component Model, those Components are interfaces,
bindings and services. Thus, a WSDL document can be combined with component documents,
which means, documents are related to each other. Such kind of document relationship is
realised by two new reference attributes:

• UsedDocument

• UsedByDocument

Through this reference possibility, Web Service components can be easily navigated.

Some new reference attributes to Person Asset are added as well. So that not only documents
can be crosslinked to the Knowledge-Map, but also more persons related to the documents can
be crosslinked. These reference attributes are:

• Owner

• ProfessionalContactPerson

• TechnicalContactPerson

• ReleasedBy

Documents can be referenced to Concept Asset, which is used to categorise document and
enrich the Knowledge-Map. Since there are also different types of Concept Assets needed
according the requirements for this Web Service Development Portal. Concept Asset will be
categorised into four types, and will be separately referenced by these new attributes:

• Category

• LegalFoundament

• ProfessionalContext

• TargetGroup

25



Another very important new attribute is the “HistoryDirectory”reference attribute, which refer-
ences a Directory Asset. Old versions of documents will not be listed together with the current
version, according to the requirement, therefore, a directory called “History Directory”is pro-
vided for saving and tracking old versions of the document.

Additional attributes are:
Intention, a string value for describing document intention.
DiffPreVersion, a string value for describing differences between this document and the parent
version of the document.
ReasonOnExpiry, a sting value for explaining reasons, if a document is supposed to be turned
expired before its original expiry date.
URL, a string value for saving URL of the document.
TestURL, a string value for saving test URL of the document.
Availability, a string value for describing the availability of the document.
HistoryStatus, a boolean value that indicates if the document locates in the history directory.

The new Document Model is provided in figure 4.5:

Figure 4.5: New Class Diagram of Document Asset

26



4.2.2 Document State Model

The old Document State Model with three states (private, intern and public) is not sufficient
enough to describe the interaction between the document states and the document publishment
date attribute, since the “timed-publishment”function is required by the company Dataport. A
new Document State Model is therefore defined as shown in figure 4.6.

The State Diagram describes the states that the document can reach during its existence. When
the document is created, its initial state is “Unpublished”. At this state, the creator of the
document can edit the document freely and can also delete the document if it is needed. After
the creator of the document finishes editing the document and applies for the publishment at
the “Fachliche Leitstelle”, the document reaches the state “Applied for publishment”.

If the document is denied for publishment, the document returns back to the state “Unpub-
lished”, so that the creator can edit the document again. Otherwise if the document is accepted
for publishment, the successive state could be “Waiting for publishment”or “Published”. It
depends on the document attribute “PublishmentDate”, which state the document will reach. If
the given publishment date is in the future, the document reaches “Waiting for publishment”and
will not be published until the publishment date reaches, vice versa, the document will get the
state “Published”if the publishment date is already reached.

Document with the state “Published”can be applied for deactivation, which means, to be lo-
cated in the history directory. The document reaches the state “Applied for deactivation”, if
this is applied by the creator of the document at the “Fachliche Leitstelle”. If the answer from
the “Fachliche Leitstelle”is positive, the document will reach the state “Deactivated / History”.
Otherwise it will return to the state “Published”.

Figure 4.6: State Diagram for Document State Model, part 1

27



New version of a “Published”document can be created by the document creator. Once the new
version is created, it has the state “Unpublished”and will exist together with the old version. In
the case that the new version is accepted by the “Fachliche Leitstelle”, the document attribute
“PublishmentDate”will be used again to decide the states of both new and old versions. If the
publishment date is already reached, the new version becomes the state “Published”and the old
version will be set to “Deactivated / History”automatically at the same time. If the publishment
date is still in the future, the new version reaches the state “Waiting for publishment”and the
old version keeps the state“Published”. A parallel State Diagram for this case is shown in fig-
ure 4.7:

Figure 4.7: State Diagram for Document State Model, part 2

4.2.3 Document Publishment Workflow

Since a control function (“Fachliche Leitstelle”) is required in the Web Service Development
Portal for the company Dataport, a new workflow for document feeding, modification, deletion
and deactivation in the infoAsset Broker will be modeled.

The main difference is that the documents will not be published directly from the creator of the
document, but from the “Fachliche Leitstelle”, who is assigned to prove those documents sup-
posed to be published. The “Fachliche Leitstelle”will prove, if the content of the document is
qualified, if all the legal requirements are covered and if the valid time of the document is given
correctly. If there is no problem with the document, the “Fachliche Leitstelle”will release the
document for publishment. Otherwise, an online text message in the infoAsset Broker will be
sent to the document creator by the “Fachliche Leitstelle”, a reason why the document can not
be released for publishment will be given briefly in the message. Upon the returned message,
the document creator can modify the document and try to apply for the publishment again later.
Same control workflow happens, when a new modified version of a document is applied for

28



publishment or a document is applied for deactivation. The deactivation of the document is
required specially from the company Dataport, since the old documents should still be able to
be traced, so there is no deletion allowed for the published documents in this Web Service De-
velopment Portal, hence, deactivated document will be moved to the history directory instead
of being physically deleted. The workflow for this “Fachliche Leitstelle”function is shown in
the figure 4.8:

Figure 4.8: Activity Diagram for Workflow of “Fachliche Leitstelle”

For normal infoAsset Broker user, the entry point of the Broker is a list of document directory,
to which the user has the access right. This is another requirement of the company Dataport,
which is, user cannot browse anything they do not have right to access. How this Authorisation
Concept is modeled, please see the coming part 4.2.5.

Broker user can create document in authorised directory. After inputting sufficient meta-data
of the document, target groups who are supposed to have read access to the document, should
be granted the access by the creator. As mentioned before, the creator has to apply for the
publishment of the document at the “Fachliche Leitstelle”at the end.

Document will be write-locked automatically, if the creator of the document starts to modify the
document. If the document is still unpublished, the creator can continue edit the document in-
formation or delete the document. If the document is published, a new version of the document
will be created automatically, and all the meta-data and description information of the old
version will be taken over, the creator will work on the new version for the modification. After
the modification, the new version can be applied for publishment.

29



The workflow for normal infoAssetBroker user is shown in figure 4.9:

Figure 4.9: Activity Diagram for Workflow of normal infoAsset Broker user

4.2.4 Extended Notification Service

The infoAsset Broker basic system brings the subscription and alerting/notification service.
Users will be notified (via online report or E-Mail) of changes on documents they have sub-
scribed to. As i introduced in section 4.2.1, WSDL‘s Component Model enables the reusability
of seperate components. This could, though, raise a potential fragility of Web Service-based
application because of the increasing dependencies on used components as well as on called
Web Services [ST05]. A new version of an existing component document or service often
replaces the old version rather than leaving two versions of the services operational simulta-

30



neously. According to the Dataport‘s requirement, the old version of an existing document
will not be removed from the repository. Suppose that a user used a seperately defined WSDL
interface component, or a defined WSDL for a Web Service. If a new version of the document
is released, there will not be a guarantee that the new version of component or service will be
perfectly matched in the existing client implementation.

For dealing with such kind of problem, the subscription and alerting/notification service as
well as the versioning function of the infoAsset Broker are used. Documents in the portal will
always have a version number, if new versions exist. Users will be automatically subscribed to
the documents they have used, so that they will be kept informed with any changes on the docu-
ments with the document version number included. This enables the information-push instead
of information-pull. The document users then can decide on their own, if they want to use the
new version of the document. In order to keep an overview of the document dependency for
the “Fachliche Leitstelle”, a dependency information will also be provided, if a new version of
an existing document is applied for publishment.

4.2.5 Authorisation Concept

The access control of the document in the infoAsset Broker basic system is based on Au-
thorisation Roles of Group Document Directory. Every Group Document Directory has four
Authorisation Roles:
ReaderRole
Role that is allowed to read public documents in the directory
WriterRole
Role that is allowed to write documents in the directory and read non-public documents
EditorRole
Role that is allowed to modify Meta-Data of the directory and create or delete subdirectories
of the directory
AuthorRole
Role that is allowed to create new documents within the directory and to change documents
created by themselves

User group in the infoAsset Broker is used to arrange a number of users, who own different
gourp memberships of the group. Each user group can has one group document directory,
whereas users of the user group obtain the Authorisation-Roles of the group document direc-
tory are assigned with group memberships. Only so can user get access to documents or create
documents in the group document directory. This basic concept of infoAsset Broker is shown
in figure 4.10:

As introduced in the requirements and core functions of the Web Service Development Portal
in chapter two, the Authorisation Concept should base on document level. There are two types
of users who can get access to the portal. On one hand, users (Gateway-User) access the portal
content over the GovernmentGateway only with Read-Access and only to those documents they
are allowed to access. On the other hand, users (Broker-User) access the portal over the intranet
in the company Dataport. Combined with the Use Cases described earlier in this chapter, three
authorisation cases can be defined and modeled based on the basic Authorisation Concept:

31



030820-UML-Datenmodell-Broker 1.8 © infoAsset AG 2003 - 2

Erschließen und Vernetzen:

Dokumente und Personen

Membership

Person

Document Type

Group

Document

*

*

*

*

** 1

*

Typist

File
0..1

1

Specialised Document Type

*

0..1

Directory 0..1

0..1 0..1

New Version

Last Editor

Author

*

* 0..

1
0..

1

Role
1 *

Group Category

*

Member

1 *

0..1

0..1

*

*
Authorisation

Directory

1111 1

Reader

Reader

Author

Writer

      Editor

1 Administrator

*

0..1

Group Directory

*

Exclusive Editor* 0..

1

Figure 4.10: (Part of the) Conceptual Datenmodel in the infoAsset Broker [Mat03]

Authorisation over Group-Directory for Broker-User
Broker-Users in a group, who have the membership “Developer”, own AuthorRole and Writer-
Role, so that they can create documents in the group document directory, edit documents cre-
ated by themselves and read published documents created by other developer in the group.

Authorisation over “TargetGroup”Membership for Broker-User
As mentioned in the new Document Model, a new type of Concept Asset is defined, which is
called “TargetGroup”. This reference attribute of the Document Asset is used to grant Read-
erRole to portal users, which therefore realises the authorisation at document level. Both the
author of the document and the “Fachliche Leitstelle”of the group document directory can
modify this reference attribute, in order to grant ReaderRole to other portal users. In this case,
the ReaderRole can be granted to other Broker-User from other group. Through this reference,
those invited Broker-User will receive the membership “TargetGroup”of the group document
directory, where the document is located, and as a result, they own the ReaderRole of the group
document directory and have the read access to dedicated documents.

Authrisation over “TargetGroup”Membership for Gateway-User
Gateway-Users have only Read-Access to documents they are allowed to access, so they only
need a ReaderRole for those directories where dedicated documents are located. Gateway-
Users access the portal over the GovernmentGateway, but they will also have their own group
defined in the portal. Therefore, Gateway-Users can be treated easily like Broker-Users in
case two above. The author of the document and the “Fachliche Leitstelle”of the Group-
Directory can add “TargetGroup”Concept references for those Gateway-User-Groups, so that

32



invited Gateway-Users will own membership “TargetGroup”of the group document directory
and the ReaderRole as well. They can then have the read access to those dedicated documents.

The idea of this realisation, that a new type of Concept is used to reference the Document with
the Read-Access, is using the Knowledge-Map for tracing and retrieving granted Read-Access.
It also establishes a basis for the Web Service Interface of the Development Portal, through
which a list of accessable documents can be generated easily and transferred over Web Service
to the Gateway-Users. Details on how this is realised, please read the Bachelor Thesis from
Helge Klimek [Kli05].

4.3 Implementation of the Development Portal

Now let us see how these designs are implemented in the real world. Short describe on Java
Class Methods will be made and some screenshots from the Development Portal will be shown
in this part of the chapter.

4.3.1 Modification in the InfoAsset Broker

First of all, some modification on the Document Asset according to the Design will be shown
bellow, a complete list of new methods will be provided in the appendix.

Two of the new methods in the Class IMPDocument that implements Document interface are
for example:

0 pub l i c String getReasonOnExpiry() {
re turn t h i s .getProperty(Documents.asReasonOnExpiry);

}

pub l i c vo id setReasonOnExpiry(String reasonOnExpiry) {
5 t h i s .setProperty(Documents.asReasonOnExpiry, reasonOnExpiry);

}

getReasonOnExpiry() gets the reason for moving the document into the history directory (de-
activation) before the defined expiry date.

setReasonOnExpiry(String reasonOnExpiry) sets the reason for moving the document into the
history directory (deactivation) before the defined expiry date.

These two methods are part of the fundamental getter and setter methods for those new String
Attributes (see 4.2.1 Document Model), other methods can be found in the appendix.

Two of the new getters and setters for Date Attributes in this Class are for example:

0 pub l i c Date getFreigegebenDate() {
re turn t h i s .getProperty(Documents.asFreigegebenDate);

}

pub l i c vo id setFreigegebenDate(Date freigegebenDate) {
5 t h i s .setProperty(Documents.asFreigegebenDate, freigegebenDate);

}

33



getFreigegebenDate() returns the date, when the “Fachliche Leitstelle”has accepted the pub-
lishment of the document.

setFreigegebenDate(Date freigegebenDate) sets the date, when the “Fachliche Leitstelle”has
accepted the publishment of the document.

One of the new methods for referencing new Concept types in the Class IMPDocument is:

0 pub l i c Iterator getZielgruppen() {
HashSet zielgruppen = new HashSet();
Iterator allConcepts = services.getConcepts().getConceptsOfDocumentIds(getId());
whi le (allConcepts.hasNext()) {

Concept thisConcept = services.getConcepts().getConcept((String)allConcepts.
next());

5 f o r (Concept c = thisConcept.getSuper(); c != n u l l ; c = c.getSuper()) {
String cName = c.getName();
i f ("Zielgruppen".equals(cName)) {

zielgruppen.add(thisConcept.getId());
break;

10 }
}

}
re turn zielgruppen.iterator();

}

getZielgruppen() returns all Concept Asset ids with the type of “TargetGroup”, which are refer-
enced to the document, as an iterator. In this method, all referenced concepts of the document
will be retrieved over the concept service. Every retrieved concept will be proved if one of its
super concept is “TargetGroup”. All concepts that have “TargetGroup”as one of their super
concept will be collected in a hash-set and be returned as an iterator.

To reference a Concept Asset to the document, the old Method addConceptId (String concep-
tId) will still be used, since all types of the Concept are Concept Assets, and they will only be
classified when these Concept references will be retrieved as shown in the example above.

Now we come to some new methods in the IMPDocument Class, which are used to build up
references between documents, so that related documents are linked and can be retrieved in
both direction. One of these methods is as follows:

0 pub l i c vo id addUsedByWSDocument(String wsDocId) {
Document usedByWSDocument = services.getDocuments().getDocument(wsDocId);
i f (! t h i s .hasAssociatedAsset
(Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole(), usedByWSDocument)) {

t h i s .createAssociation
5 (Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole(),

usedByWSDocument,
Documents.DOCUMENT_USEDBYWSDOCUMENT.getThatRole());

}
i f (! t h i s .hasAssociatedAsset

10 (Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole(), usedByWSDocument)) {
t h i s .createAssociation
(Documents.DOCUMENT_USEDWSDOCUMENT.getThatRole(),
usedByWSDocument,
Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole());

15 }
}

addUsedByWSDocument(String wsDocId) adds two new references. One is created in the
“document usedbywsdocument”reference table, another is created in the “documentusedws-

34



document”reference table. These two references build up the bi-directional relation between
Web Service documents, which will be used for the Knowledge-Map.

Who are the Knowledge-Porters of the document? Who has released the document for pub-
lication? Those are important questions according to the Dataport requirement, so that the
relationships between Persons and Documents can be traced. One of the methods for those
new Attributes introduced in 4.2.1 is:

0 pub l i c vo id addAnsprechpartnerFachlichId(String id) {
Person ansprechpartnerFachlich = services.getPersons().getPerson(id);
If (! t h i s .hasAssociatedAsset
(Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH
.getThisRole(), ansprechpartnerFachlich)) {

5 t h i s .createAssociation
(Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH
.getThisRole(), ansprechpartnerFachlich,
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.getThatRole());

}
10 }

addAnsprechpartnerFachlichId(String id) adds a Person as one of the Professional Contact Per-
sons to the current Document. A new reference in the “documentperson ansprechpartner-
fachlich”reference table will be created, so that this relation can be traced.

Another example is:

0 pub l i c vo id setFreigegebenVon(String id) {
Person freigegebenVon = services.getPersons().getPerson(id);
t h i s .createAssociation
(Documents.PERSON_DOCUMENT_FREIGEGEBENVON.getManyRole(),
freigegebenVon, Documents.PERSON_DOCUMENT_FREIGEGEBENVON.getOneRole());

5 }

setFreigegebenVon (String id) adds a reference to the Person (the responsible “Fachliche Leit-
stelle”) who releases the current Document for publishment.
A new reference in the “documentfreigegebenvon”reference table will be created, so that this
relation can be traced.

4.3.2 User Interface of Document Publishment Workflow

The implementation for extending Document Status from 3 States to 6 States is done in the
Class ChangePublicationStateHandler. Changes of Document States are done in the Business
Logic and these changes depend on the entire Workflow in the infoAsset Broker. I will now
introduce part of the Workflow using the following figures.

35



Figure 4.11: New document created with “Unpublished”Document State

After a new document is created and all the necessary meta-data and description are filled, the
document will have the state “Unpublished”. As shown in figure 4.11, the hyperlink right be-
side the document state is used by the user for applying the publishment of the new document.
A click on this hyperlink will trigger a Document State Change from “Unpublished”to “Ap-
plied for publishment”, see figure 4.12:

Figure 4.12: New document with the Document State “Applied for publishment”

36



At the same time, the “Fachliche Leitstelle”of the Group Directory will be automatically sub-
scribed to the new document, so that the “Fachliche Leitstelle”will be informed of the applica-
tion of document publishment over the notification service. Figure 4.13 shows this event:

Figure 4.13: “Fachliche Leitstelle”receives a new notification

In the notification, information on event object, object type, event action, event time and actor
will be shown, see figure 4.14. In the case of a new document being applied for publishment,
document name, document version and document author will be listed:

Figure 4.14: Notification on new document applied for publishment

Over the hyperlink of the document, the “Fachliche Leitstelle”can navigate to the detail page of
the new document. The “Fachliche Leitstelle”will check the information of the new document
and decide, whether the publishment of the new document should be allowed. Two new hyper-
links for the next Document State Change will be provided beside the document state, as you
can see in figure 4.15:

37



Figure 4.15: Detail page of the new document viewed by “Fachliche Leitstelle”

If the document is not well described or mistakes are found in the document, the “Fachliche
Leitstelle”can deny the application of the document publishment. In this way, the “Fachliche
Leitstelle”must provide the document author a reason why the publishment is denied:

Figure 4.16: Denial reason of document publishment by the “Fachliche Leitstelle”

After that, the document state will be changed back to “Unpublished”, which then allows the
document author edit the document again. The document author will receive a notification,
which indicates that the document publishment is denied with the attached reason.

In other way, if the document fulfills all the requirements, the “Fachliche Leitstelle”will accept
the application of document publishment. The document author will receive a notification,
which informs about the publishment of the new document. At the mean time, the document
state will be changed to “Published”:

38



Figure 4.17: Document published

But remember, there is another document state that is called “Waiting for publishment”. Af-
ter the document publishment is accepted, the defined publishment date will be checked. If
the date given is still in the future, the document state will be directly changed to “Waiting for
publishment”(figure 4.18), and will be published automatically, when the given date is reached.

Figure 4.18: Document with State “Waiting for publishment”

The implementation of Document State Change from “Published”to “Deactivated / History”is
realised in the same way and in the same Class, so i will not describe it here.

39



4.3.3 Integration of the document access authorisation in the InfoAsset Broker

In the basic system of the infoAsset Broker, document access is at document directory level,
which means, if the user has the read right to the document directory, and then he can read all
the documents in the directory.

In order to change the document access to be controlled at document level, we first defined
three memberships in a group, which are “Fachliche Leitstelle”, “Developer”and “Target-
Group”. The access control at the group document directory level will still be used, user who
owns “Fachliche Leitstelle”membership will have the right to edit the meta-data of the group
document directory, user who owns “Developer”membership will be able to create, modify or
deactivate documents in the group document directory (those actions will have to be proved
by the “Fachliche Leitstelle”for sure), and finally, user who has “TargetGroup”membership
will only have the right to view the directory and read those documents that are selected to be
accessed by the user. The membership “TargetGroup”is used to grant read access, users who
receive this membership are invited to read certain documents, they can be considered as a
virtually gathered member group.

How can user be able to own a “TargetGroup”membership in that group? This is realised
through the new concept type “TargetGroup”. When one group in the infoAsset Broker is
created, one and only one concept in type of “TargetGroup”will also be created with the same
group name as the concept name, this new concept will be associated with the new group.
Every document can be referenced to one or more concepts with the type “TargetGroup”. Let
us now see one example: user A is a developer in group GA, user B is a developer in group
GB. User A has published a document in group directory DA, the document was accepted by
the “Fachliche Leitstelle”. Now as “TargetGroup”for the document, group GB is referenced,
so every developer (those who have the membership “Developer”) in group GB will become a
new member in group GA with the membership “TargetGroup”.
After receiving the “TargetGroup”membership, how can those users read certain documents?
The answer is easy. Let us see another example: user A is a developer in group GA, but also a
member with “TargetGroup”membership in group GB. Document D1 is published in the group
document directory of group GB, it has a “TargetGroup”concept reference to the group GA,
which enables user A to have the read access to this document. Document D2 is published in
the group document directory of group GB as well, but without “TargetGroup”concept refer-
ence to the group GA, which ensures that user A will not be able to view the document.

In order to reduce the cost of time, the “Fachliche Leitstelle”of the group can still modify the
“TargetGroup”reference of the documents even after the document is published, so that the
read access of documents can be granted dynamically.

User‘s “TargetGroup”membership will be revoked, if there is not more documents in the group
directory, which has a reference to user‘s original group, where the user has the “Devel-
oper”membership.

40



4.3.4 Integration of a Web Service interface for the infoAsset Broker

The integration of a Web Service for the infoAsset Broker is realised with Axis and Jetty.

Apache Axis [Fou05] is an open source Web Service framework that is an implementation of
the SOAP. It is used for generating and deploying Web Services applications. In this project,
the Axis will be extended, and will be reduced mainly for dealing with Web Service request
and response. The infoAsset Broker will still manage the entire business logic.

Jetty [Con05b] is also an open source product. It is a Java HTTP server and servlet container.
Jetty will be integrated into the infoAsset Broker without any modification, the main job for
Jetty is to process the Axis Servlet. The integrated Jetty will then be provided as a Broker
Service.

The figure 4.19 shows the extended architecture of the infoAsset Broker with Axis and Jetty:

Figure 4.19: Extended architecture of the inforAsset Broker

The entire work design and implementation of this Web Service interface for the infoAsset
Broker is as mentioned, to be found in the Bachelor Thesis of Helge Klimek [Kli05], a detailed
introduction is beyond the scope of this thesis.

4.4 Evaluation of the implementation

In first three subchapters I have introduced you the development process of the project. The
implemented Web Service Development Portal is integrated into Dataport‘s back-end, internal

41



developers of Dataport access the Web Service Development Portal over the Intranet and will
use the original frontend of the Portal. External developers of Dataport access the Web Service
Development Portal over the Internet and a standardised GovernmentGateway frontend will be
provided, through which the external developers can use a tree-view navigation for retrieving
documents they are allowed to view and access.

In this subchapter, these two access methods of the Web Service Development Portal will be
shortly evaluated.

4.4.1 Comparison of the two access environments of the portal

Access over the intranet
The access of the Web Service Development Portal over the intranet is relatively simple. De-
veloper accesses the Web Service Development Portal need only a valid user account in the
portal. Developers will then be assigned to different groups according to the on-going projects,
and normally, they will become the membership as “Developer”in the groups.

After a developer login into the portal, a home directory will be shown, in which all the group
document directories that the developer has the right to access will be listed. These listed group
document directories can be classified into two types. One type is those groups document direc-
tories, in which the developer has the “Developer”membership. In this kind of group document
directories, the developer can read all published (visible) documents, create new documents,
create new version of his documents and apply for deactivation of his documents. Another type
of the group document directories are those directories, in which the developer has the “Target-
Group”membership and is only allowed to view (read-access) certain published and dedicated
documents.

The administration cost in this case is low, because the access comes from the Intranet within
the Dataport and the login system of the portal is enough for the authentication purpose. De-
velopers only have to be assigned membership to dedicated groups, so that they can use all the
portal functions and access to documents they are allowed to.

Access over the GovernmentGateway
External developers of the Dataport will access the Web Service Development Portal over the
Internet and will be authenticated by the GovernmentGateway. After a successful authentica-
tion, developer‘s username and membership roles will be carried forward to the portal over
the Web Service of the portal. According to developer‘s username and membership role, a
tree-view of categorised and dedicated documents will be sent back to the developer over the
Web Service. By viewing the documents, external developers can download the files attached
to the documents if it is provided, they can also subscribe to documents that they want to be
kept informed.

In this case, the administration and maintenance costs is relatively high: Since the external
developers‘accounts are managed and authenticated by the GovernmentGateway, a synchro-
nised copy of those accounts has to be provided in the Web Service Development Portal. Ac-
cording to Dataport‘s decision, those accounts will be manually maintained and synchronised,

42



which accrues a high administration cost. A suggestion to replace this costly management is
to build a callback function in the Web Service Development Portal, which checks the car-
ried username and membership role against the account management system at the side of the
GovernmentGateway. But a follow-on problem of this suggestion will arise, because since
the GovernmentGateway is highly secured, such callback function that will access the account
management system may violate the security policy of the GovernmentGateway.

In order to process the subscription function of the Web Service Development Portal, a valid
E-Mail address have to be provided. But the question is, should every external developer bring
his valid E-Mail address to the GovernmentGateway and this E-Mail address will be carried
over the Web Service to the portal? This would mean that the Web Service interface would
be extended with one more parameter that is used for carry the E-Mail address. A followed
question is, since the Web Service Development Portal is located in the back-end of the whole
GovernmentGateway system, is the portal allowed to send notification E-Mails to those exter-
nal developers who have subscribed to certain documents? If the portal is not allowed to send
E-Mails directly, another administration cost will arise, because some other functions should
be provided to deal with the E-Mail notifications. A better solution for these two questions
could be: external developers‘accounts at the GovernmentGateway will use a valid E-Mail
address as the username, which will be carried to the Web Service Development Portal later,
so that no extra parameter for E-Mail should be provided in the Web Service interface. For
sending E-Mails, an E-Mail server should be provided, which is allowed to send E-Mails from
the GovernmentGateway to outside, only the E-Mail server address should be registered to the
Web Service Development Portal, because the Web Service Development Portal has an open
property for using external E-Mail server.

4.4.2 The Authorisation Concept at document level

As introduced in the last chapter, the authorisation concept at document level is realised through
the Concept Asset in the infoAsset Broker. Through the subtype of the Concept Asset “Tar-
getGroup”, groups that shall be chosen to have read-access (which are in the sense of target
groups) are connected with the dedicated documents.

This implementation has raised somehow the code complicity and certain maintenance costs.
The reason why this realisation is chosen is because of the thinking of using the advantages
of the Knowledge-Map in the infoAsset Broker. The navigation of the Knowledge-Map in the
infoAsset Broker is realised over the Concept Asset. By connecting target user groups and doc-
uments through the Concept Asset, a clear list of the TargetGroup-Documents-relations can be
provided and navigated, which is certainly helpful for the administration. But the contra point
could be that the maintenance cost on keeping the 1:1 relation between groups and their “Tar-
getGroup”concepts.

Another implementation option could be that a direct relation between target groups and ded-
icated documents should be build. Hence, by choosing target groups for the document, who
are allowed to view the documents, a list of existing groups in the Web Service Development
Portal will be listed, the document will have a reference attribute for referencing target groups.

43



4.5 Summary

In this chapter I have introduced you the whole development of this project.

It starts with the analyzing the architecture of GovernmentGateway, in its back-end the Web
Service Development Portal will be integrated into. The analysis on Use Cases for the Devel-
opment Portal is a fundamental work for the entire work, all the designs are following those
Use Cases, which were discussed together with the company Dataport at the early phase of this
project.

At the design phase of the project, a modified Document Model is made to support some new
features and enrich the semantic relation between documents. Because of the requirement on
a user group (“Fachliche Leitstelle”), who should control the document publishment, a new
document publishment workflow is created with the extended document states. The notifica-
tion service is extended for dealing with the versioning issue. A new authorisation concept is
also constructed in order to meet the needs of access control at document level.

Due to the high amount of the source code, only some new Methods in important Classes are
introduced. Some screenshots of the Web Service Development Portal are shown, in order to
explain the document publishment workflow. The integration of a Web Service interface for
the infoAsset Broker is covered in another Bachelor Thesis, so only the extended architecture
of the infoAsset Broker is outlined.

There are some remarks during the implementation of the Web Service Development Portal,
which will be shortly briefed in the coming chapter.

44



Chapter 5

Summary and Outlook

In this last chapter, a summary of this project work will be outlined first and an outlook will be
described in the second part.

5.1 Summary

This Bachelor Thesis is about the case study DATAPORT, for which a Web Service Develop-
ment Portal should be designed and implemented.

The company Dataport has numbers of internal and external developers who are working on
Web Services related projects. The need of a central point for publishing and sharing the in-
creasing information objects and documents from those developers becomes the driving force
of this project. And since Dataport has various types of platforms, a platform-independent
portal software is the best choice for Dataport‘s requirements. For providing this portal for
external developers, the Web Service Development Portal will be integrated into the back-end
system of the GovernmentGateway through a Web Service interface. In order to retrieve infor-
mation more effectively, semantic relations and dependencies between documents should be
built up in the Web Service Development Portal.

After introducing the project motivation, the Web Service with its standard technologies that
are used in Web Services, i.e., SOAP, WSDL and UDDI have been briefly described. This has
provided a basic understanding of future vision of this project, since the Web Service Devel-
opment Portal should not only manage Web Service related documents but should also provide
its own Web Service.

Core function requirements for the Web Service Development Portal have been further intro-
duced, so that a standing point has been given and the development of this portal can be proved
against the requirements later. Since there are many successful portal platforms that can be
chosen to be base platform for this Web Service Development Portal, three options, which are
Plumtree Portal Server, Microsoft SharePoint Server and infoAsset Broker, have been intro-
duced and their cons and pros are outlined, according to the requirements.

The infoAsset Broker is chosen to be the base platform for developing the Web Service Devel-

45



opment Portal. Its architecture, concepts and core functions are described in detail, so that the
reason why the infoAsset Broker is chosen to be used for this project is given.

The entire development process of this Web Service Development Portal is covered. The analy-
sis phase of the project includes the introduction of the GovernmentGateway architecture and
the analysis of Use Cases of the Web Service Development Portal. The design phase of the
project describes the design of the document model, document state model, document publish-
ment workflow, extended notification service and authorisation concept. At the implementation
phase, modifications on the infoAsset Broker basic system are introduced and the integration
of the Web Service interface are covered.

Two access environments and the realisation of the authorisation concept are finally evaluated,
where the administration and maintenance costs are taken in concern and some suggestions are
made.

5.2 Outlook

Because of time constraint, some implementation parts can not completely realised or could
still be discussed, some suggestions can be summerised for the future development:

In the current implementation, relations between “TargetGroup”concepts and user groups are
manually maintained, another relation between documents and “TargetGroup”concepts will be
established by the document author or the “Fachliche Leitstelle”. Through these two relations,
authorisation at document level is realised. But the code complexity of this realisation is high.
The relation between “TargetGroup”concepts and user groups could also be generated auto-
matically.

The Web Service is concerned as the future for dealing with interoperability between different
systems. The infoAsset Broker basic system used in this project is without a Web Service in-
terface. The Web Service interface for this project purpose is well designed and implemented,
a standard Web Service interface should be provided based on this implementation for the
infoAsset Broker basic system.

The original idea of the project was building up a UDDI management system. In order to cover
all the requirements of this project, the infoAsset Broker is chosen as the base of a Web Ser-
vice Development Portal, which can manage Web Services related documents and offers more
possibilities for retrieving Web Services related documents. In the future, an integrated UDDI
management system can be implemented in the infoAsset Broker, since the future UDDI could
be more powerful.

In the current version, Web Service documents are feeding manually into the portal, which
costs certain working time and might be fed with mistakes. A function should be realised,
which can read the input Web Service documents and extracts the meta-data from the docu-
ments and creates the documents in the portal automatically.

With this implementation, attachment of the document in the Web Service Development Portal

46



will be transferred as Base64-Coded message over the Web Service. Therefore, the attachment
with binary content will have to be recoded before being send back to the GovernmentGateway,
and at the side of GovernmentGateway the recoded content should be transformed back to the
original format. These operations raise the processing cost and increase the network loading.
A FTP (File Transfer Protocol) Server, instead, can be used at this place. A possible realisation
could be that a FTP link to the attachment will be sent back to the user, and the user shall
provide necessary authenticate information to retrieve the dedicated attachment over the FTP
link.

47



Bibliography

[Con03] World Wide Web Consortium. Soap version 1.2 part 1: MessagingFramework
[online]. June 2003 [cited 10 August 2005]. Available from:http://www.w3.
org/TR/2003/REC-soap12-part1-20030624/ .

[Con04] World Wide Web Consortium. WebServicesGlossary [online]. February 2004
[cited 10 August 2005]. Available from:http://www.w3.org/TR/2004/
NOTE-ws-gloss-20040211/ .

[Con05a] World Wide Web Consortium. WebServicesDescriptionLanguage (wsdl) version
2.0 [online]. August 2005 [cited 10 August 2005]. Available from:http://www.
w3.org/TR/2005/WD-wsdl20-20050803/ .

[Con05b] Mort Bay Consulting. AboutJetty [online]. 2005 [cited 20 September 2005]. Avail-
able from:http://jetty.mortbay.org/jetty/ .

[Dat04] Dataport. DataportGovernmentGateway Präsentation. Dataport Presentation,
Dataport, June 2004.

[Dat05] Dataport. About us [online]. 2005 [cited 23 July 2005]. Available from:http:
//www.dataport.de/ .

[Fou05] Apache Software Foundation. Introduction [online]. 2005 [cited 20 September
2005]. Available from:http://ws.apache.org/axis/ .

[inf03] infoAsset. Der infoassetBroker - Architektur, Anpassung undErweiterung.
infoAsset Broker Documentation, Software Systems Institute, Hamburg University
of Science and Technology, February 2003.

[inf05] infoAsset. The infoassetBroker [online]. 2005 [cited 10 August 2005]. Avail-
able from:http://www.infoasset.de/contents/products/index.
htm .

[Kli05] Helge Klimek. EineWeb Service Schnittstelle f̈ur ein Web Service Entwickler
Portal. Bachelor Thesis, Software Systems Institute, Hamburg University of Science
and Technology, October 2005.

[Mat03] Florian Matthes. Uml-datenmodell für den infoasset broker 1.8. infoAsset Broker
Documentation, Software Systems Institute, Hamburg University of Science and
Technology, August 2003.

[Mic05] Microsoft. SharepointPortal Server 2003Overview [online]. 2005 [cited 10
August 2005]. Available from:http://www.microsoft.com/office/
sharepoint/prodinfo/overview.mspx .

48

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2005/WD-wsdl20-20050803/
http://www.w3.org/TR/2005/WD-wsdl20-20050803/
http://jetty.mortbay.org/jetty/
http://www.dataport.de/
http://www.dataport.de/
http://ws.apache.org/axis/
http://www.infoasset.de/contents/products/index.htm
http://www.infoasset.de/contents/products/index.htm
http://www.microsoft.com/office/sharepoint/prodinfo/overview.mspx
http://www.microsoft.com/office/sharepoint/prodinfo/overview.mspx


[Ort05] Ed Ort. Service-OrientedArchitecture andWebServices: Concepts,Technologies,
andTools. April 2005.

[Plu05] Plumtree. PlumtreeSearch [online]. 2005 [cited 11 August 2005]. Available from:
http://www.plumtree.com/products/search/ .

[ST05] Robert Steele and Takahiro Tsubono. Reserving immutable services through web
service implementation versioning. InWEBIST, pages 125–132, 2005.

[Wav04] Rogue Wave. AnIntroduction toWebServices. February 2004.

[Weg00] Holm Wegner. The infoassetBroker. infoAsset Broker Documentation, Software
Systems Institute, Hamburg University of Science and Technology, 2000.

[Weg02] Holm Wegner. Analyse und objektorientierter entwurf eines integrierten
portalsystems fr das wissensmanagement. page 158, January 2002.

[Wik05] Wikipedia. WebServices [online]. August 2005 [cited 10 August 2005]. Available
from: http://en.wikipedia.org/wiki/Web Service .

[ZTP03] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser.Perspectives on Web
Services-Applying SOAP, WSDL and UDDI to Real-World Projects. Springer-Verlag
Berlin Heidelberg, 2003.

49

http://www.plumtree.com/products/search/
http://en.wikipedia.org/wiki/Web_Service


Appendix

.1 New Methods in Class IMPDocument

0 package de.infoasset.broker.services.core;

import java.io.File;
import java.util.Date;
import java.util.HashSet;

5 import java.util.Iterator;
import java.util.Vector;
import de.infoasset.broker.interfaces.cis.Unit;
import de.infoasset.broker.interfaces.cis.Units;
import de.infoasset.broker.interfaces.core.AssetLock;

10 import de.infoasset.broker.interfaces.core.Concept;
import de.infoasset.broker.interfaces.core.Concepts;
import de.infoasset.broker.interfaces.core.Directory;
import de.infoasset.broker.interfaces.core.Document;
import de.infoasset.broker.interfaces.core.Documents;

15 import de.infoasset.broker.interfaces.core.DomainValue;
import de.infoasset.broker.interfaces.core.Group;
import de.infoasset.broker.interfaces.core.Membership;
import de.infoasset.broker.interfaces.core.Person;
import de.infoasset.broker.services.asset.AssetDelegate;

20 import de.infoasset.broker.store.AttributeSignature;
import de.infoasset.broker.store.Container;
import de.infoasset.broker.store.Content;
import de.infoasset.broker.store.Query;
import de.infoasset.broker.store.QueryAnd;

25 import de.infoasset.broker.store.QueryEquals;
import de.infoasset.broker.util.textFilter.TextFilter;

/ **
* IMPDocument is an implementation of

30 * {@link de.infoasset.broker.interfaces.Document}.

* /

pub l i c c l a s s IMPDocument ex tends AssetDelegate implements Document {

35 //......

pub l i c String getZweck() {
re turn t h i s .getProperty(Documents.asZweck);

}
40

pub l i c vo id setZweck(String zweck) {
t h i s .setProperty(Documents.asZweck, zweck);

}

45 pub l i c String getDiffVorversion() {
re turn t h i s .getProperty(Documents.asDiffVorversion);

}

pub l i c vo id setDiffVorversion(String diffVorversion) {
50 t h i s .setProperty(Documents.asDiffVorversion, diffVorversion);

50



}

pub l i c String getReasonOnExpiry() {
re turn t h i s .getProperty(Documents.asReasonOnExpiry);

55 }

pub l i c vo id setReasonOnExpiry(String reasonOnExpiry) {
t h i s .setProperty(Documents.asReasonOnExpiry, reasonOnExpiry);

}
60

pub l i c String getURL() {
re turn t h i s .getProperty(Documents.asURL);

}

65 pub l i c vo id setURL(String url) {
t h i s .setProperty(Documents.asURL, url);

}

pub l i c String getTestURL() {
70 re turn t h i s .getProperty(Documents.asTestURL);

}

pub l i c vo id setTestURL(String testUrl) {
t h i s .setProperty(Documents.asTestURL, testUrl);

75 }

pub l i c String getVerfuegbarkeit() {
re turn t h i s .getProperty(Documents.asVerfuegbarkeit);

}
80

pub l i c vo id setVerfuegbarkeit(String verfuegbarkeit) {
t h i s .setProperty(Documents.asVerfuegbarkeit, verfuegbarkeit);

}

85 pub l i c Date getGueltigVonDate() {
re turn t h i s .getProperty(Documents.asGueltigVonDate);

}

pub l i c vo id setGueltigVonDate(Date gueltigVonDate) {
90 t h i s .setProperty(Documents.asGueltigVonDate, gueltigVonDate);

}

pub l i c Date getFreigegebenDate() {
re turn t h i s .getProperty(Documents.asFreigegebenDate);

95 }

pub l i c vo id setFreigegebenDate(Date freigegebenDate) {
t h i s .setProperty(Documents.asFreigegebenDate, freigegebenDate);

}
100

pub l i c Date getVeroeffentlichDate() {
re turn t h i s .getProperty(Documents.asVeroeffentlichDate);

}

105 pub l i c vo id setVeroeffentlichDate(Date veroeffentlichDate) {
t h i s .setProperty(Documents.asVeroeffentlichDate, veroeffentlichDate);

}

pub l i c Iterator getAllConceptIds() {
110 re turn services.getConcepts().getConceptsOfDocumentIds(getId());

}

pub l i c Iterator getConceptIds() {
HashSet normalConcepts = new HashSet();

115 Iterator allConcepts = services.getConcepts().getConceptsOfDocumentIds(getId())
;

whi le (allConcepts.hasNext()) {
Concept thisConcept = services.getConcepts().

51



getConcept((String)allConcepts.next());
boolean flag = t rue ;

120 f o r (Concept c = thisConcept.getSuper(); c != n u l l ; c = c.getSuper()) {
String cName = c.getName();
i f ("Fachliche Kontexte".equals(cName) ||
"Rechtliche Grundlagen".equals(cName) ||
"Zielgruppen".equals(cName)) {

125 flag = f a l s e;
break;

}
}
i f (flag == t rue ) normalConcepts.add(thisConcept.getId());

130 }
re turn normalConcepts.iterator();

}

pub l i c Iterator getFachlicherKontexte() {
135 HashSet fachlicherKontexte = new HashSet();

Iterator allConcepts = services.getConcepts().getConceptsOfDocumentIds(getId())
;

whi le (allConcepts.hasNext()) {
Concept thisConcept = services.getConcepts().

getConcept((String)allConcepts.next());
140 f o r (Concept c = thisConcept.getSuper(); c != n u l l ; c = c.getSuper()) {

String cName = c.getName();
i f ("Fachliche Kontexte".equals(cName)) {

fachlicherKontexte.add(thisConcept.getId());
break;

145 }
}

}
re turn fachlicherKontexte.iterator();

}
150

pub l i c Iterator getRechtlicheGrundlagen() {
HashSet rechtlicheGrundlagen = new HashSet();
Iterator allConcepts = services.getConcepts().getConceptsOfDocumentIds(getId())

;
whi le (allConcepts.hasNext()) {

155 Concept thisConcept = services.getConcepts().
getConcept((String)allConcepts.next());

f o r (Concept c = thisConcept.getSuper(); c != n u l l ; c = c.getSuper()) {
String cName = c.getName();
i f ("Rechtliche Grundlagen".equals(cName)) {

160 rechtlicheGrundlagen.add(thisConcept.getId());
break;

}
}

}
165 re turn rechtlicheGrundlagen.iterator();

}

pub l i c Iterator getZielgruppen() {
HashSet zielgruppen = new HashSet();

170 Iterator allConcepts = services.getConcepts().getConceptsOfDocumentIds(getId())
;

whi le (allConcepts.hasNext()) {
Concept thisConcept = services.getConcepts().

getConcept((String)allConcepts.next());
f o r (Concept c = thisConcept.getSuper(); c != n u l l ; c = c.getSuper()) {

175 String cName = c.getName();
i f ("Zielgruppen".equals(cName)) {

zielgruppen.add(thisConcept.getId());
break;

}
180 }

}
re turn zielgruppen.iterator();

52



}

185 pub l i c Iterator getUsedByWSDocuments() {
re turn t h i s .getAssociatedAssetIds

(Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole());
}

190 pub l i c vo id addUsedByWSDocument(String wsDocId) {
Document usedByWSDocument = services.getDocuments().getDocument(wsDocId);
i f (! t h i s .hasAssociatedAsset(
Documents.DOCUMENT_USEDBYWSDOCUMENT.
getThisRole(), usedByWSDocument)) {

195 t h i s .createAssociation
(Documents.DOCUMENT_USEDBYWSDOCUMENT.
getThisRole(), usedByWSDocument, Documents.

DOCUMENT_USEDBYWSDOCUMENT.getThatRole());
}
i f (! t h i s .hasAssociatedAsset(

200 Documents.DOCUMENT_USEDWSDOCUMENT.
getThisRole(), usedByWSDocument)) {

t h i s .createAssociation
(Documents.DOCUMENT_USEDWSDOCUMENT.
getThatRole(), usedByWSDocument,

205 Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole());
}

}

pub l i c vo id removeUsedByWSDocument(String wsDocId) {
210 Document usedByWSDocument = services.getDocuments().getDocument(wsDocId);

t h i s .removeAssociatedAsset(
Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole(),
usedByWSDocument,
Documents.DOCUMENT_USEDBYWSDOCUMENT.getThatRole());

215 t h i s .removeAssociatedAsset(
Documents.DOCUMENT_USEDWSDOCUMENT.getThatRole(),
usedByWSDocument,
Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole());

}
220

pub l i c Iterator getUsedWSDocuments() {
re turn t h i s .getAssociatedAssetIds

(Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole());
}

225
pub l i c vo id addUsedWSDocument(String wsDocId) {

Document usedWSDocument = services.getDocuments().getDocument(wsDocId);
i f (! t h i s .hasAssociatedAsset(
Documents.DOCUMENT_USEDWSDOCUMENT.

230 getThisRole(), usedWSDocument)) {
t h i s .createAssociation(

Documents.DOCUMENT_USEDWSDOCUMENT.
getThisRole(), usedWSDocument,
Documents.DOCUMENT_USEDWSDOCUMENT.getThatRole());

235 }
i f (! t h i s .hasAssociatedAsset(
Documents.DOCUMENT_USEDBYWSDOCUMENT.
getThisRole(), usedWSDocument)) {

t h i s .createAssociation(
240 Documents.DOCUMENT_USEDBYWSDOCUMENT.

getThatRole(), usedWSDocument,
Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole());

}
}

245
pub l i c vo id removeUsedWSDocument(String wsDocId) {

Document usedWSDocument = services.getDocuments().getDocument(wsDocId);
t h i s .removeAssociatedAsset(

Documents.DOCUMENT_USEDWSDOCUMENT.getThisRole(),

53



250 usedWSDocument,
Documents.DOCUMENT_USEDWSDOCUMENT.getThatRole());

t h i s .removeAssociatedAsset(
Documents.DOCUMENT_USEDBYWSDOCUMENT.getThatRole(),
usedWSDocument,

255 Documents.DOCUMENT_USEDBYWSDOCUMENT.getThisRole());
}

pub l i c vo id addEigentuemerId(String eigentuemerId) {
Person person = services.getPersons().getPerson(eigentuemerId);

260 i f (! t h i s .hasAssociatedAsset(
Documents.DOCUMENT_PERSON_EIGENTUEMER.getThisRole(), person)) {

t h i s .createAssociation(
Documents.DOCUMENT_PERSON_EIGENTUEMER.
getThisRole(), person, Documents. DOCUMENT_PERSON_EIGENTUEMER.

getThatRole());
265 }

}

pub l i c vo id removeEigentuemer(String eigentuemerId) {
Person person = services.getPersons().getPerson(eigentuemerId);

270 t h i s .removeAssociatedAsset(
Documents.DOCUMENT_PERSON_EIGENTUEMER.
getThisRole(), person, Documents. DOCUMENT_PERSON_EIGENTUEMER.

getThatRole());
}

275 pub l i c Iterator getEigentuemern() {
re turn t h i s .getAssociatedAssetIds(

Documents.DOCUMENT_PERSON_EIGENTUEMER.getThisRole());
}

280 pub l i c Iterator getAnsprechpartnerFachlichIds() {
re turn t h i s .getAssociatedAssetIds(

Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.
getThisRole());

}
285

pub l i c vo id addAnsprechpartnerFachlichId(String id) {
Person ansprechpartnerFachlich = services.getPersons().getPerson(id);
i f (! t h i s .hasAssociatedAsset(
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.getThisRole(),

290 ansprechpartnerFachlich)) {
t h i s .createAssociation(
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.
getThisRole(), ansprechpartnerFachlich,
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.

295 getThatRole());
}

}

pub l i c vo id removeAnsprechpartnerFachlichId(String personId) {
300 Person person = services.getPersons().getPerson(personId);

t h i s .removeAssociatedAsset(
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.
getThisRole(), person, Documents.

DOCUMENT_PERSON_ANSPRECHPARTNERFACHLICH.getThatRole());
}

305
pub l i c Iterator getAnsprechpartnerTechnischIds() {

re turn t h i s .getAssociatedAssetIds(
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.
getThisRole());

310 }

pub l i c vo id addAnsprechpartnerTechnischId(String id) {
Person ansprechpartnerTechnisch = services.getPersons().getPerson(id);
i f (! t h i s .hasAssociatedAsset(

54



315 Documents.DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.
getThisRole(), ansprechpartnerTechnisch)) {

t h i s .createAssociation(
Documents.DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.
getThisRole(), ansprechpartnerTechnisch,

320 Documents.DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.
getThatRole());

}
}

325 pub l i c vo id removeAnsprechpartnerTechnischId(String personId) {
Person person = services.getPersons().getPerson(personId);
t h i s .removeAssociatedAsset(

Documents.DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.
getThisRole(), person, Documents.

DOCUMENT_PERSON_ANSPRECHPARTNERTECHNISCH.getThatRole());
330 }

pub l i c String getFreigegebenVon() {
re turn t h i s .getAssociatedAssetId(

Documents.PERSON_DOCUMENT_FREIGEGEBENVON.getManyRole());
335 }

pub l i c vo id setFreigegebenVon(String id) {
Person freigegebenVon = services.getPersons().getPerson(id);
t h i s .createAssociation(

340 Documents.PERSON_DOCUMENT_FREIGEGEBENVON.
getManyRole(), freigegebenVon, Documents.

PERSON_DOCUMENT_FREIGEGEBENVON.getOneRole());
}

pub l i c boolean getHistorieStatus() {
345 re turn ( t h i s .getProperty(Documents.asHistorieStatus) == 1 ? t rue : f a l s e);

}

pub l i c vo id setHistorieStatus( boolean flag) {
t h i s .setProperty(Documents.asHistorieStatus, (flag ? 1 : 0));

350 }

pub l i c String getHistoryDirectory() {
re turn t h i s .getProperty(Documents.asHistoryDirectory);

}
355

pub l i c vo id setHistoryDirectory(String historyDirectoryId) {
t h i s .setProperty(Documents.asHistoryDirectory, historyDirectoryId);

}

360 pub l i c vo id checkDocumentForPublish() {
Date today = new Date();
i f (today.after(getVeroeffentlichDate()) ||
today.equals(getVeroeffentlichDate())) {

setDocumentStatus("3");
365 i f (getParentVersion() != n u l l ) {

Document parentVersion =
services.getDocuments().getDocument(getParentVersion());
i f (parentVersion.getHistoryDirectory() != n u l l ) {

parentVersion.moveToDirectory
370 (parentVersion.getHistoryDirectory());

parentVersion.write_LEGACY();
}

}
write_LEGACY();

375 }
}

pub l i c vo id checkDocumentForExpire() {
Date today = new Date();

380 i f (today.after(getExpiryDate())) {

55



setDocumentStatus("5");
i f (getHistoryDirectory() != n u l l ) {

moveToDirectory(getHistoryDirectory());
write_LEGACY();

385 }
}

}

//......
390

}

56


	Introduction
	Objectives and Goals
	Structure of the Work

	A Web Service Development Portal
	Motivation of the Web Service Development Portal
	Web Service Introduction
	What are Web Services
	Architecture of Web Service

	Core Functions of the Web Service Development Portal
	Implementation Choices
	Summary

	The infoAsset Broker
	Concepts Introduction
	Basic System Description
	Architecture of the infoAsset Broker
	Core Functions of the infoAsset Broker

	Summary

	Design and Implementation of the Web Service Development Portal
	Analysis of the project
	General overview of the architecture of the GovernmentGateway
	Use cases of the Web Service Development Portal

	Design for the Development Portal
	Document Model
	Document State Model
	Document Publishment Workflow
	Extended Notification Service
	Authorisation Concept

	Implementation of the Development Portal
	Modification in the InfoAsset Broker
	User Interface of Document Publishment Workflow
	Integration of the document access authorisation in the InfoAsset Broker
	Integration of a Web Service interface for the infoAsset Broker

	Evaluation of the implementation
	Comparison of the two access environments of the portal
	The Authorisation Concept at document level

	Summary

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	Appendix
	New Methods in Class IMPDocument


