
 1

Generation of platform independent GUIs by means of
state charts

Project Work

Submitted by:
Luis Bustamante

salinas.bustamante@tuhh.de
Information and Media Technologies

Matriculation Number:
30152

Supervised by:

Prof. Dr. Ralf Möller
STS - TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany

2006-06-09

 2

I declare that:
this work has been prepared by myself,
all literally or content-related quotations from other sources are clearly pointed out,
and no other sources or aids than the ones that are declared are used.

Hamburg, 09.06.2006

 3

Abstract

Software development process most of the time
is focused on the business logic disregarding a
methodology for developing the Graphical User
Interface, formal ways to design them has taken
importance during the last years and a technique
that has gained popularity is using statecharts
for modeling the behavior.

The generation of GUI supported by IDE it is not
something new, there are many tools in the
market with reach visual editors, but a weak on
this tools is the GUI generation in a platform
independent way.

Both statements will be addressed in this work
by taking an independent platform GUI and an
executable statechart generator.

 4

Index

1 Introduction..6

1.1 Problem Definition ...6
1.2 Objective of the Project Work ...6
1.3 Some words about software design...7

2 Unimod Description ...8
2.1 Overview ..8
2.2 Switch Technology...8
2.3 Unimod Model ...8
2.4 Working with different state machines...9
2.5 Working with Sub states... 10
2.6 Using Unimod context .. 11
2.7 Representation of an event .. 13
2.8 Generating a Stand Alone GUI application using Unimod............................... 14

2.8.1 Working with Unimod on the web ... 17
2.8.2 Unimod Remarks ... 18

3 Implementing applications with Unimod and Java .. 19
3.1 Navigation Model for a Wizard .. 19
3.2 Statechart and MVC ... 21
3.3 Unimod and Model Driven Development .. 22
3.4 Creating the application ... 22
3.5 Look and feel .. 23
3.6 State chart modeling.. 23

3.6.1 Statechart Diagram.. 24
3.6.2 Implementing the application with Unimod .. 24

3.7 Output.. 26
3.8 Observations after implementation.. 26

4 Generating Platform Independent GUI .. 27
4.1 Overview .. 27
4.2 AUIML .. 27

4.2.1 Overview .. 27
4.2.2 How does it work? ... 27
4.2.3 AUIML Remarks... 29

4.3 MVC Scenario in Unimod and AUIML ... 30
4.3.1 Ideal behavior ... 30
4.3.2 Intention of modeling the controller with a statechart and AUIML 30
4.3.3 Mapping between the statechart and AUIML .. 30

4.4 Binding the GUI editor and the GUI logic (View and Controller) 31
4.4.1 Overview .. 31
4.4.2 Joining both worlds.. 31
4.4.3 Coupling Details... 32
4.4.4 Problems... 33
4.4.5 Implementing a Wizard with AUIML - Unimod .. 33
4.4.6 Unimod Model ... 38

 5

4.4.7 Missing formalism .. 39
4.5 Problems during framework interaction. .. 40

4.5.1 Obervations after implementation ... 40

5 Conclusions .. 42
5.1 Considerations... 42
5.2 Related Work .. 43
5.3 Further Work... 44

6 References ... 45

7 Appendix .. 46

7.1 File generated by Unimod: ... 46
7.2 File generated by AUIML .. 48

 6

1 Introduction

1.1 Problem Definition

Currently on the market there are development environments that help to build
complex interfaces in relatively short time frames. The user needs to get acquainted
with the tool and in matter of short time a fully functional GUI is ready to use
without the need to invest time coding.

These tools miss one or both of the following features:

• platform independence of the modeled GUI

• the ability to simulate the GUI (and thus refine it) before deployment

Considering another point of view, it would be beneficial to empower the client
side(GUI) with some intelligence, it is effective because sensitive user data would be
protected, the context used would be validated on the client side without requiring a
round trip.

1.2 Objective of the Project Work

The intention of this Project work is the modeling of GUI interactions by means of
Statecharts. In order to achieve this, executable models are needed, thus the open
source tool Unimod shall be used.

A common flaw when developing a GUI stem from the disregard the developer has
when building a GUI.

A GUI consists of 2 parts:

• The elements that conform the look and feeling.

• The behavior of such elements.

The GUI can be modeled using statecharts to represent the behavior and interactions
between the elements, the statechart can be serialized to a platform independent
format as XML and later on deserialized to a platform specific code to generate the
GUI.

These platform independent representations could be used as base for later
generation technologies like Struts, Java Server Faces and so on.

 7

Coupling Unimod with a GUI yields the following advantages:

• Neutral representation.

• Separation of concerns.

1.3 Some words about software design

The software design consists of 2 elements

• User interface: Interacts with the user and enables access to the model.

• Model: Represents the business logic and does not know how the user

interacts with the user interface.

Model driven development focuses on creating a model which is capable to run
independently of the platform, it abstract the business problem and delivers a model
that it can be transformed to code.

Advantages of developing based on the model

• Platform independence

• Formal description

• Validation of models.

• Standardization.

The software developing process is strongly supported by methodologies and tools to
ease the task, on the model side OMG propose standards to enable interoperability
between technologies, but on the user interface side the support is still underway.

In the last years statechart modeling has gained importance among the community
to model user interactions, several extensions have been proposed trying to enrich
the formality and semantics of the original notation created by Harel; stochastic
Statecharts, Interaction object graphs, Queuing statecharts, objectcharts and some
others.

 8

2 Unimod Description

2.1 Overview

The tool creates a java based statecharts framework which is attached to the eclipse
development environment as a plug in and allows the modeler to design statechart
diagrams and execute them.

The tool relies on SWITCH technology for implementing the state machine
framework.

2.2 Switch Technology

It is based on projecting of systems and programs as a set of connected finite
automata. Each automate is described by a connections scheme and a state
transition graph. There is a formal and isomorphic way to generate a skeleton code
for systems functionality implementation on the base of these two descriptions. This
method doesn't depend on the platform, operating system or programming
language.

In the case of UniMod, the state chart is interpreted, it represents the state chart as
a xml file, which allows to modify the code and load it during runtime; if the code
were generated the program would need to be stopped and load a .class.

2.3 Unimod Model

The Unimod model structure comprises 3 parts:

• Definition of the state machine(s).

• Definition of the object(s) that generates the events.

• Definition of the object(s) affected by the state machine. (Controlled
Object).

An event generator is the entity that fires the execution within the statemachine,
therefore they must be linked on the main model.

The state machine defines the transitions and constrains between the states. The
transitions are fired whenever the entity called event provider issues an event that
meets the constraint. To perform an action within the statechart the entity called
Controlled object is invoked to generate the expected behavior, it might execute a
task given a parameter, and might return a value.

 9

2.4 Working with different state machines

Unimod offers the possibility to work with different state machines interacting among
them, each one of them performing independent tasks within the same model.

The model must be structured with one main state machine and one or more
underlying state machines. The main state machine is connected to the event
provider and is on charge of event delegation, the dependent state machines are
connected to the main one.

An action execution is represented on the diagram within a controlled object,
contrary to the event providers, the underlying state machine must be bound to a
controlled object.

On the bottom part of each state there are two options, include and enter.

Include allows the modeler to create the link to several state machines, they will
inherit the events from the state who is invoking them.

Enter executes an action when the process flows enter the state.

“Parent State” invokes the state machines A2 and A3. After completion it will execute the
action registered under enter.

 10

In this case the state “Parent State” is invoking the state machines A2 and A3 whenever the
state is entered. After executing the state machines defined it will call the action registered
under enter.

2.5 Working with Sub states

A state might have sub states; this feature enables different levels of abstraction to
meet different levels of detail.

Especially helpful when trying to have an overview of the model, it is not necessary
to understand the model in all the abstraction layers, give more flexibility and the
possibility to encapsulate related process flow in the same state.

The sub states inherit events received by the parent, an event will be transferred to
the states within the parent's scope no matter the depth. At the end of the execution
the process flow is turn over to the parent.

The state machines that complete the model with 3 state machines and sub states
looks as follows:

 11

And the output looks as follows:

Setting engine [com.evelopers.unimod.runtime.ModelEngine@fcfa52], called from EG
20:25:05,247 INFO [Run] Start event [e101] processing. In state [/A1:Top]
20:25:05,257 INFO [Run] Transition to go found [s1#Parent State##true]
20:25:05,257 INFO [Run] Start on-enter action [o1.z2] execution
---- Thicking on State Machine 2
20:25:05,378 INFO [Run] Transition to go found [s1#timer state 3##true]
20:25:05,378 DEBUG [Run] Try transition [timer state 3#timer state 3#e101#true]
20:25:05,378 INFO [Run] Transition to go found [timer state 3#timer state 3#e101#true]
20:25:05,388 INFO [Run] Start output action [o1.z7] execution
---- Thicking on State Machine 3
20:25:05,388 INFO [Run] Finish output action [o1.z7] execution
20:25:05,388 INFO [Run] Finish event [e101] processing. In state [/A1:Parent State/A3:timer
state 3]
20:25:05,388 INFO [Run] Finish event [e101] processing. In state [/A1:Child state]
20:25:06,239 INFO [Run] Start event [e101] processing. In state [/A1:Child state]
20:25:06,239 INFO [Run] Start event [e101] processing. In state [/A1:Parent State/A2:timer
state 2]
20:25:06,239 DEBUG [Run] Try transition [timer state 2#timer state 2#e101#true]
20:25:06,239 INFO [Run] Transition to go found [timer state 2#timer state 2#e101#true]
20:25:06,239 INFO [Run] Start output action [o1.z6] execution
---- Thicking on State Machine 2
20:25:06,239 INFO [Run] Finish output action [o1.z6] execution
20:25:06,249 INFO [Run] Start on-enter action [o1.z5] execution
---- Entering time manager
20:25:06,249 INFO [Run] Finish on-enter action [o1.z5] execution
20:25:06,249 INFO [Run] Finish event [e101] processing. In state [/A1:Parent State/A2:timer
state 2]
20:25:06,249 INFO [Run] Start event [e101] processing. In state [/A1:Parent State/A3:timer
state 3]
20:25:06,249 DEBUG [Run] Try transition [timer state 3#timer state 3#e101#true]
20:25:06,249 INFO [Run] Transition to go found [timer state 3#timer state 3#e101#true]
20:25:06,249 INFO [Run] Start output action [o1.z7] execution
---- Thicking on State Machine 3
20:25:18,557 INFO [Run] Start output action [o1.z3] execution
---- Selecting a coin
20:25:21,461 INFO [Run] Start output action [o1.z4] execution
---- Pressing button

2.6 Using Unimod context

In order to communicate among the controlled objects a third entity is needed, a
mechanism that is aware of the values being handled throughout the statechart.

Unimod implements a context that stores the common values needed by each one of
the controlled objects. For the purpose of activating the context there must be a
class instantiating the Unimod application context during the initialization phase, the
latter will be in charge of retrieving and storing the parameters generated by the
events providers.

 12

Example:

The selected value of a combo box

To make use of information that might be issued by the component, it is needed a
way to keep the information throughout the process flow.

The combo knows about the information contained in it, it should use the application
context to read and write data; the latter is accessible by any controlled object.

When an event is created, parameters can be attached to the source and they will be
stored in the context.

Event e170 = new Event(GUI.E170, new Parameter(Country, new String(strCountry));

Let’s assume the code line above was generated by the following GUI:

Whenever the country combo box selected item changes, the state combo box
updates the information.

The changes on the GUI are supported by the state chart below; whenever one of
the combos issues an event, the statechart invokes a controlled object (o1) that
reads the parameter value from the context and the state chart transitions to the
right state.

 13

Unimod model.

Action Description Event Description
o1.x1 Load states combo. e150 Country combo value

changed.
o1.x2 Validates country. e160 State combo value

changed.
o1.y1 Enable a check box. e170 Checkbox clicked.
o1.y2 Validates state.
o1.z2 Display a text.

2.7 Representation of an event

An event in Unimod is represented as a String as follows:

/**
* @unimod.event.descr Ping
*/
public static final String E101 = "e101";

Unimod handles the events through an event manager, the latter is contained in the
Unimod engine,

An event is invoked as follows:

String event = eventProvider.E102
engine.getEventManager().handle(new Event(event), StateMachineContextImpl.create());

 14

A parameter is composed by a String and by an object value, invoking an event with
a parameter looks as follows:

String event = eventProvider.E102;
Parameter parameter = new Parameter(“newParameter”, value);

engine.getEventManager().handle(new Event(event, new Parameter[]{parameter}),
StateMachineContextImpl.create());

2.8 Generating a Stand Alone GUI application using Unimod

The connectivity diagram needs to be created as usual; the event provider and the
controlled object must have the desired events and actions respectively.

The GUI is in charge of handling user’s interactions by listening to the events
generated on the components available. A java Listener must be implemented to
fulfill the task, i.e. action, mouse, list selection, etc.

The Unimod engine will act as the intermediate between the GUI and the model. This
should be set up during the initialization phase on the events providers, i.e.:

public void init(ModelEngine engine) throws CommonException
{

GUI.getGUI().init(engine);
try{

 // invoke in Swing event thread
 SwingUtilities.invokeAndWait (

new Runnable(){
public void run(){

 GUI.getGUI().setVisible(true);
 }
 });
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
}

During the event provider disposal, the GUI must be as well disposed.

After enabling Unimod engine the event manager can be called to process events
generated. The events can be accessed from anywhere in the application because
they are public and static members within the event provider class.

 15

The idea is to create a .jar file that can be called from the command line and which
contains a manifest file pointing to the main class that uses an external GUI as front
end and implements the logic behind by using Unimod.

The tool ant is used to simplify the process.

A directory structure is needed:

Lib cointans the .jar related files that contains the Unimod classes.

The folder resources contain the files generated by UniMod:

• Model file with extension .Unimod

• State Machine file with extension .xml

• Event processor with extension .java

The folder src contains the code of the events generators, the controlled objects and
the GUI itself.

 16

The important part of the build.xml is resumed here

<jar destfile="${assemble}/independetApp.jar"

basedir="${build.classes}"
 includes="**/*.class, **/*.properties"
 excludes="**/client/**/*.class">

<manifest>
 <attribute name="Class-Path" value="${build.jar.adapter}"/>
 <attribute name="Main-Class" value="com.evelopers.unimod.adapter.standalone.Run" />

</manifest>
</jar>

When executing the standalone application, the command must make reference to
the xml file where the state machine is described.

It can be executed as follows:

java –jar independentApp.jar statemachine.xml

Interaction with the application gives as result:

 17

2.8.1 Working with Unimod on the web

Unimod is capable to run on the web as well, this is possibly through the use of a .jar
provided in the distribution called UniMod-Adapter-Servlet. This .jar extends the
java class HttpServlet and interprets a model created by Unimod.

The parameters used for setting up the environment on the web application are read
from a web.xml descriptor. Example:

<web-app>
 <display-name>Messenger</display-name>
 <servlet>
 <servlet-name>HttpServletAdapter</servlet-name>
 <servlet-class>com.evelopers.unimod.adapter.servlet.HttpServletAdapter</servlet-class>
 <init-param>
 <param-name>MODEL_URL</param-name>
 <param-value>A1.xml</param-value>
 </init-param>
 <init-param>
 <param-name>LOGGER_NAME</param-name>
 <param-value>CONSOLE</param-value>
 </init-param>

<servlet-mapping>
 <servlet-name>HttpServletAdapter</servlet-name>
 <url-pattern>/controller</url-pattern>
 </servlet-mapping>
</web-app>

Unimod overrides the methods init, service and destroy; the state machine engine is
instantiated during the servlet’s init method, the listeners and handlers are bounded
as well during the same method call.

As in the case of the stand alone application, there is a context which stores the
information handled throughout the process flow.

There is a slight difference between the stand alone model and the web model, the
entity that will create the events is not bounded to the Unimod on the connectivity
diagram. A modified servlet is the responsible for generating the events; the events
are defined within the service method.

An html form must contain the name of the event that will be processed by the
Unimod state chart, and it is passed to the servlet to be created. I.e.:

Type your name:

<form action="controller" method="POST">

<input name="NAME" type="TEXT"/>
 <input name="evt" value="e2" type="HIDDEN"/>
 <input name="button" value="Submit" type="SUBMIT"/>

 18

The data needs to be stored in the Unimod context and retrieved using a .jsp. I.e.:

In Unimod:

context.getEventContext().setParameter(Parameters.EventContext.USERS, users);

In .jsp
<%
 List users = (List)request.getAttribute(Parameters.EventContext.USERS);

for (int i = 0; i < users.size(); i++) {
 out.println("First Name: " + (String)users.get(i) + "
");

}
%>

The class StateMachineContextImpl provided by Unimod maps the context used
within the model to the session and request objects handled by the servlet.

An instance of a controlled object is needed to display the response results; this
object must extend the class BasePresentationManager provided by Unimod to
retrieve the request / response objects and forward them as a normal servlet would
do. I.e.

include(context, "/LoggedIn.jsp");

A servlet complaint container is needed; the folder structure is the same as any other
servlets application.

The web.xml descriptor must specify the servlet class com.evelopers.unimod.
adapter.servlet.HttpServletAdapter and the parameter MODEL_URL which
contains the .xml that describes the state chart.

The .jars used for creating the Unimod model in eclipse need to be placed in the lib
folder.

2.8.2 Unimod Remarks

The visual editor visible area is consumed really fast because descriptive name
restrictions need a lot of space, on the other hand two letter descriptions as Unimod
(i.e. x1, z2) suggests, on a later stage, is hard to read because the modeler does not
know the meaning of all of them.

Unimod's visual editor has a restriction when creating a function that returns a value,
the only data types allowed are integer and Boolean. The data types can be changed
manually, but it is a disadvantage given that we want to avoid manual coding.

A disadvantage about Unimod's model is the lack of concurrent execution support,
when an event is generated, the underlying state machines execution is sequential
and not concurrent, and it is not supported by Unimod.

It does not support transient states, do not offer history and do not specify how to
prioritize transitions.

 19

3 Implementing applications with Unimod and Java

3.1 Navigation Model for a Wizard

There are some cases where the completion of a task is composed of several steps;
the final objective is reached only if the whole series of interactions are performed. A
Wizard is a typical example containing such behavior.

It is mandatory to have a consistent and adequate way of modeling the steps
involved and determine the resultant state after a gesture from the user.

A GUI consists of components that might be bound to each other and that might be
able to issue a certain behavior, as for example, the action of showing a pop up
menu, to enable a component, to load a component with data and so on.

Eclipse implements this functionality throughout the framework; a specific
implementation will be taken and modeled as an example of a navigation model. This
is the wizard for importing a new project to the workspace.

Characteristics:

• Offers the possibility to add an existing project.

• There are different types of projects that can be imported.

• Some of them have common characteristics and they require only one

screen.

 20

The GUI looks as follows:

• The wizard request to select
the type of project to be
imported.

• This is the main state

represented on the statechart.

• After making the selection and
pressing the button „next“the
statechart transitions
accordingly.

 21

• The screen to be displayed is
responsibility of the state
where the statechart is
transiting to.

• If the button cancel is pressed

at any time, the statechart
exits the flow.

• If the user presses the button

„back“the statechart transitions
to the previous state.

• The objective of the statechart
shown is to model the
navigation, but it is important
to notice that each one of the
GUI have an independent
statechart.

• The way the buttons, texts and

other controls interact, is
modeled by separate.

3.2 Statechart and MVC

To build a robust presentation layer it is recommended to model the user interface
behavior by using statecharts and then implement the statechart design using the
mediator pattern and bound them by implementing the MVC pattern[10], this kind of
coupling is a powerful architecture for GUIs and it is suitable to event driven
systems.

By implementing the MVC it is necessary to comply with the requirement that the
controller must lead the process flow of the system. The controller listens to
incoming events, processes them and decides about the following action to be
executed.

 22

The model encapsulates the domain logic and keeps its independence from the view
and controller, but at anytime when the model is modified it must notify the view in
order to update the presentation.

Advantages of having a MVC

• The Model, View and Controller pattern allow building the dependency
between the components during runtime. This brings flexibility because the
classes do not need to be recompiled.

• Decouples the processing of data and its visual representation and the

View (GUI) and the controller (state chart) can be developed separately.

Disadvantages of having a MVC

• The design of a complex system requires more effort as with another
approach.

3.3 Unimod and Model Driven Development

Unimod encourages model driven development because provides means to build the
application logic from a visual representation to executable code insulating it from
technology evolution.

The end product can be executed and will provide feedback about the accuracy of
the design, this is helpful to discover flaws at early stage of the development process
and correct them before noticing them at later stages of the software development
where modifications might imply major changes.

3.4 Creating the application

To exemplify how a statechart created with Unimod behaves under the role of
controller and interacts with the view and the model, a java based application
simulating a Soda dispenser is shown.

The Soda dispenser is implemented using a swing generated GUI as view and the
statechart as controller.

Considerations

• Different coin denomination ranging from 10 cents to 5 euros is accepted.

• The user can cancel the operation at any time.

• There are 6 different beverages, each one with a different price.

• The user will get a notification if the amount of money for the desired

beverage is not enough.

 23

• The user does not get the change after selecting a beverage, in case the

user wants to select a second one, the GUI waits until the button change is
pressed.

• There is a cooling unit that keeps the beverages under an ideal

temperature, every n seconds the thermometer is checked and adjust the
temperature accordingly if needed.

3.5 Look and feel

• To simulate different coin denominations, some radio buttons specifying
the coin values will be used.

• After selecting the desired coin denomination, the button insert is pressed

to simulate coin insertion; the user sees the output on the screen.

• The cooling unit output is just visible on the console because it is not

relevant for the GUI implementation, but is useful for illustrating
statecharts behavior.

• Every component on the GUI notifies the controller via a Unimod event.

3.6 State chart modeling

The simulation of the GUI needs concurrent states for managing interactions on the
GUI and the cooling unit working on the background. The statechart representation
in Unimod cannot be implemented as Harel's original specifications; the reason is
that it does not support direct concurrent statemachines, thereby the diagrams need
to be split into individual diagrams and later called by a main state machine as
explained in chapter 2.

 24

3.6.1 Statechart Diagram

This is the statechart supporting the View component, given that it is the simulation
of a machine that is running non stop, there is no end state.

3.6.2 Implementing the application with Unimod

Unimod statechart diagram is divided in three parts:

The parent includes state machines A1 and A2, they are executed sequentially and
the events generated are forwarded to both state machines.

 25

A1 Diagram, the statechart supporting the GUI has only two states stand by and
dispatching.

State Machine A2 diagram, the cooling unit is either cooling the dispenser, or
waiting.

List of actions and events involved

Action Description Event Description
o3.x1 Enough money e200 Coin denomination

selected
o3.x2 Sum e201 Coin inserted.
o3.x3 Dispense e202 Change button

pressed.
o3.x4 Give change. e300 Soda selected.
o3.x5 Coin created
o3.x6 Message
o3.x7 Soda Name
o2.z1 Increase timer.
o2.z2 Read time.
o2.z3 Create random

temperature

o2.z4 Decrease Temperature
o2.z5 Read temperature

 26

3.7 Output
Some of the most representative output generated looks as follows:

23:27:52,718 INFO [Run] Start event [e101] processing. In state [/A3:Top]
23:27:52,728 INFO [Run] Transition to go found [s1#Parent##true]
23:27:52,758 INFO [Run] Start event [e101] processing. In state [/A3:Parent/A1:Top]
23:27:52,758 INFO [Run] Transition to go found [s1#Stand By##true]
23:56:32,431 INFO [Run] Start output action [o3.x5] execution
---- Coin Created: 20
23:56:32,431 INFO [Run] Finish output action [o3.x5] execution
---- Adding coin: 50
---- So far 50
23:56:35,946 INFO [Run] Finish output action [o3.x2] execution
23:56:35,946 INFO [Run] Finish event [e201] processing. In state [/A3:Parent/A1:Stand By]
23:56:35,966 INFO [Run] Start event [e201] processing. In state [/A3:Parent/A2:Time elapsing]
-- Creating parameter Soda... Soda
---- Creating parameter price... 30
23:56:38,800 INFO [Run] Start event [e300] processing. In state [/A3:Parent]
23:56:38,800 INFO [Run] Start event [e300] processing. In state [/A3:Parent/A1:Stand By]
23:56:38,800 DEBUG [Run] Try transition [Stand By#Dispatching#e300#o3.x1]
23:56:38,800 INFO [Run] Finish input action [o3.x1] calculation. Its value is [true]
23:56:38,800 INFO [Run] Transition to go found [Stand By#Dispatching#e300#o3.x1]
23:56:38,810 INFO [Run] Start output action [o3.x7] execution
23:56:39,311 INFO [Run] Start output action [o2.z4] execution
---- Decreasing Temp: 8
23:56:39,311 INFO [Run] Finish output action [o2.z4] execution
23:56:40,312 INFO [Run] Start output action [o2.z4] execution
---- Decreasing Temp: 7
23:56:40,312 INFO [Run] Finish output action [o2.z4] execution
-- Performing: 120 – 25
23:56:40,993 INFO [Run] Finish on-enter action [o3.x3] execution

3.8 Observations after implementation

• Statechart logic it is relatively easy to implement.

• Generating manually the GUI consumes time.

• Coupling the implementation between the control and view is not a problem.

• It could run platform independent if the java virtual machine and the
appropriate Unimod libraries are present.

 27

4 Generating Platform Independent GUI

4.1 Overview

The GUI behavior can be modeled by using a statechart, but there are still missing
links to create an interface based on a graphical representation.

When the statechart has been created (controller), we have not more than a model
that is able to react to a given an event. This controller and the GUI (View)
cooperate to accomplish a given task, and separate the concerns of displaying and
handling interactions for robustness.

There are tools that allow GUI modeling, which simplify the process of building a
visual interface and create a platform independent representation of it by serializing
the description to an xml file. During this project the tool AUIML was used to
generate the GUI.

4.2 AUIML

4.2.1 Overview

It is a tool developed by IBM, it stands for Abstract User Interface Markup Language
Toolkit. It runs under Eclipse 3.01 or IBM Software Development Platform 6.01.

The particularity of this application is the capability to render a GUI in different
environments, either could be rendered in SWING or in WEB, the same binaries can
be used for both purposes just changing the deployment procedure.

4.2.2 How does it work?
The user creates a GUI under a drag and drop environment, and AUIML creates the
representation in a XML dialect and provides a main event listener that the user has
to invoke sending as parameter the events generated during runtime in order to
create / handle flow between the components.

After the GUI has been designed, the functionality is completed by:

• Creating a main class that will invoke the UserTaskManager, this class
receives as parameters the name of the AUIML model, the component
being observed (a panel), one or more DataBeans and the context.

• Adding the bean class with the respective setter and getter methods that

will hold the data of the form, this class inherits from an already
predefined AUIML class named DataBean (data object capable to supply
data to an AUIML task)

 28

• Adding the event listener, it inherits from an already predefined AUIML

class named TaskActionListener(Receive action events).

Example 1:

UserTaskManager utm = new UserTaskManager(fileName, panelName, new DataBean[] {db},
getUserContext());

//Adds a TaskActionListener which is notified when commit processing is complete.
utm.addCommitListener(db);

//Adds a TaskActionListener which is notified when the user cancels out of a task.
utm.addCancelListener(db);

//Add an ActionListner for Buttons
utm.addTaskActionListener(db);

//Set's refrence to UserTaskManager
db.setUtm(utm);
//Show the panel.
utm.invoke();

Example 2:

public int getTotalRows(){
 return m_dTotalRows;
 }

public void setTotalRows(int i) throws IllegalUserDataException{
 m_dTotalRows = i;
 }

Example 3:

public void actionPerformed(TaskActionEvent e) {
 String command = e.getActionCommand();

if ("CANCEL".equals(command) || "COMPLETE".equals(command)) {
SamplesLogger.getLogger().info("User requested to close the application");

 return;
 }
}

User task manager is used to interpret the AUIML document and to render the
application correctly, it performs the following tasks:

• Locates and parses the AUIML document.

• Locates and loads the locale.

• Maps the components to the right DataBean object.

The DatabaBean is just a java bean that holds the data in the user interface, the way
this is done is specified by the developer.

 29

Utm is the class that keeps the context between the GUI and the interactions within
the AUIML model; it is part of the AUIML core code.

To bind the involved elements (GUI, eventListener and DataBean) AUIML provides
additional features to some of the components that send parameters. The sequence
to set it up looks as follows:

• Any editable component is selected and in the properties panel is specified
the class that receives the value and the parameter name, under the key
binding.(See figure below).

com.table.TableBean# TotalRows

• The class specified in the last step must contain the code that match the
expected parameter within the actionPerformed method.

if ("RegenerateButton".equals(command))

utm.storeElement("TotalRows");

4.2.3 AUIML Remarks

There are some nice features about the tool, it provides automate validation for
string, numerical and date/time data types, and it makes use of locales to bring
flexibility having different display options on the texts.

It is important to notice that it does not run by itself, some other component are
needed in order to run the tool.

• EMF 2.02 (Modeling Framework)

• GEF 3.01 (Graphical Editing Framework)

• VE 1.0.2.2 (Visual Editor)

 30

4.3 MVC Scenario in Unimod and AUIML

4.3.1 Ideal behavior

• An event is generated by the user by clicking on the wizard form
generated by AUIML and it is forwarded to the controller automatically.

• The state chart examines the source of the event and sends a value to the

java bean (Model).

• The java bean broadcast to the GUI (view) the change of value.

• The GUI detects the notification and updates its content accordingly.

4.3.2 Intention of modeling the controller with a statechart and AUIML

• Define how and when the user can interact with the GUI by catching the
events.

• Associate actions on the GUI with actions on the model, the user is allowed

to execute x but not y.

• Notify visually the user when the model changes.

• The changes done on the GUI have relatively no impact on the model.

4.3.3 Mapping between the statechart and AUIML

The mapping between the model and the code is represented as follows:

The transition, guard, and action in the statechart is represented by

o1.x2

Event

[condition = = true] Guard
o1.z4 Action

An action represented on the model is being coded in Unimod as a controlled object,
within this object the guards are checked for validity using Unimod’s context, the
actions are represented as well within a controlled object.

 31

Action and guard representation.

 /**
 * @unimod.action.descr Check date validity
 */
 public boolean x1(StateMachineContext context) {
 boolean blnValid = false;
 if(context.getEventContext().getParameter(“myDate”, Date().before(“2004/06/06”));
 blnValid = true;
 return blnValid;
 }

Action
/**
 * @unimod.action.descr Output
 */
 public void z1(StateMachineContext context) {
 //execute any desired behavior.
 }

The events issued on the model are not mapped with the code on the GUI. This
could be accomplished by a listener on the AUIML side that detects when any
modification on the model and as a response would fire an event on the GUI.

4.4 Binding the GUI editor and the GUI logic (View and Controller)

4.4.1 Overview

So far we have seen that it is possible to have a platform independent serialized
version of two entities that might cooperate together, the GUI representation and
the logic representation.

We have on one side the visual interface which knows when an event has been
issued and on the other side a state chart with states and transitions which needs to
be notified by an event in order to modify its state.

4.4.2 Joining both worlds

AUIML and Unimod are not compatible at the first glance because the first one runs
under eclipse 3.0 and the second under eclipse 3.1, each one with their respective
plug ins.

To make use of both frameworks one of them must play the role of main controller
and the other must run on the background.

In this case AUIML must be the controller because the implementation details are not
published and it would be harder to begin with that framework, on the other hand
Unimod’s implementation detail are published. The latter will be instantiated and will

 32

listen to events generated by AUIML. This coupling is achieved by creating an event
listener on the GUI side that forwards the notification to the state machine
framework to be interpreted; then a Unimod event is instantiated and finally
Unimod's event manager is notified about the event.

The Unimod specification dictates that there must be a provider and a controlled
object that feeds the statechart with events and issue a response respectively.

In this implementation we would like to have the GUI as event provider and as a
controlled object, but this would imply having both frameworks interacting with each
other and running seamlessly, unfortunately this is not true due compatibility
problems.

The GUI development with AUIML comprises 3 parts:

• Design of the GUI.

• Main file invoking AUIML and Unimod instances.

• Java beans binding to the components.

4.4.3 Coupling Details

There are two ways to model the GUI behavior with AUIML, using predefined events
generated by the framework or by implementing manually the methods.

On the first alternative, there are some predefined events and listeners for modeling
the action response, these are limited and might work for simple designs, but for fare
more complex designs it is not sufficient. Some of the predefined methods include
selected, enabled, disabled, etc.

On the second alternative is where the statechart can play the role of controller, we
must link a basic event attached to any control, as a button, with a manually coded
method that in exchange will invoke the statechart and perform the validations.

To accomplish such task, a Unimod instance is created during AUIML start up, it
must have the reference to the .xml file describing the statechart, the events
providers and controlled objects.

After creating the instance and thereby having access to the statechart engine, it is
possible to request the managing of an event by invoking Unimod’s event manager.
At this point an event containing the values in the GUI component must be created
to complete the process.

On the following step, the event is processed accordingly and the process flow
returns to AUIML. The latter receives the response and determines the following
action. Finally both frameworks, Unimod and AUIML, are again in stand by mode.

 33

An interesting feature from AUIML is an internal statemachine for handling
navigational issues. The internal state machine forwards or rewinds the flow to the
proper screen whenever a next or last step is detected. That saves some work
because the controls do not need to be refreshed or loaded before being shown.

4.4.4 Problems

• Both frameworks are running concurrently but in different instances.

• When AUIML issues the request Unimod needs to handle the call sequentially
as one single process, but there are two processes which are not running
synchronously.

• AUIML needs to stop the process flow to guarantee the correct output.

4.4.5 Implementing a Wizard with AUIML - Unimod

The wizzard implements a reservation system; it gathers information from the
customer as name, last name, age, desired travel dates and the desired reservation
type, plane, hotel or both.

Restrictions

Contains

• Last Name
• First Name
• Age
• Email

• Address
• Country
• Departure Date
• Return Date

Main screen looks as follows:

 34

The data must be typed before continuing any further.

Typing right information and selecting reserve a plane ticket:

Graphical Response:

 35

Console:

[info] Finish input action [o1.y2] calculation. Its value is [true]
 [info] Start input action [o1.y5] calculation
 [info] Finish input action [o1.y5] calculation. Its value is [true]
 [info] Transition to go found [Welcome#Plane Ticket#e201#o1.y1 && o1.y2 && o1.y5]
 [info] Start output action [o1.x0] execution
 [info] Finish output action [o1.x0] execution
 [info] Start on-enter action [o1.z2] execution
Arriving to the reservation system
 [info] Finish on-enter action [o1.z2] execution
 [info] Finish event [e201] processing. In state [/A1:Plane Ticket]

The statechart needs to be activated during AUIML initialization, to accomplish such
task it is necessary to import the Unimod class com.evelopers.unimod.
adapter.standalone.run and send as parameter the .xml file generated previously
by Unimod, the code invoking Unimod’s engine looks as follows:

Run.execute(str);

ModelEngine engine = helper.createStandAloneModelEngine(model, true);
engine.getEventProcessor().addEventProcessorListener(logger);
engine.getEventProcessor().addExceptionHandler(eh);
engine.start();

During preparations for rendering the form, AUIML initializes the respective java
beans for the forms and register the listeners.

Some lines output by the console during initialization of the statechart and AUIML.

Setting engine [com.evelopers.unimod.runtime.ModelEngine@39443f]
INFO: SrLookAndFeelManager: Setting look and feel to [The Microsoft Windows Look and Feel –
com.sun.java.swing.plaf.windows.WindowsLookAndFeel].
INFO: Running under JDK version 1.4.2_06-b03

After the main screen was displayed and the user tries to advance to the next
screen, the method bound to that specific control must throw the suitable event.

Event e201 =new Event(GUI.E201,
 new Parameter[]
 {
 new Parameter("name", getTravellerName()),
 new Parameter("startDate", getDepartDate()),
 new Parameter("endDate", getReturnDate()),
 new Parameter("planeTicket", new Boolean(true))
 }
);

GUI.engine.getEventManager().handle(e201, GUI.context);

 36

Graphical response

Console Response

[info] Start event [e201] processing. In state [/A1:Top]
 [info] Transition to go found [s1#Welcome##true]
 [info] Start on-enter action [o1.z1] execution
[info] Finish on-enter action [o1.z1] execution
[debug] Try transition [Welcome#Plane Ticket#e201#o1.y1 && o1.y2 && o1.y5]
 [info] Start input action [o1.y1] calculation
the name is :
 [info] Finish input action [o1.y1] calculation. Its value is [false]
 [info] Start input action [o1.y2] calculation
 [info] Finish input action [o1.y2] calculation. Its value is [true]
 [info] Start input action [o1.y5] calculation
 [info] Finish input action [o1.y5] calculation. Its value is [true]
[debug] Try transition [Welcome#Welcome#e201#!o1.y1]
 [info] Transition to go found [Welcome#Welcome#e201#!o1.y1]
 [info] Start output action [o1.x1] execution
 [info] Finish output action [o1.x1] execution
 [info] Start on-enter action [o1.z1] execution
[info] Finish on-enter action [o1.z1] execution
 [info] Finish event [e201] processing. In state [/A1:Welcome]

At this point flow control is delegated to the statechart to handle the event.

Be aware to keep two things in mind.

• Both frameworks are running separately.

• After the execution of the invoked method AUIML commits the action.

In this case the wizard is being implemented by the AUIML component for building
wizards.

 37

To guarantee that the statechart will finish the task before delegating back the
control to AUIML the thread needs to be stopped, this would simulate a sequential
execution, and at the end of the process Unimod must notify to continue the old
process together with the result output by the state chart.

Unimod's source code needs to be modified for such purpose, within the class
AbstractEventProcessor.java from the package com.evelopers.unimod.
runtime the completion of the event manger is fired in line number 132

/* Event Processing Finished */
fireEventProcessingFinished(context, event, path, config);

Immediately we can notify AUIML to continue working with its flow.

Besides the signal to resume the process a parameter specifying the output of the
state chart is required to complete the task and allow AUIML to respond accordingly.
This result is generated by a controlled object and stored into the common context.

/**
 * @unimod.action.descr Throw Missing name
 */
 public void x1(StateMachineContext context) {
 context.getEventContext().setParameter("state", new Integer(0));
 }

After the control is back AUIML can process the result and act by transitioning to
another screen or by showing an error. This is done by throwing an exception:

switch(m_iError)
{
 case 0:
 throw new IllegalUserDataException("msg.MissingName");
 case 1:
 throw new IllegalUserDataException("msg.DepartAfterReturn");
}

 38

4.4.6 Unimod Model

Note how on the welcome state the same event can happen several times, as Harel
model dictates, a priority must be specified in order to denote the state must be
executed.

Unimod, as well as other tools as Rhapsody, execute a random transition if the event
is satisfied by more than one transition.

The event – action notation is as follows

Action Description Event Description
o2.x1-x9 Main data validation e201 Next button pressed
o1.y0-y4 Message indicating

new state.
e300 Next button on Plane

ticket pressed.
o3.x0-x9 Message errors e500 Next button on Hotel

pressed.
o4.y1-y4 Navigator validation. e600 Next button on

Refrigerator pressed.
o1.z0-z1 Data plane validation

 39

4.4.7 Missing formalism

Statechart's specification includes the history element which is helpful during the
execution of consecutive states.

A history indicator may have any number of incoming transitions from outside states.
It may have at the most one outgoing unlabeled transition; this identifies the default
''previous state'' if the region has never been entered.

At this point there is the possibility to continue with the flow or go backwards.

If a transition to the history indicator fires it indicates that the object resumes the
last state it had within the complex region; any necessary entry actions are
performed.

This element is missing within Unimod's implementation; the only way to simulate
this behavior would be by throwing an event on the back button specifying the
desired screen.

In the Unimod – AUIML integration luckily the GUI generator contains a control for
dealing with this specific problem, the navigation issues are handled automatically by
the GUI.

 40

4.5 Problems during framework interaction.

It would be easier to stop the flow execution right at the point where the state chart
detected a constraint that is not fulfilled. This would be the optimal solution, because
what we want is to model the behavior with a state chart and not to depend on the
code implementation.

This would imply to throw an exception inside the controlled object's method as
follows:

 /**
 * @unimod.action.descr Throw missing name
 */
 public void x0(StateMachineContext context) {
 throw new IllegalUserDataException(DemoWizardRes.format("msg.MissingName"));
 }

Or by invoking a function within AUIML code to generate the exception and stop the
process.

 public static void throwException(String strError){
 throw new IllegalUserDataException(strError);
 }

Ideally AUIML would stop at this point and the state chart would wait for incoming
events.

The disadvantage of having two frameworks which were developed independently
obstructs simple solutions and turns them into problematic ones.

The code shown above is not possible to implement without considering modifying
Unimod's code strongly, because whenever an exception is detected in the execution
of a method within a controlled object, an exception is thrown and it is handled
within Unimod's context. At the end AUIML is not aware that an exception occurred.

4.5.1 Observations after implementation

• Generated Code: The amount of automatic generated code is considerable
good on the View side, on the controller side the amount of code
generated is acceptable, but there is room for improvement.

• Simplicity of the model: The model is fair easy to understand on the

controller side and the viewer side.

• Maintainability: Considering that the coupling is not trivial because of the

different nature of the implemented frameworks, at the time any
substantial modification to the design would lead to strong changes.

 41

• Simulation: The application cannot be simulated because of Unimod

features.

• The event is generated by AUIML and the event is forwarded by hard
coding the notification.

• The controller communicates to the java beans by using its own context as

intermediary and yielding back the control to AUIML, and then the java
bean reads the value.

• The model notifies the view, and the update takes place.

 42

5 Conclusions

We have seen that is possible to use model driven code generation technologies
expressed in a graphical way to generate a platform independent GUI with its
behavior modeled by a state chart.

Two different frameworks were used and both generated a platform independent
format, an .xml file in the case of Unimod and a .xml dialect in the case of AUIML,
which has the advantage of interpretation over compilation of a .class file.
Modifications can be done during runtime without compromising the stability of the
system

At this time, tools providing a framework for developing a GUI and its behavior based
on a state chart model are still on the first generations and no direct link is possible,
thereby the binding needs to be done manually.

Efforts being done are not heading towards a common goal, there are scattered sets
of frameworks which focus in one direction and which are difficult to extend due the
restrictions imposed by their creators.

In despite of Unimod's efforts to create a statechart framework, it is still in an early
stage of development; some of Harel's specifications on statecharts are not
implemented, as it is the case of the history and transient states.

User dependent functionalities on the client side allows the user to have full control
over user sensitive data, in that way the decision of which information is disclosed
and which is denied is up to the client.

The experiments described in this report are focused on integrating two independent
frameworks; full integration would not be possible because AUIML is not an open
source tool.

5.1 Considerations

As stated on [7] statechart implementations are still not standardized and the
executable behavior might vary depending on the type of statechart applied.

Subtle semantic and syntactic differences exist in the implementations of UML and
rhapsody statecharts, which are:

• Notation: An element can be represented with alternative notations.
Orthogonality in Rhapsody is not represented in Unimod in the same way.

• Well Formed ness: A model might be well formed in a specific formalism,

but it might not be well formed when porting the description to another

 43

implementation. For example the statechart element history is not
implemented within the Unimod statemachine framework.

• Executable behavior: Critical issue, a model will output different results

depending where the statechart is implemented.

Any of the three formalisms complies with MDD, but the modeler need to be aware
of how the models will be interpreted in other environments, as well as the tool
developers must be aware of the differences and possible problems which might
arise.

5.2 Related Work

Statecharts and activity diagrams are the essence of executable models, and they
are taking more importance because the advantages that at any point the models
can be checked by means of simulation in a graphical way.

Unimod provides a graphical environment where behavioral models can be executed
and they can be debugged, but there are still missing features as others commercial
tools to be able to compare the executed results.

There are some interesting extensions to the statechart notation which focus in
enriching and address missing issues to accomplish a seamlessly implementation to
the software systems.

AUIML works under a scheme that binds the process logic and the GUI
representation in where to notify any change in visible way an exception must be
thrown. This was a problem described in the last chapter, which could be solved with
the implementation of a statechart notation that handles exception handling.

This problematic is addressed in a proposal extension made by Anderson, David in
his paper Extending UML for UI presented at the Tupis workshop at UML2000.

Basically the exception is modeled within the statechart as another type of event that
modifies the state of the GUI. The difference stems on the source of the event, the
model is the responsible for providing the notification and not the GUI.

The event must be caught by a state that handles exceptions and then it must
transitions to a stable state based on the interpretation of the error.

The exception symbol resembles the history state on the original statechart
specification but with a X instead of an H.

 44

Example:

Whenever the user selects a beverage and the right of amount of money is not
sufficient the model must throw the exception, in a similar case, when a beverage is
not available any more an exception is thrown.

5.3 Further Work

There is a middle stage that needs to be addressed before going any further, no
open source framework following the model driven guidelines has fulfilled the gap
between the GUI and statechart design. The mapping is still an open issue and it is
an area for further research.

Current integration between the GUI event generator and the statechart event
listener takes time and knowledge of the frameworks being integrated.

As a following step, the full integration of an open source GUI generator framework
with an open source statechart framework must be done in order to ease the study
of more complex scenarios.

 45

6 References

1 Horrocks, I. 1999 Constructing the User Interface with Statecharts. 1st. Addison-Wesley Longman
Publishing Co., Inc.

2 Stefano Ceri, Peter Dolog, Maristella Matera, and Wolfgang Nejdl: Adding Client-Side Adaptation to
the Conceptual Design of e-Learning Web Applications.Journal of Web Engineering, 4(1):21-37, March
2005

3 Statechart XML: Statemachine notation for control abstraction, http://www.w3.org/TR/scxml/, W3C
Working Draft 2006

4 Harrel David, Gery Eran, Executable Object modeling with Statecharts, IEEE Computer Society,
Pages 246-257, Berlin, 1996

5 Anderson, David, Extending UML for UI, position paper for the TUPIS2000 workshop at UML2000,
2000

6 Dobrowolski Janusz, Kolodziej Jerzy, A method of building executable plattform independent
application models, Statesoft, 2002

7 Crane, Michelle, Dingel Juergen, UML vs. Classical vs. Rahpsody Statecharts: Not all models are
created equal, School of Computing, Queen's University, 2005

8 O'Byrne, Brían, Interaction Design and Implementation with ViewControl – using Statechart
modeling and runtime verification, Statesoft Ltd., 2004

9 Anderson, David, O'Byrne Brían, Lean Interaction Design and Implementation: Using statecharts
with feature driven development, 2003

10 Anderson David, Web MVC Browsers, Transactions and exceptions, Whitepaper, uidesign, 2000

11 David Harel and Hillel Kugler, The Rhapsody Semantics of Statecharts (or, On the Executable Core
of the UML), Lecture Notes in Computer Science, Volume 3147, Jan 2004, Pages 325 - 354.

12 Carr David, Interaction Object Graphs: An Executable Graphical Notation for Specifying User
Interfaces, Department of Computer Science, Lulea University, Sweden, 1999

13 Anderson David, A statemachine engine for Web MVC, uidesign, Whitepaper, 2000

14 Niemann Scott, Executable systems Design with UML 2.0, I-Logix, Whitepaper, 2004

15 Douglass, Bruce, Real time UML, Deveolping efficient objects for embedded systems. USA, 1998

 46

7 Appendix

7.1 File generated by Unimod:

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE model PUBLIC "-//eVelopers
Corp.//DTD State machine model V1.0//EN"
"http://www.evelopers.com/dtd/unimod/statemachine.dtd">
<model name="Model1">
 <controlledObject class="UnimodObjects.printer" name="o1"/>
 <controlledObject class="UnimodObjects.welcomeData" name="o2"/>
 <controlledObject class="UnimodObjects.welcomeErrors" name="o3"/>
 <controlledObject class="UnimodObjects.navigator" name="o4"/>
 <controlledObject class="UnimodObjects.PlaneData" name="o5"/>
 <eventProvider class="UnimodObjects.GUI" name="p1">
 <association clientRole="p1" targetRef="A1"/>
 </eventProvider>
 <rootStateMachine>
 <stateMachineRef name="A1"/>
 </rootStateMachine>
 <stateMachine name="A1">
 <configStore
 class="com.evelopers.unimod.runtime.config.DistinguishConfigManager"/
>
 <association clientRole="A1" supplierRole="o4" targetRef="o4"/>
 <association clientRole="A1" supplierRole="o2" targetRef="o2"/>
 <association clientRole="A1" supplierRole="o3" targetRef="o3"/>
 <association clientRole="A1" supplierRole="o5" targetRef="o5"/>
 <association clientRole="A1" supplierRole="o1" targetRef="o1"/>
 <state name="Top" type="NORMAL">
 <state name="s1" type="INITIAL"/>
 <state name="Welcome" type="NORMAL"/>
 <state name="Refrigerator" type="NORMAL">
 <outputAction ident="o1.y3"/>
 </state>
 <state name="Plane Ticket" type="NORMAL">
 <outputAction ident="o1.y1"/>
 </state>
 <state name="Hotel Room" type="NORMAL">
 <outputAction ident="o1.y2"/>
 </state>
 <state name="Confirm" type="NORMAL">
 <outputAction ident="o1.y4"/>
 </state>
 </state>
 <transition sourceRef="s1" targetRef="Welcome"/>
 <transition event="e201" guard="!o2.x1" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x1"/>
 </transition>
 <transition event="e201" guard="!o2.x4" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x4"/>
 </transition>
 <transition event="e201" guard="!o2.x5" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x5"/>
 </transition>

 47

 <transition event="e201" guard="!o2.x6" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x6"/>
 </transition>
 <transition event="e201" guard="!o2.x8" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x8"/>
 </transition>
 <transition event="e201" guard="!o2.x7" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x7"/>
 </transition>
 <transition event="e201" guard="!o2.x9" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x9"/>
 </transition>
 <transition event="e201" guard="!o2.x2" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x2"/>
 </transition>
 <transition event="e201" guard="!o2.x3" sourceRef="Welcome"
 targetRef="Welcome">
 <outputAction ident="o3.x3"/>
 </transition>
 <transition event="e201" guard="o2.x1 && o2.x2 && o2.x3
 && o2.x4 && o2.x5 && o2.x6 && o2.x7
 && o2.x8 && o2.x9 && o4.y2"
 sourceRef="Welcome" targetRef="Hotel Room">
 <outputAction ident="o1.x0"/>
 </transition>
 <transition event="e201" guard="o2.x1 && o2.x2 && o2.x3
 && o2.x4 && o2.x5 && o2.x6 && o2.x7
 && o2.x8 && o2.x9 && o4.y1"
 sourceRef="Welcome" targetRef="Plane Ticket">
 <outputAction ident="o1.x0"/>
 </transition>
 <transition event="e600" sourceRef="Refrigerator" targetRef="Confirm">
 <outputAction ident="o1.x0"/>
 </transition>
 <transition event="e300" guard="o5.x1" sourceRef="Plane Ticket"
 targetRef="Confirm">
 <outputAction ident="o1.x0"/>
 </transition>
 <transition event="e300" guard="!o5.x1" sourceRef="Plane Ticket"
 targetRef="Plane Ticket">
 <outputAction ident="o5.z1"/>
 </transition>
 <transition event="e500" guard="!o4.y4" sourceRef="Hotel Room"
 targetRef="Confirm">
 <outputAction ident="o1.x0"/>
 </transition>
 <transition event="e500" guard="o4.y4" sourceRef="Hotel Room"
 targetRef="Refrigerator">
 <outputAction ident="o1.x0"/>
 </transition>
 </stateMachine>
</model>

 48

7.2 File generated by AUIML

public class DemoWizard extends java.util.ListResourceBundle {
 public Object[][] getContents() { return contents; }
 static final Object[][] contents = {
 {"@@GenerateBeans", "0"},
 {"@@GenerateHandlers", "0"},
 {"@@GenerateHelp", "1"},
 {"@@Package", "wizard"},
 {"@AdvTravelWizard", "STYLE:SERIAL;"},
 {"@AdvTravelWizard.Intro", "STYLE:CONTAINER;"},
 {"@AdvTravelWizard.Reservations", "STYLE:CONTAINER;"},
 {"@AdvTravelWizard.Summary", "STYLE:CONTAINER;"},
 {"@BeveragesPanel", "ROWS:7;COLUMNS:2;"},
 {"@BeveragesPanel.COLA", "CELL:1,3;"},
 {"@BeveragesPanel.DIETCOLA", "CELL:1,4;"},
 {"@BeveragesPanel.MILK", "CELL:1,5;"},
 {"@BeveragesPanel.ORANJUICE", "CELL:1,2;"},
 {"@BeveragesPanel.SPRWATER", "CELL:1,1;"},
 {"@HotelPanel", "ROWS:4;COLUMNS:2;"},
 {"@HotelPanel.AmenitiesCheckboxGroup",
"ROWS:4;HELPGEN:FALSE;CELL:0,3;COLSPAN:0;COLUMNS:2;"},
 {"@HotelPanel.City", "CELL:1,0;CONTROL-TYPE:COMBOBOX;"},
 {"@HotelPanel.City.CAPTION", "CELL:0,0;"},
 {"@HotelPanel.HotelName", "CELL:0,2;COLSPAN:0;CONTROL-TYPE:LIST;"},
 {"@HotelPanel.HotelName.CAPTION", "CELL:0,1;"},
 {"@HotelPanel.KingBedCheckbox",
"ROWS:1;HELPGEN:FALSE;CELL:1,2;COLUMNS:1;"},
 {"@HotelPanel.KingBedCheckbox.CAPTION", "CELL:0,2;"},
 {"@HotelPanel.RefrigeratorCheckbox",
"ROWS:2;HELPGEN:FALSE;CELL:0,1;COLUMNS:1;"},
 {"@HotelPanel.RefrigeratorCheckbox.CAPTION", "CELL:0,0;"},
 {"@HotelPanel.StockRefrigeratorCheckbox", "INSETLEFT:20;CELL:0,0;"},
 {"@HotelPanel.WhirlpoolTubCheckbox",
"ROWS:1;HELPGEN:FALSE;CELL:1,3;COLUMNS:1;"},
 {"@HotelPanel.WhirlpoolTubCheckbox.CAPTION", "CELL:0,3;"},
 {"@InProgressPanel", "ROWS:4;REFRESHINTERVAL:5;COLUMNS:2;"},
 {"@InProgressPanel.Group1",
"ANCHOR:CENTER;ROWS:1;FILL:NONE;HELPGEN:FALSE;CELL:0,3;COLSPAN:0;COLUMNS:1;
"},
 {"@InProgressPanel.HotelImage", "CELL:1,1;"},
 {"@InProgressPanel.HotelImage.CAPTION", "CELL:1,2;"},
 {"@InProgressPanel.InProgressOrCompleteLabel",
"CELL:0,0;COLSPAN:0;CONTROL-TYPE:LABEL;"},
 {"@InProgressPanel.OkButton", "CONSOLE-CONTRIBUTION:TRUE;CELL:0,0;"},
 {"@InProgressPanel.PlaneImage", "CELL:0,1;"},
 {"@InProgressPanel.PlaneImage.CAPTION", "CELL:0,2;"},
 {"@PlanePanel", "ROWS:4;COLUMNS:2;"},
 {"@PlanePanel.ArriveCity", "CELL:1,1;CONTROL-TYPE:COMBOBOX;"},
 {"@PlanePanel.ArriveCity.CAPTION", "CELL:0,1;"},
 {"@PlanePanel.DepartCity", "CELL:1,0;CONTROL-TYPE:COMBOBOX;"},
 {"@PlanePanel.DepartCity.CAPTION", "CELL:0,0;"},
 {"@PlanePanel.FirstClassCheckbox",
"INSETLEFT:10;CELL:0,2;COLSPAN:0;"},
 {"@SummaryPanel", "ROWS:4;COLUMNS:1;"},
 {"@SummaryPanel.ArriveCity", "CELL:1,1;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.ArriveCity.CAPTION", "CELL:0,1;"},
 {"@SummaryPanel.DepartCity", "CELL:1,0;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.DepartCity.CAPTION", "CELL:0,0;"},
 {"@SummaryPanel.DepartDate", "CELL:1,1;"},
 {"@SummaryPanel.DepartDate.CAPTION", "CELL:0,1;"},
 {"@SummaryPanel.Group1", "ROWS:6;HELPGEN:FALSE;CELL:0,0;COLUMNS:2;"},

 49

 {"@SummaryPanel.HotelGroup",
"ROWS:5;HELPGEN:FALSE;CELL:0,2;COLSPAN:0;COLUMNS:2;"},
 {"@SummaryPanel.HotelName", "CELL:1,0;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.HotelName.CAPTION", "CELL:0,0;"},
 {"@SummaryPanel.KingBed", "CELL:1,2;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.KingBed.CAPTION", "CELL:0,2;"},
 {"@SummaryPanel.PlaneGroup",
"ROWS:3;HELPGEN:FALSE;CELL:0,1;COLSPAN:0;COLUMNS:2;"},
 {"@SummaryPanel.Refrigerator", "CELL:1,1;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.Refrigerator.CAPTION", "CELL:0,1;"},
 {"@SummaryPanel.ReserveHotel", "CELL:1,4;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.ReserveHotel.CAPTION", "CELL:0,4;"},
 {"@SummaryPanel.ReservePlane", "CELL:1,3;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.ReservePlane.CAPTION", "CELL:0,3;"},
 {"@SummaryPanel.ReturnDate", "CELL:1,2;"},
 {"@SummaryPanel.ReturnDate.CAPTION", "CELL:0,2;"},
 {"@SummaryPanel.TravellerName", "CELL:1,0;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.TravellerName.CAPTION", "CELL:0,0;"},
 {"@SummaryPanel.WhirlpoolTub", "CELL:1,3;CONTROL-TYPE:LABEL;"},
 {"@SummaryPanel.WhirlpoolTub.CAPTION", "CELL:0,3;"},
 {"@TravelWizard", "STYLE:SERIAL;"},
 {"@WelcomePanel", "ROWS:8;COLUMNS:5;"},
 {"@WelcomePanel.address", "CELL:1,3;CONTROL-TYPE:TEXTFIELD;OPTIMUM-
LENGTH:20;"},
 {"@WelcomePanel.address.CAPTION", "CELL:0,3;"},
 {"@WelcomePanel.age", "CELL:1,2;CONTROL-TYPE:TEXTFIELD;"},
 {"@WelcomePanel.age.CAPTION", "CELL:0,2;"},
 {"@WelcomePanel.BothRadioButton",
"ROWS:1;CELL:1,2;HELPGEN:FALSE;COLUMNS:1;"},
 {"@WelcomePanel.BothRadioButton.CAPTION", "CELL:0,2;"},
 {"@WelcomePanel.country", "CELL:3,4;CONTROL-TYPE:TEXTFIELD;"},
 {"@WelcomePanel.country.CAPTION", "CELL:2,4;"},
 {"@WelcomePanel.DepartDate", "CELL:1,0;CONTROL-TYPE:SPINNER;"},
 {"@WelcomePanel.DepartDate.CAPTION", "CELL:0,0;"},
 {"@WelcomePanel.email", "CELL:3,2;CONTROL-TYPE:TEXTFIELD;"},
 {"@WelcomePanel.email.CAPTION", "CELL:2,2;"},
 {"@WelcomePanel.firstName", "CELL:3,1;CONTROL-TYPE:TEXTFIELD;"},
 {"@WelcomePanel.firstName.CAPTION", "CELL:2,1;"},
 {"@WelcomePanel.Group1",
"ROWS:3;CELL:0,5;COLSPAN:0;HELPGEN:FALSE;COLUMNS:2;"},
 {"@WelcomePanel.HotelRadioButton",
"ROWS:1;CELL:1,1;HELPGEN:FALSE;COLUMNS:1;"},
 {"@WelcomePanel.HotelRadioButton.CAPTION", "CELL:0,1;"},
 {"@WelcomePanel.Label1", "CELL:0,0;COLSPAN:0;CONTROL-TYPE:LABEL;"},
 {"@WelcomePanel.PlaneRadioButton",
"ROWS:1;CELL:1,0;HELPGEN:FALSE;COLUMNS:1;"},
 {"@WelcomePanel.PlaneRadioButton.CAPTION", "CELL:0,0;"},
 {"@WelcomePanel.ReturnDate", "CELL:1,1;CONTROL-TYPE:SPINNER;"},
 {"@WelcomePanel.ReturnDate.CAPTION", "CELL:0,1;"},
 {"@WelcomePanel.TravellerName", "CELL:1,1;CONTROL-
TYPE:TEXTFIELD;OPTIMUM-LENGTH:15;"},
 {"@WelcomePanel.TravellerName.CAPTION", "CELL:0,1;"},
 {"@WelcomePanel.TravelPlansButtonGroup",
"ROWS:3;CELL:0,6;COLSPAN:0;HELPGEN:FALSE;COLUMNS:2;"},
 {"@WelcomePanel.zip", "CELL:1,4;CONTROL-TYPE:TEXTFIELD;"},
 {"@WelcomePanel.zip.CAPTION", "CELL:0,4;"},
 {"AdvTravelWizard.IMAGE", " auimlLogo.gif"},
 {"AdvTravelWizard.Intro.TEXT", "Introduction"},
 {"AdvTravelWizard.Reservations.TEXT", "Reservations"},
 {"AdvTravelWizard.Summary.TEXT", "Summary"},
 {"AdvTravelWizard.TEXT", "Travel Reservations Wizard"},
 {"BeveragesPanel.COLA.TEXT", "Cola"},
 {"BeveragesPanel.DIETCOLA.TEXT", "Diet Cola"},

 50

 {"BeveragesPanel.MILK.TEXT", "Milk"},
 {"BeveragesPanel.ORANJUICE.TEXT", "Orange Juice"},
 {"BeveragesPanel.SPRWATER.TEXT", "Spring Water"},
 {"BeveragesPanel.TEXT", "Beverage Selection"},
 {"HotelPanel.AmenitiesCheckboxGroup.TEXT", "Select room amenities:"},
 {"HotelPanel.City.TEXT", "Select a city:"},
 {"HotelPanel.HotelName.TEXT", "Select a hotel:"},
 {"HotelPanel.KingBedCheckbox.TEXT", "Kingsize bed"},
 {"HotelPanel.RefrigeratorCheckbox.TEXT", "Refrigerator"},
 {"HotelPanel.StockRefrigeratorCheckbox.TEXT", "Stock with assorted
beverages"},
 {"HotelPanel.TEXT", "Reserve a Hotel Room"},
 {"HotelPanel.WhirlpoolTubCheckbox.TEXT", "Whirlpool tub"},
 {"InProgressPanel.HotelImage.TEXT", "Hotel room"},
 {"InProgressPanel.HotelImage.VALUE", " hotel.jpg"},
 {"InProgressPanel.OkButton.TEXT", "OK"},
 {"InProgressPanel.PlaneImage.TEXT", "Plane ticket"},
 {"InProgressPanel.PlaneImage.VALUE", " plane.jpg"},
 {"InProgressPanel.TEXT", "In Progress"},
 {"msg.CancelWizard", "Are you sure you want to cancel?"},
 {"msg.DepartAfterReturn", "The specified departure date must not be
later than the specified return date."},
 {"msg.DepartAndReturnCitySame", "The departure city and arrival city
can not both be {0}."},
 {"msg.missingFirstName", "The first name is not valid"},
 {"msg.MissingName", "The name is not valid"},
 {"msg.NoHotelIfNoOvernight", "You can not reserve a hotel room if the
specified return date is the same as the specified departure date."},
 {"PlanePanel.ArriveCity.TEXT", "Arrive:"},
 {"PlanePanel.DepartCity.TEXT", "Depart:"},
 {"PlanePanel.FirstClassCheckbox.TEXT", "First class seat"},
 {"PlanePanel.TEXT", "Reserve a Plane Ticket"},
 {"str.No", "No"},
 {"str.ReservationsComplete", "Travel reservations complete."},
 {"str.ReservationsInProgress", "Travel reservations in progress..."},
 {"str.Yes", "Yes"},
 {"str.YesFirstClass", "Yes, first class"},
 {"str.YesStocked", "Yes, stocked with beverages"},
 {"SummaryPanel.ArriveCity.TEXT", "Arrive:"},
 {"SummaryPanel.DepartCity.TEXT", "Depart:"},
 {"SummaryPanel.DepartDate.TEXT", "Depart:"},
 {"SummaryPanel.HotelGroup.TEXT", "Hotel room details:"},
 {"SummaryPanel.HotelName.TEXT", "Hotel name:"},
 {"SummaryPanel.KingBed.TEXT", "Kingsize bed:"},
 {"SummaryPanel.PlaneGroup.TEXT", "Plane ticket details:"},
 {"SummaryPanel.Refrigerator.TEXT", "Refrigerator:"},
 {"SummaryPanel.ReserveHotel.TEXT", "Reserve hotel room:"},
 {"SummaryPanel.ReservePlane.TEXT", "Reserve plane ticket:"},
 {"SummaryPanel.ReturnDate.TEXT", "Return:"},
 {"SummaryPanel.TEXT", "Summary"},
 {"SummaryPanel.TravellerName.TEXT", "Traveller name:"},
 {"SummaryPanel.WhirlpoolTub.TEXT", "Whirlpool tub:"},
 {"TravelWizard.IMAGE", " auimlLogo.gif"},
 {"TravelWizard.TEXT", "Travel Reservations Wizard"},
 {"WelcomePanel.address.TEXT", "Address"},
 {"WelcomePanel.age.TEXT", "Age"},
 {"WelcomePanel.BothRadioButton.TEXT", "Reserve both a plane ticket
and a hotel room"},
 {"WelcomePanel.country.TEXT", "Country"},
 {"WelcomePanel.DepartDate.TEXT", "Depart:"},
 {"WelcomePanel.email.TEXT", "Email"},
 {"WelcomePanel.firstName.TEXT", "First Name :"},
 {"WelcomePanel.Group1.TEXT", "Specify your travel dates:"},

 51

 {"WelcomePanel.HotelRadioButton.TEXT", "Reserve a hotel room"},
 {"WelcomePanel.Label1.VALUE", "Welcome to the Wizard. "},
 {"WelcomePanel.PlaneRadioButton.TEXT", "Reserve a plane ticket"},
 {"WelcomePanel.ReturnDate.TEXT", "Return:"},
 {"WelcomePanel.TEXT", "Welcome"},
 {"WelcomePanel.TravellerName.TEXT", "Last Name:"},
 {"WelcomePanel.TravelPlansButtonGroup.TEXT", "Specify your travel
plans:"},
 {"WelcomePanel.zip.TEXT", "Zip"},
 };
}

