
Generation of Mediation Modules
for Personalization in Conceptual

Content Management Systems

Student Project
submitted by

Mariya Denysova

supervised by
Prof. Dr. Joachim W. Schmidt

Sebastian Bossung

Hamburg University of Science and Technology
Software Systems Institute (STS)

1

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, 30.06.2006
Mariya Denysova

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Related work . 5

1.2.1 Personalization . 5
1.2.2 Conceptual Modeling . 6
1.2.3 Content Management Systems 7
1.2.4 Component Software Architecture 9
1.2.5 Program Generators . 10
1.2.6 Mediators . 11
1.2.7 Conceptual Content Management Systems 11

1.3 Structure of the thesis . 11

2 Background 13
2.1 The Problem . 13

2.1.1 Example . 13
2.2 Conceptual Content Management Systems 14

2.2.1 Assets . 14
2.2.2 Asset Definition Language . 15
2.2.3 Module-Component Architecture of Conceptual Content Man-

agement Systems . 16
2.2.4 Modules . 17
2.2.5 Conceptual Content Management System Generation Scenario 18
2.2.6 Compiler Framework . 18
2.2.7 Personalization . 19

3 Requirements 22
3.1 Requirements to the Generator . 22
3.2 Functional Requirements to the Mediation Modules 22

3.2.1 Asset Creation . 22
3.2.2 Asset Retrieval . 23
3.2.3 Asset Modification . 24
3.2.4 Asset Deletion . 24

4 The Design of the Mediation Modules 26
4.1 Origin Linking . 26
4.2 Component Configuration . 28
4.3 Interface Specification . 29
4.4 Realization of the Interfaces . 30

4.4.1 Realization of Module Interface 30
4.4.2 Asset Class . 31

2

CONTENTS 3

4.4.3 Wrappers and Unwrappers . 31
4.4.4 Realization of Asset Role Interfaces 32
4.4.5 Query Interface . 33
4.4.6 Iterator Interface . 33
4.4.7 Visitor Interface . 34

5 Implementation 35
5.1 Several Words on the Generator Design 35
5.2 Java Code Generation Toolkit . 37
5.3 Implementation of the Generator . 37

5.3.1 Implementation of getRequestedParameters() method . . . 37
5.3.2 Implementation of getRequestedSymbolTables() method . . 38
5.3.3 Implementation of getProducedSymbolTable() method . . . 38
5.3.4 Implementation of generate() method 38

5.4 Generator Configuration . 39

6 Summary and Future Work 40
6.1 Summary . 40
6.2 Future Work . 40

6.2.1 Hiding the Origin of Personalized Asset 40
6.2.2 Asset Publishing . 41
6.2.3 Structure Personalization . 41

A Component Configuration 42

B Interface Specification 45

C Interface Realization: Class Diagrams 48

D Mediation Module Generator Configuration File 53

List of Figures

1.1 Personalization: Local Change and Reintegration of Content 6
1.2 Conceptual Content Management Systems 12

2.1 Assets Facets . 14
2.2 Component Configuration . 16
2.3 Components Implementation through Modules 17
2.4 Module Kinds . 18
2.5 Generation Scenario . 19
2.6 Compiler Framework . 20
2.7 Mediation Modules for Personalization 21

3.1 Mediation Modules Use Case Diagram 23
3.2 Asset Creation . 23
3.3 Asset Retrieval . 24
3.4 Personalized Asset Modification . 25
3.5 Public Asset Modification . 25

4.1 Module Configuration for Personalization 28
4.2 Module Configuration for Personalization 28
4.3 Module Configuration for Personalization 29
4.4 Module Configuration for Personalization 29
4.5 AssetClass Retrieval Scenario . 32

A.1 Component Configuration for Personalization 42
A.2 Module Configuration for Personalization 43
A.3 Module Configuration for Personalization 44

C.1 Implementation of Module Interface: Generic Part 48
C.2 Implementation of Module Interface: Generic and Non-Generic Parts . 49
C.3 Asset Class Implementation: Initialization and Retrieval of Metainfor-

mation about Asset Classes . 50
C.4 Asset Roles . 51
C.5 Implementation of Query Interface . 52
C.6 Implementation of Iterators . 52

4

Chapter 1

Introduction

1.1 Motivation

Managing complex web cites nowadays is a big challenge. Every user visiting a web
cite would like to get on it the information fitting exactly his/her needs in a clear and
well understood manner. Different users have different interests, so if a publisher pro-
vides the same information for all cite users, only a small target group of users would
be interested in the information provided. To reach wider target audience publishers
can make use of cite personalization, i.e., providing for different users, different in-
formation so that it reflects the userss context, their specific background and interest
as well as the heterogeneous infrastructure to which the content is delivered and in
which it is presented [Bol03].

This the understanding of personalization from the content delivery point view.
But there is another perspective to personalization from the content creation point of
view. This means that before content is delivered it has to be created. The process of
content creation is a collaborative process, involving many people. Different people
or groups of people work on the same content modifying, enriching it, contributing
to its value and finally publishing it. At different times different people have a sort
of personalized content, i.e., the one they are working currently with, different from
content published on the site.

These two aspects of personalization have a common problem, which is the pro-
viding of a unified view both to the public information, visible to other users, and to
personalized information, specific for different users. Users should not know which
part of the information is public and which is private. To solve this problem a medi-
ator should be introduced, which would combine these two types of information and
produce one common view to it. The purpose of the current work is to solve mediation
problem for the personalization in conceptual content management systems.

1.2 Related work

1.2.1 Personalization

The world-wide web today is the largest information source, which is still growing
exponentially. On the other hand the individual’s capacity to digest information is
fixed. “The full economic potential of the web will not be realized unless enabling
technologies are provided to facilitate access to web resources. Currently web per-
sonalization is the most promising approach to remedy this problem”[SBK03]. Web

5

CHAPTER 1. INTRODUCTION 6

tronic Library (WEL). The WEL research system em-
phasizes the support of research by flexibility in both
structure and content, as well as for the respective
processes. Both can be personalized to match the re-
searcher’s intentions. Since 2000, the WEL system is
successfully used in a number of research projects.
Because of the similar requirements we have also
been able to employ it as a learning system, demon-
strating the advantages of joint research and learning
systems. User groups include researchers in art his-
tory, school teachers, and university students.

The paper is organized as follows: We begin with
details about personalization (section 2) and show in
section 3 and section 5, respectively, how it is em-
ployed in research and learning systems. Section 4
gives an account of our experiences with an imple-
mentation of the concepts presented in this paper. In
section 6, we provide a closer look at the coupling
technology for research and learning systems. We
conclude with a summary and outlook in section 7.
Related work is discussed where appropriate.

2 PERSONALIZATION

By personalization we mean the ability of a system to
adapt to the individual needs of each user. Personal-
ization can be broken down into two aspects: schema
openness and system dynamics. An open schema is
one that users can change on-the-fly and at any time,
thus guaranteeing best correspondence with their in-
formation needs. Information systems are dynamic if
their implementation follows any on-the-fly modifica-
tion of a schema dynamically.

Such personalization happens on two levels: con-
tent and structure personalization. The former refers
to the ability of a system to let users change content
according to their needs or opinions, the latter enables
users to change the schema of the content. (Rossi
et al., 2001) refer to content personalization as infor-
mation personalization.

Note that this personalization is more general than
what one is used to from contemporary web applica-
tions, where personalization usually covers presenta-
tional aspects only. (Koch and Rossi, 2002) also share
this broader definition of personalization.

Another important aspect of personalization is the
ability of users to re-integrate their changes with the
content base of a larger community (fig. 1). This al-
lows for iterative enhancement of the content. Per-
sonalization is used to achieve a number of goals:
(1) Adaptation of content to personal views or in-
tents, (2) securing of privacy, and (3) handling of large
amounts of data by filtering out what is not of inter-
est, (Niederée, 2002). Also see (Riecken, 2000) on
personalization.

system-wide
content

group
content

personal
content

personalize

integrate

personalize

integrate

Figure 1: Personalization allows local change and re-
integration of content.

2.1 Content Personalization

Research work is explorative and often subjective. It
follows open and dynamic processes (see above, or
(Sehring, 2004) for more details) in which every user
has an own – possibly changing – view on the content.
This personal view is reflected by individual modifi-
cations of the content. Users can – at least for some
time – deviate from the opinion of the community by
changing a piece of content. Personalization allows
them to modify existing content, but those changes
will only be visible to the user who made them. This
approach is therefore called content personalization.
Content personalization can be used to explore the im-
plications of a hypothesis.

Note that presentation personalization (e.g., chang-
ing the background color) is a special case of content
personalization as configuration data can be treated
just like ordinary content.

2.2 Structure Personalization

Content personalization allows users to modify con-
tent according to their current needs without interfer-
ing with others. However, in many situations this is
not sufficient, as it can handle uniform content only.

Structure personalization comprises two aspects:
(1) Changing the structure of content by means of
creating variants of the content’s schema as well as
(2) (re)categorizing content with the option of creat-
ing new categories. As with content personalization,
there need to be means that allow users to re-integrate
their changes with the community. Structure person-
alization is a dynamic application of schema evolu-
tion, e.g. (Banerjee et al., 1987).

For example, often users create a new attribute, to
capture newly found aspects. In addition, they might
also want to modify the categorization of content.

2.3 Implementing Personalization

Personalization as required by research and learning
systems is not covered by contemporary information

Figure 1.1: Personalization allows local change and reintegration of content [SBS05]

personalization is defined as any action that adapts the information or services pro-
vided by a Web site to the needs of a particular user or a set of users, taking advantage
of the knowledge gained from the users navigational behavior and individual inter-
ests, in combination with the content and the structure of the Web site [EV03, Bol03].
This is the earliest and the most common interpretation of the notion “personaliza-
tion”. But nowadays almost every researcher understands this term differently. The
meaning of personalization varies also depending on the kind of system it refers to:

Version Control, Community and Collaboration Management Systems

These kinds of information systems incorporate one common function: collab-
orative knowledge creation. “Knowledge creation” scenario is potentially even
more important for applications, as knowledge can only be accessed after it has
been created [KA03]. Personalization in this kind of systems is discussed in
connection with three types of workflows [SBS05] (see figure 1.1):

• personalization of given content and structures

• sharing of personalized content amongst users

• making the views of users available to the general public.

In Version Control Systems these processes are traditionally called: check out,
submit and merge accordingly.

Adaptive Information Systems

Generally the adaptive system is a system that can change its behavior according
to the changing environment. Though some authors as Koch and Rossi consider
adaptability only in connection with users’ behavior [KR02]. They distinguish
three different forms of adaptation according to the objects that may change
during personalization: at content-level, at link-level and at presentation-level
[KR02, RSG01]. “Personalization of software is actually nothing else than a
particular case of software adaptability”[Bon03].

1.2.2 Conceptual Modeling

Conceptual modeling is a challenge during the last few decades. Idea of having means
to model real world entities by means of computer science brings to the possibility to
get the artificial intelligence. Generally conceptual modeling (also known as informa-
tion modeling, semantic modeling, knowledge representation) “. . . is concerned with
the construction of computer-based symbol structures and symbol structure manipu-
lators which, according to mentalistic philosophy, are supposed to correspond to the
conceptualizations of the world by human observers”[BMW82, BB03].

CHAPTER 1. INTRODUCTION 7

The object (objects) being modeled is usually called domain of application [Nii04,
Wid98].

Abstraction mechanism is one of the tools of conceptual modeling used for orga-
nizing information. It has three constituents [BB03]:

• thinking of objects as wholes, not just a collection of their attributes/compo-
nents (“aggregation”);

• abstracting away the detailed differences between individuals, so that a class
can represent the commonalities (“classification”);

• abstracting the commonalities of several classes into a superclass (“generaliza-
tion”)

In order to express the result of conceptual modeling a modeling language is
needed. According to [Nii04] a modeling language or a formalism is a well-defined
technique (language with possibly some guidelines of how to apply it, and often some
form of graphical visualization) “. . . used in modeling for expressing something about
the domain of application”. The broad discussion of existing modeling languages can
be found in [Nii04].

Usually when speaking about modeling languages for some definite domain, re-
searches use the term domain specific languages(DSL). Domain specific languages
provide specialized language features that increase the abstractions level for a par-
ticular problem domain [CEG+98]. Usually they are considered as programming
languages for special domains, because they are used not only for modeling but also
for processing by application generators (see 1.2.5) [Wid98, Bat03, SB00, BLS98].

The symbol structures resulting from conceptual modeling are often called concep-
tual schemas [Mar02a, Nii04], or sometimes otologies.

An ontology is a collection of concepts and their interrelationships, which provide
an abstract view of an application domain [Kha00]. Still there is often a confusion
about this notion [Gua98]: “In some cases, the term ‘ontology’ is just a fancy name de-
noting the result of familiar activities like conceptual analysis and domain modelling,
carried out by means of standard methodologies. In many cases, however, so-called
otologies present their own methodological and architectural peculiarities. On the
methodological side, the main peculiarity is the adoption of a highly interdisciplinary
approach, where philosophy and linguistics play a fundamental role in analyzing the
structure of a given reality at a high level of generality and in formulating a clear
and rigorous vocabulary. On the architectural side, the most interesting aspect is the
centrality of the role that an ontology can play in an information system, leading to
the perspective of ontology-driven information systems.”

1.2.3 Content Management Systems

The term ”Content management” is relatively new and is used to refer to many
different things. Dictionaries don’t provide any good insight to this notion. There are
hundreds of different definitions of it. The broad discussion on the topic is given in
[Gil00]. Without going into details we can conclude that broadly speaking, content
management describes a process that allows people to more easily create and update
content, usually on websites but not only. Gerry McGovern says [McG04]: ”Content
management is about getting the right content to the right person at the right time
at the right cost”.

CHAPTER 1. INTRODUCTION 8

What is “Content”?

According to [Boi04] content, stated as simply as possible, is information put to use,
i.e., when it is packaged and presented (published) for a specific purpose. More often
than not, content is not a single piece of information, but a conglomeration of pieces
of information put together to form a cohesive whole.

The researches distinguish the three notions: information, data and content. In-
formation is usually what people deal with in their ordinary lives. Usually it is semi-
or non-structured, different in its meaning and importance. Computers cannot pro-
cess information directly. Information is complex, and rife with relationships that are
important to its meaning but impossible for a computer to decipher. To be processed
by computers information should be turned to data. Data is simple, and all its rela-
tionships are clearly known (or else ignored). Data is always structured, similar data
chunks are of similar importance and of similar meaning. The major steps made in
the direction of artificial intelligence are the steps on the way of making computers
work not with the data but directly with the information. The introduction of the
notion “content” is such a step too. Content is a compromise between the usefulness
of data and the richness of information. Content is rich information that you wrap
in simple data. The data that surround the information (metadata) is a simplified
version of the context and meaning of the information [Boi04].

Because content is an intermediate step between information understood by hu-
mans and data understood by computers content has both features of information
and data. The properties common with information are: indirect important relations
between different content parts, and the influence of domain semantics on the mean-
ing of content. The property common with data is the representation of content as
manageable reusable chunks, stored and processed by computers.

The main idea behind the notion “content” is the enrichment of data with meta-
data. Metadata is what brings additional value to the content itself and what gives to
the content the features of information. Metadata may store all kinds of additional
data about the data itself. This can be some domain specific data, directly inputted
by the user of CMS who creates content or otherwise gathered somehow indirectly,
or the data about the presentation of content. The ways of organizing metadata,
storing it, the ways of gathering it and decisions about which metadata to gather
vary significantly in different implementation of different CMS.

Another idea exploited in CMSs is the desire to combine and reuse content. Com-
bining and reusing is a trivial task when dealing with data, and it becomes quite
a challenge when speaking about content. To be able to reuse content it is conve-
nient to divide it into manageable chunks called components (content components)
[Boi04, Tri05]. Content Components divide information into convenient and manage-
able chunks. They “. . . are a set of discrete objects whose creation, maintenance, and
distribution can be automated. They typically share some common attributes, such
as format or length, and they should be self-contained, not needing the context of
other components to be meaningful” [Boi04].

The term “component” will be also introduced with respect to the software com-
ponents in the section 1.2.3. In that section the definition of software components
use similar notions: “self-contained” pieces, “interaction with other components”,
“reusability”. This brings to the possibility to implement the information components
through software components, and introducing one-to-one correspondence between
information components and software components, e.g. as implemented in DRACO
technology [Nei89, Nei01, dPLSdF94]

CHAPTER 1. INTRODUCTION 9

Content Management Systems

A Content Management System (CMS) is not really a product or technology but
a catch-all term that covers a wide set of processes that will underpin the “Next
Generation” large-scale web site [BL01]. At first glance, content management may
seem a way to create large Web sites, but on closer examination, it is in fact an
overall process for collecting, managing, and publishing content to any outlet, as the
following list describes [Boi04]:

In collection: Creation or gathering information from an existing source, possible
processing and conversion to a proper format, and final aggregation the CMS by
editing, segmenting into chunks (or components), and adding appropriate metadata.

In management : Creation of a repository that consists of database records and/or
files containing content components and administrative data (data on the system’s
users, for example).

In publishing : Making content available by extracting components out of the repos-
itory and constructing targeted publications such as Web sites, printable documents,
and e-mail newsletters. The publications consist of appropriately arranged compo-
nents, functionality, standard surrounding information, and navigation.

1.2.4 Component Software Architecture

Software Components are seen nowadays as the main instrument to facilitate soft-
ware reuse. There are many definitions of the term “component”, such as a compo-
nent is “a self-contained functionality or application which can interact with other
components”[KBA00].

Usually researches also introduce the notions of “interface” and “realization” to
the definition of component, saying that a component always consist of the interface
visible externally outside of the component and the rest part, called implementa-
tion[BO92, PDH99].

Anyway this definition doesn’t show the difference between “modules” and “com-
ponents”, but “‘component’ is a type of ‘module’, sharing some generic properties
with ‘modules’ that are not ‘components”’ [PDH99]. The main feature distinguishing
modules from components is that components are meant to be reused in different
applications [Nei92, KBA00, Nei80, BO92]. The possibility to reuse components on
one hand brings to the creation of component libraries, from which the developers
can choose the components for their applications, and on the other hand triggers
researches in the direction “easy” or even dynamic replaceable components in one
application.

The problem of dynamic replacement is discussed in [KBA00, Blo83] as the pos-
sibility “to allow the programmer to add or remove components from the application
at run-time. Such decision could be influenced both by necessity and the changing
performance characteristics of the application”.

Batory [BO92] discusses the problem of component exchangeability. He introduces
the notion of “realm” as a set of components implementing the same interface and
the notion of a “symmetric” component, as the component that makes calls to other
components of the same realm, i.e., the components that implement the same interface
as the caller. Batory claims in his work that “the true building blocks for some
realms are symmetric components” and that “not recognizing such components is a
lost opportunity for achieving reuse on a large scale”. Such components are often
called plug-compatible, interchangeable.

Neighbors, the author of the DRACO technology [Nei89, Nei01, dPLSdF94], in his
work [Nei92] discusses the approaches to organizing an easy in use component library.

CHAPTER 1. INTRODUCTION 10

He comes to the conclusion, that using specialized domain languages is an alternative
to using program libraries. “A library would not have been as successful because
the burden of using the library and knowing the interconnection limitations is placed
upon every potential user of the library. Having a domain-specific language that ties
the library together removes this burden at the expense of learning the language.”

1.2.5 Program Generators

A large group of computer scientists came to the same conclusion as Neighbors and
“. . . developed a new subarea of Software Architectures, that is software generators
(also application generators)” [Bat97]. In the technical sense, application generators
are compilers for domain-specific programming languages (DSLs) [SB00], or the real-
izations of domain models that explain how software systems in a target domain can be
assembled from previously written components [BDG+95]. The process of modeling
families of software systems by software entities such that, given a particular require-
ments specification, a highly customized and optimized instance of that family can
be automatically manufactured on demand from elementary, reusable implementa-
tion components is usually called Generative Programming [CEG+98, Bat03, Bat04].
These requirements specification are usually written using domain-specific languages.

Batory in one of his works [SB00] claims that one of the reasons for using gener-
ators is that “the specification languages that generators implement (domain-specific
languages) are much more concise and convenient than the language of the produced
program (called the target language), the translation of specifications to target code
is done correctly and quickly, thereby substantially increasing programmer produc-
tivity ” [SB00]. In [Bat97] he also says that “the basic distinction between research
on generators and software architectures is that the components that generators com-
pose to construct systems are designed to be plug-compatible, interchangeable, and
interpretable ” (as defined in section 1.2.4).

Scientists distinguish two types of generators: self-sufficient, stand-alone transla-
tors (in much the same way as compilers for general-purpose languages) and program
transformation systems (transformation generators) [SB00]. A successful example
of a system that builds applications out of domain specific languages using a set of
transformation generators is DRACO system [Nei89, Nei01, dPLSdF94].

According to Batory [SB00] application generators have the standard internal form
of a compiler with a front-end, translation engine, and back-end component. The
front-end is responsible for the one-to-one mapping of the input form to an equiva-
lent but more convenient internal representation. Typical input specifications are in
text format, in which case the front-end consists of a conventional lexical analyzer
and a parser. The translation engine implements transformations on the intermedi-
ate representation. Usually transformations are expected to satisfy some correctness
property: the transformed program should have the same semantics as the original,
if not for all inputs, at least under well-defined input conditions. Translation engines
and transformations are the core of generators and are discussed in detail in the next
section. The result of applying transformations to the intermediate representation is
a concrete executable program. The concrete program, however, is still represented
as a flow graph or an abstract syntax tree. Mapping from the intermediate represen-
tation to program text is straightforward and is the role of a generators back-end.
Generated code is usually in a high-level programming language.

The program code the purpose of which is to generate some other code is usually
called metacode [CEG+98].

Generators are often considered as an integral part of an information system itself.
Thus, when speaking about component architecture of the system some scientist, like

CHAPTER 1. INTRODUCTION 11

e.g. James M. Neighbors and others, distinguish two types of components: composi-
tional components, that encapsulate the code that applications execute at run-time
and transformational components , that encapsulate algorithms that generate the
code that applications execute at run-time [JPB97, Bat97]. Thus, according to the
definition above this components contain metacode. Transformational components
generate compositional components that are specifically optimized and customized to
a particular application [Bat97].

1.2.6 Mediators

The term “mediator” was originally introduced by Gio Wiederhold as “. . . special kind
of components or modules, that exploit encoded knowledge about some sets or subsets
of data to create information for a higher layer of applications”[Wie92]. According to
Wiederhold [Wie92] the main role of mediators to mediate between the other modules,
such as for example data resources. These modules perform administrative role and
gain technical knowledge from underlined modules. The software which mediates is
common today, but the structure, the interfaces, and implementations vary greatly.
Wiederhold also mentions that one possible usage of mediators can be the merging of
information from multiple databases and providing independence from data resources,
as well as providing access to other mediators.

1.2.7 Conceptual Content Management Systems

Conceptual content management systems refer to a special kind of content manage-
ment systems, which manage content through the management of assets (figure 1.2).
“Assets are ontological descriptions used to classify content”[Seh03].

The purpose of Content Management Systems is to organize a complex mixture of
media content and to present this mixture trough domain specific conceptual models
[SS04].

Conceptual content management systems are supposed to be used in collaborative
environments, such as research and learning systems, to support user activities such
as acquisition and exploration of concepts as well as creation, enrichment, publication,
and sharing of content [SBS05]. The example of such system working successfully for
several years is GKNS project 1.

The architecture of conceptual content management systems is a component ar-
chitecture. Some of its components are transformational components as defined in
section 1.2.5. This means that some of the components represent an application
generator.

If fact the whole architectural principles of conceptual content management sys-
tems are quite similar to Neighbour’s DRACO system but applied to a different
domain, namely content management domain, and using not transformational but a
stand-alone application generator. The more detailed discussion on this topic will be
given further.

1.3 Structure of the thesis

The first chapter was devoted to the overview of the latest progress in the fields tightly
connected with the topic of the current thesis.

In chapter two I will formulate the task to my student project and will describe the
architecture and workflow scenarios for the conceptual content management systems,

1GKNS web site http://www.wel.de/gkns

http://www.wel.de/gkns

CHAPTER 1. INTRODUCTION 12

03.07.2006 STS, TUHH, http://www.sts.tu-harburg.de/ 3

Conceptual content management
system

content management system

Used to:
• organize a complex media content;
• to present it trough domain specific
conceptual models.

Asset

+
media content
conceptual description

=
Conceptual content management system

Figure 1.2: Conceptual Content Management Systems

get the reader acquainted with all the notions necessary for the understanding of the
rest of the work.

In the third chapter I will outline the requirement to the generator that was
developed during the project.

In chapter four I will provide the design solutions.
Chapter five will be dedicated to the implementation problems.
In chapter six I will make my conclusions about the work done and outline the

directions for the future work.

Chapter 2

Background

2.1 The Problem

In different kinds of applications, which use conceptual content management systems,
a user needs to have a possibility to personalize the content. Personalization usually
implies adaptation and customization of data content or the representation of this
data.

We can distinguish between asset instance personalization and asset schema per-
sonalization (more in section 2.2.7). The scope of the project deals only the first way
of personalization (which is the easier case). Asset instance personalization implies
that user is able to change only the values of asset characteristics and not the asset
schema.

The difficulty of using the personalized components is that whenever a personalized
component exists it exists along with an analogous public component. Whenever a
request to a component is done, a system has to decide to which one of these two
components it is: the personalized or to the public one. To perform this task a special
mediation module is required. The task of the current work is to develop a generator
that generat application scecific mediation modules.

2.1.1 Example

A group of art historians publish a painting called “Mona Lisa” in the conceptual
content management system. The notation used here are the Asset Definition Lan-
guage (ADL) and Asset Manipulation Language (AML) languages described further
in sections 2.2.1 and 2.2.2.

class Picture {
content contents: Image
concept characteristic title : String

relationship painter : Artist
}

monalisa = create Picture {
contents := de.tuhh.sts.wel.Media.MONALISA
title := "Mona Lisa"
painter := "Leonardo_da_Vinci"

}

13

CHAPTER 2. BACKGROUND 14

Media
view

Model
view

[Content

Asset

Concept]|

Entity

Figure 2.1: Assets represent entities by [content — concept] - pairs [Seh03]

Another group of artists, while studiying the works of Leonardo da Vinci is used
to calling this painting “Jokonda” and wants to work with this name of the painting.

The possible solution to this. The second group of art historians pesonalizes the
instance of class Picture called “Mona Lisa” and change the value of characteristic
called title for “Jokonda”:

jokonda = modify monalisa {
title := "Jokonda"

}

2.2 Conceptual Content Management Systems

2.2.1 Assets

As was said in section 1.2.7 assets are “. . . ontological descriptions used to classify
content”. This means that assets serve two roles:

• give conceptual description of domain entities - concept part;

• incorporate content part of domain entities - content part.

Thus assets represent intimately allied content-concept pairs which represent and
signify application entities [SS03] see figure 2.1.

Assets can inherit from each other thus forming ontological hierarchies which are
called asset models.

M.L. Brodie [Bro84] defines tools associated with data models as “languages for
defining, manipulating, querying, and supporting the evolution of databases”. These
languages are Data Definition Language (DDL), Data Manipulation Language (DML),
and Query Language (QL). The same approached is used for asset models.

The following languages are defined to manage asset models:

Asset Definition Language (ADL) used to define asset schema;

Asset Manipulation and Query Language (AML) used to manage asset instances.

CHAPTER 2. BACKGROUND 15

2.2.2 Asset Definition Language

To support expressiveness of asset modeling the concept part has tree constituents
[SS04]:

• characteristic values,

• relationships between assets, and

• rules (types, constraints, ...)

Asset definition language is a schema language. Users can describe domain schema
using this language and associate content with conceptual descriptions. According to
section 1.2.2 asset language can be considered as a domain specific language, describing
the domain of content management and used as input schema for an application
generator.

Asset definition language is a class-based language and is used to define asset
classes [SS04].

class Picture {
content contents: Image
concept characteristic title : String

relationship painter : Artist
}

The section content references the content part of asset definitions using content
handels. E.g. it can be a URL address where the resource is stored, or a file name
in the file system. The colon mark divides the name of the content resource and its
type.

The section concept is used for description of the concept part of an asset.
The key words characteristic, relationship, constraint describe character-

istics, relationships and constraints respectively. Colon marks separate their names
from their types.

The inheritance relationships between asset classes are expressed using the key
word refines:

class Portrait refines Picture {
concept relationship portraitOf : Person

}

A set of asset classes describing entities of the same domain is called asset model.

Model Paintings
class Picture {

...
}
class Portrait {

...
}

Different asset models representing different domains can be imported to other
models modeling larger domains.

For more details about asset definition language see [SS04].
So asset definition language complies good with the abstraction mechanism intro-

duces in section 1.2.2.

CHAPTER 2. BACKGROUND 16

O
rg

an
iz

at
io

n

Application

K1

K1

K11 K12

K1K0 K2

K1

K11 K12

K2

K21

K0

Organization CooperationComponentki

Figure 2.2: Component Configuration [Seh03]

2.2.3 Module-Component Architecture of Conceptual Content
Management Systems

As was stated before conceptual content management systems are open and dynamic
adaptive computer systems. This is possible due to some architectural features of
conceptual content management systems.

The architecture of the conceptual content management systems is a component
architecture. The combination of such components represents the combination of
coexisting domains (sub models). Thus, in contrast to Neighbours approach (e.g.
in [Nei92] or DRACO-approach [Nei89, Nei01, dPLSdF94]) of using “one software
component for each object or operation in the domain”, here one component for each
domain is created.

A component represents assets which describe a domain in a definite context. This
means that we will need more than one component to represent [Seh03]:

• assets from different domains (several assets from one domain, i.e., one model,
goes to the same component);

• assets describing the same domain but from different points of view (in different
contexts).

Therefore we have two types of relationships between components: cooperation
(communication along usage structure) and personalization (individualization along
organization structure). The context organization of users, usually represented as
project groups, brings to the corresponding organization structure of the components
[Seh03] (see figure 2.2).

The components in their turn consist of modules. In fact “modules”, as they are
called in conceptual content management systems, are real components in the sense as
discussed in section 1.2.4. The term “module” is used for convenience purpose. More
over they are symmetric components (see section 1.2.4), thus can be dynamically
replaced. This architectural property makes for system dynamics (see section 2.2.7).

One can say that there are two kinds of components in conceptual content man-
agement systems that provide two different forms of reuse [Seh03]:

CHAPTER 2. BACKGROUND 17

m1a m1bm11 m12

m1a m1b

m21

or
ga

ni
za

tio
n

application

m1a m1b

m11 m12

m1 m0 m1

m1

c1

c11 c12

c0 c1

m2a

m2

c2c1

m11 m12

c11 c12 c21

m0 m1

c0

m2a

m2

c2c1

implemen-
tation

Organization

Cooperation

Componentki

Communication

Implementation

Modulemi

Figure 2.3: Components Implementation through Modules [Seh03]

• components (called “components”) contribute to assets reuse and

• components (called “modules”) make for functionality reuse.

These two kinds of reuse are an example of separation of concerns approach ac-
cording to [TO01, TOHS99, Mar02b] and others.

An example of relationships among modules and components is shown on figure 2.3.

2.2.4 Modules

There are several types of modules to realize several functionalities. Each component
can be built of any number of such modules, and be dynamically rebuild when needed.

The short description of the types of modules and their functionality is as follows:

client modules used to access standard components managing the asset’ content
and data; the only modules that can store persistent information;

transformation modules used to adjust schemata, thus allowing modules gener-
ated from different ADL schema revisions communicate;

distribution modules allow the incorporation of modules residing on different net-
worked computers;

mediation modules to glue the modules of a conceptual content management sys-
tem together by delegating calls to other modules and combining their responses
in different ways;

CHAPTER 2. BACKGROUND 18

server module

assets
data adapted assets

base assetslocal asset proxies
remote assets

unified view
view 1 view 2

external assets
internal assets

mediation module

distribution module
transformation module

client module

Figure 2.4: Module Kinds [Seh03]

server modules offer the services of a conceptual content management system fol-
lowing a standard protocol for use by third party systems.

Client modules are bottom-layer modules, the other modules are on top of them
and delegate calls to client modules. Thus, the architecture of a component is a
typical layered architecture.

The types of components and their typical configuration within a component is
shown in figure 2.4.

As was already mentioned all components are symmetric and implement the same
interface, called Module.

2.2.5 Conceptual Content Management System Generation Sce-
nario

It was said in section 1.2.7 that some components of conceptual content management
systems are transformational components used to generate application specific code.
Before discussing the principles of the application generator framework within con-
ceptual content management systems I will give an overview of the whole generation
scenario, which is depicted in figure 2.5.

To generate a conceptual content management system for some assets a user writes
asset definitions in the asset definition language. Then this asset schema is processed
by the compiler framework, which is, actually, the application generator. The output
of the application generator are files in a high-level programming language, namely
Java, representing components and modules conforming to the above described archi-
tectural principles.

If a user wants to create, modify or delete asset instances, he can either use asset
query and manipulation language (AML) or use a client code making calls to the
interface of the generated modules.

Once a user wants to change asset schemata, the whole procedure is repeated.

2.2.6 Compiler Framework

The Compiler Framework is nothing else but a stand-alone application generator as
defined in section 1.2.5.

The compilation scenario follows the compilation process in Model Driven Archi-
tectures (MDA). The asset compiler creates a platform independent model from a
domain model. The platform independent model is then translated into a running
software system [SS04].

A compiler consists of frontend and backend. The frontend lexes and parses asset
definitions resulting in an intermediate model. The backend contains API and Module

CHAPTER 2. BACKGROUND 19

03.07.2006 STS, TUHH, http://www.sts.tu-harburg.de/ 5

How conceptual content management
systems (CCMS) work ?

Compiler
framework

PictureFile.ald

class Picture {
content contents: Image
concept characteristic title: String

}
writes

user

• parses asset definitions
• generates java modules

CCMS

create Picture {
contents := de.tuhh.sts.monalisa
title := Mona Lisa

}
lookfor Picture { … }
modify Picture { … }

ClientPicture
Public

Another
Module

Some other
Module

One more
module

Figure 2.5: Generation Scenario

generators that generate code out of the intermediate model. Each generator can get
several symbol tables as its input, and produce exactly one symbol table as its output
(see figure 2.6). A symbol table contains the object representation of the generator
output and provides methods to read this information by other generators at runtime.

API generator generates a set of interfaces, common for all modules of the same
component and stores them in API Symbol Table. To be able to generate the im-
plementation of a module the generator has to have information about API of this
module. It gets this infomation from the symbol table resulting from the work of API
generator.

Usually each module generator generates implementation for one module. Though
often to generate the implementation for a module more than one generator is needed.
Such generators produce some part of module implementation and communicate with
each other using symbol tables. This is a data-driven communication similar to the
one used in “pipes and filters” architectures [SG96].

2.2.7 Personalization

Personalization as understood in connection with conceptual content management
systems “is the ability of a system to adapt to the individual needs of each user”
[SBS05]. This definition of personalization is broader than in most contemporary
works, because it not only implies that different users perceive different information
from the system, but also that they have possibility to modify a system through per-
sonalization. This brings to the constant evolution of the systems with the evolution
of information content it manages. Thus the system gains the ability to transform
itself without additional reprogramming. This is possible due to two properties of
conceptual content management systems [SS03, SBS05]:

schema openness: users can change the schema on-the-fly adapting their asset mod-
els according to the requirements of the entity at hand;

system dynamics: the implementation of the system changes dynamically, follow-
ing any on-the-fly schema modifications in the running system.

CHAPTER 2. BACKGROUND 20

C
om

pi
le

r
F

ra
m

ew
or

k

<name>

API

XMLDB

XSD

WSDL

WS Impl

Asset
Definitions

API
Classes

Web
Service

XML
Schema

WSDL
file

Generator

Symbol table

XMLDB
Persistence

Figure 2.6: Compiler Framework

The initial system configuration is built according to the schema provided by the
user. If, for any reason, a user of a system wants to change asset definitions and thus
the system configuration too, there exist two scenarios to do so:

“easy” A user just changes the assets to fit the new needs. The system modifies
automatically due to dynamics property.

“legal” A user personalizes assets, changes them and then publishes making changes
visible to other users and resolving conflicts. The systems modifies according
to this actions.

The problem with the first scenario arises, because the content already existed in
the content management system is described by the old schema, new changes cannot
be applied to it, nevertheless it should be kept further in the system, it can’t be just
thrown from it. On the other hand the other users of the system may not agree with
the new changes both to asset schema and asset instances, and may want to continue
working with the former version.

The two processes of the second scenario, personalization and publishing, deal
with these problems.

According to other taxonomy [Seh03] there are tree grades of personalization:

• Asset creation

• Establishment of relationship between public and personal Assets

CHAPTER 2. BACKGROUND 21

03.07.2006 STS, TUHH, http://www.sts.tu-harburg.de/ 7

M
ed

ia
tio

nM
od

ul
e

Mediation Modules
Compiler
framework

PictureFile.ald

class Picture {
content contents: Image
concept characteristic title: String

}

user

CCMS

lookfor Picture {
title = Mona Lisa

}
ClientPicture
Public

ClientPicture
Personal

Some other
Module

One more
module

Figure 2.7: Mediation Modules for Personalization

• Transformation of public asset to personal view

These three forms of personalization, in the order from 1 to 3, require constantly
increasing content management system support.

Personalization happens on two levels:

asset instance personalization (content personalization) asset instance changes
(e.g. change of a characteristic value, addition of deletion of relationship), asset
schema remains the same;

asset schema personalization (structure personalization) changing asset def-
inition (e.g. addition or deletion of characteristics).

Asset instance personalization cause the creation of additional component, per-
sonalized component and generation of a mediation module to delegate calls either to
public or to personalized (private) component (see figure 2.7).

The structure personalization will also require an additional transformation mod-
ule to adjust different schemas of public and private components. This is a more
difficult case and is not considered in the current work.

Chapter 3

Requirements

3.1 Requirements to the Generator

The non-functional requirements to the software developed within the scope of this
work include in the following:

1. The developed software must be a module generator of the conceptual content
management system compiler framework back-end to make use of API Genera-
tor.

2. The generator must be developed using the Java Code Generation Toolkit (see
section 5.2), which provides a convenient form to keep Java code in object form
and then print it in text files as well as store in the generator symbol table.

3. The generator must generate Java code for mediation modules, that delegate
calls either to the public or to the private component to provide a unified view
on these two base modules and make them look from outside like one module.
The requirements to the mediation modules functionality is described below.

3.2 Functional Requirements to the Mediation Mod-
ules

The functionality of the mediation modules in general is expressed on the Use Case
diagram in figure 3.1.

As shown on the diagram a user of a mediation module can perform such activities
as asset creation, asset modification, asset deletion, asset retrieval. The last activity
asset publishing should also be available for a user, but only first four are within the
scope of the current work.

By the User in this diagram I mean any other system module, which is above the
mediation module in the layered architecture of the component, or any external user
of the system (e.g. external client software), if the mediation module is the topmost
module in this architecture.

The functionality of each use case is described below on collaboration diagrams.

3.2.1 Asset Creation

The diagram for asset creation scenario is shown in figure 3.2.

22

CHAPTER 3. REQUIREMENTS 23

modify

create

delete

User

lookfor

modify public asset

modify private asset

<<extend>>

<<extend>>

delegate call to the client module

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

File: (untitled) 19:32:10 30 June 2006 Use Case Diagram: Use Case View / NewDiagram Page 1

Figure 3.1: Mediation Modules Use Case Diagram

Figure 3.2: Asset Creation

To conform to the personalization workflow as described in section 2.2.7 the new
assets are always created in private modules and reside there until they are published.

If no private component for the given asset model exist, then by creation of new
asset for this model and new private component should be generated. If the pri-
vate component for that module exist then the new asset would be created in that
component.

3.2.2 Asset Retrieval

Asset retrieval corresponds to the lookfor operation of asset query language. One
should be able to retrieve assets which satisfy the constrains of this operation.

An external user of the system should not see the difference between public and
personalized assets. On the query both assets from public and private module meeting

CHAPTER 3. REQUIREMENTS 24

the query constraints have to be retrieved. In case of existence of both public and
personalized variants of the same asset the personalized instance should be returned.
The mediation module has to perform this task of searching in both modules and
merging the results afterwards. The way to do that is shown in figure 3.3.

The merge operation in this scenario produces a set of assets out of two other sets
and is performed as follows:

1. all instances from the first set (personalized) are added to the result set;

2. for each instance of the second set (public) the check is performed, checking
if there is the instance in the first set, that corresponds to the instance in the
second. If no, then the instance of the second set is added to the result set, else
it is not added.

Figure 3.3: Asset Retrieval

3.2.3 Asset Modification

The problem with asset modification is that when a user wants to modify an asset,
generally he doesn’t know if this asset is public or personalized, i.e., he doesn’t know
if it resides in the public or personalized module and doesn’t know in which of them
to search. He even does not know that there actually are two different components
to store assets. In this situation the mediation module is needed.

The mediation module gets the call from its user to modify an asset. At this call it
first tries to retrieve this asset from the private module, thus checking if the asset was
already personalized. If the retrieval succeeds and the needed asset is retrieved, the
mediation module calls the modify operation of the private module for the retrieved
asset. Otherwise, if the needed asset was not found in the private module, this means
that no private variant of the asset exist. The modification operation in this case is
nothing else but a personalization of a public asset. In this case a copy of the public
asset is created in the private module and then this copy is modified according to the
initial request.

Thus there are two different scenarios for asset modification: the case of modifi-
cation of public asset and the case of modification of private asset, i.e., the asset that
was already personalized before, but was not published by that time. These two cases
are shown on the figures 3.4 and 3.5 correspondingly.

3.2.4 Asset Deletion

The question about asset deletion is currently open in the theoretical works on con-
ceptual content management systems. The question namely is: should the published
asset be deleted?

CHAPTER 3. REQUIREMENTS 25

Figure 3.4: Personalized Asset Modification

Figure 3.5: Public Asset Modification

The current answer to this question is: No. Because the asset is a part of the real
world being modeled and it cannot be just deleted.

In this work we will allow the deletion of private assets and forbid the deletion of
public ones.

The deletion scenario is a simple one. The assets meeting the constraints are
retrieved from the private module by lookfor operation and then deleted.

Chapter 4

The Design of the Mediation
Modules

This chapter provides explanations about the design of the Mediation Modules. Some
parts of the Mediation Modules are non-generic and depend of the definitions of
asset classes, thus, we need to base our explanation on a definite asset schema. The
explanations are based on the following asset definitions:

model personalization

class Person {
concept

characteristic name: String
relationship origin1 : Person

}

class Student refines Person {
concept

characteristic matrikul: String
}

4.1 Origin Linking

The requirements (see chapter 3) demand the mediation modules store the connection
between public and private components. This connection must be stored persistently,
because the personalized version of asset instances could be stored in the system for
a long time before they are published, so this connection should survive after system
restarts. But according to conceptual content management system architecture only
client modules can store persistent information, the other modules are stateless.

The client modules are the only type of components that have access to the
database, thus they can store the connection in some form in the database. But
the only form, in which the client modules can store something in the database, is the
the form of assets. All assets stored persistently are have to be described by the ADL
schema. Here we come to the conclusion, that if we want to store persistently the
connection between public and personalized assets, we have to explicitly introduce
this connection to the ADL schema.

26

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 27

I considered two possible schema modification:

1. Modification of each asset class definition by introducing additional relationship
origin storing the relationship to the public instance of each personalized asset
or null for not personalized assets:

a = class A { ... }

ap = class AP{
...
relationship origin : A = a

}

This variant is also suggested in [Seh03].

2. Introducing an additional asset class for each asset class defined by the user to
store the relationships to public and to personalized instances:

a = class A { ... }
ap = class A{ ... }

PersonalizationA{
relationship public: A = a
relationship private: A = ap

}

We chose the first variant for the future implementation, because of several reasons:

1. It seems to be more natural.

2. From performance consideration.

Given a personalized instance, to find its public instance only one lookfor
operation is needed (namely lookfor ID, which is usually considerably faster then
lookfor operations with other query constrains). The same holds in the other
direction, i.e., given the public instance, to find the corresponding personalized
only one lookfor operation constraining the origin field, whose value has to
be the given public instance. This operation is slightly slower than the look
for ID operation. On the other hand with the second variant first the search of
associative entity is needed, with the constraints on public (private) relationship
to find the proper associative entity storing the IDs of the needed private and
public instances. Then one more search operation is needed, searching for ID
of private (public) instance.

The performance of lookfor operations differ considerably from one to another
database implementation, however it is quite a time consuming operation.

But the first variant has one substantial drawback comparing to the second one,
because the first variant implies schema modification of the user defined assets. This
means that the new relationship origin will be visible for the user, and the user
would be able to change this relationship, which he is not supposed to be allowed
to do. How to tackle this difficulty is explained as the ideas for the future work in
chapter 6.

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 28

Figure 4.1: Module Configuration for Personalization

Figure 4.2: Module Configuration for Personalization

4.2 Component Configuration

As was stated in section 2.2.3 and is claimed in [Seh03] “assets describing the same
domain but from different points of view (in different contexts)” should reside in
different components. These words refer to the case of personalization, because the
personalization is nothing else but description of the same domain from the point
of view of different user groups. Thus in our case we should have two components:
public and private one, and mediation module gluing them together.

One possible configuration is shown in figures 4.1 and A.1.
The more difficult case is when public and private components should reside on

different computers. In this case an additional module has to be inserted into each
of the components to glue them together by facilitating their communication over
the network, using standard protocols. These two modules are called distribution
modules. Fore more details on the functionality of distribution modules see [Seh03,
SS03]. In this case the configuration will look as shown in figure 4.2.

These two variants of component configuration describe the situation from the
“How should be?” perspective. Unfortunately the real situation is not so good. The
current project was a simplified component configuration, that reduced significantly
the problems with configuring components without loosing the full functionality of
mediation modules.

For the current project the both public and personals modules are configured to
reside in the same component. Thus, the configuration “as it is” is shown in figures
4.3 and A.3.

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 29

Figure 4.3: Module Configuration for Personalization

Figure 4.4: Module Configuration for Personalization

4.3 Interface Specification

API generator generates a set of interfaces. This set of interfaces is usually called
Object Interface. One more interface, called Module Interface, is generic, i.e., not
generated by the API generator. These are the interfaces defining the “legal” way
for communication from outside of the system. They must be implemented by all
modules in order they be interchangeable as defined in 1.2.4.

These interfaces are:

Module Interface One per asset model, i.e., one per component. A generic inter-
face, i.e its name and the names of its methods don’t depend on the names of
asset classes names in the asset schema file.

Object Interface Consist of several non-generic interfaces, the name of the inter-
faces and their methods depend either on the name of asset model (in case one
interface per asset model is generated) or on the name of asset class (if one
interface per asset class is created).

Thus the component diagram, representing the mediation and two client module
will look as show in figure 4.4.

This set of interfaces is prescribed by the architecture of the conceptual content
management systems. More on the specification of these interfaces is written in
[Seh03] and [SS03]. The need for two different interfaces Module and Object arise
from two different approaches to building client applications. Module interface is
useful to build generic clients able to work with different classes of assets, therefore
clients have not be substantially changed when asset class definitions change. On the
other hand Object interface exploits the idea of type safety and provides more flexible
instruments fore working with assets.

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 30

Almost every task that can be done using Object Interface can be done also us-
ing Module Interface, still Object interface is often more powerful. However, there
is a task, the implementation of which is almost impossible with Module Interface.
It is execution of complex queries on assets. Assets can be retrieved using Module
Interface, but Module Interface provide no tool for execution of queries containing
sub-queries or queries with conjunctions and disjunctions of complex constraints.

Additionally, when discussing module configuration one more thing should be
mentioned about assets “residing” in each module. Each module has to know what
asset classes it is responsible to manage, also each asset should know by which module
it is managed. This is done with the help of a metaclass which implements the generic
interface AssetClass. Thus modules and asset classes should be in bidirectional
association relationship with each other. More about it is in the section 4.4.2.

More on the interfaces and their realization by mediation modules is discussed
below.

4.4 Realization of the Interfaces

The whole set of interfaces that mediation modules are to implement along with
their descriptions and the most important methods of these interfaces is shown in
appendix in table B.1. The key issues about the design of the implementation classes
are discussed in the following chapter.

4.4.1 Realization of Module Interface

Module Interface provides several methods for asset creation, several methods for
asset modification, also retrieval and deletion. The several create methods differs in
their parameters and return type. The same applies to modify, lookfor and delete
methods. As an example several method signatures of these methods are provided
here:

public Asset create(AssetClass ac, MemberInitialization[] mi);
public Asset create(AssetClass ac, AbstractAsset aa);
public AssetIterator create(AssetClass ac, AssetIterator ait);
public NewAsset delete(Asset asset);
public AssetIterator delete(AssetIterator assetIterator);
public Asset lookfor(ID id);
public AssetIterator lookfor(AssetClass ac, QueryConstraint[] qc);
public AssetIterator lookfor(AssetClass ac, AbstractAsset aa)
public AssetIterator lookfor(AssetClass ac, AssetIterator it);
public AssetIterator modify(AssetIterator ait,

MemberInitialization[] mi);
public Asset modify(Asset as, AbstractAsset aa);
public Asset modify(Asset as, MemberInitialization[] mi);

As we see all these method signatures are generic. They don’t depend on the
definitions of asset classes. The functionality of these methods for mediation modules
also doesn’t depend on the asset definitions as described in the requirements in section
3.2. Therefore, these methods in mediation modules can be implemented generically,
i.e., be hand-coded. No asset specific code is needed, therefore there is no need for
generator.

As appears from the requirements Mediation Module should be able to delegate
calls to the private and public client modules. Thus, Mediation Module should store
references to these client modules as attributes. To provide this functionality the
component should be set up as depicted in figure C.1:

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 31

There is only one method in Module interface that require non-generic implemen-
tation:

AssetClass getClass(String className);

This method should return the object of an asset metaclass (more about AssetClass
in the section 4.4.2) with the given name residing in the corresponding module
(in case of Mediation Modules the PersMediationAssetClass) implementing the
AssetClass interface. This means that the realization of this method should be gen-
erated by the generator depending on the names of asset classes in the asset schema
file.

To combine generic and non-generic part inheritance is used as shown on figure
C.2.

In the current design I defer the non generic part of Mediation Module to a method
called initMetaModel() which is called by init() method. The init() method is
called when the module is initialized (see appendix C.3).

4.4.2 Asset Class

The object of class Asset Class are used for providing runtime information about asset
classes as they are defined in asset schema files, i.e., asset characteristics, relationships,
superclasses and modules managing the classes.

As was said in section 4.3 each module has to know what asset classes it is re-
sponsible to manage, also each asset should know by which module it is managed.
The class diagram in appendix C.3 shows how these responsibilities are fulfilled by
the classes in the current design.

The general idea behind this is that Module is responsible for knowing and re-
trieving information about asset metaclasses. It stores a Map with pairs “asset name
- asset class” for all AssetClass objects, describing the classes defined in the as-
set schema file. This Map is initialized at the moment of component initialization
when the conceptual content management framework calls the init() method of the
module. At that moment the non-generic initMetaModel() is invoked inside the
init() method. The initMetaModel() method is non-generic and its implementa-
tion depends on the current asset definitions. Thus this method initializes the asset
metaclasses according to the asset definitions.

If the module needs to get a metaclass with the given name its method
getClass(String name) is used that retrieves the AssetClass object from the Map
with the given name.

If an asset wants to get information about its metaclass, the its getType() method
is used, which in its turn calls the getClass() method on the module associated with
the asset instance.

These interaction scenario is shown in figure 4.5.

4.4.3 Wrappers and Unwrappers

As follows from sections 4.3 and 4.4.2 each module type is coupled with the cor-
responding AssetClass describing the assets residing in the module and powerful
enough to be able to instantiate new assets and new query objects. This explains
why it is impossible to have only one implementation of AssetClass for all modules.

On the other hand the call delegation to the base modules is the part of the
functionality of all modules (except for the bottommost ones). The returned, as the
result of delegation, objects are of the AssetClass of the below module. To return
these objects as the response the module must wrap the objects. Similarly, when a

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 32

asset : AbstractAsset

asset : AbstractAsset

f : Framework

f : Framework

m : PersonalizationMediationModule

m : PersonalizationMediationModule

Object5 : user

Object5 : user

ac : PersMediationAssetClass

ac : PersMediationAssetClass

+init()

initMetaModel()

+getType()
+getClass(name)

+PersMediationAssetClass(name,implementationClass)

Sequence Diagram: NewSequenceDiagram

Date: Jul 5, 2006 Page: 1 of 1 Time: 03:27:14

Figure 4.5: AssetClass Retrieval Scenario

module gets an object as a request parameter, before passing it as a parameter of
the delegated call the object has to pe unwraped to correspond to the AssetClass of
base module. These operations are very common in many layered architectures (e.g.
8-layered OSI model).

In the current solution these wrap() and unwrap() operations are implemented
as methods of PersonalizationMediationModule class, though there can be other
possible solutions.

4.4.4 Realization of Asset Role Interfaces

There are five generic and five non-generic interfaces which are used to manipulate
single asset instances. These interfaces reflect different states during its life cycle
in which asset instance can exist. The description of the interfaces is provided in
appendix B.1. These states are called roles. The interfaces describing the roles of
asset instances are called Role Interfaces or Life Cycle Interfaces.

The figure also shows C.4 the whole Role Interface hierarchy. In the figure one
can see three different packages: two containing interfaces and one with the imple-
mentation of these interfaces.

One of the packages with interface contains only generic interfaces the other con-
tains non-generic. Easy to see from the diagram that interface hierarchies in both
packages have identical structure. The hierarchy inside the package corresponds to
the conceptual hierarchy of asset roles in the sense that for example any volatile state
is a substate of mutable state.

Another type of generalization relationships can be seen between the two packages:
generic and non generic. The meaning of these generalizations is quite different. Each
class in non-generic package is a subclass of a class in generic package. It is a kind
of “package inheritance” or “component inheritance”, which is used to separate all
generic asset behavior from the definitions specific.

This is again an example of separation of concerns. There is one more concern,
which is not described here: the asset model hierarchies. The issues connected with
this inheritance relationship will be discussed further in section ??.

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 33

Because Role Interfaces describe the same entity they can implemented by one
class as shown in figure C.4. The implementation class stores a reference to an entity
in the below module and has to delegate calls to this entity, and wrap and unwrap
results and parameters as discussed in section 4.4.3.

Only one method implementation of each was not trivial and needs an explanation
is the accept(LifeCycleVisitor) method to distinguish between assets in different
life cycle states. The usual way to implement accept methods to be used in visitor
pattern is just calling visit method on the parameter passed to the accept method
and passing to the parameter the reference to the self class, e.g.

class Subclass extends Baseclass{
public Object accept(SomeBaseClassVisitor visitor) {

return visitor.visit(this);
}

}

In case of accept(LifeCycleVisitor) the situation is different because it is used
not to distinguish among subtypes, and thus should not return the instance of the
implementation class, but an instance cast to the Role Interface corresponding to
the life cycle state of the asset instance of the base module. Thus, to implement
this functionality first the accept method of the base instance is called to retrieve
its life cycle state, and then the instance of the self class cast to the corresponding
interface is returned. To call the accept method of the base asset a simple Visitor
Class implementing LifeCycleVisitor interface has to be constructed and passed
as the parameter of the accept method.

4.4.5 Query Interface

As was already said in section 4.3 query objects provide easy way to construct and
execute complex queries. The functionality of query objects is similar to the func-
tionality of Module classes. Thus, the class diagrams look similar too (see figure C.5).
In the execute() method of Query Interface executes the query and returns the
result as an iterator over the result set. The other methods are used for constraints
construction.

4.4.6 Iterator Interface

As was already said, the result of execution of the execute() method of query objects
is the iterator, implementing type-specific variant of Iterator Interface. But this is not
the only use of iterators. Many methods of Module Interface require as parameters
or return the results in form of iterators implementing the generic version of Iterator
Interface AssetIterator.

In general the Iterator Interface is used to iterate over a set of asset objects. It
is usually initialized by a collection of objects and provides a method that returns
the next object in this collection until the end of the collection. Thus from the point
of view of Pipes and Filters architectures (see [SG96]) a collection can be considered
as Data Source, the output sequence of consequent invocation of next() method a
Data Stream and an iterator as a Pipe that delivers the stream of data. The client
that invokes the iterator’s next() method would be considered as Active Filter that
initiates the whole process and the collection where the data is stored by the client user
would play a role of Data Sink. To introduce some processing step on data streams
additional filters are usually introduced between the DataSource and DataSink, that
accept an incoming data stream, process one by one the data objects and produce an
output stream. If the role of incoming data stream plays one iterator, then the role

CHAPTER 4. THE DESIGN OF THE MEDIATION MODULES 34

of the filter can play the second iterator, which is initialized by the first one. In this
case when the next() method of the “filter iterator” is called, the “filter iterator”
in its turn calls the next() method of the “input iterator” and then performs some
operation on the object returned by this operation. The result of this operation is
returned as the response object of the next() method of the “filter iterator”. Thus
iterator plays a role of Passive Filter.

The Join Filter can also be represented by an iterator, which is initialized by two
other iterators, thus performing the role of two input Pipes.

The current design approach makes use of the above described analogies by intro-
ducing several generic iterator classes:

Wrapping Iterator (WrappingIterator) before returning the next asset object
wraps it by calling the method PersMediationModule.wrap(AbstractAsset)

described in section 4.4.3;

Unwrapping Iterator (UnwrappingIterator) before returning the next asset ob-
ject unwraps it by calling the method
PersMediationModule.unwrap(AbstractAsset aa) described in section 4.4.3;

Merging Iterator (MergingIterator) is initialized by two AssetIterators and pro-
duces the iterator over the result set according to the merging rules introduced
in section 3.2.2.

In the realization of Pipes and Filters the decorator pattern is often used, to make
use of filter recombination. The same pattern is used here for the design of the above
described iterator classes (for the class diagram see appendix, figure C.6).

The described generic iterator classes are widely used for the realization of the
module interface in the methods that either take iterators as the parameters or re-
turn the result in form of an iterator and have to wrap and unwrap instances for
proper call delegation as described in section 4.4.3. The possibility to combine these
generic iterator classes is exploited in lookfore() operations that must not only wrap
and unwrap iterated objects but also merge the results from the public and private
modules.

The Query Object’s execute() method functionality is quite similar to lookfor()
operation and also needs to merge the results from public and private Query Objects,
therefore the iterators used in the Query Objects have to provide the same function-
ality as the MergingIterator, so in the current solution the implementation class of
the Iterator Interface extends the MergingIterator as shown in figure C.6.

4.4.7 Visitor Interface

Visitor Interface is also an interface generated by the API Generator but unlike all
other non-generic interfaces described above requires no implementation by mediation
modules, but is used by client software developers to define it according to their needs
and use as visitors in Visitor Patterns. The visitors implementing Visitor Interface
are used as parameters of accept() methods defined in Abstract Asset Interface.
The implementation of these accept() methods in implementation class is trivial as
defined in Visitor Pattern, i.e., invocation of visit method of the visitor object, passed
as the parameter.

Chapter 5

Implementation

In the previous chapter the design of the Mediation Modules was introduced. Some
classes of the designed Mediation Modules are generic and were hand-coded. The
other parts depend on the asset definitions and are to be generated by the Mediation
Module Generator. Implementing the generator was broken then into the following
steps:

1. The implementation of the generic parts of the Mediation Modules. These are
the following classes:

• PersMediationModule

• PersMediationAssetClass

• MergingIterator

• WrappingIterator

• UnwrappingIterator

These classes are implemented inside de.tuhh.sts.cocoma.personalization.generic
package.

2. The hand-coded implementation of the classes requiring non-generic implemen-
tation.

3. Testing the combination of these two parts.

4. Generator development for generating non-generic classes. In parallel testing if
the generator output is the same as the hand-coded variant.

The first two steps are not discussed in the current report due to a prescribe design
specification given in the previous chapter.

5.1 Several Words on the Generator Design

Although the Mediation Modules represent quite a complex piece of software with
complex structure of classes, the structure of the piece of software that is responsible
for generating this complex class structure, i.e., the Mediation Module Generator,
does not have this structure. The Mediation Module Generator generator consist of
only one class, called PersMediationGenerator that is responsible for generation of
all non-generic parts of the Mediation Modules.

35

CHAPTER 5. IMPLEMENTATION 36

The Mediation Module Generator (will be referred as Generator) is designed to
be run inside the Conceptual Content Management Compiler Framework to benefit
from the API Generator Symbol Table(see section 2.2.6) and the Intermediate Model.
The API Generator Symbol Table holds the all information about the interfaces to be
implemented. The Intermediate Model is created by the Compiler Parser and stors
the asset definitions (as defined in the schema file) in the internal object model. If
the first one, API Generator Symbol Table, can be of no use for some generators, i.
e. those that do not produce Java code, the second one, Intermediate Model, must
be used by every generator, that produces any output based on the asset definition
schema file.

To be run inside the Conceptual Content Management Compiler Framework the
Mediation Module Generator uses the Subclassing Interaction Mechanism common for
many Framework Architectures (see [SG96]). Therefore, the Generator has to subclass
the abstract class de.tuhh.sts.cocoma.compiler.generators.Generator and to
override four abstract callback methods1 defined by this class:

• Collection<ParameterDescription> getRequestedParameters (
IntermediateModel im)

The return values are of type

public interface ParameterDescription<T> {
T getDefaultValue();
String getDescription();
String getName();
Class getType();

}

Answers the parameters needed by the current generator. They have to be
provided in the generate() call.

• Collection<SymbolTableDescription> getRequestedSymbolTables (
IntermediateModel im)

Returns the types and names of symbol tables needed by this generator. From
this dependency information a possible sequence of generator runs is computed.
Return values are of type:

public abstract class SymbolTableDescription {
String getName();
Class getType();

}

stored in the collection.

• SymbolTableDescription getProducedSymbolTable (
IntermediateModel im)

Returns the type and name of the symbol table which will be produced on
generate().

• SymbolTable generate (
IntermediateModel im,
SymbolTable [] symTabs,
Map<String,? extends Object> params)
throws GeneratorException

1In Framework Architectures methods provided by the client software to be called by the frame-
work are usually called Callback Methods(see [SG96]).

CHAPTER 5. IMPLEMENTATION 37

The actual performance method. Takes the intermediate model and the re-
quested symbol tables as parameters. Returns the symbol table created by this
generator. As a “side effect” of this method files are created etc.

The parameter of the type IntermediateModel passed to all these methods is
used if the functionality of the methods depend on asset definitions.

Basically, these methods have to be implemented when developing a generator.
Implementation of these methods is necessary and sufficient for generator implemen-
tation.

5.2 Java Code Generation Toolkit

The main purposes of the Mediation Module Generator are to produce the symbol
table and the implementation code of the Java classes defined in chapter 4 in form
of text files. Thus, the symbol table of this generator should store the information
that can be useful for other generators the purpose of which is to extend or somehow
transform the Mediation Module Generator output code. Because the output code
of this generator basically represents Java classes, the information about these Java
classes (names of the classes, implemented interfaces, methods, implementation of
methods, etc.) should be stored in the symbol table. To store this information a
convenient form has to be found, otherwise defined.

The task of providing the meta-information about classes is not new. It arose
with the idea of providing reflection mechanism. Java reflection mechanism uses
the package java.lang.reflect of the standard Java libraries. The classes of this
package can be used to retrieve all necessary information about Java classes, but they
have no means to perform the creation of Java classes, so cannot be used for the
creation of the meta-class information for the symbol table of the Mediation Module
Generator.

Because no existing library similar to java.lang.reflect and providing the pos-
sibility to create classes was found, this library had to be created by the developers
of the Conceptual Content Management Compiler Framework. This library is called
Java Code Generation Toolkit and offers classes comparable to those found in the
package java.lang.reflect, but in contrast to those allowing to manipulate and
create classes, as well as to generate the textual representation of these classes in the
form Java code. This is implemented by the overriding of Object.toString() for
these classes.

5.3 Implementation of the Generator

As we defined which methods are to be implemented by the Generator and the main
sources storing data necessary for the implementation, i.e., Intermediate Model and
API Symbol Table, we can proceed to the discussion of how the set of necessary
methods is implemented.

5.3.1 Implementation of getRequestedParameters() method

To run the Framework a configuration file has to be provided, which among other
configuration details of the Framework gives the possibility to provide input parame-
ters to the generators running in the Framework. The description of these parameters
is constructed in the getRequestedParameters() method. The implementation of
this method consist of creation of objects of type ParameterDescription and their

CHAPTER 5. IMPLEMENTATION 38

initialization according to the names, types and the default values of the parameters.
These descriptions and returned from the method in form of a collection.

5.3.2 Implementation of getRequestedSymbolTables() method

The implementation consists in construction of a collection of objects of class
SymbolTableDescription, where each object is initialized by the name and the type
of the symbol tables that the generator needs to use during its work. The constructed
collection is then returned as the response. The Mediation Module Generator depends
only on the work of API Generator, that generates the interfaces which have to be
implemented by any Module of the Conceptual Content Management System, and,
thus, by the Mediation Module as well. So the collection returned by the method will
contain only one object of class SymbolTableDescription.

5.3.3 Implementation of getProducedSymbolTable() method

The method has to return the description of the symbol table produced by the
Generator as an object of class SymbolTableDescription. This object has to
be initialized by the name of this symbol table, chosen by the programmer and
the type, i.e., the object of class Class, which is the metaclass of the implemen-
tation class of the symbol table. For the Mediation Module Generator the name
”PersMediationGeneratorSymbolTable” was assigned and the implementation class
PersMediationGeneratorSymbolTable implemented.

This class PersMediationGeneratorSymbolTable is implemented as an inner
class of the class PersMediationGenerator and subclasses the SymbolTable class
of the Framework. The PersMediationGeneratorSymbolTable stores HashMap’s
with pairs, coupling the asset classes, as defined in the Intermediate Model, and the
corresponding Java classes as should be generated by the Generator, or asset classes
and Java methods of some classes, or asset classes and Java fields etc. For example:

private HashMap<AssetClass, JavaClass> assetClassToQueryClass =
new HashMap<AssetClass, JavaClass>();

private HashMap<AssetClass, JavaField> assetClassToModuleField =
new HashMap<AssetClass, JavaField>();

The symbol table also provides the access methods to these HashMap’s.

5.3.4 Implementation of generate() method

The generate() generates the Java source code for the classes defined in the pre-
vious chapter. Because the generation is a somewhat long algorithmic process, the
structured programming approach for structuring its functionality is used, i.e., a set
of methods responsible for the generation of separate classes or class’s methods was
defined, which are called from the “main” generate() method.

According to chapter 4 there are two types of interfaces generated by the API
Generator : “one-per-model” interfaces and “one-per-asset” interfaces. Generation
of the second ones requires the iteration over the set of asset classes. Also, in case
of inherited classes it is often desirable to generate the implementation of a base
class, save it to the symbol table and then to generate the implementation of the
subclass using the information about its parent saved in the symbol table. This
requires the iteration over a hierarchy of classes. For the hierarchical iteration the
de.tuhh.sts.cocoma.compiler...hierarchy.HierarchyNode class is used.

To facilitate the generation the Java Code Generation Toolkit(see section 5.2) is
used.

CHAPTER 5. IMPLEMENTATION 39

5.4 Generator Configuration

As was already said the Conceptual Content Management Compiler Framework re-
quires a configuration file with the configuration information about the generators
to run. The configuration file for the generation of Mediation Modules is shown in
appendix D. This file defines the class names of the scanner and parser used in the
compiler frontend and the configuration of the generators used in the backend. The
configuration consist of tow generators “persmedgen”(the Mediation Module Gener-
ator) and “apigen”(the API Generator). The the names of the classes implementing
the generators are correspondingly
de.tuhh.sts.cocoma.compiler.generators.persmedgen.PersMediationGenerator

and de.tuhh.sts.cocoma.compiler.generators.api.APIGenerator. For each
generator a parameter list is provided. For the Mediation Module Generator these
parameters are the directory where the generated code is saved and the package in
which the generated classes will reside.

Chapter 6

Summary and Future Work

6.1 Summary

The overview of the literature made within the scope of the current work proved
the personalization to be an important issue for different types of software systems
including Conceptual Content Management Systems. One of the problems of imple-
mentation of Personalization is the need to link the public and the private view to the
system. The general approach to solve this problem is to provide some piece of soft-
ware, responsible for linking these two views, i.e., mediating between them. During
the current work the attempt to solve the problem of mediation between public and
private modules of Conceptual Content Management Systems was made. The analy-
sis of the problem showed that it is not possible to do this generically. Therefore, the
Generator for the generation of Mediation Modules was designed and implemented.

The Generator and a set of generic classes solve the mediation task for the Con-
ceptual Content Management Systems. They are realize the full functionality needed
to facilitate personalization of public assets, though some bugs can still be found.

The Mediation Modules generated by the Generator developed were tested and
proved to work on a simple asset definition model, containing two asset classes, one
of which inherits from the other. The developed software still needs to be tested on
more complex models.

The value of this project consist in the first implementation of the powerful Per-
sonalization mechanism ensuring openness and dynamics of Conceptual Content Man-
agement Systems.

6.2 Future Work

The current project also showed the directions to the future work on the way to build-
ing personalized open and dynamic applications using Conceptual Content Manage-
ment systems.

6.2.1 Hiding the Origin of Personalized Asset

Modification of Asset Schema Definitions by introducing the relationship to origin,
brings to the generation of access methods for this relationship. Therefore, users get
the possibility to see and modify this relationship. But it should not see this relation-
ship at all. The Problem can be solved by introducing an additional Transformation

40

CHAPTER 6. SUMMARY AND FUTURE WORK 41

module, which transforms the component behavior according to the schema with ori-
gin, to the behavior without visible origin field, i.e. transforms schema including
origin relationship to a schema without it.

6.2.2 Asset Publishing

The current solution facilitates only the content personalization, i.e., transferring the
public assets to private view or creation of assets in private view. The content pub-
lishing as the transformation of private assets to public view is the revers operation,
so can be using the similar mediation modules. When the new content is published
the previously public version of the content should be transformed to the views of
all users. The users in this case may accept or decline changes. In case of accepting
some operation merging the two versions have to be introduced.

6.2.3 Structure Personalization

The current solution facilitates only the content personalization. To provide the pos-
sibility for the personalization of the asset structure a problem of matching public
and private schema has to be solved. This can be done by implementation of trans-
formation modules, matching public and personalized schema.

Appendix A

Component Configuration

Figure A.1: Component Configuration for Personalization

42

APPENDIX A. COMPONENT CONFIGURATION 43

Figure A.2: Module Configuration for Personalization

APPENDIX A. COMPONENT CONFIGURATION 44

Figure A.3: Module Configuration for Personalization

Appendix B

Interface Specification

45

A
P

P
E

N
D

IX
B

.
IN

T
E

R
F
A

C
E

S
P

E
C

IF
IC

A
T

IO
N

46

Table B.1: Interface Specification

Interface Interface
Type

Interface
Name

Implementation
Class

Main Methods Interface Description

Abstract Interface
(General Base

Interface)

generic AbstractAsset

Person

ID getID()
AssetClass getType()
Object accept(LifeCycleVisitor)
void addLifeCycle-

Listener(LifeCycleListener)
void removeLifeCycle-

Listener(LifeCycleListener)

includes all methods not depending on the asset definitions
in schema file and which have meaning and can be invoked
independently of the asset life cycle; these are the methods
for asset retrieval by ID, method for getting asset metaclass,
accept() method used in the visitor pattern to retrieve the
asset life cycle state, methods for addition and deletion of
life cycle listeners activated when asset state changes

non-
generic AbstractPerson

String getName()
AbstractPerson getOrigin()
Object accept(PersonVisitor)

includes all methods, which have sense and can be invoked
independently of the asset life cycle, but depend on asset
definitions in schema file, these are the get..() methods for
all asset attributes (the names of the methods corresponds
to the names of asset attributes) and accept() method used
in the visitor pattern to distinguish among asset subclasses

Persistent
Interface

generic Asset MutableAsset lockAsAsset() reflects the methods specific to the asset in persistent state

non-
generic

Person MutablePerson lockAsPerson()
or MutablePerson lock()

reflects the type-safe variant of the methods special for the
asset in persistent state

Abstract Mutable
Interface

Abstract-
MutablePerson

setName(String)
setOrigin1(AbstractPerson)

base interface for assets in all mutable states; contains meth-
ods for modification of asset attributes

Mutable Interface

generic MutableAsset
Asset abortAsAsset()
Asset commitAsAsset()
NewAsset deleteAsAsset()

corresponds to the locked state of an asset; provides meth-
ods for transferring asset to persistent state aborting or com-
mitting introduced changes, and method for the deletion of
persistent asset instance

non-
generic MutablePerson

Person commitAsPerson()
Person abortAsPerson()
NewPerson deleteAsPerson()

corresponds to the locked state of an asset and provides
type-safe variants of the methods transferring asset either
to persistent or to volatile state.

New Interface
(Volatile Interface)

generic NewAsset Asset storeAsAsset() corresponds to the asset in volatile state
non-

generic NewPerson Person storeAsPerson() corresponds to the asset in volatile state, provides type-safe
variant of NewAsset interface

Continued on the Next Page. . .

A
P

P
E

N
D

IX
B

.
IN

T
E

R
F
A

C
E

S
P

E
C

IF
IC

A
T

IO
N

47

Interface
Interface

Type
Interface
Name

Implementation
Class

Main Methods Interface Description

Query Interface

generic AssetQuery

PersonQuery

constrainBySubQuery(AssetQuery)
constrainByQueryConstraint(-

Module.QueryConstraint)
AssetIterator executeForAsset()

base generic interface for querying objects; can be used to
construct queries containing sub-queries, but usually its sub-
classes are more convenient

non-
generic PersonQuery

constrainName...(String)
constrainOrigin1...(AbstractPerson)
PersonIterator executeForPerson()
or PersonIterator execute()

inherits from AssetQuery interface; a powerful interface to
construct and execute complex queries; provides methods
for constraining all asset attributes and type-safe method
for query execution

Iterator Interface
generic AssetIterator PersonIterator

int getLength()
AbstractAsset nextAsset()

interface for collections of asset objects; extends standard
Java Iterator interface and defines methods for retrieving
the number of asset objects in collection and nextAsset()
method returning next instance of AbstractAsset type

non-
generic

PersonIterator AbstractPerson nextPerson() inherits from AssetIterator ; defines a type-safe variant of
method for iteration over the asset collections

Factory Interface
Personalization-

AssetFactory
Personalization-

AssetFactory
NewPerson createPerson() interface used to create asset objects of the least specific

type in the asset hierarchy

PersonFactory PersonFactory NewStudent createStudent() interface used to create asset objects of the more specific
type in the asset hierarchy

Visitor Interface
Personalization-
TypeVisitor or
PersonVisitor

no implementation
required Object visit(AbstractPerson)

used in Visitor Patterns; need no implementation; must be
defined by system users according to their needs; used to
distinguish among subclasses of the base class

Module Interface

generic

Module Personalization-
MediationModule

create(...) modify(...)
delete(...) lookfor(...)
getClass(...)

one per asset model, i.e., one per component; defines set of
methods to create, modify and retrieve assets as well as a
method for getting the asset metaclass object with by the
name of the asset class as defined in the asset schema

Asset Metaclass
Interface)

AssetClass PersMediationAsset-
Class

String getName()
AssetIterator definedAttributes()
AssetClass getSuperClass()
NewAsset createInstance()
AssetQuery startQuery()

asset metaclass interface, defining methods for getting in-
formation about asset class name, its superclass and defined
attributes as well as a method for creating new instance of
the class with default attributes and a method for initializa-
tion of query object for the asset class

Appendix C

Interface Realization: Class
Diagrams

Figure C.1: Implementation of Module Interface: Generic Part

48

APPENDIX C. INTERFACE REALIZATION: CLASS DIAGRAMS 49

Figure C.2: Implementation of Module Interface: Generic and Non-Generic Parts

APPENDIX C. INTERFACE REALIZATION: CLASS DIAGRAMS 50

Figure C.3: Asset Class Implementation: Initialization and Retrieval of Metainfor-
mation about Asset Classes

APPENDIX C. INTERFACE REALIZATION: CLASS DIAGRAMS 51

Figure C.4: Asset Roles

APPENDIX C. INTERFACE REALIZATION: CLASS DIAGRAMS 52

Figure C.5: Implementation of Query Interface

Figure C.6: Implementation of Iterators

Appendix D

Mediation Module Generator
Configuration File

<?xml version="1.0"?>

<catxmlns:util="http://www.sts.tu-harburg.de/2004/java/util/xmlconfigfile">

<scanner class="de.tuhh.sts.cocoma.compiler.ADLScanner"/>

<parser class="de.tuhh.sts.cocoma.compiler.ADLParser"/>

<configuration name="persmedgen">

<param name="outputDirBase">gen</param>

<generator name="persmedgen" class=

"de.tuhh.sts.cocoma.compiler.generators.persmedgen.PersMediationGenerator">

<param name="outputDir">

<util:xpath path="../../../param[@name=’outputDirBase’]/text()"/>/src

</param>

<param name="targetPackage">

de.tuhh.sts.personalization.persmed

</param>

</generator>

<generator name="apigen" class=

"de.tuhh.sts.cocoma.compiler.generators.api.APIGenerator">

<param name="outputDir">

<util:xpath path="../../../param[@name=’outputDirBase’]/text()"/>/src

</param>

<param name="targetPackage">de.tuhh.sts</param>

</generator>

</configuration>

</cat>

53

Bibliography

[Bat97] Don Batory. Intelligent components and software generators. Technical
Report CS-TR-97-06, The University of Texas at Austin, Department of
Computer Sciences, April 1 1997. Mon, 28 Apr 103 21:07:00 GMT.

[Bat03] Don S. Batory. The road to utopia: A future for generative program-
ming. In Christian Lengauer, Don S. Batory, Charles Consel, and Martin
Odersky, editors, Domain-Specific Program Generation, volume 3016 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2003.

[Bat04] Don S. Batory. Program comprehension in generative programming:
A history of grand challenges. In International Workshop of Program
Comprehension, pages 2–13. IEEE Computer Society, 2004.

[BB03] Alex Borgida and Ronald J. Brachman. Conceptual modeling with de-
scription logics. In Franz Baader, Diego Calvanese, Deborah L. McGuin-
ness, Daniele Nardi, and Peter Patel-Schneider, editors, The Description
Logic Handbook: Theory, Implementation and Applications, pages 349–
372. Cambridge University Press, Cambridge, England, 2003.

[BDG+95] Don Batory, Sankar Dasari, Bert Geraci, Vivek Singhal, Marty Sirkin,
and Jeff Thomas. Achieving reuse with software system generators. IEEE
Software, pages 89–94, September 1995.

[BL01] Paul Browning and Mike Lowndes. Techwatch report: Content manage-
ment systems. Technical report, The Joint Information System Com-
mittee, September 11 2001.

[Blo83] Toby Bloom. Dynamic module replacement in a distributed programming
system. PhD thesis, Massachusetts Institute of Technology, Dept. of
Electrical Engineering and Computer Science, 1983.

[BLS98] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing
domain-specific languages. In ICSR ’98: Proceedings of the 5th Interna-
tional Conference on Software Reuse, page 143, Washington, DC, USA,
1998. IEEE Computer Society.

[BMW82] Alexander Borgida, John Mylopoulos, and Harry K. T. Wong. Gen-
eralization/specialization as a basis for software specification. In On
Conceptual Modelling (Intervale), pages 87–117, 1982.

[BO92] Don S. Batory and Sean W. O’Malley. The design and implementa-
tion of hierarchical software systems with reusable components. ACM
Transactions on Software Engineering and Methodology, 1(4):355–398,
1992.

54

BIBLIOGRAPHY 55

[Boi04] Bob Boiko. Content Management Bible. Wiley Publishing Inc., 2nd
edition, November 2004.

[Bol03] Susanne Boll. Mm4u - a framework for creating personalized multimedia
content. In Proceedings of the International Conference on Distributed
Multimedia Systems (DMS’ 2003), September 2003.

[Bon03] Stéphane Bonnet. Model driven software personalization. In Smart Ob-
jects Conference (SOC 2003), pages 114–117, Grenoble, France, May 15-
17, 2003.

[Bro84] M. L. Brodie. On the development of data models. In M. L. Brodie,
J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual Modelling,
Perspectives from Artificial Intelligence, Databases and Programming
Languages, pages 19–48. Springer-Verlag, New York, New York, 1984.

[CEG+98] Krzysztof Czarnecki, Ulrich W. Eisenecker, Robert Glück, David Van-
devoorde, and Todd L. Veldhuizen. Generative programming and active
libraries. In Mehdi Jazayeri, Rüdiger Loos, and David R. Musser, edi-
tors, Generic Programming, volume 1766 of Lecture Notes in Computer
Science, pages 25–39. Springer, 1998.

[dPLSdF94] J. do Prado Leite, M. Sant’Anna, and F. de Freitas. Draco-PUC: A
technology assembly for domain oriented software development. In Pro-
ceedings of the Third International Conference on Software Reuse, pages
94–100, 1994.

[EV03] Magdalini Eirinaki and Michalis Vazirgiannis. Web mining for web per-
sonalization. ACM Transactions on Internet Technology (TOIT), 3(1):1–
27, February 2003.

[Gil00] Frank Gilbane. What is content management? The Gilbane Report, 8(8),
october 2000. http://gilbane.com/gilbane_report.pl/6/What_is_
Content_Management.html.

[Gua98] N. Guarino. Formal ontology and information systems. In N. Guarino,
editor, Formal Ontology in Information Systems, pages 3–18. IOS Press,
Amsterdam, 1998.

[JPB97] Guillermo Jiménez-Pérez and Don Batory. Memory simulators and soft-
ware generators. In Medhi Harandi, editor, Proceedings of the 1997
Symposium on Software Reusability (SSR ’97), pages 136–145, 1997.

[KA03] Michael Kohlhase and Romeo Anghelache. Towards collaborative con-
tent management and version control for structured mathematical knowl-
edge. In Andrea Asperti, Bruno Buchberger, and James H. Daven-
port, editors, Mathematical Knowledge Management, Second Interna-
tional Conference, MKM 2003, Bertinoro, Italy, February 16-18, 2003,
Proceedings, volume 2594 of Lecture Notes in Computer Science, pages
147–161. Springer, 2003.

[KBA00] Katarzyna Keahey, Peter Beckman, and James Ahrens. Ligature: Com-
ponent architecture for high performance applications. The International
Journal of High Performance Computing Applications, 14(4):347–356,
Winter 2000.

http://gilbane.com/gilbane_report.pl/6/What_is_Content_Management.html
http://gilbane.com/gilbane_report.pl/6/What_is_Content_Management.html

BIBLIOGRAPHY 56

[Kha00] Latifur R. Khan. Ontology-based Information Selection. PhD thesis,
Faculty of the Graduate School, University of Southern California, Oc-
tober 17 2000.

[KR02] Nora Koch and Gustavo Rossi. Patterns for adaptive web applications. In
7th European Conference on Pattern Languages of Programs, October 29
2002.

[Mar02a] Esko Marjomaa. “peircean” reorganization in conceptual modeling
terminology. Journal of Conceptual Modeling, (23), January 2002.
http://www.inconcept.com/jcm/January2002/esko.html.

[Mar02b] Raphael Marvie. Separation of Concerns and Metamodeling applied to
Software Architecture Handling. PhD thesis, LIFL, Universit des Sci-
ences et Technologies de Lille, February 20 2002.

[McG04] Gerry McGovern. Don’t make these mistakes when buying content
management software. New Thinking, March 2004. http://www.
gerrymcgovern.com/nt/2004/nt_2004_03_29_CMS.htm.

[Nei80] James Milne Neighbors. Software construction using components. PhD
thesis, University of California, Irvine, October 09 1980.

[Nei89] James M. Neighbors. Draco: A method for engineering reusable software
systems. In Ted J. Biggerstaff and Alan J. Perlis, editors, Software
Reusability – Concepts and Models, volume I, chapter 12, pages 295–
319. ACM Press, 1989.

[Nei92] J. Neighbors. The evolution from software components to domain anal-
ysis. International Journal of Software Engineering and Knowledge En-
gineering, 2(3):325–354, September 1992.

[Nei01] James M. Neighbors. Draco 1.2 Users Manual. Department of Informa-
tion and Computer Science; University of California, Irvine , CA 92717,
October 09 2001.

[Nii04] Markopekka Niinimäki. Conceptual modelling languages. Technical Re-
port A-2004-1, Department of Computer Sciences, University of Tam-
pere, 2004. Ph.D. Thesis.

[PDH99] Allen Parrish, Brandon Dixon, and David Hale. Component based soft-
ware engineering: A broad based model is needed. In International
Workshop on Component-Based Software Engineering proceedings, pages
43–46, May 10 1999.

[RSG01] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães. Designing per-
sonalized web applications. In WWW, pages 275–284, 2001.

[SB00] Yannis Smaragdakis and Don Batory. Application generators. In J. Web-
ster, editor, Software Engineering volume of the Encyclopedia of Electri-
cal and Electronics Engineering. John Wiley and Sons, March 29 2000.

[SBK03] Cyrus Shahabi and Farnoush Banaei-Kashani. Efficient and anonymous
web-usage mining for web personalization. Institute for Operations Re-
search and the Management Sciences Journal on Computing, 15(2):123–
147, 2003.

http://www.gerrymcgovern.com/nt/2004/nt_2004_03_29_CMS.htm
http://www.gerrymcgovern.com/nt/2004/nt_2004_03_29_CMS.htm

BIBLIOGRAPHY 57

[SBS05] H.W. Sehring, S. Bossung, and J.W. Schmidt. Active learning by per-
sonalization - lessons learnt from research in conceptual content manage-
ment. In Bruno Encarnaca Jose Cordeiro, Vitor Pedrosa and Joaquim
Filipe, editors, Proceedings of the 1st International Conference on Web
Information Systems and Technologies, pages 496–503. INSTICC Press
Miami, May 2005.

[Seh03] Hans-Werner Sehring. Konzeptorientierte Inhaltsverwaltung Modell, Sys-
temarchitektur und Prototypen. Dissertation, Hamburg University of
Technology, November 2003.

[SG96] Mary Shaw and David Garlan. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1996.

[SS03] Joachim W. Schmidt and Hans-Werner Sehring. Conceptual content
modeling and management. In Manfred Broy and Alexandre V. Zamulin,
editors, Ershov Memorial Conference, volume 2890 of Lecture Notes in
Computer Science, pages 469–493. Springer, 2003.

[SS04] Hans-Werner Sehring and Joachim W. Schmidt. Beyond databases: An
asset language for conceptual content management. In Proceedings of
Advances in Databases and Information Systems, pages 99–112, 2004.

[TO01] Peri L. Tarr and Harold Ossher. Hyper/JTM : Multi-dimensional separa-
tion of concerns for javaTM . In Proceedings of International Conference
on Software Engineering, pages 729–730. IEEE Computer Society, 2001.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N degrees of separation: Multi-dimensional separation of concerns. In
Proceedings of International Conference on Software Engineering ’99,
pages 107–119, Los Angeles CA, USA, 1999.

[Tri05] Bill Trippe. Component content management in practice. The Gilbane
Report, February 2005. http://gilbane.com/whitepapers.pl?view=
14.

[Wid98] Tanya Widen. Formal language design in the context of domain engi-
neering. Master’s thesis, (M.S.)–Oregon Graduate Institute of Science
and Technology, 1998.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer, 25(3):38–49, 1992.

http://gilbane.com/whitepapers.pl?view=14
http://gilbane.com/whitepapers.pl?view=14

	Introduction
	Motivation
	Related work
	Personalization
	Conceptual Modeling
	Content Management Systems
	Component Software Architecture
	Program Generators
	Mediators
	Conceptual Content Management Systems

	Structure of the thesis

	Background
	The Problem
	Example

	Conceptual Content Management Systems
	Assets
	Asset Definition Language
	Module-Component Architecture of Conceptual Content Management Systems
	Modules
	Conceptual Content Management System Generation Scenario
	Compiler Framework
	Personalization

	Requirements
	Requirements to the Generator
	Functional Requirements to the Mediation Modules
	Asset Creation
	Asset Retrieval
	Asset Modification
	Asset Deletion

	The Design of the Mediation Modules
	Origin Linking
	Component Configuration
	Interface Specification
	Realization of the Interfaces
	Realization of Module Interface
	Asset Class
	Wrappers and Unwrappers
	Realization of Asset Role Interfaces
	Query Interface
	Iterator Interface
	Visitor Interface

	Implementation
	Several Words on the Generator Design
	Java Code Generation Toolkit
	Implementation of the Generator
	Implementation of !getRequestedParameters()! method
	Implementation of !getRequestedSymbolTables()! method
	Implementation of !getProducedSymbolTable()! method
	Implementation of !generate()! method

	Generator Configuration

	Summary and Future Work
	Summary
	Future Work
	Hiding the Origin of Personalized Asset
	Asset Publishing
	Structure Personalization

	Component Configuration
	Interface Specification
	Interface Realization: Class Diagrams
	Mediation Module Generator Configuration File

