Technische Universitdt Hamburg-Harburg

Generation of Diagram editors, taking the
Enterprise Application Integration Patterns
as Case study

Master Thesis

Submitted by:

Madanagopal Doraiswamy Venkatesan
madanagopal.doraiswamy @tu-harburg.de
Information and Media Technologies
Matriculation Number : 27125

Supervised by:

Prof. Dr. Ralf MOLLER
STS - TUHH

Prof. Dr. -Ing. Erik. PASCHE
Institut fir Wasserbau — TUHH

M.Sc. Miguel GARCIA
STS - TUHH

Hamburg, Germany
17" October 2006

Declaration

I declare that:

this work has been prepared by myself,

all literally or content-related quotations from other sources are clearly pointed out,
and no other sources or aids than the ones that are declared are used.

Hamburg, 17 October 2006

Madanagopal Doraiswamy Venkatesan

ii

Acknowledgments

I would like to extend my sincere gratitude to Prof. Dr. Ralf Méller for giving me an
opportunity to do my Student Project at Software, Technology & Systems (STS)
Department of Hamburg University of Technology, Germany.

The major credit for the work in this thesis must go to M.Sc. Miguel Garcia. [am
gratefully appreciative for his many valuable suggestions, tremendous contributions,
always prompt feedback, guidance, encouragement and support during the research.
My gratitude is beyond words.

Last but not least, I would like to thank the Software, Technology & Systems (STS)
Department for supporting me throughout my program and research.

Finally, I would like to thank my parents and my friends for their continuous support
and encouragement.

iii

Table of Contents

5 00 601 0 L4 10Tt 6 o) 1 DO 1
1.1 MOTIVATIONtiiiiiieiitieccee ettt e st e e s ee e s sae e e s aae e seabe e s saeeessanaessssaesssssaesnnns 1
1.2 ODJECLIVE. ...ttt st e et e s e st e e e e st e st e bt e se e s s e e enees 2
1.3 STrUCtUre Of the WOTK....uueeeeiiieeieiiieeeeeete ettt ee e 2

2 Graphical Modeling FrameworkK......cc.ccceeveieiieceniececacecaccecaccecassecsssecssens 3
2.1 MEtamOAEL......uuvvvieiiiiiiiieieeiiiee et certeeeeeeenreeeeesebrereeeessaeseesessntaseessssssnreeens 3
2.2 GenModel and other necessary artifacts:........ccccceeeeueeevieecieeeciencieeee e, 4
2.3 Building the Graphical Editor........ccooieiiriiiiiinieieeeeeeeteee e 4

2.3.1 Conceptual OVerview / PTOJECL.........ciecuiieeiieieeiieecieeeccreeceeeeeecvee e aae e 4
2.3.2 Graphical Definition........ccccueieieerieriienieceieeceeesee e sae s e e e sveeesaeens 5
2.3.3 The TOOl MOAEL.....ccoureiieiieiiieeeeciteee e cerree e e eeenreeeeesraeeeesensaneesenns 7
2.3.4 The Mapping MOdEl........ccvieviiieieinieecieectecie e e sae e e e e 7
2.3.5 LINK CONSITAINTS....ccouviriiiieiiiieiieiieeeccenireeeeeesnreeeeesertreeeeesstreeeesssssensessennnns 9
2.4 The Generator MOdEl..........cooooieieiiiieeeeecceeeeeereee e eeee e 11
2.5 SUITIIMATY ..ceiiuuieiiirieeiiteeeiteesetteeesireesertesesreeeesaesessseesesstesessesssssaesessessssaesessaes 12

3 EditOrs fOr EIME ECOTC..ccuceceieeeeececececececececscscsescscscssssssessssssssssssescssssns 13
L3 B DAY B R D ¢l0) o U RPNt 13
3.2 BINTALIC. e iiiieeeceeie ettt e tree e e tree e e e ber e e e senba e e e seanraaeeesennnes 14
3.3 OCLOPUS «.eneiiitieieeiitteeeeeitee e ettt e esentteeesessrteeessssasteaeesessssaasssssssenasssssnssasessssnnne 17
304 SUITIITIATYvvvvereeeeeeeeeesesssssrnnererereeesessesssssssssssssssssesessssssssssssssssssssnasessessssssssssnnnns 18

4 EMFT Technologies for GMF - Implementation.......ccccececececacecncnecececns 19
4.1 EMFT Validationcccceeeiuiiieiiiecciieeccieeeeiee ettt e e e na e e s ae e e nae e e 20

4.1.1 OVEIVIEW.....vvveeeieeerreeeeeeirreeeeeeesreeeeesesessessessssssessesssssesessssssssssssssssssessesssssees 20
4.1.2 EMFT Validation in GMF..........c..oooiiiiiiiieeeieeceeee ettt e neees 20
4.1.3 Testing the Audit CONtAINETS.......eeeieriieriieriienieerteeteee et eseessaeeeas 22
4.2 EMFT OCL N GMF ..ottt et ssteesve e aeesaessvaesaaessveesaeennnesnns 24
4.2.1 OVEIVIEW.ceccueriiieeeeeeiteeeeeeiteeeeeeeseteeeaeestaeeesessssesessessssesssssassssssssssnssesesssnnnes 24
4.2.2 EVAlidator APLL.......ooooieoiieeeeeireeeeeeeieeeeeeeereeeeeeernreeeeeeesseseessensassessensnsnns 24
4.3 Adding Constraints with JET Templates........cccccoceevirverneniienienienenieeieeeenne 26
B T8 B (= (= |00) L F R 27
4.3.2 Further Steps to invoke the constraints from Ecore in GMF.:.................. 29
4.3.3 Enabling OCL Console for GMF..........cccccoviirviiiniiennieniienieenieeneesseeeseens 30
4.3.4 Validating Diagram EditOr.........cccccviieiiiiiiiiieinieccciecceeeeccvee e e 32
el SUINITIATY ..eveeiernieeeeeeneueeteeeasaseteesasssseeeeesesssseasesssssstessesssssseesssssssssessassseasesssssssens 33

5 Enterprise Integration Patterns — Case Study.....cccceeecerrecennececeececaecenns 34

5.1 OVEIVIEW. .. .utiieiieeiiiieeieeirteeeeeeitteeeeeestaeeeesesseseesaasseeassssssesessssnssesessansssesesssnnnnns 34

iv

5.2 Enterprise Integration Metamodel............ccccueeeeiiiieciieeciieecieecree e 35

5.2.1 Message Channel PatternN.........cceevveeeieeciieniiieciieesieeceeeceeecveeeeeesee e ee s 37

5.2.2 Aggregator PatterN.....ccoviiiiiiiiiiieeeeteee et eeee e 38
5.2.2.1 CONSITAINTS...ceviiiiiiiiiiiieieieieeeeeeeeeeeeeeeeerrereeeeeeeeeeeeeessssssssssrereeeeeees 39

5.2.3 Content Filter Pattern........cccceecuieeeiieeceiieeccieeectee e e e e e 41
[P T T 070} 1=1 =11 81 1< JR SR 42

5.2.4 SPHtEr PatteIM..cc.cieciiieiiieieecieecite ettt ceee et e sveeeae e ae e saaessaaessaeessaeenane s 43
5.2.4.1 CONSITAINTS..uuuviirieieeieeeieiiiiiirereeereeeeeeeeeeerssrsreeesesseeeeesessesssssssssssessasess 44

5.2.5 Point-to-Point chanmnel..........ccoooiiiiiiiiiiiiiiiiceeeeeeeee e 45

5.2.6 Message Filter Pattern........ccocceeevueeriieiniieiiiinieniccsiecsee s eesee e e see e 46
5.2.6.1 CONSITAINES. . vvvieiieiiireeeeeiireeeeeeereeeeeeerreeeeeesnreeeeeessnseeeeesesnseneessssssenes 47

5.2.7 Message Dispatcher Pattern........ccccecveeviieriieinieniienieecieeseecceee e 48
5.2.7.1 CONSITAINES. .. .uuuiiiiiiiiieieeeieeeeieeciirereeeeeeeeeeeeeeesessssssressseseesesssesssssssssnes 49

5.2.8 Invalid Message Channel Pattern.........ccceccveecuieeiieeniieeciieeeeecceeecee e 50
5.2.8.1 CONSITAINES. .ccuuiiiiiiiieeeeeeeieeieiiirerereeeeeeeeeeeeeesssssssessseseeeesesssssssssssssnns 51

5.2.9 Event Message Pattern........cciiiiiiirieiiiiiiieriiieeeieieeeecenereceeeee e e e seeessannes 52
[P0 T o T T 070 s 151 1 1 | U 53

5.2.10 DeadLetter Channel Pattermn.........ccoocvvreeieeiieeeeeeereeeeeeeneeeeeeeenreeeeeennnne 54
5.2.10.1 CONSTAINT......uviiieieeciieeceeccree et e e e e e e e nre e e e e reeeeeennnes 55

5.2.11 Channel PUTIZET......coocviiriiiiieeieeeieeste ettt st saeesaeesressaessreesanas 55
5.2.12 Message Expiration Pattern:.......cccceevveiiriiiiiiiiieiciieieieeceee e eesvee e 56
L5903 20 070} 0 3 o = 11 o1 < F S 58

5.2.13 DataTypeChannel Pattern...........ccocceeeeiiiiieiiieciieecceeeceee e 59
[P0 3 E2 T8 B ©70) 1 -1 o =11 0| SRR 60

5.2.14 WIreTap Pattern.........ccoiieeiiiiiiieeeieecccrree et ceee e e eeere e s e ennee e 60
5.2.14.1 CONSIIAINTS...cciiiiiiiieiiiiiiiiiieeeeeeeeeeeeeeeinrerreeeeeeeeeeeeeesssssssrsneeseeeeessenns 62

5.3 SUITIIMIATYueeeieeeeiieeeeeeeieteeeeereeeeeeesnreeeesesnnteeeasanseeeesassnneeseesesssseasssssnsesassssnnne 63

(00703 1 11 L1 T3 T0] s H PR 64
6.1 CONCIUSION......utieieiieeeeieeeeiteeeeeeeeeteeeeeteeeeaeeeeeaaeeeesaeeesssaeeessseesessaeeensseessssaesanns 64
6.2 OULIOOK.ueriiieiieiieiee ettt ceertre e e ceerreeeeeeessereeesessseesessssaneesssssansessennnes 65

I 3310) 1072417 1 1) 7N '¢
APPENAIX A.ruiririreirirecrcrecacrsssrecsssessse xii
APPENAIX B..uiuiiiiiiiiiaiiianriesietesrecassesssssessssesssssssssssssssssssssssssssssessssesssse XV
APPENIX Ducuiieiiniiniiiiiiniiniiniiniiiiiniieiisiieiieiiestestessessessessessessessessesssssess xviii

List of Figures

Figure 1: Graphical Modeling Framework Overview[4]........ccccceeveervueenvieenieenneenneeennne 3
Figure 2: Graphical Definition.........cccceeeuiiieiieiiciiiccieeceeecee e ae 6
Figure 3: Aggregator PatterN......coccciiiiiiiiiiiieiciecccete st e e ssre s ae e e s saae e s seaeeenns 6
Figure 4: Tooling Definition.......c.ceevueeieriienienieeeieeeeeeetesee et 7
Figure 5: TOOL Palette......cocueieieriiiiiiiiieiteeeceieeste ettt ae s aessas e e e e sbeesneenes 7
Figure 6: Mapping MOdEL........ccc.uiiieiiiiiiieccieeccteeeeee et ss e e s ee e e s srae e s ee e e aneeas 9
Figure 7: Mapping Model to Generator Model...........cccecveeeieeiiieniieenieeenieeceeeceeeeieenne 11
Figure 8: Class Hierarchy of an Ecore Metamodel..........cccccoceeveriiinniennienicnnenncneenee. 14
Figure 9: Emfatic Metamodel...........coovueivieiiiiiiiiniiiniecicctececsecseesee s 14
Figure 10: Emfatic EXampPIe.......ccccoiiieiiiiiiiieccieecciee st ecve e aee e s svae e s aneeeans 15
Figure 11: Convert to EMfatiC......ccccciieiieeiieeieciteeeeeeccee et 18
Figure 12: Diagram Editor - EAL Patterns.......ccocceeveereenernieesieniienienteceeeeeeeee e 19
Figure 13: Validation Enabled - Mapping Definition.........ccccceeceeveevennenieninneencnnen. 21
Figure 14: Validation in Domain Model Instance..........cccceeevueeeevveercieeeenineeeceeeeseeean. 23
Figure 15: Invariant - MessageCoNTainNeTcccccueirveeeenieeeinieeeerieeesieeesseeesssseessssneens 25
Figure 16: Flow Chain Process — Outline of our implementation........c..ccccceeccevuennne 26
Figure 17: GMF Project LayOUt........ccoocierrriierniieeneeeerieeeeieeeeseeeseseeessneeessneesssneeesnns 27
Figure 18: GMF Dash Board..........cccceeeeiiiiiiieicieeccieeeciteeeeeeeetee e cee e e s eee e s e ens 28
Figure 19: Base Package ProPerties......ccocvecuieriueeriieeiieeiieeeieesieeseeseeeesseesseessesssneenns 28
Figure 20: Enabling Templates........ccccceveriieriieniinienieeeeeeeeeeseeeeeee et 29
Figure 21: Validation Decorator and Provider Priority — Gmfgen..........ccccccevverueenee. 30
Figure 22: Enabling XY LayOuULt.........ccccvuiiieiiieeeiieecceececieeecieesseeeeseeeesvneesesveeesnneeas 30
Figure 23: Identifying targetID in Diagram Editor Plugin...........cccccevervienviininncnnnen. 31
Figure 24: Specifying targetID in OCL Interpreter plugin.........ccccceceeveeversieniecneennen. 31
Figure 25: OCL COMNSOIE.....cccutirueirieirieniienieeniieesteestesstesseessseesssesssessssessssesssessssesns 32
Figure 26: Enabling Interactive OCL...........ccoccuieiriieeinciieecieeeeceeeeeeeeeecaeeeseeeessnneeens 32
Figure 27: Diagram Editor for AggregatorContainer..........ccccceeeveevviervreesineenieeeseennne 33
Figure 28: MessageContainer - Class Diagram........c...cccceeveeveeriienieeneeneesenneenseeneenne 36
Figure 29: Message Channel Pattern.........ccoocvevviiiriieiniieinieniieniieniecseeeseeesieessveesneens 37
Figure 30: Message Channel Pattern - Class Diagram.........cccccceeeeveeeeveeeecineescneennne 37

vi

Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:

Aggregator PatterN.......uviiiiiiiiiiiiicccciirrreeecce e sseecrrereeee e e e e e s s s s s s snnnnnns 38

Aggregator Pattern - Class Diagram.........cccccceeeeveeiecieeniiieescieeeseceeeeeeeean. 39
Content Filter Patterm.......cc.eeeciuieeeiiieeeieeeeceeeceieecetee e e aeeeeraeeeeeaeeeeans 41
Content Filter - Class Diagram.........ccecceeeererierneniieneeneeseeseeeeeee e 41
N 0) DTS g 10 1) o USSR 43
Splitter Pattern - Class Diagram..........cccceeeueeieiiieeeeiieeinieeeeseeeesceeesseeeennns 43
Point to Point Channel Pattern...........ccccveeeiuieeecieeeciieececeeeeeee e 45
Point To Point Channel Pattern - Class Diagram..........ccccceeeveervueervuersunenne 45
Message Filter Patternccccueieecieeeiieeeceeccee et 46
Message Filter Pattern - Class Diagram..........cccceeeveeereveessieeensveessseeeennns 46
Message Dispatcher Pattern........coceeveeevieeieniienieneneeieeteeeeceeeee e 48
Message Dispatcher Pattern - Class Diagram........ccccceceeeeveencnseenecneenne. 48
Invalid Message Channel Pattern........cccoceeeevueeeeeieecciiieeeeeeciee e, 50
Invalid Message Channel Pattern - Class Diagram........c.ccccecueeevuerreennueenne 51
Event Message Patternccooooveiiiiiiiiiiiiiiiiiiiiiieiicecccnnecccseee 52
Event Message Pattern - Class Diagram.......c.ccceceeveeneeneenensenseenseeneennen. 53
Dead Letter Channel Pattern........cccccveeeeeeiveeeeeieiireeeeeirieeeeeernreeeeesenseeeeeens 54
Dead Letter Channel Pattern - Class Diagram...........cccccceeeevveeecvueerncnneennne 54
Channel Purger PatterN.........ccceecueeecieeeiieieieeeeecceeeieeeveesaeesseesaeessveesneens 55
Channel Purger Pattern - Class Diagram......c..ccccceeeeeveenersiensenneeneeneenne. 56
Message EXpiration PatterN........cccccceeeeeviieiieeiieeeeicecreeeseecvee e e eevenee s 56
Message Expiration Pattern - Class Diagram..........ccccceeeevveeeeceeeecveennnnnen. 57
DataTypeChannel Pattern........cccccueecueervieiniieinieeiieeceeeee e cseeeseeeesaee e 59
Data Type Channel Pattern - Class Diagram.........ccccceceeeceereenensienseeneenen. 59
WITeTap Pattern........ooiiieeiieeecceeee et ecre e e e e eeer e e s e eree e e e e 60
WireTap Pattern - Class Diagram.........ccccceeeevueeieeieeesiieeesseeeseseeeessneesennens 61
Domain Model Instance - Aggregator Pattern..........cccceevueeveereeneenucnnenne. Xii
Domain Model Instance - Content Filter Pattern.........ccccceeevveervverceennnen. xiii
Domain Model Instance - Invalid Message Channel................ccccuuenn...e. xiii
Domain Model Instance - Splitter Pattern...........ccecceeeecveereceenccieesennen. Xiv
Domain Model Instance - Message Expiration Pattern...........cccccecuenenee. Xiv

vii

1 Introduction

1.1 Motivation

Generating complete code from models has been an industry goal for many years.
Models serve as mechanism for better understanding and documentation, but they can
also find their purpose in generating complete and working code. This automates
development leading to improved productivity, quality and complexity hiding. Many
existing modeling languages are based on code and offer only modest possibilities to
raise design abstraction and to achieve full code generation. With such modeling
languages, the level of abstraction in models and the generated code is the same. As a
consequence of this, developers easily find themselves making models to describe
functionality and behaviour and end up generating the code. The limited code
generation possibilities force developers to start manual programming after design.
This leads to having same information in two places, code and models.

In Domain Specific Modeling, the domain elements represent things in the domain
world and not in the code world. The modeling language following the domain
abstractions and semantics, gives modelers a feel that they perceive themselves as
working directly with the domain concepts. The rules of the domain can be included
into the language as constraints, making it impossible to specify illegal or unwanted
design models. Being free from manual creation and maintenance of source code can
significantly improve developer productivity. The reliability of automatic generation
compared to manual coding will also reduce the defects in source code, thus
improving quality. In software system development, often domain specific visual
notations are used for which a tool environment consisting of full fledged visual
editors, simulators, model transformers, etc. is needed.

Several Eclipse projects head for meta technology to define domain specific
languages. The Eclipse Modeling Framework (EMF) provides a modeling and code
generation framework for Eclipse applications based on structured data models called
metamodel. The metamodel defines all symbols and relations of the domain specific
model which can be used to provide an editor with basic editing commands. EMF
generates a set of Java Classes for manipulating the model and a basic, tree based
editor for model instances. For complete language description, the generated model
has to be extended by additional syntax checks implementing certain well-formedness
rules e.g. by Object Constraint Language (OCL). Generating a graphical view can be
hand coded with Eclipse Graphical Editor Framework (GEF), offering basic and
advanced editor functionalities based on a model-view-controller architecture.

On the other hand, a visual editor can be generated using Graphical Modeling
Framework (GMF) project. This aims at providing a fundamental infrastructure and
components for developing visual design and modeling surfaces in Eclipse. In
essence, GMF will form a generative bridge between EMF and GEF, whereby a
diagram definition will be linked to a domain visual language model which serves as

input to the generation of visual editor. Figure 1 shows the dependencies present
among the frameworks in generating the visual editor.

GMF is a generative approach allowing to add diagramming capabilities to a visual
language model expressed in EMF, if a visual diagram editor is desired. In many
ways, GMF is an extension to the capabilities of EMF. GMF has OCL support to
verify its domain model instance's well-formedness with the help of Eclipse Modeling
Framework Technologies (EMFT).

GMF Tools

Figure 1: Graphical Modeling Framework - Its Dependencies[4]
1.2 Objective

In this project, we propose an approach to specify OCL invariants as constraints at the
domain model level with reference to [1], ideally making it impossible to specify
illegal and unwanted design models. This design approach results in including the
well-formedness constraints at the domain model that results in a higher level of
abstraction.

As a case study for describing the domain model, the Enterprise Application
Integration Patterns specified in [2] is considered to create a visual modeling editor for
the same.

1.3 Structure of the Work

In the next chapter we will review the state of the art of model-based graphical editor
generation. We will discuss the editor generation definitions provided by Eclipse
Graphical Modeling Framework. Chapter 3 discusses the language definition used in
EMF and GMF for creating domain models and the editor support provided by
Emfatic and OCTOPUS [3] for creating the same. Chapter 4 discusses the EMFT
technologies supported by GMF and providing the validation support with EMFT
OCL for creating visual editor with the domain model integrity maintained at the
domain level as specified in [1]. Chapter 5 presents the constraints for Enterprise
Application Integration Patterns to check the well-formedness of the domain model
instances [2]. Chapter 6 offers the conclusion and future works.

2 Graphical Modeling Framework

The Eclipse Graphical Modeling Framework (GMF) started as an Eclipse Technology
subproject aims at providing generative component and runtime infrastructure for
developing graphical editors in Eclipse. Before GMF, the effort required to build a
custom diagram editor was an uneconomic proposition for most custom visual
notations.

Emfatic
Editor

Octopus

gmfgen

gmfgraph i

Graphical
Definition

y

Create
Generate Model

Tooling
Definition

Mapping
Definition

Code
Generation
Genmodel

Create GMF

Project

Enable
Validation &
others

genmodel
JET
Templates

Generate
Diagram Plug-
ins

Figure 1: Graphical Modeling Framework Overview[4]

Figure 1 shows the overview of the implementation steps with different modeling
definitions that specify a complete Diagram Editor. The information contained in
these definitions helps to get a feeling for the capabilities of the editor to be generated.
For details on EMF (Eclipse Modeling Framework of which GMF is a user), please
consult the Chapter 3.

2.1 Metamodel

Ecore is the domain language used in EMF to express a datamodel. Ecore Models can
be specified using annotated Java, XML Documents, or modeling tools like Rational
Rose, then imported into EMF. We will use Octopus Tool, an Integrated Development
Environment for UML + OCL specifications and Emfatic, a text editor supporting a
more compact textual syntax for ecore datamodels [5].

2.2 GenModel and other necessary artifacts:

A single ecore file (the domain model) is not enough to specify a diagram editor. In
fact, it is not even enough to specify the generated Java code for the M part of the
MVC pattern. A Genmodel is required for this which serves as a decorator indicating
properties such as Java package names. This Code Generation Genmodel would
further support our implementation templates that help to generate code for the OCL
invariants that we include in later stages as annotations.

It is mandatory to change to “Base Package” property in the genmodel to match the
project name and the generating package structure.

As to the concrete steps, to generate the model and edit plug-ins, right-click the root of
the generator model and select “Generate Model Code” and “Generate Edit
Code” from the context menu.

But upon generation, the generated model code and edit plug-in will contains the
following,

l. Model — provides Java interfaces and implementation classes
for all the classes in the model, plus a factory and package (meta data)
implementation class. Taking a closer look into src folder reveals an
interface and an implementation class for each metamodel element.

2. Adapters — generates implementation classes (called
ItemProviders) that adapt the model classes for editing and display.

3. The .edit project contains a number of utilities for building editors like
standard table and property sheet views.

2.3 Building the Graphical Editor

Building a graphical editor for a Domain Specific Language is more intricate than the
steps taken so far in visual modeling. The graphical definition files together with our
domain model and other generator files are discussed in this section.

2.3.1 Conceptual Overview / Project

For building a GMF editor we start with a metamodel (the .ecore file) and the
.genmodel. To generate a complete visual editor, a number of additional models
have to be defined,

1. .gmfgraph - A model defining the graphical notation including
shapes decorations and graphical nodes and connections.

2. .gmftool - A model for the editor's palette and other tooling.

3. .gmfmap - A mapping model that binds gmfgraph and gmftool

to the ecore file. The two models defined above are technically (but
usually, not conceptually) independent of our domain metamodel.

Take a look at Figure 1 to understand how the above mentioned models fit together.
From all of these additional models, GMF creates the .gmfgen model — again a "low

level" model that the code generator uses as an input, finally creating the .diagram
plugin which contains the desired diagram editor.

2.3.2 Graphical Definition

A graphical definition model represented as .gmfgraph is used to define several

things [6].
1.

We can define a set of figures to represent the domain model elements. The
default editor for this definition has dimension and color attributes such as
line widths, foreground and back ground color attributes and static
decorations. Any sort of figure can be constructed with the available
options by adding them as a New Child to the present Figure that
represents our Class i.e. AggregatorContainer. For example the figure
for Aggregator shown in Figure 3 can be created as follows.

0 Create a rectangle with Maximum Size Dimension, Minimum
Size Dimension and Preferred Size Dimension with X
and Y attributes of values 70 and 50 respectively.

0 Create four rectangles and arrange them within the Figure with xy
Layout.

0 Each of the four rectangles is set with a Foreground Color
Constant Color attribute and Background Color Constant
Color attribute to LightGray.

0 The Arrow Header in the figure is created with a Polyline
Connection whose attributes are set so that the Polyline path is
traced resulting in the required polyline structure resembling the
arrow head.

We also define graph nodes and connections. Those domain model
elements that are to be placed on the diagram editor canvas as nodes are
defined as Node. The nodes in case of Figure 2 are Node
DataMessage, Node MessageContainer, Node
AggregatorContainer and Node Header . Domain elements that are
to be specified as connections to link the domain elements are defined as
Connection. The Figure 2 shows the Connection
PointToPointChannel and Connection LinkChannel included.

We also define Compartments. Compartments are sections in nodes that
can be collapsed and themselves contain other nodes or list of elements.
We specify MessageContainer domain element as Compartment since
it must hold Header element and DataMessage element.

Finally, we define diagram labels to show text associated with the
graphical elements. The Label for our AggregatorContainerFigure if
set as child element to Canvas instead of itself would result in an external
label as shown in Figure 3 and therefore will be allowed to float and be
positioned according to user's will.

In the properties view for each node element we connect each node
element with their respective figures. For example, the Node
AggregatorContainer is associated with Rectangle
AggregatorContainterFigure.

=4 Canvas eaipattern
= < Figure Gallery Default
|4 Rectangle DataMessageFigure
<+ Polyline Connection PointToPainbChannelFigure

[+

[+

Sl eckangle MessageContpines 2
= 4 Rectangle AggregatorCo MRS 4 i Custom Layout Data
4 WY Layout Mew Sibling ¥ 4 Grid Lavout Data
< Rectangle boxl 3 Border Layodt Data
E+:I *T* Palyline alkernativer gv' 0¥ Lavaut Data
- <+ Rectangle boxz % Custom L)
[#- 4+ Rectangle box3 ':'ﬁ' cut HEom Layou
- < Rectangle booxd - & Grid Layout
- < Palyline arrowhead =] Copy g*’ Border Layout
< Label AggregatarCor gv Flow Layout
4 L-?I:uel .ﬁ..ggregaturl:ur % Delete &“" %Y Layout
? D!mens!u:un 70,50 % Stack Layout
< Dimension 70,50 Yalidate - Ref
4+ Dimension 70,50 M Iqure Re
< Point 70,50 & Label
4 Polyline Connection Mess ~ RUNAS ’ & Labeled Container
< Rectangle HeaderFigure Debug As v ¥ Rectangle
N JawazHeml 0
% Mode DataMessage vt]] i Rounded Rectangle
4 Mode MessageContainer zenerate Figures Plug-in ...
<+ Mode AggregatorContaines Team " _
4+ Node Header Compare With b 4 Polvline
4 Connection PaintToPaintChal Replace With ¥ 7 Polygon
< Connection MessageLinker 4 < Faoreground Color RGE Calar
4 Diagram Label DataMessagel 030 Resource. . # Fareground Color Canstant Calar
“ Diagram Label MessageChar pefrach & Background Color Ri&E Color
? E)fagram !_a!:ue! r':“lessage.CnTt. Show Properties Yiew # Background Color Constant Color
ction | Parent | List | Tree | Table | Tree with Colurns 4 Maximum Size Dimension
H ' R i t) B ' L ik [© R F Mlimirnirn Siee Nirmencinn

Figure 2: Graphical Definition

] ﬁ =

<» Aggregator
Figure 3: Aggregator Pattern

2.3.3 The Tool Model

The .gmftool model defines the set of palette entries. The palette is the set of buttons
on the right of an editor that allows adding model elements to the domain model
instance.

We assign icons to each of the of the creation tools. The icons for the model elements
are created with a dimension of 16 X 16 pixels. The model elements can be grouped to
form a Tool Group. If its collapsible property is set to true, this property gives a
collapsible look to the Tool Group which can be retracted upon requirement. The
effect of Tool Group Elements and Tool Groups Links can be seen in the
palette on Figure 5.

=l <= Tool Reqgistry
=~ 4 Palette EAI Patterns
= 4 Tool Group Elements
=4 Creation Tool DataMessage
L BEundle Image ficonsFulliobjlé/Datatessage. gif Palette 4
=< Creation Tool MessageContainer [}; Select
<+ Defaulk Image +), Zoam
= 4 Creation Tool AggregatorContainer [= Motke -
4 Default Image - Elements =
=< Creation Tool Header Dataf
4 Bundle Image ficans/Fullfobil 6 Header , gif {8 ataliessage
-4 Tool Group Links <= MessageContainer
=4 Creation Tool LinkChannel < #oggregatorConta. .,
<4 Bundle Image ficonsFullfobjl&/Linkchannel, gif £ Header
=< Creation Tool MessageLinker (= Links -
4 Bundle Imaage Jicons/full/obil6/MessageLinker. gif A LinkChannel
Selection | Parent | List | Tree | Table | Tree with Columns o= MessageLinker

Problems | Javador | Declaration | Search | Console | B2 Properties 52 aMF | Figure 5: Tool

P
Property Walue alette
Bundle '= prg. eaipatkern. sts.eaipattern. edit
Path 1= ficons)fullfobjl 6/DataMessage. gif

Figure 4: Tooling Definition

Figure 5 shows how the generated tool palette for the tool smith to use would look
like.

2.3.4 The Mapping Model

This is the most complex model. Here we map the tool definition and the graph
definition to the domain metamodel. For example ([I* in Figure 6) shows the
mapping definition of AggregatorContainer. We will explain this mapping in
more detail below. To be able to actually map the various elements, we have to add
these other Resources to the editor that constitutes of eaipattern.gmfgraph,
eaipattern.ecore and eaipattern.gmftool.

For each domain model element that we want to map directly onto the
diagram surface (the eaipattern) we have to first define a Top Node
Reference. For example, AggregatorContainer has its Top Node
Reference defined at [I* in Figure 5.

Below that, we add a normal Node Mapping. It contains information
about the model element to map AggregatorContainer and the
property, in which the set of these elements is stored in the container (the
container being the eaipatterns here and the property that contains the
elements would be EReference
ref_eaipattern_AggregatorContainer)

Below the Node Mapping we add a Label Mapping. This associates the
label defined in the gmfgraph with the respective model element
properties (here: we map the name provided for
AggregatorContainer)

In case of MessageContainer we do like to have elements like Header
and DataMessage added to its figure. So we define a Compartment
Mapping below the Node Mapping of MessageContainer.

We also have to define Header and DataMessage as a Child
Reference to the MessageContainer which identifies them as its
children that is shown in [&> of Figure 6.

The child Reference is associated with the Compartment, to ensure
that the child collection is actually shown in the respective compartment.

The [&> of Figure 6 shows a mapping of a link, links being the mappings of the
Connections of the gmfgraph. In the properties view, we can see some of the
parameterization of the respective link:

1.

The Containment Feature is the EReference in the containing
metaclass that contains the reference objects (here: the EReference
ref eaipattern LinkChannel).

Then we map the element that should represent the Link; this is the
EClass LinkChannel in our case.

Next we have to tell GMF which feature of the link metaclass (here:
LinkChannel) should take the reference to the source element (Source
Feature)

We have to do the same thing with the target, this being stored in the
Target Feature property

We also have to define the graphical element (defined in the .gmfgraph

model) that should represent the connection; here this is the
LinkChannel.

Finally we have to define which tool should be used to actually instantiate
such a link; this is Tool LinkChannel in our case.

All of this has to be mapped with a number of properties. The editors for doing that
are just the usual tree editors, which makes all the process a bit cumbersome.
Specialized editors are still under development which could make the link mapping
easier in the future.

% eaipatternl.gmfmap X @ nindmap. grfrap

| Resource Set

=@ platform: fresourceforg. eclipse . grf, exarmple, saipatternfmodelfeaipatternl . gmfmap
= 4 Mapping
[23 =4 TopMode Reference <ref_eaipattern_MessageContaineriMessageContainer)jMessageCantainer =
= 4= Mode Mapping <MessageContainer/MessageContainer =
<= Label Mapping
[=l < Child Reference <dataMessageMC{DataMessage)fDataMessage =
= %+ Mode Mapping <DataMessage/DakaMessage =
<+ Label Mappinig
Child Reference <headerMC{Header)fHeader =
<+ Mode Mapping <Header/Header =
< Campartment Mapping <MessageContainerCompartment =
O =4 Top Mode Reference <ref_eaipattern_AggregatorContaineri AggregatorContainet) AggregatorConk
= < Mode Mapping <AggregatorContainer fAggregatarContainer =
<+ Label Mapping
[a> Sl ink Mapping
=4 Link Constraints
<= Caonstraint self < =oppositeEnd
< Link Mapping
<+ Canvas Mapping
+ ﬁ platform: fresource/org. eclipse, gmf . example, eaipatternfmodel feaipattern. ecore
+- 4 platForm: fresourceforg. edipse. gmf, example. eaipattern/modelfeaipatternl .gmfgraph
+- W platForm: fresourceforg. eclipse. gmf . example. eaipattern/modelfeaipatterni . grftool

1
=

Selection | Parent | Lisk | Tree | Table | Tree with Columns

Problems | Javadoc | Dedlaration | Console | GMF Dashboard | 2 Properties &2

Property Yalue
= Domain meta information
Zontainment Feature < EReference ref_eaipattern_LinkiZhannel
Elernent < EClass LinkiZhannel
Source Feature < EReference srcShapes
Target Feature <+ EReference targetshapes

= Wisual representation
Appearance Style
Conkext Menu
Diagrarm Link, <4 Cannection LinkChannel
Tool < Creation Tool LinkChannel

Figure 6: Mapping Model

2.3.5 Link Constraints

Link Constraints are used to validate the links upon creation between any two model
elements. The constraints can be specified with OCL as Source End Constraint
and Target End Constraint. More information on the usage of Link Constraints
will be discussed in this section.

To add a constraint, we right-click on the “Link Mapping” and select New Child
- Link Constraints. Further right-click on Link Constraint and select New
Child - Source End Constraint. The “Language” property is set “OCL”

and we will be needed to add the following OCL statement to the “Body” property as
the Link Constraint:

self <> oppositeEnd

As shown in Figure 6, we have added a constraint to the creation of a link, based on its
source end; that is, the srcShapes element from which a link is being created. In
the OCL we have specified the only condition that will evaluate to true, and therefore
will allow the link to be created. The condition explains that the source element
should not be equal to the “oppositeEnd” of the link (the target). In this case, the
context of “self” is the source srcShapes, and “oppositeEnd” is a custom
variable added to the parser environment for link constraints.

Two types of constraint that can be specified in Link Mapping are,

I. Source End Constraint: In this type of Constraint, oppositeEnd is
undefined until the other end of the connection is available. This type of
constraint is first evaluated when the connection is started.

2. Target End Constraint: In this type of Constraint, oppositeEnd
value and the value of self is known and is evaluated when the
connection is tried to be created to a specific target element.

To take a look at a more complicated Target End Constraint. Consider a
scenario where a link should not be allowed between a domain element representing
Class AggregatorContainer and Class MessageContainer. With reference
to the metamodel both classes inherit from a Class Shapes.

The OCL UML model would look like

+<class> Shapes
<attributes>
+name:String;
<endclass>

+<class> AggregatorContainer <specializes> Shapes
<endclass>

+<class> MessageContainer <specializes> Shapes
<endclass>

To model a Target End Constraint select New Child o
TargetEndConstraint. The “Language” property is set to “ocl” and we will be
need to add the following OCL statement to the “Body” property as mentioned
before.

self.oclIsTypeOf (AggregatorContainer) <>
oppositeEnd.oclIsTypeOf (MessageContainer)

10

2.4 The Generator Model

The transformation from the mapping model to the generator model is described here.
Referring to the generated .gmfgen model, one can notice quite a few things that
were created during the process. A general overview of this transformation can be
seen in Figure 7. From this diagram, one can see that the selected mapping model is
first opened and validated. The canvas is processed, followed by each node, and then
each link. Finally, the new generator model (.gmfgen) is saved and validated [4].

TransformToGenModel ResourceSet Diagnestician MappingTrarsformes

1: getResour rrifimia

2: validatelmappirg)

n

3: new(DiagramBuntimeModelHelper, ModelMamingtadiator)

'

4: transfarm{mapping):GenDiadram]

4.1: process{CanvasMapping)

HTJ

gs)

4.2: %roce-ssmodel'ﬂauﬂlm}l

4.3: process(LinkMapping)

T

ap

lpop N

[1

=
loop links

5.5 m

6; valldate[gendiagram)

T

Figure 7: Mapping Model to Generator Model

During the processing of the canvas, a GenModelMatcher is created and the EMF
genmodel for the domain model is located. With a quick look at the generator model
itself, one can find that a large number of properties related to the canvas are need to
be set, in addition to the plug-in that is used to deploy our editor.

11

Custom Properties like enabling the Validation Framework for GMF and setting the
layout of Figures on canvas can be changed at this stage. We discuss in detail these
custom properties in later chapters.

2.5 Summary

In this chapter we have reviewed the different modeling definitions employed in
creating a diagram editor using the Eclipse Graphical Modeling Framework. We have
discussed about the Link constraints that are employed here to validate the links even
before creating them. Other way of providing validation for domain model instances is
by using Audit Containers for our domain model. This topic is further discussed in
section 4.1.

12

3 Editors for EMF Ecore

In this chapter, we review the ecore language definition and the ecore editors used in
our implementation. Thereafter, we review the syntax for specifying the domain
models using these editors. We will discuss about using Emfatic' editor and Octopus?
Tool Kit [3] for developing EMF Ecore metamodels.

3.1 EMF Ecore

Eclipse Modeling Framework (EMF) is a Java based framework for developing
model-driven applications and other integrated software tools. EMF is a modeling
framework and code generation facility for building tools by taking a datamodel
specified in ecore as starting point.

With the model specification described in XMI, EMF provides tools and runtime
support to produce a set of Java classes for the model, a set of adapter classes that
enable viewing and command-based editing of the model and a basic editor.

An ecore model can be specified using annotated Java, UML, XML Schema or with
modeling tools like Rational rose or Omondo. Figure 8 shows the main constructs of
Ecore. The kernel model contains elements EClass, EDataType, EAttribute and
EReference. These model elements are needed to define classes (EClass), their
attributes (EAttribute) and associations (EReference). EClasses can be
grouped to EPackages which might be again structured into subpackages. In
addition, each model element can be annotated by EAnnotation which we use to
specify OCL constraints. Furthermore, there are some abstract classes to better
structure the Ecore model, such as ENamedElement, EtypedElement, etc. It is
important to note that the EMF metamodel (Ecore) again is expressed itself in ecore.

From an EMF model, a set of Java classes for the model and a tree based editor can be
generated. The generated classes provide basic support for creating/deleting model
elements and persistency operations like loading and saving. Relations between EMF
model classes are handled by special EMF lists, extending the Java list classes.
Moreover, EMF models can be used as underlying models in new application plugins.
But in many cases, the EMF model by its own is not powerful enough to express the
complete model behavior. Therefore the generated code can be extended by the
developer in order to add new functionalities that are not expressed in the EMF model.

For creating EMF metamodels other than the default EMF editor available for creating
Ecore metamodel, other approaches can also be used in creating such files. The
following sections will discuss about using Emfatic Editor [5] and Octopus Tool Kit
[3] for developing EMF Ecore metamodels.

1 Text based editor for creating metamodels.
2 OCL Tool for Precise UML Specifications

13

EChject

7

EMadelElement
| I |
EFactory ENamedEiament EAnnotation
EFackage ECizssifier EEnumLiteral ETvpedEiament
EClass EDataType EStructuralFeature EQperation EFarameter
EEnum EAttribute EReference

Figure 8: Class Hierarchy of an Ecore Metamodel

3.2 Emfatic

Emfatic is a language designed to represent EMF Ecore models in a textual form. It
can be a useful tool for viewing and building the models. Emfatic generator can
convert the existing EMF models into emfatic textual format and can generate EMF
models from emfatic textual model. Figure 9 shows the metamodel for emfatic.

E EmfAnnotable

= comment: EString

= name: EString

| | Q

EH EmfPackage E EmfTypedElement E EmfClassifier

= imports: EString = isOrdered: EBooleanChject
= prefix EString = islnigue: EBooleanChbject
= uri: EString = lowerBound: Elnteger Object
= typeExpr: EString H EmfEnumeration

= upperBound: Elrteger Object

= literals: EString

| | E EmfClass
EH EmfStructuralFeature | E EmfOperation | | H EmfParameter |
= defaultyalue: EString E EmfDatatype |

= isDerived: EBooleanChject

KeyValue -
A E Key E EmfAnnotation
| = key: EString
e Elrteder Object O =0urce:; EE.‘trlng
E EmfReference | E EmfAttribute | = valE g)

= izContsinet: EBooleanChject

Figure 9: Emfatic Metamodel

14

Consider the EMF Diagram shown in Figure 10, representing the Class
DataMessage and Class MessageLinker. The Code snippet below is the
equivalent in Emfatic format,

srcinzideShapes

H InsideShapes

*
A 0.1 .
srchMessagelinker
targetinzideShapes
H Header g F * | targetMessagelinker
0.1
= name: EString H MessageLlinker

H DataMessage

= name: EString

8 shttpSheenewy eclipse orgiOCLExamplesiock: NYARIAMT _DataMessageMamenotPresent()

Figure 10: Emfatic Example

abstract class InsideShapes {

}

class DataMessage extends InsideShapes {
attr String name;
(2> @"http://www.eclipse.org/OCL/examples/ocl" (
invariant = "self.name.size() > 0")

[:> op boolean INVARIANT DataMessageNameNotPresent (
ecore.EDiagnosticChain diagnostics,ecore.EMap context);

}

class Messagelinker {

[:> lordered ref InsideShapes[0..*] #targetMessagelLinker srcInsideShapes;
ref InsideShapes#srcMessagelLinker targetInsideShapes;

}

1. Emfatic syntax for class declarations is very similar to Java, however a few
additional quirks are required to allow for all possibilities of Ecore
creation. The code snippet contains simple class declarations
demonstrating the use of keywords class and abstract.

2. Inheritance is specified with the keyword extends. Unlike in Java, there
is no implements keyword to distinguish inheritance from interface
implementation.

3. A number of datatypes defined in Ecore.ecore have shorthand notation
in Emfatic. The table in Appendix B lists the Emfatic shorthand and
corresponding Ecore.ecore type name for each of the basic types and as
well as corresponding Javatype.

4. As shown by I Class DataMessage has an attribute name of type
DataType String.

15

5. Constraints for EMF are written in the form of annotations. Generally,
annotations can be attached to any EMF element. And only the source and
detail features of resulting EAnnotation can be specified in Emfatic. The
Syntax for Annotation in Emfatic follows with a @ symbol and value for
EAnnotation source attribute. Key/Value pairs for annotation may
appear in paranthesis following the source attribute. As shown by [2> the
constraints are implemented as annotations with
http://www.eclipse.org/OCL/examples/ocl being the value of
source attribute. The invariant and the constraint expression
constitutes the Key/Value pair.

6. [8» shows INVARIANT DataMessageNameNotPresent() that returns a
value of type Boolean. This method is used to handle the declared
constraint. The input parameters for the method are a DiagnosticChain
and a Map. Violation of a constraint adds a Diagnostic to the chain and
results in a false return value.

7. [&> shows the Ecore Class features EReference represented in our
emfatic example. The other Ecore class features that can be represented in
emfatic are EAttribute, EOperation and EParameter. Refer to
Appendix C that shows the list of emfatic keywords for the Ecore Class
Features. To represent the EMF Class Features in emfatic, the
following syntax is used to introduce and differentiate attributes, references
and operations,

.

modifiers featureKind typeExpression name ',

With reference to the below Class Feature implementation,

'ordered ref InsideShapes[0..*] #targetMessagelLinker srcInsideShapes;

0 modifiers - lordered refers to the modifiers implementation.
The other modifiers available are readonly, volatile,
transient, unsettable, derived, unique, ordered,
resolve and id. Please refer to Appendix B for further details on

modifers.

0 featureKind — ref is the featurekind in the above
implementation. The other featureKinds are shown in Appendix
B.

0 typeExpression — typeExpression specifies the

lowerbound and upperbound attributes of ETypedElement. In
our case the lowerbound = 0 and upperbound = *. When the
typeExpression is not specified then the ETypedElement gets
the defaults (1owerbound = 0 and upperBound = 1).

16

http://www.eclipse.org/OCL/examples/ocl

3.3 Octopus

Octopus is an acronym for OCL Tool for Precise UML Specifications. This Eclipse
based tool provides support for UML in textual format and OCL. Octopus offers two
main functionalities [3],

1. Statically check OCL expressions - It checks the syntax, as well as the
expression types, and the correct use of model elements like association
roles and attributes.

2. Transform the UML model, including the OCL expressions, into Java
code.

Octopus fully conforms to version 2.0 of the OCL standard. All new constructs, like
derivation rules and initial wvalue specifications, are completely supported.
Furthermore, Octopus offers the possibility to view expressions in an SQL-like syntax.
The semantics of the original expressions, written in the standard syntax, remain fully
intact, while their appearance becomes more familiar for those who have been
working with databases [3].

With the support provided for OCL in Octopus we can use plug-ins developed at STS
to convert the UML and OCL files into emfatic files. With reference to the
functionality provided by the octopus2emfatic plug-in, the plug-in takes care of
creating invariants as annotations and the required invariant methods that are required
for handling constraints.

Consider the below specified UML and OCL code snippets,

<package> eaipattern

-- Definition for Class Header

+<class> Header

<attributes>

+name:String;

<endclass>

-- Definition for Class MessageContainer

<class> MessageContainer

<attributes>

+name:String;

<endclass>

-- Composite relationship between MessageContainer and Header

-- messageContainer and headerMC denotes the association Roles played by their respective
classes

<associations>

+ MessageContainer.messageContainer[1..*] <composite> -> + Header.headerMC[1..*];
<endpackage>

UML Code Snippet
To generate the emfatic file for the Octopus model, right click on the Octopus project

containing the model files and select “Convert to Emfatic” from the context
menu as shown in Figure 11.

17

context MessageContainer
-- This constraint check if the name of the MessageContainer is present
inv MessageContainerNeedsName:
self.name.size()>0

-- This constraint checks atleast one Header Diagram Element should be present
inv AtleastOneHeader:
self.headerMC->size() >0

OCL Code snippet

Restore From Local History, ., Fa\.-aduc Declaration | 5 £
{oUML L T
! Ockopus (1 Conwvert to Emfatic
PDE Tools + AggregatortamerokPre
Properties Alb+Enter AtleastOneHeaderInIng
- DataMessageMamesEqu

Figure 11: Convert to Emfatic

The generated emfatic file for the above mentioned uml and oc1 models would be,

package eaipattern;

class MessageContainer {
attr String name;
lordered wval DataMessage[0..*] dataMessageMC;
lordered wval Header([l..*] headerMC;
@"http://www.eclipse.org/OCL/examples/ocl" (invariant =
"self.name.size() > 0")
op boolean INVARIANT MessageContainerNeedsName (
ecore.EDiagnosticChain diagnostics,ecore.EMap context);
@"http://www.eclipse.org/OCL/examples/ocl" (invariant =
"self.headerMC->size() > 0")
op boolean INVARIANT AtleastOneHeader (ecore.EDiagnosticChain
diagnostics,ecore.EMap context);

}

class Header {
attr String name;

}

3.4 Summary

We will employ both of the above discussed editors for our domain model
specification. The generation of metamodel starts with Octopus where we specify our
metamodel in UML and the constraints for the model in OCL. With the built-in editor
support for OCL runtime checking, Octopus is a great tool to build models and check
the OCL syntax. With the custom developed octopus2emfatic plug-in we generate
the emfatic equivalent model for the octopus UML model. This custom plug-in creates
methods to handle the constrains and adds them as annotations to the required domain
model elements. Further we create the domain model by converting the emfatic file
into the required model using the Emfatic plug-in.

18

4 EMFT Technologies for GMF -
Implementation

In this chapter we will be discussing about the two of the technologies developed
around EMF either to complement or extend it. The complete list of technologies
comprises of Validation, OCL, Query, Transaction and many more. Each technology
has a similar intention in co-ordinating with other technologies in extending EMF.

Figure 12 shows the diagram editor that uses one of the EMFT technologies i.e.
EMFT OCL to maintain its domain model integrity with which the model element
instances created in the editor are checked for well-formedness with the constraints
specified in the domain model. Figure 12 shows the domain model instances for Dead
Letter Channel Pattern and Aggregator Pattern. Please consult Section 5.2 for more
information on constraints used for well-formedness. The constraints broken against
these instances are displayed as Errors, see [1* in Figure 12.

] default37_PP.eaipatterns_diagram X =8
A Palette 4

< Sender Ly e

&, Zoom
<+ MessageContaine = Note -

\ [=~EAI Pattern ... #
R <4 WireTap
" 4 Splitker
<+ MessageDispat. ..
< SenderContainer
<4 Destination
< MessagetContainer 4 MessageFilkerC,..
< InvalidMessage...

4 PerformerCont. ..

,
\.
4 PublishSubscrib, ..
<4 MessageLinker
4ty O ® MessageChannel

-
N
“u (= Link Conmecti,., #
+<.0 <4 LinkChannel
<4 PointToPointCh, ..
< input
B < outut
\/ — = Message Types #
< DeadMessage
. <» ExpiringMessage
prglomy "“' <4 Header
Eventi
4 mnl & mnl & e < EventMessage
< DataMessage
|| < InvalidMessage
¢ [S < ExpiredMessage
&_ Problems &2 Javadoc | Declaration | Error Log
3 errors, 0 warnings, 0 infos
Description Resource Path
= s Errors (3 items)
Ii:} @ The 'invariant_DataMessageMeedsName' invariant is violated on ' <Container_saipattern:::l default37_PP.eaipatterns_diagram simple
@ The 'inwariant_InputOutputMessageshotEqual’ invariant is violated on ' <Container_eaipatter default37_PP.eaipatterns_diagram simple
@ The ‘invariant_COnlyOneHeader InOutpubContainer’ invariant is violated on '<Container_eaipa defaulk3?_PP.eaipatterns_diagram simple

Figure 12: Diagram Editor - EAI Patterns

19

4.1 EMFT Validation

4.1.1 Overview

The EMFT Validation framework provides a means to ensure the well-formedness of
EMF models. This framework provides support for constraint providers for any EMF
metamodel, customizable model traversal algorithms, parsing for constraint languages,
configurable constraint bindings to application contexts and validation listeners.

4.1.2 EMFT Validation in GMF

For the sole purpose of checking the well-formedness of models, this framework finds
its way into GMF as Audit Rules. An audit rule accepts constraints that are checked by
EMFT Validation for a domain model instance. The constraints specified as audit rule
can be enabled / disabled in the central constraint registry. The severity of the audits
can be specified as one of the following options - ERROR, INFO and WARNING.
Audits are also helpful in providing warning to the user regarding the visual domain
model instance. Even if the model is wellformed, audits can provide useful
information. For example, use an audit rule to warn the user that the the number of
children added in a compartment' is more than usual, even though if the number
complies with the specified constraint for the compartment.

To consider implementing the functionality of audit containers in our eaipattern
example let us consider the constraint below for AggregatorContainer.

self.name.size() > 0

Open the mapping definition of our example (eaipattern.gmfmap) and right-click
on the Mapping Node. Select "New Child - Audit Container” and give it a
name “Audits for Aggregator”. Assign an id and give it a description. To
the container, add a new “Audit Rule” named “Aggregator Name Check”.
Since this Audit Container targets the AggregatorContainer, we add a “Domain
Element Target” to the Audit Rule and select “EClass
AggregatorContainer” as the Element. Add a new child “Constraint” to the
Audit Rule and enter the above constraint in the body and specify the language as
ocL. This specific constraint detects if the “name” attribute which is mapped as a
Label to AggregatorContainer instance is provided with a name. After
generating the eaipattern.gmfgen model, it is necessary to set the “Validation
Enabled” Property of Gen Diagram element to “true” in order for our audit to
run. To view familiar decorators when the audits for our domain instance model are
broken, set “Validation Decorators” property to true.

Finally, set the “Validation Provider Priority” to any value higher than
“Lowest”. After the above modifications, regenerate the editor code using
“Generate Diagram Code”. Doing so will result in many new extensions listed in
the diagram editor's plugin.xml file. A closer examination will reveal the extension-
points of EMFT Validation Framework to which our diagram editor contributes.

ITerm used in graphical defintion to specify that a particular domain element can hold other
child elements with which the former domain element has a composite relationship

20

3 & 5
i L™ Resource Set
A ||| = platform:fresourceforg.eclipse. grif . example. eaipatternimodelesipattern. gmfgen

= 4 Gen Editor Generator arg.eclpse, gmf, example, zaipattern, diagrarm
B — < Gen Diagram Container_eaipatternEditPart

4 Metamodel Type
< Figure Viewmap org.eclipse.drawzd, FreeformLayer

+- % mer o hild Made DNataMescansFdirRart
Selection | Parent | Lisk | Tree | Table | Tree with Columns

Froblems | Javador | Declaration | = Properties &3

Property Yalue
= Diagram
Contains Shortcuts To =
Shortcuts Provided For =
Synchronized Lt brue
nits 1= Pixel
BB validation Decorators Lt brue

B validation Enabled Lt brue
) i Figure '13: Validation Enabled - Mapping Definition

The following are the two main important extension points that are implemented when
the audit containers are used in GMF.

1. [shows the extension point org.eclipse.emf.validation.
constraintProviders. This is used to provide constraints. Two ways
of providing constraints are possible with this extension point.

0

Static Constraint Providers - We declare constraints in
plugin.xml. This is how audit containers implement their
constraints.

Dynamic Constraint Providers — These address situations
where constraints cannot be declared in plugin.xml e.g. when the
constraints are defined in models or other resources. These
providers declare a class implementing the
IModelConstraintProvider interface which is responsible for
making constraints available on appropriate triggers, organizing
them into categories, etc.

2. [2» shows the extension point org.eclipse.emf.validation.
constraintBindings. This allows clients of the EMF Validation
framework to define "Client Contexts" that describe the objects that
they are interested in validating the constraints, and to bind them to the
same. But in our extension point implementation, [2> uses an alternative
which is to define a selector class using a selector element. Client
Contexts can be bound to constraints, individually, or with constraint
categories.

21

[:> <extension point="org.eclipse.emf.validation.constraintProviders">
<category
id="org.eclipse.gmf.example.eaipattern”
mandatory="false"
name="Audits for Aggregator">
<! [CDATA[AggregatorName Audits]]>
</category>
<constraintProvider cache="true">
<package
namespaceUri="http://de.tuhh.sts.octopus/octopus2emfatic/2006/eaipattern"/>
<constraints categories="org.eclipse.gmf.example.eaipattern”>
<constraint id="AuditName"
lang="0CL"
name="Aggregator Name Check" mode="Batch"
severity="ERROR" statusCode="200">
<! [CDATA[self.name.size()>0]]>
<description><! [CDATA[This Audit.....]1></description>
<message><! [CDATA[No Name found in
Aggregator]]></message>
<target class="eaipattern.AggregatorContainer"/>
</constraint>
</constraints>
</constraintProvider>
</extension>

<extension point="org.eclipse.emf.validation.constraintBindings">
<clientContext default="false"
id="org.eclipse.gmf.example.eaipattern.diagram.DefaultCtx">
<selectorclass:"org .eclipse.gmf.example.eaipattern.diagram.providers.
EaipatternvValidationProvider$DefaultCtx"/>
</clientContext>
<bindingcontext="org.eclipse.gmf.example.eaipattern.diagram.
DefaultCtx">
<constraint ref="org.eclipse.gmf.example.ecaipattern.diagram.
AuditName" />
</binding>
</extension>

4.1.3 Testing the Audit Containers

After generating the diagram plug-in for our project, launch a new runtime workspace
to test the diagram. The generated editor uses the domain model as input for
specifying the editor commands. For each model element, the editor contains
insertion, deletion, editing and moving commands.

Start with creating an empty GMF project and invoke New - Eaipattern
Diagram. Create a new instance Diagram Element of AggregatorContainer.
Before proceeding with validation of our domain model instance, a look at the same
plugin.xml generated in the diagram plug-in will show the extension point
implementations inserted because of enabling the Validation Providers and
Validation Decorators as shown in Figure 13.

1. [in plugin.xml shows the extension which contributes to the Menu
with providing a “Validate” under “Diagram” Menu in our launched
runtime workspace.

2. [2> shows the extension which enables the familiar Eclipse decorators for
our elements when the implemented audits are violated.

22

[:> <extension id="ValidationContributionItemProvider" name="Validation"
point="org.eclipse.gmf.runtime.common.ui.services.action.contribution
ItemProviders">
<contributionItemProvider checkPluginLoaded="true"
class="org.eclipse.gmf.example.eaipattern.diagram.providers.Eaipat
ternValidationProvider">
<Priority name="Medium"/>
<partContribution
id="org.eclipse.gmf.example.eaipattern.diagram.part.EaipatternDiagramEditor
ID">
<partMenuGroup menubarPath="/diagramMenu/"
id="validationGroup"/>
<partAction id="validateAction"
menubarPath="/diagramMenu/validationGroup"/>
</partContribution>
</contributionItemProvider>
</extension>

[:> <extension id="validationDecoratorProvider"
name="ValidationDecorations"
point="org.eclipse.gmf.runtime.diagram.ui.decoratorProviders">
<decoratorProvider
class="org.eclipse.gmf.example.eaipattern.diagram.providers.Eaipatternvalid
ationDecoratorProvider">
<Priority name="Medium"/>
<object
class="org.eclipse.gmf.runtime.diagram.ui.editparts.IPrimaryEditPart (org.ec
lipse.gmf.runtime.diagram.ui)" id="PRIMARY VIEW"/>
<context decoratorTargets="PRIMARY VIEW"/>
</decoratorProvider>
</extension>

w ecleTex Menu Octopus Run Sample Window Help

| A Fort. b SHE- ®F -
& Fill Calar r 2 E&E,g%,ﬁ.ﬂnv s R
—| _gF Line Color »
Y — Line Skyle »
=E...
— @ Select]
o9 Arrange »
E—Gﬂ align »
Crder r
T Auko Size e
5 take Same Size r
Filkers » q .5
Wig »
n.t E, Zoaom k
il
apply Appearance Properties
Declaration
Yalidate
Description =~ Resource Path
= B Errors (1 item)
€3 Mo Mame Found in Aggregator defaultl.eaipattern_diagram M

Figure 14: Validation in Domain Model Instance

23

Figure 14 shows the validation of our diagram element belonging to
AggregatorContainer. By implementing the audits for validating our domain
model instance we can provide important information and suggestions to correct the
model instance. The Validation decorators come into play with generating the error
symbols on the diagram elements. The implemented Constraints in the form of audits
help to generate error messages commenting on the result of the invariants that were
broken during validation.

4.2 EMFT OCL in GMF

4.2.1 Overview

The EMFT OCL framework provides basic infrastructure for OCL constraint parsing,
content assist for user models, OCL constraint validation and specifying OCL queries
and conditions. It provides API for constructing, validating and evaluating OCL
constraints and queries on EMF model elements. This framework includes a
parser/interpreter for Object Constraint Language version 2.0 for EMF. Using this
parser one can evaluate OCL expressions on elements of any EMF metamodel.

The whole approach of implementing EMFT OCL framework for GMF is with
reference to article [1] explains the implementation of model integrity in EMF with
EMFT OCL. We will follow the same approach in implementing the model integrity
for Domain Model instances created in GMF that can be evaluated with EMFT OCL.
Before this approach let us look at the support provided for constraints in EMF
without using any external frameworks. This will help us understand the approach that
will be used in GMF.

4.2.2 EValidator API

OCL Constraints can be specified in EMF Metamodel as annotations. EMF Codegen
generates validator classes for the model elements containing constraints. The
validator classes generated have dedicated method skeletons that if provided with
validation code could evaluate the constraints for the model elements [7].

Figure 15 shows the way constraints are implemented as annotations in EMF. Here the
invariant named INVARIANT MessageContainerNeedsName has an annotation of
OCL constraint that looks as follows,

sel f.nanme.size() >0

Let us look at the method generated for MessageContainer for the above specified
constraint.

The Evalidator API generates individual Message Body [for each constraint,
but these methods simply delegate to the invariant methods on the objects themselves
[8]. The framework prescribes the form of invariant constraints: boolean-valued
operations with a DiagnosticChain and a Map as input parameters. Violation of a
constraint adds a Diagnostic to the chain and results in a false return value.

24

@ eaipatternl.gmfrap @ org.eclipse.gmf.e... m AggregakorConkain, .. m Aggregak

=] gﬁ platfarm: fresourceforg, eclipse,gmf, example, eaipattern)model feaipattern, ecore
= ## eaipattern
= H MessageCaontainer -= Shapes
=R RN ARIANT _MessageContainerhleadshamelEDiagnosticChain, EMap) : EBoolean
== ol
=5 irpvariant - = self,name.sized) =0
o diagnostics : EDiagnosticChain
ok context : EMap
8 INVARIANT _AteastCneHeaderiEDiagnosticChain, EMap) : EBoolean
g8 INVARIANT _MeedDataMessagelfHeaderPresent{EDiagnosticChain, EMap) : EBoolean
= name : ESkring
o dataMessageMC : DataMessage
53 headerMC : Header

Figure 15: Invariant - MessageContainer

The message body as shown at [2 is incomplete and the generated code must be
modified by hand or by other means to explain EMF how to implement a constraint.
To accomplish this we tell EMF to use the additional code that is generated with the
help of JET templates and its detailed approach is discussed in section 4.3.

/**

* <!-- begin-user-doc -->
* <!-- end-user-doc -->

* @Qgenerated

*/

[:>public boolean INVARIANT MessageContainerNeedsName (

DiagnosticChain diagnostics, Map context

)

2> // TODO: implement this method
// —-> specify the condition that violates the invariant
// => verify the details of the diagnostic, including severity and
message
// Ensure that you remove (@generated or mark it @generated NOT
if (false) {
if (diagnostics != null) {

}

return false;

}

return true;

Code Snippet : MessageContainerImpl.java

The base class for each invariant provides validation on below listed aspects [8]:

1. The actual multiplicities of the attributes and references match the bounds
defined in the model.

2. The defined data type of the attributes is respected.

Any cross referenced objects are container in resources.

4. Every proxy is properly resolved.

[98)

25

4.3 Adding Constraints with JET Templates

Continuing with the article [1], we will follow the specified approach to get the OCL
expression transformed into the EMF model and integrate them with GMF for
validation at runtime. The approach starts with specifying the OCL expressions as
annotations to the model elements that is taken as context for the OCL invariant to
perform its well-formedness checking.

The mechanism of conversion of EMF metamodel with the specified approach [1], is
to involve the EMF Codegen along with the additional JET templates [9]. Figure 16
shows the Flow chain process in generating the diagram editor with the Template
Engine (JET) and its position in our implementation.

Graphical
Definition

Emfatic
Editor

j gmfgen
gmfgraph

Create
Generate Model

Tooling

| ™ gmftool
Definition

Create GMF

Project

Enable
Mapping | | | 9™™aP Validation &
Definition others

i

genmodel
Code Generate
Generation Diagram Plug-
Genmodel JET ins
Templates

Figure 16: Flow Chain Process — Outline of our implementation

Such templates are needed to generate the validation operation body that was left to
fill up by the EValidator API. The scripting statements in these templates parse the
annotations containing the constraints. At runtime, the constraint is available as a
String, which is interpreted to obtain a result. They further may also generate
additional support fields.

The code snippet below shows the additional code added to the invariant method body

[8> that we previously saw in MessageContainerImpl.java. This code will tell
EMF how to implement this constraint.

26

public boolean INVARIANT MessageContainerNeedsName (
DiagnosticChain diagnostics, Map context) {
if (INVARIANT MessageContainerNeedsNameInvOCL == null) {
EOperation eOperation = (EOperation)
eClass () .getEOperations () .get (0) ;
Environment env =
ExpressionsUtil.createClassifierContext (eClass());
EAnnotation ocl =
eOperation.getEAnnotation (OCL ANNOTATION SOURCE) ;
String body = (String) ocl.getDetails().get ("invariant");

try {
INVARIANT MessageContainerNeedsNameInvOCL =
ExpressionsUtil.createlInvariant (env, body, true);
} catch (ParserException e) {
throw new
UnsupportedOperationException (e.getLocalizedMessage());
}
}

Query query =

QueryFactory.eINSTANCE.createQuery (INVARIANT MessageContainerNeeds
NameInv OCL) ;

EvalEnvironment evalEnv = new EvalEnvironment () ;

query.setEvaluationEnvironment (evalEnv) ;

if (!query.check(this)) {

}

return true;

}

Code Snippet: MessageContainerlmpl.java
The following sections in this chapter discuss the steps taken in implementing the

EMFT OCL Framework with our GMF implementation in validating the Domain
Model Instance created using our generated graphical diagram editor.

4.3.1 Prerequisites

e

=-§=F org.eclipse.gmf.example, eaipattern
G2 src
B JRE Swstem Library [jrel.5.0_0&]
I~ B Plug-in Dependencies
(=5 META-IMF

ﬂ eaipattern.ecore

&

' eaipattern. emf
=
|

+
[+
[+

=

& eaipattern.genmodel
'éﬁ eaipattern.amfgen
l& eaipattern.gmfgraph
: eaipattern.gmfmap
& eaipattern.gmftoal

|22 templates

Ty

[+

5t buid.properties

plugin. properties

-{L} plugin. =ml
&3] ;‘,Jv org.eclipse.amf.example. eaipattern. diagram
[‘15{ org.eclipse. gmf. example. eaipattern, edit

Figure 17: GMF Project Layout

27

We create a new GMF project org.eclipse.gmf.example.eaipattern. We add
a templates folder to it. This project will have the Ecore model, genmodel, and
custom JET templates as shown in Figure 17.

Now we create the Eaipattern model. Find the constraints implemented as annotations
in the ecore model. Use the GMF dashboard shown in Figure 18 to create
eaipattern.genmodel. Other definition files like gmfgraph, gmftool, gmfmap
and gmfgen can be created with the dashboard.

[& Graphical Def Model
<not specified =

Select | Edit | Create

#] Domain Model [¢! Mapping Model

rmodelfeaipattern. ecaore =nok specified

Select [Edit / Create Select | Edit | Create

Domain Gen Model [# Tooling Def Model [¢! Diagram Gen Model
model/eaipattern. genmodel =not specified: =not specified:>

Select | Edit | Reload Select | Edit | Create Select / Edit | Create | Generate Diagram Editor

Figure 18: GMF Dash Board

Within the generated genmodel editor we change the "Base Package" property for
the genmodels's Eaipattern to org.eclipse.gmf.example as shown in Figure 19.
This will help to generate packages matching with the project name. In genmodel
editor, enable dynamic generation templates and specify the templates/ directory as
shown in Figure 20.

f@ eaipattern. gmfoen (eaipattern.genmodel &3
= B Eaipattern
B - 8 Eaipattern
E MessageCantainer -= Shapes
E AggregatorContainer - = Shapes
H DataMessage -= Insideshapes

=
Prablems | Jawadoc | Declaration m

Property Yalue
= Al
B Base Package IZ org. eclipse.gmf . example
Prefix = Eaipattern

Figure 19: Base Package Properties

It is mandatory to add org.eclipse.emf.ocl plug-in as a Model Plug-in Variable.
Further, edit the class.javajet's package attribute that can be found in
Project:\templates\model\Class.javajet and point it to the location where
the templates are located. We add
“org.eclipse.gmf.example.eaipattern.templates.model” as its value.

28

@ eaipattern. gmfgen eaipattern.genmodel 3 = O

= B Easipattern < -
= # Eaipattern
H MessageContainer -= Shapes
H' anarecatorContainer - Shaoes o

Problems | Javadoc | Declaration m
Property Yalue
Al |

Edit
Editor
= Model
Array Accessors I+t False
B Model Plug-in Yariables I= EMFT_OCL=org.eclipse.emf.ocl
Suppress Conkainment Il False
Suppress EMF Metadata I+ False
Suppress EMF Model Tags Il False
Suppress Inkerfaces Il False
Suppress Matification I+ False

Model Class Defaulks
Model Feature Defaults
= Templates & Merge

Zode Formatting Il False

BB Dvnamic Templates sz brue
Facade Helper Class I'= org.eclipse.emf.codegen.merge. java.Facade, jdom, JDOMF, .,
Force Cverwrite I+ False

Redirection Patkern
B Template Directory

Update Classpath .
Tests

forg.eclipse.gmf, example. eaipattern/templates
true

AT

Figure 20: Enabling Templates

4.3.2 Further Steps to invoke the constraints from Ecore in
GMF:

In gmfgen, Select Gen Diagram element and select Properties Menu with a
right-click on it. Enable validation Decorators and Validation Enabled to
true as shown in Figure 21. Further change the Vvalidation Decorator
Provider Priority and Validation Provider Priority to any value other
than Lower and Low. We have chosen Medium as priority value.

In the model, we have compartment elements to add other figure elements into the
containers. To accomplish the same, I require a different layout other than the default
layout provided by GMF. The GMF displays all elements placed in the container with
a default List Layout. Setting the List Layout in Diagram Compartment to
false will make the Layout as XY Layout with which the elements can be
rearranged within the Compartment.

29

4 eaipattern, gmfgen X T=

PD Resource Set

=l platform: fresourceforg.eclipse. gnif .example. eaipatternimodel/eaipattern.gmfgen ~
= < @en Editor Generator org.eclpse, gmf, example, zaipattern, diagrarm
B o <4 o2 Diagram Container_eaipatternEditPart
<4+ Metamodel Type
4 Figure Viewmap org.ecipse, drawzd, Freeformlayer

0 I) N [N T P N T P [l HW P v
Selection | Parent | List | Tree | Table | Tree with Colurnns
Problems | Javadoc | Declaration | = Properties &3
Property Yalue
Yalidation Decorator Provider Class Mame 1= EaipatternvalidationDecoratorProvider
B validation Decoratar Provider Prioviky I= Mediurn
Yalidation Provider Class Mame 1= EaipatterntalidationProvider
- validation Provider Priority 1= Medium
Figure 21: Validation Decorator and Provider Priority — Gmfgen

|7 Resource Set

E +- 4+ Gen Compartment MessageContainerMessageContainerCompartmentEditPart
+- 4 Palette org.eclipse,gmf.example, aipattern, diagram. part
4 3en Plugin Eaipattern Plugin
< 3en Editor Yiew org.eclipse.gmf.example. eaipattern.diagram. part
Selection | Parent | List | Tree | Table | Tree with Columns

Problems | Javador | Declaration | 2| Properties &3

Property Yalue
= Diagram Compartment
Can Collapse L4 False
Hide If Empty L brue
@ List Lavout 14 False
Meeds Title Lt False
Title '= Message_ontainer Compartment

Figure 22: Enabling XY Layout

4.3.3 Enabling OCL Console for GMF

OCL Console is provided as an example for EMFT OCL Technology. With this
console we can test our constraints on the domain model instances created with EMF.
Such a console can be used to validate Constraints against the domain model instances
specified with GMF. This will help to write constraints without ambiguities and
thereby can add them at ecore level to reflect the desired well-formedness.

To have the Console running, find the editorId of the diagram plugin for

org.eclipse.ui.editors extension point. In our case, the editor id would be
"org.eclipse.gmf.example.eaipattern.diagram.part.EaipatternDiag
ramEditorID".

30

inse.emf.ocl.examples.interpreter X 4t org.edlipse.gmf.example. eaipattern. diagram

Extensions =] & =]
All Extensions Extension Element Details
Set the properties of "editorContribution”
| [=)-+= org.ecdipse.ui.editorActions add. ..
[N [id*: | org.edlipse.emf.query, examples, ool editarContrit |
| [=)-4= org.eclipse. ui.popupfenus Bl targetlD®: | org.eclipse.gmf. example. eaipattern, diagram, parl |

- [¥] org.edipse.emf.query. exampl
4= org.eclipse.ui.console. consoleFac

Figure 23: Identifying targetID in Diagram Editor Plugin

41+ org.edlipse.emf.ocl.examples.interpreter w1t % =&
Extensions T | 2
All Extensions Extension Element Details
Set the properties of "editor”
= grg,eclipse core, runtime. prefer
<= grg,eclipse team, core, fileTypes - i org.eclipse. gmf. example. eaipatt:
4= org.eclipse.emf.ecore. extensio nannet ! Eaipattern Diagram Editor

[=)4= arg, eclipse,ui, editors
[@ Eaipattern Diagram Editor { icon:. icons/objl 6{Eaipatt

= org.eclipse.ui.newiiizards exkensions: eaipattern_diagram

<= prg. eclipse.ui. popupMenus
4= prg.eclipse.gmf.runtime. commo dass: org.eclipse.gmf. ex:

4= prg, eclipse.gmf.runtime, commo

At e melimemm e F e imbien s i e

command:

i & & H--E

Figure 24: Specifying targetID in OCL Interpreter plugin

Import the org.eclipse.emf.ocl.examples.interpreter plug-in into the
workspace. Within its plugin.xml, search for extension point of org.eclipse.
ui.editorActions and point its targetId attribute to the editorId of our
diagram plugin (i.e. org.eclipse.gmf.example.eaipattern.diagram.part.
EaipatternDiagramEditorID). Further, search for extension point of
org.eclipse.ui.popupMenus and point its targetId attribute to the editorId
of the diagram plugin.

Include the org.eclipse.emf.ocl.examples.interpreter plugin with our
GMF project and launch a new run-time workspace. After constructing the domain
model instance diagram using the generated editor, it can be tested with OCL
constraints by specifying them in OCL console with selecting the context diagram on
which the constraint should be tested for. In the below diagram we specify the
constraint on MessageContainer and test if each of the header instance have 1:1

relationship with dataMessage instance. This specified constraint evaluates to
false.

31

Pl default3s eaipatterns_diagram X = 0| 5= o

Y Palette ¥

[,‘\3 Select

. 1, Zoom
< Message container = Note

-

[~ EAI Pattern Components #
<= \WireTap

A SrliFkar

. . Link Conneckions >
4 mz2 =

& mi < LinkChannel
A DaintTabanink~hannal
-

< M3 [=-Message Types +
<4+ DeadMessage

Ao FynirinnMeczane
-

Problems | Javadoc | Declaration | Error Log El console 52

Inter active OCL [% E" W

Evaluating:

gelf.headerMC->fordll (p:Header|p.targetlessagelinker->sicze (] =1)
Results:

false

<

Figure 25: OCL Console
The OCL Console can be opened by selecting the Interactive OCL from the
Console View's action bar as shown in Figure 26.
X 5 ot B-r05-

1 Jawva Stack Trace Console

EYzcvs
3 Mew Console Wiew

&7 4 Interactive OCL

Figure 26: Enabling Interactive OCL

4.3.4 Validating Diagram Editor

Now after generating the diagram plugin for our project, launch a new runtime
workbench and test the diagram. After laying out the domain elements by selecting
them from the Tool Palette, the diagram can be validated with navigating to
FileMenu - Diagram - Validate. This action invokes the appropriate
invariant methods belonging to the domain models elements used in creating the
diagram model instance on the canvas. Invariants available as annotations are taken as
input by the invariant methods which are parsed and evaluated. The invariants that are
broken while validating them against the model instance are displayed as Errors in the
Problems Explorer.

32

dataz

datal

Javadaoc | Declaration

ars, O warnings, 0 infos

SCHpkion

B Errors {3 items)

(A3 no Name found in Aggregator c
[253 The 'INVARIANT DataMessageMamesMotEqual invariant is violated on '<Container_eaipathern=:: <Age
[The 'INWARIANT UseMessageLinker' invariant is violated on '<Container_eaipattern=::in:: <Header=' ¢

Figure 27: Diagram Editor for AggregatorContainer

[in Figure 27 shows the invariant broken specified on the context of
AggregatorContainer that checks for the presence of name. The Error console
displays the text that is included as Message Property while including this constraint
as an Audit Rule. [2> In Figure 27 displays the broken invariant specified on the
context of AggregatorContainer. This constraint is included in the domain model i.e.
ecore. This constraints checks for the DataMessages name to be identical in both the
message containers. [8> In Figure 27 displays the broken invariant specified on the
context of Header model element. It checks for the presence of a connection between
the Header and its DataMessage.

4.4 Summary

We have discussed the role played by some EMF Technologies (namely OCL and
Validation) in developing and extending the functionalities of EMF to GMF. We
discussed the implementation of model integrity in domain level that can be reflected
in the diagram editors generated with GMF using the EMFT Technologies.

We have discussed the step by step usage of custom JET templates and their purpose
in validating the domain model instances. In the next chapter, we will look at OCL
constraints that maintain the model integrity of Enterprise Application Integration
patterns.

33

5 Enterprise Integration Patterns — Case Study

In this chapter we will be discussing the patterns which are considered to be
represented as the domain model. Each pattern will be explained with the constraints
that implement the validation of their domain model instances along with their
respective UML diagrams. It is these constraints that will be available in the domain
model to enforce domain model integrity.

5.1 Overview

Enterprise Integration is a complex field, and there is no simple answer. The patterns
provide a useful way to convey experience that is gained through experience by the
architects. Patterns are accepted solutions for recurring problems within a certain
context. They work with most integration technologies, but specific enough to provide
hands-on guidance to designers and architects. Patterns also provide vocabulary for
developers to efficiently describe their problem [2].

Enterprise Integration Patterns help integration architects and developers design and
implement integration solutions more rapidly and reliably. The patterns discussed in
[2] are not tied to any specific implementation. The total number of patterns identified
counts to 65. The patterns are organized in the following categories [2].

1. Integration Styles documents the different ways applications can be
integrated.

2. Channel Patterns describe the fundamental attributes of a messaging
system. These patterns are implemented by most commercial messaging
systems.

3. Message Construction Patterns describe the intent, form and content of
the messages that travel across the messaging system. The base pattern for
this section is the Message pattern.

4. Routing Patterns discuss mechanisms to direct messages from a sender to
the correct receiver. Message routing patterns consume messages from one
channel and republish the message to another channel that is determined by
a varying set of conditions.

5. Transformation Patterns change the information content of a message. In
many cases, a message format needs to be changed due to different data
formats used by the sending and the receiving system.

6. Endpoint Patterns describe the behavior of messaging system clients.
They illustrate different ways in which applications can produce or
consume messages.

7. System Management Patterns provide the tools to keep a complex
message-based system running. The solution has to deal with error
conditions, performance bottlenecks and changes in the participating
systems. Message management patterns address these requirements.

34

5.2 Enterprise Integration Metamodel

In this section we will be looking at subsets of our model that will show how the
model subsets are going to represent the patterns for the diagram editor.

The following steps are taken in denoting the components that are being described in
text with respect to the graphical perspective.

1.

2.

All the graphical model elements that can be placed in
MessageContainer inherit from Class InsideShapes.
MessageContainer - The messages to be represented as input to a
graphical component or as an output from a pattern or to represent an
intermediate state among patterns are represented with Class
MessageContainer. With reference to Figure 28, MessageContainer
has containment relationship with Header, DataMessage,
ExpiredMessage, InvalidMessage, EnrichMessage, DeadMessage
and ExpiringMessage. This means that the messagecontainer will have
a containment association to all the above components. Such containers are
modeled as Compartments during the graphical definition of the diagram
editor. Each message that is represented in our graphical editor will have a
Header and one or more different siblings of Header. The Class
MessageLinker creates link connections between the domain elements of
Class InsideShapes. There exist two association relationships
between the MessageLinker and InsidesShapes that is navigable in
both directions. With the first association, we see srcInsideShapes
EReference iIn MessagelLinker and targetMessageLinker
EReference in InsideShapes. In the second association, we see
targetInsideShapes EReference iIn MessageLinker and
srcMessageLinker in InsideShapes.
The Class MessageLinker is modeled as connection link between the
Header and the other siblings of Header.
The constraints below are specified for the MessageContainer model
element.

0 The constraint below checks if the name attribute of

MessageContainer is specified

context MessageContainer
inv MessageContainerNeedsName:
self.name.size () >0

0 The constraint below is specified on the context from Class
Header. The constraint checks that if a Header instance is created
then the Class MessageLinker 1is to be used from the Tool
Palette to create a connection starting with the Header as the
source.

context Header
inv UseMessagelLinker:
self.targetMessagelLinker->size () >0

0 The constraint below check that atleast one header should be
specified for an instance of Class MessageContainer.

35

context MessageContainer
inv AtleastOneHeader:
self.headerMC->size () >0

0 The constraint below checks that if a Header element is created
then the DataMessage element should also be present.

context MessageContainer
inv NeedDataMessageIlfHeaderPresent:
(self.headerMC->exists (oclIsTypeOf (Header))
implies
self.headerMC.targetMessagelinker.
targetInsideShapes->isEmpty ()

5. Class LinkChannel provides link connections among domain model
elements that could not be represented with traditional messagechannels
like MessageChannel, Point-To-Point Channel, Publish -
Subscriber Channel efc.

The below are the list of patterns that would be discussed and implemented using our
metamodel in designing the graphical diagram editor.

srchMessagelinker

targetinsideShapes | 0.1 , 01 | H MessageLinker |
. A
H InsideShapes . T targethessagelinker
[‘& sroinzideShapes
| |
H DataMessage
| H ExpiredMessage | H DeadMessage
| o name: EString

| £l EnrichMessage
. 0.1
‘ H InvalidMessage | deadMessagenc "

.
01 B dataMessaueMC
invalidiessagetis H Header |

headerhC | 1.*

expiredhessageC
0.

‘ H ExpiringMessage

0.1
expiringhtessagedc

¢

: E MessageContainer |4

= name; EString

EET .

Figure 28: MessageContainer - Class Diagram

36

5.2.1 Message Channel Pattern

Connect the applications using a MessageChannel, where one
application writes information to the channel and the other one reads
that information from the channel [2].

Message
Channel-.

Sender Messaging Receiver
Application System Application

Figure 29: Message Channel Pattern

The subset of our domain model representing Figure 29 is shown in UML Figure 30.
In this model SenderContainer represents Sender Application,
ReceiverContainer represents ReceiverApplication and MessageChannel
represents the connection (i.e. the messaging system). Message Channel,
represented by Class MessageChannel creates connection link between a
SenderContainer element and a ReceiverContainer elements. To create a link
connection between these domain model elements say, we create associations
between MessageChannel to SenderContainer and between MessageChannel
to ReceiverContainer that is navigable in both directions. With the association
between MessageContainer and SenderContainer we see the

PublishSubscribe Channel |

i

MessageChannel

srchMessageChannel

name: EString

0.1
0.4
targgtMessageChannel

PointToPointChannel |

ReceiverContainer

0.1

name: EString

sreSenderontainer
0.1 targetReceiverContainer

SenderContainer

name: EString

Figure 30: Message Channel Pattern - Class Diagram

srcSenderContainer EReference in MessageChannel and
targetMessageChannel EReference in SenderContainer. With the

37

association between MessageContainer and ReceiverContaner, we see the
targetReceiverContainer EReference iIn MessageChannel and the
srcMessageChannel EReference in ReceiverContainer.

MessageChannel has two derived classes, namely Publisher Subscriber Channel and
Point-To-PointChannel. They are represented by Class
PublishSubscribeChannel and Class PointToPointChannel respectively.

5.2.2 Aggregator Pattern

Use a stateful filter, an Aggregator, to collect and store individual
messages until it receivers a complete set of related messages. Then,
Aggregator publishes a single message distilled from the individual

messages [2].
O
s E — [—_—
Inventory Inventory Inventory
ltem 1 ltem 2 Item 3 Aggregator Inventory
Order

Figure 31: Aggregator Pattern

The subset of our domain model representing Figure 31 is shown with UML in Figure
32. Aggregator is represented by AggregatorContainer.
AggregatorContainer and MessageContainer inherit from Shapes. This
inheritance hierarchy gives out two benefits. This helps to classify the domain
elements that have reference to LinkChannel. Another is to reduce the number of
Link mapping definitions that are requried to represent each individual mapping
between domain elements.

In Figure 32, MessageContainer is used to represent a compartment for placing
input messages and output messages. Each message consists of a Header and a
Message. With reference to the above class diagram Header and DataMessage are
two derived classes of InsideShapes. We would be looking at other derived
classes of InsideShapes in the following sections. MessageContainer has a
containment association with Header and DataMessage. Link Channel, represented
by Class Link Channel creates connection between Class Shapes. To create
a link connection representing Link Channel between Shapes we create two
associations between LinkChannel and Shapes that is navigable in both directions.
In one association we can see srcShapes EReference from LinkChannel and
targetLinkChannel EReference from Shapes. In the other association we can
see targetShapes EReference from LinkChannel and srcLinkChannel
EReference from Shapes.

38

stoinsideShapes | *

Insid

eShapes fargetinsideShapes 0.1 * | largethessagelinker

0.1 srohessagelinker

| Messageljnker|

targetlinkChannel
Header DataMessage LinkChannel

headerhdZ

) 0.1
1.# name: EString 0.1 | srcLinkChannel

datateszagehc

sreShapes | 0.1

Shapes? 0.1
targetShapes
“*| MessageContainer AggregatorContainer
name: EString name: EString

Figure 32: Aggregator Pattern - Class Diagram

Usually to create a link between two classes, the linking classes will have wuni-
directional association with those two classes. But in the case of enterprise patterns
there would be a need to navigate through association from the particular domain
model's context to verify the well-formedness of the domain model instance. This
requires us to have a bi directional association when it comes to the classes that
provide Linking between the model elements.

5.2.2.1 Constraints

The constraints below help in checking the well-formedness of the Aggregator

Pattern,
1.

The constraint below checks if the name attribute for Aggregator is
specified.

context AggregatorContainer
inv AggregatorNameNotPresent: self.name.size()>0

The constraint below checks that the number of Header instances in the
input MessageContainer should be more that the number of Header
instances in the output MessageContainer. We create some check
conditions for the constraint to work. This constraint works only when the
connection link is created between Input MessageContainer to
AggregatorContainer and from AggregatorContainer to Output
MessageContainer.

39

context AggregatorContainer
inv InputOutputMessagesNotEqual:
not (srcLinkChannel->isEmpty())
and
not (targetLinkChannel->isEmpty ())
implies
self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC->size () >
self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC->size ()

3. The Constraint below checks that atleast one Header instance must be
laced in the input Message Container.

context AggregatorContainer
inv AtleastOneHeaderInInputContainer:
not (srcLinkChannel->isEmpty()) implies
self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC->size () >=1

4. The Constraint below checks the name attributes specified for the data
messages in the input message container to be equal to the name attributes
of data messages in the output message container. This constraint is to
enforce that the same messages are being created in both the message
containers.

context AggregatorContainer
inv DataMessageNamesEqual:

self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC.
targetMessagelinker.targetInsideShapes.
oclAsType (DataMessage) .name—>asBag () =

self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC.
targetMessagelinker.targetInsideShapes.
oclAsType (DataMessage) .name->asBag()

5. The Constraint below checks that atleast one Header instance should be
created in Output Message Container.

context AggregatorContainer
inv OnlyOneHeaderInOutputContainer:
not (targetLinkChannel->isEmpty()) implies
self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC->size () =1

6. The constraint below checks that each message in the input message
container for the receiver container should have 1:1 relationship between
the Header instance and DataMessage instance.

context AggregatorContainer
inv OneHeaderWithOneDataMessageInput:
not (srcLinkChannel->isEmpty()) implies
self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC->
forAll (p:Header| p.targetMessagelLinker
->size()=1)

40

5.2.3 Content Filter Pattern

Use a Content Filter to remove unimportant data items from a message,
leaving only important items [2].

Content Filter

| []—0 >

Message Message
Figure 33: Content Filter Pattern

The subset of the domain model representing Figure 33 is shown with UML in Figure
34. The Content Filter Pattern is represented by Class ContentFilter.
ContentFilter has aggregation of DataMessage because it is a container that
must have a datamessage that has to be filtered from the rest of the messages. This is
accomplished by having an containment association with the DataMessage with a
rolename dataMessageToBeFiltered. The requirement of making the
DataMessage to be present can be enforced with a constraint or with association
from the content filter to DataMessage with lowerbound = 1 and
upperbound = 1 instead of lowerbound = 0 and upperbound = 1. The
templates implemented with EMFT OCL framework will generate validation errors
when the above association fails as well.

0.1

srcMessagelinker
targetinsideshapes I MessageLinker |
0.1
InsideShapes | *T
A sroinsideShapes targethieszagel inker
‘ Header | DataMessage | ystamessageToBeFitered
1.* | headertz | name: EString 0.1

* | dataMessageMc
0.1 =zrcLinkChannel

0.1 | targetlinkChannel

MessageContainer

name: EString

0.1 | srcShapes

0.4

messageCbntainet
targetShapes
srehiFilterMessapeChannel

0.4
MessageChannel ContentFilterContainer
name: EString name: EString Lns——

Figure 34: Content Filter - Class Diagram

41

MessageContainer is used to represent the input and output messages for the
content filter pattern.

5.2.3.1 Constraints

The constraints below help in checking the well-formedness of the Content Filter

Pattern,

I.

The constraint below checks if the name attribute for Content Filter is
specified.

context ContentFilterContainer
inv ContentFilterNameNotPresent: self.name.size()>0

The constraint below checks that the data message to be filtered should be
resent.

context ContentFilterContainer
inv MessageToBeFilteredForNotPresent:
self.dataMessageToBeFiltered->

exists (oclIsTypeOf (DataMessage))

The constraint below checks the data messages to be filtered should be
equal to the data messages present in the output Message Container.

context ContentFilterContainer
inv MessageBeFilteredNotEqualToOutputMessage:
self.dataMessageToBeFiltered.name->asBag() =
self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC.
targetMessagelinker.targetInsideShapes.
oclAsType (DataMessage) .name->asBag()

The constraint below checks the collection of data messages present in the
output Message Container to be present in the collection from the
datamessages present in the input message container.

context ContentFilterContainer
inv ContentFilterInvalid:
not (srcLinkChannel->isEmpty()) and
not (targetlLinkChannel->isEmpty()) and
(self.targetlLinkChannel.targetShapes.
oclAsType (MessageContainer) .
headerMC.targetMessagelLinker->size()>0) implies
self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC.
targetMessagelinker.targetInsideShapes.
oclAsType (DataMessage) .name->
includesAll (self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC.
targetMessagelinker.targetInsideShapes.
oclAsType (DataMessage) .name)

42

5.2.4 Splitter Pattern

Use a Splitter to break out the composite message into a series of
individual messages, each containing data related to one item. [2]

O
— | o8 —"?D ?m ?D
O
Order Order Order
MNew Order Splitter Item 1 ltem 2 Item 3

Figure 35: Splitter Pattern

The subset of domain model representing Figure 35 is shown with UML in Figure 36.
The Splitter is represented by Class Splitter. Class Splitter and Class
MessageContainer are the derived classes of Class Shapes. The input messages
and output messages are placed in the MessageContainer which make the later to
have an composite association with Header and DataMessage.

Link Channel is represented by Class Link Channel which represents the
connection between MessageContainer and Splitter. To create a link
connection between the MessageContainer instance that becomes an input message
container and Splitter, we create association between them that is navigable in
both directions. With the defined association we can see the srcShapes
EReference In LinkChannel and targetLinkChannel EReference in
Shapes. For creating a link connection between the Splitter and the
MessageContainer Instance that becomes the output MessageContainer we create

InsideShapes

;

|
| DataMessage

Header .
name: EString LinkChannel
1.% 0.1
headerhc * targetLinkChannel 0.1
dataMessagehic srcLinkchanne
stcShapes | 0.1
0.1
Shapes
target=hapes
Splitter

MessageContainer

name: EString

name: EString

Figure 36: Splitter Pattern - Class Diagram

43

another association between them where we see the targetShapes in
LinkChannel and srcLinkChannel in Shapes.

5.2.4.1 Constraints

The following constraints are considered to enforce the well-formedness of Splitter
Pattern.
1. The constraint below checks if the Header instances created in input
MessageContainer is equal to the number of DataMessage instances
created in output MessageContainer.

context Splitter
inv SplitterInvalid:

not (srcLinkChannel->isEmpty()) and

not (targetLinkChannel->isEmpty()) implies

self.srclLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC.

targetMessagelinker.targetInsideShapes.

oclAsType (DataMessage) ->size() =

self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .dataMessageMC->size ()

2. The constraint below checks if the name attributes of DataMessage
instances in input MessageContainer and is same as the name attributes of
Data Message instances present in output MessageContainer.

context Splitter
inv SplitterMessageTypesInvalid:

not (srcLinkChannel->isEmpty()) and

not (targetLinkChannel->isEmpty()) implies

self.srclLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC.

targetMessagelinker.targetInsideShapes.

oclAsType (DataMessage) .name->asBag() =

self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .dataMessageMC.name
->asBag()

3. The constraint below checks the messages created in the output
MessageContainer to have only one DataMessage instance to each
Header instance created.

context Splitter
inv SplitterOutputContainerInvalidMessageLinks:
not (targetLinkChannel->isEmpty()) implies
self.targetLinkChannel.targetShapes.
oclAsType (MessageContainer) .headerMC->
forAll (p:Header|p.targetMessagelinker->size()=1)

44

5.2.5 Point-to-Point channel

Send the message on a Point-to-Point Channel, which ensures that only
one receiver will receiver a particular message. [2]

~ %= %% %

Sendear Order Order Order Point-to-Point Order Crder Order Receiver
] #2 i1 Channel i3 2 #1

Figure 37: Point to Point Channel Pattern

The subset of domain model representing Figure 37 is shown with UML in Figure 38.
Class PointToPointChannel represents the Point-to-Point Channel Pattern. This
class is a derived class of Class MessageChannel.

We represent this pattern as a Connection to draw links between Message Containers.

We create two associations between MessageContainers and PointToPointChannel
that is navigable in both directions. With the first association between the instance of
MessageContainer that is going to be formed as input MessageContainer and
PointToPointChannel, we can see srcMCPointToPointChannel EReference
from MessageContainer and targetPTPmessageContainer EReference from
PointToPointChannel. The second association between the PointToPointChannel the
instance of MessageContainer that is going to be formed as output MessageContainer,

Shapes
|
. . MessageContainer
ReceiverContainer 9 p
- name; EString -
name: EString 0.1
srcPTPmestageContsiner 1.° | laroetPTPmessageContainer

SenderContainer POPMessqoeContainer

name; E=tring

MessageChannel

name: EString

targethMCPoint ToPointChannel
n.1
PointToPointChannel
01 srual?‘.?intTDPDintChannel

sreMCPoint ToPoirtChannel

Figure 38: Point To Point Channel Pattern - Class Diagram

45

Wwe can see srcPTPmessageContainer EReference in PointToPointChannel and
targetMCPointToPointChannel EReference in MessageContainer.

SenderContainer and ReceiverContainer have containment association
relationship with Header and DataMessage (which is not shown in
Figure 38). LinkChannel is wused to draw connections from the
SenderContainer to the MessageContainer and from the MessageContainer
to the ReceiverContainer. Their associations are discussed in previous patterns
since the SenderContainer, MessageContainer and ReceiverContainer are
the derived classes of Shapes.

5.2.6 Message Filter Pattern

Use a special kind of Message Router, a Message Filter, to eliminate
undesired messages from a channel based on a set of criteria. [2]

% % %= Y a1 %

Widget Gadget Widget Widget Widget
Quote Quole Quote Message Quote Quote
Filter

Figure 39: Message Filter Pattern

The subset of domain model representing Figure 39 is shown with UML in Figure 40.
Message Filter Pattern is represented by Class MessageFitler. The messages
placed in a MessageContainer would constitute the input for the MessageFilter and
another instance of MessageContainer as output from MessageFilter.

targethF OutputhezsageChannel

0.1 targetMFInputMessageChannel
0. 0.4 Oyt Fitt
MessageChannel |°, , sroinputmessageFiter J, srepUimEssageTier
name: EString MessageFilterContainer
0.1 0.1 0.1 name: EString
stchFinputheszageChannel stchFOutputtMessageChannel
targetCPMesEageChannel
srcCPMessageCprtainer
0.1
targetOutputhessagecontainer 0.1 | MessageContainer
0.1 name: EString

targetinputiessageContainer

Figure 40: Message Filter Pattern - Class Diagram

MessageFilter has an aggregation relationship with DataMessage. This
DataMessage is used by the MessageFilter to remove the specific message content
from the input channel and send the remaining messages to the output channel.

46

With the graphical perspective, we will write constraints from the context of
MessageFilter and check if the message to be filter is present in the
InputMessageContainer and not present in the OutputMessageContainer.

5.2.6.1 Constraints

The following constraints are considered to enforce the well-formedness of Message
Filter Pattern.
1. The following constraint checks that the data message to be filtered should
be present in MessageFilterContainer.

context MessageFilterContainer
inv MessageToBeFilteredNotPresent:
self.dataMessageToFilter->size()>0

2. The constraint below checks that for all the messages in the input message
container and output message container, each header should have only one
data message linked with it using the Class MessagelLinker.

context MessageFilterContainer
inv MessagesNotWithSingleDataMessages:

not (targetMFInputMessageChannel->isEmpty()) and

not (targetMFOutputMessageChannel->isEmpty()) implies

self.targetMFInputMessageChannel.
targetOutputMessageContainer.headerMC->
forAll (p:Header | p.targetMessagelinker->size()=1)

self.targetMFOutputMessageChannel.
targetInputMessageContainer.headerMC->
forAll (p:Header | p.targetMessagelinker->size()=1)

3. The constraint below checks the union of name of the data message
specified in the message filter with that of data messages in the output
message container is equal to the list of names of data messages in the
input message container.

context MessageFilterContainer
inv MessageFilterInputOutputVaries:
not (targetMFInputMessageChannel->isEmpty()) and
not (targetMFOutputMessageChannel->isEmpty()) implies
self.targetMFOutputMessageChannel.
targetInputMessageContainer.
dataMessageMC.name->
union (self.dataMessageToFilter.name) =
self.targetMFInputMessageChannel.
targetOutputMessageContainer.
dataMessageMC.name

47

5.2.7 Message Dispatcher Pattern

Create a Message Dispatcher on a channel that will consume messages
from a channel and distribute them to performers [2].

Performer
| ?@ ?IEI ?m =55
Send M
ender essages Message Performer
Dispatcher
Performer
Receiver

Figure 41: Message Dispatcher Pattern

- :‘Eaderperf # PerformerContainer
- niame; EString
| Header | DataMessage |, ,
o * 1”$
* name: EString .)
hefaderRC datameszagePert inPerfarmer Container
dataMlezzageRC performerPSContainer
‘ stchlessageChannel
i | MessageChannel
ReceiverContainer -
0.1 0 1; riame; EString
name: EString - A
targetReceiverContainer
* [inhd Dizpatch
mvessageuispatcher targethDizpalcherPSubChannel
MessageDispatcher . sreMDispatcherPSubChannel 0.1
name: EString _ I PublishSubscriberChannel
messagelizpatcher 0

Figure 42: Message Dispatcher Pattern - Class Diagram

48

The subset of domain model representing Figure 41 is shown with UML in Figure 42.
Message Dispatcher Pattern is represented by Class MessageDispatcher. Sender
is represented by Class SenderContainer

To represent the Receiver part of the Figure 41, the ReceiverContainer has
containment association with MessageDispatcher and PerformerContainer.
This aggregate relationship will help to make the ReceiveContainer have a
component-part relationship with the MessageDispatcher and
PerformerContainer. The latter has aggregation relationship with Header and
DataMessage that will help to create a container property for
PerformerContainer to hold both the Header and DataMessage domain model
instances. Link Channel is represented by Class LinkChannel to create connection
between an input MessageContainer and a MessageDispatcher. Since
MessageDispatcher uses publish subscriber channel to distribute the messages to
its performers, we will use PublishSubscriberChannel to create link connection
between MessageDispatcher and PerformerContainer.

5.2.7.1 Constraints

The following constraints are considered to enforce the well-formedness of Message
Dispatcher Pattern.

1. The constraint below checks the name of datamessages in the message
container that is specified as input to the receiver against the names of
datamessages specified collectively in each performer that has container-

art relationship with the ReceiverContainer.

context MessageDispatcher
inv InvalidMessageDispatcher:

not (srcLinkChannel->isEmpty()) and

not (srcMDispatcherPSubChannel.
performerPSContainer->isEmpty ())

implies
self.srcLinkChannel.srcShapes.

oclAsType (MessageContainer) .dataMessageMC.name =

self.srcMDispatcherPSubChannel.performerPSContaine

dataMessagePerf.name

2. The constraint below checks that each message in the input
messagecontainer for the receiver container should have 1:1 relationship
between the Header instance and DataMessage instance.

context MessageDispatcher
inv
InputMessageContainerHasMessagesWithSingleDataMessages:
not (srcLinkChannel->isEmpty()) implies
self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .headerMC->
forAll (p:Header| p.targetMessagelLinker->size()=1)

3. The constraint below checks the number of data messages present in the
MessageContainer that 1is provided as input to the
ReceiverContainer to be equal to the number of data messages present
in performerContainers within ReceiverContainer.

49

PerformerContainer has containment association with DataMessage
and can see the DataMessage with dataMessagePerf EReference.

context MessageDispatcher
inv InvalidMessageDispatcherWithInvalidPerformers:
not (srcLinkChannel->isEmpty()) and
not (srcMDispatcherPSubChannel .performerPSContainer
->isEmpty ())
implies
self.srcLinkChannel. srcShapes.
oclAsType (MessageContainer) .
dataMessageMC->size () =
self.srcMDispatcherPSubChannel.
performerPSContainer.
dataMessagePerf->size()

4. The constraint below is specified on the context of
PerformerContainer. This constraint checks that only one
DataMessage instance should be present in the PerformerContainer.

context PerformerContainer
inv OneMessageInPerformer:

self . headerPerf.targetMessagelLinker.

targetInsideShapes.
oclAsType (DataMessage) .name->size()=1

5.2.8 Invalid Message Channel Pattern
The receiver should move the improper message to an Invalid Message

Channel, a special channel for messages that could not be processed by
their receivers [2].

-ttt -

Sender Messages Channel Receiver Invalid Invalid
Message Message
Channel

Figure 43: Invalid Message Channel Pattern

The subset of domain model representing Figure 43 is shown with UML in Figure 44.
The invalid message is represented by Class InvalidMessage. It is derived class
for Class InsideShapes with the Header and DataMessage.

We use message channel to create connection link between MessageContainer and
ReceiverContainer. To create this connection we create association between
MessageContainer to MessageChannel and MessageChannel to
ReceiverContainer. These associations can be navigated in both directions. With
the association from MessageContainer to MessageChannel, Wwe see
targetCPMessageChannel EReference in MessageContainer and
srcCPMessageContainer EReference in MessageChannel. With the
association from MessageChannel t0 ReceiverContainer, Wwe see
targetReceiverContainer EReference in MessageChannel and
srcMessageChannel EReference in MessageChannel.

50

SenderContainer

InsideShapes

name; EString
0.4
srcenderContainer
srcLinkChannel | 0.1 targetLinkChannel | InvalidMessage ‘
. stcShapes
LinkChannel | o4 0.1 0.1 | invalidMessagedc
sreLinkChannel | 0.1
targetShapes
targetReceiverContainer
0.1
targetReceiverContainer . .
J ReceiverContainer ‘
0.1 | name: Estring MessageContainer
name: EZtring
0.1
I“ValidMEﬁagEchan“El 0.1 message@jrﬂainer
- i srcCPMessageContaingr
zsrchleszageChannel name: Estring
tlargetplessageChannel 0.1
0.1
Messagel:hannel largetCPMeszageChannel
0.4 0.
name: EString -’

srchiFitertes zageChanne

Figure 44: Invalid Message Channel Pattern - Class Diagram

We use Link Channel represented by Class LinkChannel to create connection
link from the SenderContainer to Messagecontainer and from
ReceiverContainer to MessageContainer containing the Invalid message that
is sent for Invalid MessageChannel by the receiver. In the above case we have
noticed four link mappings that has to be created while developing the diagram editor.

Classifying the classes into hierarchies of inheritance will help to reduce the number
of link mappings. A LinkMapping for LinkChannel with Shapes as the source
element and the target element will enable us to create connections among all children
of Shapes. In this case, SenderContainer, MessageContainer,
ReceiverContainer and InvalidMessageChannel are the children of Shapes.
But restrictions at this level has to be imposed on link mapping through link
constraints which was discussed in 2.3.5.

5.2.8.1 Constraints

I. The constraint below is specified within the context of
MessageContainer. the constraint is checked only if the presence of an
InvalidMessage is detected. Then this constraint checks whether the
InvalidMessageChannel is connected to the MessageContainer
using LinkChannel.

51

context MessageContainer
inv UseInvalidMessageChannelWithLinkChannel:

not self.targetLinkChannel->isEmpty () and

(self.headerMC.targetMessagelinker.targetInsideShapes

->exists (oclIsTypeOf (InvalidMessage)

implies
self.targetLinkChannel.targetShapes.
oclIsTypeOf (InvalidMessageChannel)

2. Constraint on link mapping is enforced to check that no outgoing

connections are created from the InvalidMessageChannel with
LinkChannel.

5.2.9 Event Message Pattern

Use an Event Message for reliable, asynchronous event notification
between applications. [2]

v

[E]

Observer

b J

8 T G

Subject Event Observer
Message

Y

[€]

[E] = aPriceChangedEvent Observer

Figure 45: Event Message Pattern

The subset of domain model representing Figure 45 is shown with UML in Figure 46.
The event message is represented by Class EventMessage which is a derived
class of InnerShapes.

The SubjectContainer and ObserverContainer have containment association with

EventMessage so that the former classes can be created as compartments for holding
EventMessage during the graphical definition of Graphical modeling.

52

InsideShapes

targetLinkChannel
LinkChannel
| LinkChannel |
sroShapes 0.1
E sreLinkChannel
eventsubiessage
EventMessage [50.1 Shapes
0.1 0.1 targetShapes
eventOhshieszage
SubjectContainer MessageContainer | psMessageContainer
name: EString name: EString 1.=
messageContaingr 0104 sroCPMeszsageContainer
0.1
MessageChannel | 4
srchiFiterdeszageChannel . :
name: EString targetPublizhEubscriber Channel
srcPublizhSubscriber Channel
0.1
‘ PublishSubscriberChannel

ObserverContainer
1. 0.1

name: EString

targetCPMessageChannel

peObserverContainer
Figure 46: Event Message Pattern - Class Diagram

MessageContainer has aggregate relationship with EventMessage so that it can
be represented as a container to hold event messages. The PublishSubscriberChannel
is used to create connection between the MessageContainer containing
EventMessage and ObserverContainer. We create association between
MessageContainer and ObserverContainer that is navigable in both directions.
With the association, we see the targetCPMessageChannel EReference in
ObserverContainer and psObserverContainer EReference in
PublishSubscribeChannel.

5.2.9.1 Constraint

To confirm the well-formedness of this pattern, constraint at the context of
MessageContainer containing EventMessage should check that each
ObserverContainer connected to it with the PublisherSubscriberChannel
has got one EventMessage. The constraint below fulfils the purpose,

context MessageContainer
inv EventMessageNotConfiguredProperly:

(self.eventMessageMC->size ()>0) and

not (srcLinkChannel->isEmpty()) and

not (self.srcPublishSubscriberChannel.PSObserverContainer
—->isEmpty()) implies

self.srcPublishSubscriberChannel.PSObserverContainer.
eventObsMessage->forAll (p:EventMessage |p->size()=1) and

self.srcLinkChannel.srcShapes.
oclAsType (SubjectContainer) .eventSubMessage->size () >0

53

5.2.10 DeadLetter Channel Pattern

When a messaging system determines that it cannot or should not
deliver a message, it may elect to move the message to a Dead Letter
Channel. [2]

Delivery Fails
?: -."--lll
X
Sender Message Channel Intended
Receiver
Reroute Delivery e
— ?D —Q
Dead Dead Letter
Message Channel

Figure 47: Dead Letter Channel Pattern

The subset of domain model representing Figure 47 is shown with UML in Figure 48.
The Dead Letter Channel is represented by Class DeadLetterChannel. The
DeadMessage is specified as a sub class of InnerShapes. MessageContainer has a
containment association with DeadMessage together with Header.

. H Shapes
H InsideShapes |<_—— [DeadMessage P
0.1 | deadMessagehc
H SenderContainer
o name: EString |
0.1 H MessageContainer | srchMoreMessageCortaingr
) €
= name: EString 0.1

H DeadLetterChannel

0.1
= name: EString

targethoreMeszage Container

sreSenderCortainer srchezegChaiMessageChannel
0.1
0.1 | B MessageChannel | 01
<—
targethessageChannel | = name: EString sroethessaChabessageChannel

Figure 48: Dead Letter Channel Pattern - Class Diagram

We use MessageChannel to create connection between MessageContainers and
LinkChannel to create connection between the SenderContainer and
Messagecontainer and from the MessageContainer containing the Dead

54

message to the DeadLetterChannel. To create link connection using
MessageChannel among MessageContainers we create two associations that denote
the link connection from them. The associations are navigable in both directions. With
this association, we see targetMessgChaMessageChannel EReference in
MessageContainer and srcMoreMessageContainer EReference in
MessageChannel. With the other association, we see
srcMessgChaMessageChannel EReference In MessageContainer and
targetMoreMessageContainer EReference in MessageChannel.

5.2.10.1 Constraint

The following constraints are considered to enforce the well-formedness of Message
Dispatcher Pattern.

1. The Constraint below checks the presence of DeadlLetterChannel
instance to be connected to the MessageContainer, when the latter
element contains the EventMessage instance.

context MessageContainer
inv UseDeadLetterChannelWithLinkChannel:
not self.targetlLinkChannel->isEmpty () and
(self.headerMC.targetMessagelinker.targetInsideShapes

->exists (DeadMessage))

implies self.targetLinkChannel.targetShapes.

oclIsTypeOf (DeadLetterChannel)

2. Constraint on link mapping will be enforced to check that no outgoing
connections are created from the DeadLetterChannel with
LinkChannel.

5.2.11 Channel Purger

Use ChannelPurger to remove unwanted message from a channel. [2]

8 o []

Message | Channel Purger
Figure 49: Channel Purger Pattern

The subset of domain model representing Figure 49 is shown with UML in Figure 50.
The Channel Purger is represented by Class ChannelPurger. MessageContainer
has containment association with Header and DataMessage to function as a
compartment for messages.

MessageChannel establishes connection link between MessageContainer and

ChannelPurger. This is done by creating association between
MessageContainer to MessageChannel and MessageChannel to

55

ChannelPurger. The association is navigable in both directions. With the
association between MessageContainer and MessageChannel, Wwe see

srcCPMessageContainer EReference at MessageChannel and
targetCPMessageChannel EReference at MessageContainer. With the
association between MessageChannel and ChannelPurger, Wwe see
targetCPChannelPurger EReference at MessageChannel and

srcCPMessageContainer EReference at ChannelPurger.

To check the well-formedness for this pattern, link constraints can be written for link
mapping to check that no outgoing connection can be created with having the
ChannelPurger as its source, since ChannelPurger would be the last stage a
message can reach.

Messagel:hannel srcCPMeszageChannel
0.1 targetCRChannelPurger
riame: EString h
0.1
0.1

ChannelPurger

targetCPMessageChannel
name: EString

0.1 | MessageContainer

name: EString

srcCPMeszageContainer

Figure 50: Channel Purger Pattern - Class Diagram

5.2.12 Message Expiration Pattern:

Set the MessageExpiration to specify a time limit for how long the
message is viable. [2]

Delivery

Message :
Expiration @ Times QOut

B FC A X

Intended

Sender Message Channel .
Receiver

Optional

Reroute e % —H:]
®

Expired Dead Letter
Message Channel

Figure 51: Message Expiration Pattern

56

The subset of domain model representing Figure 51 is shown with UML in Figure 52.
The message expiration and expired message are represented by Class
ExpiringMessage and Class ExpiredMessage. MessageContainer have
composite association relationship with ExpiringMessage and ExpiredMessage.
This aggregation helps to place the instances of ExpiredMessage and
ExpiringMessage in MessageContainer compartment.

We use MessageChannel to create connection between MessageContainers and
LinkChannel to create connection between the SenderContainer and
Messagecontainer and from the MessageContainer containing the Dead
message to the DeadlLetterChannel. To create link connection using
MessageChannel among MessageContainers we create two associations that denote
the link connection from them. The association are navigable in both directions. With
this association, we see targetMessgChaMessageChannel EReference in
MessageContainer and srcMoreMessageContainer EReference in
MessageChannel. With the other association, we see
srcMessgChaMessageChannel EReference iIn MessageContainer and
targetMoreMessageContainer EReference in MessageChannel.

| H InsideShapes

;

B LM | H ExpiringMessage
xpiredMessage

0.1 | expiringhessagetC
H Shapes

— [MessageContainer H DeadLetterChannel
targetinExpiringMessageContainer

expiredieszageMc | 0.1

= name: EString = name: EString

1
targetOutExpiredr-.-?es zageContainer

H SenderContainer

stcExpiringhessageChannel
= name: EString

1

H MessageChannel

(LN

targetExpiredMessapeChannel 0.4 /‘\

= name: EString
targethessageChannel srcSenderContainer

Figure 52: Message Expiration Pattern - Class Diagram

We use MessageChannel 1is used to create connection link between the
MessageContainer containing ExpiringMessage and the MessageContainer
containing ExpiredMessage. To create the connection between them we create two
associations that are navigable in both directions. With the first association, we see
targetExpiredMessageChannel EReference iIn MessageContainer and
targetOutExpiredMessageContainer EReference in MessageChannel.
With the other association, we see srcExpiringMessageChannel EReference in

57

MessageContainer and targetInExpiringMessageContainer EReference
in MessageChannel.

LinkChannel is used to create connection links from SenderContainer to
MessageContainer; and from MessageContainer to DeadLetterChannel.

5.2.12.1 Constraints

The following constraints are considered to enforce the well-formedness of
MessageExpiration Pattern.
1. The constraint below checks if an ExpiringMessage is present in the
MessageContainer then the MessageContainer with
ExpiredMessage should be connected using MessageChannel .

context MessageContainer
inv ExpiringMessageNotConfiguredProperly:

not (self.srcExpiringMessageChannel.
TargetOutExpiredMessageContainer->isEmpty()) and

(self.headerMC.targetMessagelLinker.
targetInsideShapes->
exists (oclAsType (ExpiringMessage))) implies

self.srcExpiringMessageChannel.
targetOutExpiredMessageContainer.headerMC.
targetMessagelinker.targetInsideShapes

->exists (oclIsTypeOf (ExpiredMessage))

2. The Constraint below checks the presence of one DeadlLetterChannel
instance to be connected to the MessageContainer, when the latter
element contains the ExpiredMessage instance.

context MessageContainer
inv ExpiredMessageRequiresDeadLetterChannel:
self.headerMC.targetMessageLinker.
TargetInsideShapes
->exists (oclIsTypeOf (ExpiredMessage))
and not
self.targetExpiredMessageChannel.
targetInExpiringMessageContainer->isEmpty ()
and not self.targetlLinkChannel->isEmpty ()
implies
self.targetExpiredMessageChannel.
targetInExpiringMessageContainer.headerMC.
targetMessagelinker.targetInsideShapes->
exists (oclIsTypeOf (ExpiringMessage)->isEmpty () and
self.targetLinkChannel.targetShapes.
oclIsTypeOf (DeadLetterChannel)

3. Constraint on link mapping is enforced to check that no outgoing
connections are created from the DeadLetterChannel.

58

5.2.13 DataTypeChannel Pattern

Use a seperate DataType Channel for each datatype so that all data on a
particular channel is of the sametype. [2]

— ?D — @O —
Query
CQuery Channel
—»?o —(@oon—
Price
Price Quote Cluote
Channel
— (o —C0—
Purchase
Purchase Order Order
Channel .
Sender Receiver

Figure 53: DataTypeChannel Pattern

stcLinkChannel 0.1 | srclinkChannel

0.1 | LinkChannel

0.1 K 0.1
sh ” 0.1 | targetlinkChannel
apes
argetShapes
steshapes targetlinkChannel
dataTypeChContainer
targetReceiverContainer
0.1 | 0.1
. . DataTypeChannelContainer
ReceiverContainer yp
- name: EString
name: EString *
MessageContainer
name: EString
. 1.% | dataTypeMeszzage
SenderContainer
databeszagesC
natme: EString - DataMessage
*

name: EString

Figure 54: Data Type Channel Pattern - Class Diagram

59

The subset of domain model representing Figure 53 is shown with UML in Figure 54.
The data type Channel pattern is represented by Class
DataTypeChannelContainer. MessageContainer is used to represent the
compartment for placing messages that contain a Header with a DataMessage.

DataTypeChannelContainer is a container that should hold same kind of datamessages
that are being provided as input to them. Class DataTypeChannelContainer has
an aggregation relationship with dataMessage thereby making itself a container for
placing datamessages. In our implementation we give uniqueness to the datamessage
with their name. The datamessages of a datatype should have identical name. Link
Channel represented by Class LinkChannel creates connection links between the
SenderContainer to MessageContainer, from MessageContainer to
DataTypeChannelContainer and from the latter to the ReceiverContainer.

5.2.13.1 Constraint

To check the wellformedness of DataTypeChannelContainer, constraint in the
context of the same can check if the datatypes are of same kind, i.e. by checking if the
name of all the datamessages are same with that of datamessage of

MessageContainer that creates a outgoing connection to the
DataTypeChannelContainer.

context DataTypeChannelContainer
inv DataTypeChannelNotUniqueInDataType:

not (srcLinkChannel->isEmpty())implies

self.srcLinkChannel.srcShapes.
oclAsType (MessageContainer) .dataMessageMC.name->
includesAll (self.dataTypeMessage.name)

and
self.dataTypeMessage->forAll (pl,p2:DataMessage|pl.name=
p2.name)

5.2.14 WireTap Pattern

Insert a Wire Tap into the channel, a simple Recipient List that publishes
each incoming message to the main channel as well as the secondary
channel. [2]

Wire 1 zp

Source | —1 {[}*| Destination

Figure 55: WireTap Pattern

The subset of domain model representing Figure 55 is shown with UML in Figure 56.
Wire tap pattern is represented by Class WireTap. The Source and Destination are
represented by Class Source and Class Destination respectively. Both of the

60

classes has containment relationship with Header and DataMessage that makes it a
compartment to where the tool smith can create messages.

MessageChannel is used to create connection link between,

1. Source - WireTap

0

To represent this connection we create a bi-directional association
between Source with MessageChannel and MessageChannel
with WireTap. With the first association we see inputSource

EReference n MessageChannel and
targetInputWIMessageChannel EReference in Source. In the
second association we see inputWireTap EReference in

MessageChannel and srcInputWTMessageChannel EReference
in WireTap.

2. WireTap - Destination

0

To represent this connection we create a bi-directional association
between WireTap with MessageChannel and MessageChannel
with Destination. With the first association we see
targetOutputWIMessageChannel EReference in WireTap and
outputWireTap EReference in MessageChannel. In the second
association we see outputDestination EReference in
MessageChannel and srcOutputWTMessageChannel
EReference in Destination.

Source
niame; EString
El'i1nputS|:|ur|:e
outputDestination | Destination
0.4 name; EString
0.1 | outputirtrDestination
targetinputTessageChannel
srcOutputWTMessageChannel
0.1 0.1

0.1 sreoutputTintrMessageChannel
MessageChannel
name; EString 0.1 tergetOutputThessageChannel

sreinputyTessageChannel ‘

0.1 0.1
targetCutptATIRtrMe s sageChannel m

0.4 | outputWireTap

0.1

WireTap
outputinteyireTap

name; EString

0.1 | inputWireTap

Figure 56: WireTap Pattern - Class Diagram

61

3. WireTap - IntermediateDestination

0 To represent this connection we create a bi-directional association
between WireTap with MessageChannel and MessageChannel
with Destination. With the first association we see
targetOutputWTIntrMessageChannel EReference in WireTap
and outputIntrWireTap EReference in MessageChannel. In
the second association we see outputIntrDestination

EReference n MessageChannel and
srcOutputWIIntrMessageChannel EReference in
Destination.

5.2.14.1 Constraints

The following constraints are considered to enforce the well-formedness of WireTap

Pattern.

1.

The Constraint below checks that all messages created in Source,
Destination and Intermediate Destination Container should have

only one DataMessage instance connected to each Header instance using
MessageLinker.

context WireTap
inv WireTapNotconfiguredProperly:
not (srcInputWTMessageChannel->isEmpty()) and
not (targetOutputWTMessageChannel->isEmpty()) and
not (targetOutputWTIntrMessageChannel->isEmpty())
implies
self.srcInputWTMessageChannel.inputSource.
headerSource->
forAll (p:Header | p.targetMessagelinker->size()=1)
and
self.targetOutputWTMessageChannel.outputDestination.
headerDestination->forAll
(p:Header | p.targetMessagelLinker
->size()=1) and
self.targetOutputWTIntrMessageChannel.
outputIntrDestination.headerDestination->forAll
(p:Header | p.targetMessagelLinker
->size()=1)

The constraint below checks that the name of the datamessage collected as
collection in Source, Destination and intermediate Destination should be
equal.

context WireTap
inv DataMessageTypesEqualInWireTap:

not (srcInputWTMessageChannel->isEmpty()) and

not (targetOutputWIMessageChannel->isEmpty()) and

not (targetOutputWTIntrMessageChannel->isEmpty())

implies

self.srcInputWIMessageChannel.inputSource.
dataMessageSource.name->asBag () ->

intersection (self.targetOutputWTMessageChannel.
outputDestination.dataMessageDestination.name
->asBag()) =

self.targetOutputWTIntrMessageChannel.
outputIntrDestination.dataMessageDestination.name
->asBag()

62

5.3 Summary

We have discussed in this chapter about the constraints that are required for the
validation of our domain model instances. The constraints for each pattern are
mentioned along with description about how the constraint would enforce its
functionality. Specifying such constraints at the domain model level will help to
enforce domain model integrity, which prevents from creating invalid and wrong
domain model instances.

We use the discussed constraints in successfully creating the diagram editor for
Enteprise Integration Patterns. The constraints specified here are generally associated
between one or more classes. Specifying constraints among a group of classes tend to
get more complexier. Alternate way to come up with professional range Graphical
Editors would be to make changes in the domain model language so as get additional
support. The domain model must evolve further to support the generation of visual
editors.

63

6 Conclusion

6.1 Conclusion

The vision of this master thesis was to study and develop the GMF framework in
providing support for domain model integrity (at the domain model level) in the input
used to generate diagram editors. As a case study, the patterns specified in Enterprise
Integration Patterns [2] were expressed in a domain model and a diagram editor was
generated for it.

This project started when GMF was still evolving and effort was required to
understand internals of the framework. Before the implementation of our prototype,
the available examples in the framework provided limited help in describing a large
scale domain model compared to our implementation. One of the advantages of GMF,
no requirement to know details of the GEF API, was confirmed. This helped us to
generate basic models with which we could scale our implementation to our prototype.

The aim of providing validation for the domain model instances lead to the
examination of EMFT Validation Technology in the form of Audit Rules. Since
specifying the constraints as audits amounts to specifying procedural details, moreover
involving manual coding, this available approach was considered not be appropriate
since the constraints considered for well-formedness rules (WFRs) are large in number
and declarative in nature. An alternate approach was specified in Article [1] which
refers to the domain model integrity of EMF with EMFT OCL Technology, but
devoid of any GMF concerns. We were able to implement this approach in GMF
framework to enforce domain model integrity in a declarative way. One of the
advantages of this approach is the resulting encapsulation of validation code, which
does not obscure the graphical definition files dedicated to generating diagram editors.
In particular, updating the WFRs and regenerating model code does not require
regeneration of the graphical definitions, not even the mapping definition.

Constraints in OCL for checking the domain model integrity for our prototype were
developed which prevent the creation of invalid diagram model instances. Due to time
limitations the total number of patterns that can be implemented with the generated
diagram editor amounts to fourteen, which anyway results in a useful software
engineering tool. Further, an OCL interpreter was integrated into GMF. This
interpreter can be used to test arbitrary, run-time provided OCL queries (so called “ad-
hoc” queries) against the diagram instances being edited.

64

6.2 Outlook

GMF is still evolving. Future implementations and developments in this framework
will ease the generation of rich diagram editors. Knowledge of the framework (as well
as know-how around other EMF technologies) is still needed to fine tune the involved
software components.

The implementation of all patterns specified in [2], can result in a full fledged
Enteprise Integration diagram editor. The domain model creation for enterprise
patterns offers a golden opportunity to force modeling concepts to be scaled to the
maximum. Modeling the remaining patterns is a direct extension once the feasibility
of the software architecture has been demonstrated with the current implementation.

The inclusion of OCL Interpreter for GMF helped us in writing efficient constraints
that enforce domain model integrity. The contributions made in this thesis have been
well received by the GMF community, and thus have made their way into the best
practices around generating diagram editors for Eclipse.

65

Bibliography

[1] Christian W. Damus, Implementing Model Integrity in EMF with EMFT OCL

URL: [http://www.eclipse.org/articles/Article-EMF-Codegen-with-
OCl./article.html]

[2] Gregor Hohpe, Bobby Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, 2003

[3] Octopus: OCL Tool for Precise Uml Specifications
URL: [http://www.klasse.nl/octopus/index.html]

[4]: Emfatic Language for EMF Development
URL: [http://www.alphaworks.ibm.com/tech/emfatic]

[5]: From Front End To Code - MDSD in Practice,

URL: [http://www.eclipse.org/articles/Article-FromFrontendToCode-
MDSDInPractice/article.html]

[6] GMF Tutorial - Part 1
URL: [http://wiki.eclipse.org/index.php/GMF _Tutorial]

[7]: A.Jibran Shidgie, Conversion of Octopus UML Models into Eclipse UML2
Models, 2006

[8]: The EMF Validation Framework Overview
URL: [http://www.eclipse.org/emf/docs/]

[9]: JET Tutorial Part 1 (Introduction to JET)
URL: [http://www.eclipse.org/articles/Article-JET/jet_tutoriali.html]

[t0] GMF Tutorial - Part 2
URL: [http://wiki.eclipse.org/index.php/GMF_Tutorial Part 2]

[11]] GMF Tutorial - Part 3
URL: [http://wiki.eclipse.org/index.php/GMF_Tutorial Part 3]

[12] Eclipse Consortium, Eclipse Graphical Modeling Framework
URL: [http://www.eclipse.org/gmf/]

[13] Eclipse Consortium, Eclipse Modeling Framework

URL: [http://www.eclipse.org/emf/]

[14] Eclipse Consortium, Eclipse Graphical Editing Framework
URL: [http://www.eclipse.org/gef/]

http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/
http://wiki.eclipse.org/index.php/GMF_Tutorial_Part_3
http://wiki.eclipse.org/index.php/GMF_Tutorial_Part_2
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/emf/docs/
http://wiki.eclipse.org/index.php/GMF_Tutorial
http://www.alphaworks.ibm.com/tech/emfatic
http://www.alphaworks.ibm.com/tech/emfatic
http://www.alphaworks.ibm.com/tech/emfatic
http://www.klasse.nl/octopus/index.html
http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL/article.html
http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL/article.html

[15] Gabriele Taentzer, Towards Generating Domain-Specific Model Editors with
Complex Editing Commands

URL: [http://www.sciences.univ-nantes.fr/lina/atl/www/papers/eTX2006/18-
GabrieleTaentzer.pdf]

xi

http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/

Domain Model Instances of EAI Patterns

1. Aggregator Pattern

=
x

< input

¢

4 m2 -

[%{ Problems &2 Javadoc | Declaration | Error Log | Console | Properties

2 errors, 0 warnings, O infos
akion

Errors {2 items)

@ The invariant_DataMessageMamesEqual’ invariant is violated on ' <Container_saipattern::Aag'
@ The ‘invariant_UseMessageLinker' invariant is violated on ' <Container_eaipattern::input:: <Header '

Resource

Appendix A

=0
Palette 4
[y Select
+, Zoom
=) Mate -

=~ EAl Pattern Co... #
<= WireTap

<4 Splitter

<4 MessageDispatcher

<4 SenderContainer
b

= Link Connections A
<4 LinkChannel
<4 PointToPointCha...
4 PublishSubscriber. ..
<4 Messagelinker
-

== Message Types A&
<4 DeadMessage
<= ExpitingMessage
<= Header
<4 EventMessage
hd

Path

default. eaipatterns_diagram Demo
default. eaipatterns_diagram Demo

Figure 57: Domain Model Instance - Aggregator Pattern

xii

2. ContentFilter Pattern

W] default, eaipatterns_diagram

< input

4 ml

4 ml

.\ Q < ContentFilter @
4+ m2

< output

=0
Palette 4
[Select
+, Zoom
[= Mote -

|.==EAL Pattern Components
[== Link Conmections L
<4 LinkChannel

<4 PointToPointChanne!

& PublishSubscriberChannel
<4 MessageLinker
® MessageChannel
[=-Message Types -+
< DeadMessage

<+ ExpiringMessage

<4 Header

<4 EventMessage

< DataMessage

A Trwaslidman,

|21 Problems 52
S errors, 0 warnings, 0 infos
akion

Errors (5 items)

@ The 'invariant_ContentFilterInvalid' invariant is violated on'<Container_eaipatterns:: <ContentFilkerContainer ' contentFilkerPattern eaipatterns.,
@ The ‘invariant_ContentFiltertamehotPresent’ invariant is violaked on '<Container_saipatterns:: <ContentFikerC contentFilterPattern eaipatterns. ..
@ The 'invariant_MessageBeFiterediotEqualTooukputMessage' invariant is violated on '<Conkainer_eaipattern=:; contentFikerPattern eaipatterns. ..

Javadoc | Declaration | Errar Log | Console | Properties

Resource

Path

. Dermo
Derma
Dizrn

Figure 58: Domain Model Instance - Content Filter Pattern

3. Invalid MessageChannel

< Sender /
G a 4 ml

I—“_ Problems &2

& errors, 0 warnings, 3 infos
Description

= % Errors {6 items)

<} Receiver

X Invalid

4 ml Message

Javadoc | Declaration | Error Log | Properties

@ The ‘invariant_atleastoneHeader' invariant is violated on '<Container_eaipatterns:: <MessageContainer ="

@ The ‘invariant_MessageContainetieedshame' invariant is violated on '<Container_eaipattern:s
@ The ‘invariant_MessageContainetieedsiame' invariant is violated on '=Container_eaipattern >
@ The ‘invariant_MessageContainetieedsMame' invariant is violated on '<Container_eaipatterns
@ The ‘invariant_UselnvalidMessageChannelWithLinkhannel' invariant is violated on '<Container

11 <MessageContainer ='
11 <MessageContainer ='
11 <MessageContainer =
_eaipattern=:: <MessageContainer ='

@ The Feature 'headerMC' of '<Container_eaipatterns:: <MessageContainer = with 0 values must have at least 1 values

<4+ MessageDispatcher

<4 SenderContainer

<4+ Destination

<+ MessageFilterContainer

b Tl oo Lo
-

|-= Link Connections *

<4 LinkChannel

<= PointToPaintChannel

4 PublishSubscriberCha...
<4+ Messagelinker
® MessageChannel
== Message Types *
<4+ DeadMessage

<= ExpiringMessage

< Header

<4 EventMessage

< DataMessage

<4 InvalidMessage

Resource

defaulc4. eaipatterns_diagram
default4. eaipatterns_diagram
default4. eaipatterns_diagram
default4. eaipatterns_diagram
default4. eaipatterns_diagram
default4. eaipatterns_diagram

Figure 59: Domain Model Instance - Invalid Message Channel

xiii

4. Splitter Pattern

Palette 4
h. Select
*, Zoom
[Mote -
= EAI Pattern Comp,., #
<4+ WireTap
<4 Splitter
< MessageDispatcher
<4 SenderContainer

A Mackinakion
g

< Input

< Output
=% Link Connections *
4 LinkChannel

< Splitten @ 4 PaintTaPointChannel

& m3 4 PublishSubscribercCh..,

<4 Messagelinker

+m1 ¢ m2 < m2 " MessageChannel

4 m2 [Message Types -

<4 DeadMessage

 J & ExpiringMessage
& ml < Header

< EventMessage

A DataMeccane
-

< 4

[24 Prablems 23 Jawadoc | Declaration | Error Log | Propetties
4 errors, O warnings, 0 infos
Description Resource
= % Errors (4 items)
@ The ‘invariant_splitterMessageTypesInvalid invariant is violated on '<Container_eaipatterns default2 eaipatterns_diagram

Figure 60: Domain Model Instance - Splitter Pattern

5. Message Expiration Pattern

<4 Splitker

< MessageDispatcher

<+ SenderContainer

<4+ Destination

4+ Sender £ MessageFilterContainer
<4 InvalidMessageChannel

< Message @ < PerformerContainer
-_-_—-_-> 4 MessageContainer

< Message
<+ AggregatorContainer
<4 SubjectContainer
. X Expired
Expiring —_— Me"ssage 4 DeadletterChannel

. Message -

[= Link. Connections *
+ml < LinkChannel

<4 PointToPointChannel
“ml 4 PublishSubscriberCha...

<4 Messagelinker

™ MessageChannel

= Message Types

“ test @

I—iProbIems bt Javadoc | Declaration | Console | Error Log | Propetties

3 etrors, 0 warnings, 0 infos

Description Resource

= [Errors (3 items)
@ The ‘invariant_AtleastOneHeader invariant is violated on ' <Container_eaipatterns: :best’ default4, eaipatterns_diagram
@ The 'invariant_ExpiredMessageRequiresDeadletterChannel invariant is violated on '<Container_saipattern::Message' default4. eaipatterns_diagram
@ The Feature 'headerMC' of '<Container_eaipattern =::test’ with 0 values must have at least 1 values default4.eaipatterns_diagram

Figure 61: Domain Model Instance - Message Expiration Pattern

Xiv

1. Emfatic Basic Type Names

Appendix B

Emfatic Ecore EClassifier s s s
Keyword name

boolean EBoolean boolean
Boolean EBooleanObject java.lang.Boolean
byte EByte byte

Byte EByteObject java.lang.Byte
char EChar char
Character ||ECharacterObject Jr ava.lang Characte
double EDouble double

Double EDoubleObject java.lang.Double
float EFloat float

Float EFloatObject java.lang.Float
int Elnt int

Integer ElntegerObject java.lang.Integer
long ELong long

Long ELongObject java.lang.Long
short EShort short

Short EShortObject java.lang.Short
Date EDate java.util.Date
String EString java.lang.String
Object EJavaObject java.lang.Object
Class EJavaClass java.lang.Class
EObject EObject gif:g%ibpjse‘zfmﬂec
EClass EClass org.eclipse.emf.ec

ore.EClass

2. Class Feature Modifiers

modifier means applies to
readonly lfi?;ucturalFeature.changeable N attribute, reference
volatile EStructuralFeature.volatile = true ||attribute, reference
transient ||EStructuralFeature.transient = true |attribute, reference
unsettable | EStructuralFeature.unsettable = true||attribute, reference
derived EStructuralFeature.derived = true ||attribute, reference
unique ETypedElement.unique = true 2?22?;3;;?;:;3&
ordered ETypedElement.ordered = true 2222‘3;;’;;?;:;‘::&
resolve EReference.resolveProxies = true ||reference
id EAttribute.iD = true attribute

3. Multiplicities
Emfatic multiplicity ETypedElement ETypedElement
expression lowerBound upperBound
none 0 1
[?] 0 1
[] 0 unbounded (-1)
[*] 0 unbounded (-1)
[+] 1 unbounded (-1)
[1] 1 1
[n] n n
[0..4] 0 4
[m..n] m n
[5..%] 5 unbounded (-1)
[1..7?] 1 unspecified (-2)

4. Class Feature Kind Keywords

Emfatic keyword | introduces

attr EAttribute

op EOperation

ref normal EReference (EReference.containment = false)
val "by value" EReference (EReference.containment = true)

xvil

Appendix D

Dual Link Connections — Round Link Mapping

Consider a scenario where a link connection is to be made between two instances of a
same class but in different directions. The direction of the link created is specified in
the graphical level and has no direction information from the domain model.

So when an instance of link class exists before creating an another instance of link
between the same class but in the opposite direction, this action results in the
formation of duplicate links.

Below is the code snippet that handles the creation of link instances.

private void refreshConnections () {
try {

collectAllLinks (getDiagram()) ;
Collection existinglLinks = new LinkedList (getDiagram() .getEdges());

for (Iterator diagramLinks = existingLinks.iterator(); diagramLinks
.hasNext ();) {
Edge nextDiagramLink = (Edge) diagramLinks.next();

EObject diagramLinkObject = nextDiagramLink.getElement () ;
EObject diagramLinkSrc = nextDiagramLink.getSource ()
.getElement () ;
EObject diagramLinkDst = nextDiagramLink.getTarget ()
.getElement () ;
int diagramlLinkVisualID = EnterVisualIDRegistry
.getVisualID(nextDiagramLink) ;
for (Iterator modelLinkDescriptors = myLinkDescriptors
.iterator(); modellLinkDescriptors.hasNext ();) {
LinkDescriptor nextLinkDescriptor = (LinkDescriptor)
modelLinkDescriptors.next () ;
if (diagramLinkObject == nextLinkDescriptor
.getLinkElement ()
&& diagramLinkSrc ==nextLinkDescriptor
.getSource ()
&& diagramLinkDst == nextLinkDescriptor
.getDestination ()
&& diagramLinkVisualID ==
nextLinkDescriptor
.getVisuallID()) {
diagramLinks.remove () ;
modelLinkDescriptors.remove () ;

}
}
deleteViews (existingLinks.iterator());
createConnections (myLinkDescriptors) ;
} finally {
myLinkDescriptors.clear ()
myEObject2ViewMap.clear ()

’
’

RefreshConnections() in Container_eaipatternCanonicalEditPolicy.java
The round about solution is to prevent the method from creating the dual link if the

presence of a previous instance in the same direction is detected. The code snippet
below helps to provide the effect.

xviii

private void refreshConnections() {
try {
collectAllLinks (getDiagram()) ;
Collection existinglLinks = new LinkedList (getDiagram()

.getEdges()) ;
for (Iterator diagramLinks = existingLinks.iterator();
diagramLinks.hasNext ();) {
Edge nextDiagramLink = (Edge) diagramLinks.next ();

EObject diagramLinkObject = nextDiagramLink.getElement () ;
EObject diagramLinkSrc = nextDiagramLink.getSource ()
.getElement () ;
EObject diagramLinkDst = nextDiagramLink.getTarget ()
.getElement () ;
int diagramlLinkVisualID = EnterVisualIDRegistry
.getVisualID(nextDiagramLink) ;
for (Iterator modelLinkDescriptors = myLinkDescriptors
.iterator(); modelLinkDescriptors.hasNext ();) {
LinkDescriptor nextLinkDescriptor = (LinkDescriptor)
modelLinkDescriptors.next () ;
if (isSamelink(diagramLinkObject, diagramLinkSrc,
diagramLinkDst, nextLinkDescriptor)) {
diagramLinks.remove () ;
modelLinkDescriptors.remove () ;

}

}

deleteViews (existingLinks.iterator());
} finally {

myLinkDescriptors.clear();

myEObject2ViewMap.clear () ;
}
}

private boolean isSamelink (EObject diagramLinkObject,
EObject diagramLinkSrc, EObject diagramLinkDst,
LinkDescriptor nextLinkDescriptor)
{
boolean directlLink = diagramLinkSrc ==
nextLinkDescriptor.getSource ()
&& diagramLinkDst == nextLinkDescriptor.getDestination();
boolean reversedLink = diagramLinkDst ==
nextLinkDescriptor.getSource ()

&& diagramLinkSrc == nextLinkDescriptor.getDestination();
return diagramLinkObject == nextLinkDescriptor.getLinkElement ()
&& (directLink || reversedLink);

RefreshConnections() in Contianer_eaipatternCanonicalEditPolicy.java

XixX

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Structure of the Work

	2 Graphical Modeling Framework
	2.1 Metamodel
	2.2 GenModel and other necessary artifacts:
	2.3 Building the Graphical Editor
	2.3.1 Conceptual Overview / Project
	2.3.2 Graphical Definition
	2.3.3 The Tool Model
	2.3.4 The Mapping Model
	2.3.5 Link Constraints

	2.4 The Generator Model
	2.5 Summary

	3 Editors for EMF Ecore
	3.1 EMF Ecore
	3.2 Emfatic
	3.3 Octopus
	3.4 Summary

	4 EMFT Technologies for GMF - Implementation
	4.1 EMFT Validation
	4.1.1 Overview
	4.1.2 EMFT Validation in GMF
	4.1.3 Testing the Audit Containers

	4.2 EMFT OCL in GMF
	4.2.1 Overview
	4.2.2 EValidator API

	4.3 Adding Constraints with JET Templates
	4.3.1 Prerequisites
	4.3.2 Further Steps to invoke the constraints from Ecore in GMF:
	4.3.3 Enabling OCL Console for GMF
	4.3.4 Validating Diagram Editor

	4.4 Summary

	5 Enterprise Integration Patterns – Case Study
	5.1 Overview
	5.2 Enterprise Integration Metamodel
	5.2.1 Message Channel Pattern
	5.2.2 Aggregator Pattern
	5.2.2.1 Constraints

	5.2.3 Content Filter Pattern
	5.2.3.1 Constraints

	5.2.4 Splitter Pattern
	5.2.4.1 Constraints

	5.2.5 Point-to-Point channel
	5.2.6 Message Filter Pattern
	5.2.6.1 Constraints

	5.2.7 Message Dispatcher Pattern
	5.2.7.1 Constraints

	5.2.8 Invalid Message Channel Pattern
	5.2.8.1 Constraints

	5.2.9 Event Message Pattern
	5.2.9.1 Constraint

	5.2.10 DeadLetter Channel Pattern
	5.2.10.1 Constraint

	5.2.11 Channel Purger
	5.2.12 Message Expiration Pattern:
	5.2.12.1 Constraints

	5.2.13 DataTypeChannel Pattern
	5.2.13.1 Constraint

	5.2.14 WireTap Pattern
	5.2.14.1 Constraints

	5.3 Summary

	6 Conclusion
	6.1 Conclusion
	6.2 Outlook

	Appendix A
	Appendix B
	Appendix D

