ﬂl‘b” BOSCH ‘ STS Softwaresysteme

Master Thesis

Implementation of a TPEG Decoder.

By
Rahul Goel

Supervised By
Prof. Dr.rer.nat. Ralf Moeller
Arbeitsbereiche Softwaresysteme

Prof.Dr.F. Mayer Lindenberg
Arbeitsbereiche Technische Informatik VI

At
Robert Bosch Group, Hildesheim
Department of Corporate Research/Advanced Engineering &
Multimedia
Advisor: Frau Elisa Liebanas

A thesis submitted in partial fulfilment of the requirements for the degree of Master of
Science in Information and Media Technologies

DECLARATION

| declare that:
| have carried out this work myself, all literally or content-related quotsfrom other
sources are clearly pointed out, and no other sources or aids other than the ones specified

are used.

Hildesheim, January 2006.
Rahul Goel.

ACKNOWLEDGEMENT

| am deeply indebted to my supervisor and guide Prof. Dr. Ralf Bfofl his invaluable
technical guidance, constructive criticism and moral support providéugduly entire tenure

of work.

| would like to additionally thank him for providing me an opportunity to wornkler his

guidance and gain valuable experience.

| am also thankful to Frau Elisa Liebanas, my advisor at Robert BOSQidristant guidance

and motivation without which this thesis would not have been possible.

| am grateful to her for providing me the direction and support throughgutenure in
Robert BOSCH Group and also giving me an opportunity to work on a developnogect

during my thesis.

| would also like to give my special thanks to Prof. Ulrich Kjll&ourse Coordinator
Information and Media Technologies and all the teaching staffemhnical University
Hamburg-Harburg, Germany for giving me help and encouragemeritribatied during my

Masters Studies at the University.

Rahul Goel.
24 January, 2006.
Hildesheim, Germany

1. Introduction

CONTENTS

1.1 Introduction
1.2 Motivation
1.3 Goals of the Master Thesis

1.3.1 Problem Discussion

1.3.2 Implementation View

1.4 Overview of the Report
2. TPEG Protocol
2.1 TPEG Basics

2.2 Requirements

2.2.1 Language Independence
2.2.2 Filtering
2.2.3 Multimodal Applications

2.2.4 No need of Location Database in Client Device

2.3 TPEG Transmission
2.4 TPEG Layer Model

3. Rational Unified Process

3.1 Introduction

3.2 Four Process Phases
3.3 Core Workflows

3.4 Best Practices of Software Engineering

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

Develop Iteratively

Manage Requirements

Use component Architectures

Model Visually

Continuously Verify Quality

Best Practices Reinforce Each Other

3.5 RUP implements Best Practices

4. Use Case Analysis

4.1 Requirements Engineering

4.2 Use Case Diagrams

10
11
12
14
14
15
16
17
17
17
19
19
19
20
21
22
22
23

5.

6.
6.
7.

4.3 Use Case Analysis

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4 Identify
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6

Supplement the Use Case Description
Find Classes from Use Case Behavior
Distribute Use Case Behavior to Classes
Describe Responsibilities

Qualify Analysis Mechanisms

Unify Analysis Classes

Design Elements

Identify Classes and Subsystem

Identify Design Classes

Group Design Classes in Packages
Identify Subsystem Interfaces

Identify Reuse Opportunities

Update Organization of Design Elements

4.5 Analysis and Design Results

45.1
45.2
4.5.3
45.4
4.5.5

User Interface Prototype
Use Case Model

Class Diagram

State Diagram

Use Case Realization

Memory Management

5.1 Introduction

5.2 Memory Management in C++

5.3 Out of
5.3.1
5.3.2

Memory Conditions
New Handler Function

New and Delete

5.4 Avoid Hiding the Normal Flow of New and Delete

5.5 Other Important Memory Optimization Techniques

5.6 Buffer

Discussion of the Solution

Conclusions

References

25
27
27
30

31
31
32
33
33
33
34
36
36
36
38
38
39
40
41
42
43
43
44
45
47
50
53
55
57
58
59
60

CHAPTER 1
INTRODUCTION
1.1INTRODUCTION *

TPEG stands for Transport Protocol Experts Group. TPEG Technology ispcoming
European and ISO pre-standard. TPEG is a new bearer independdmtavel and Traffic
Information) broadcast protocol that was initiated by BBC in 1997.TR&EG Project
obtained EC funding within the"sFramework program covering research and development
for new information society technologies. TPEG project dealt whth development of
language independent and multi — modal traffic and travel infawmatroadcasting for the
European citizen. TPEG is developed with the support of major Eurtypeaticasters Union
and is being developed by EBU (European Broadcasting Union, is an internatsmtatisn

that groups all national network/public service broadcasters in Ejrop&ill partnership

with the receiving industry.

The name “Transport” was chosen to indicate two meaning “Trangsorh the context of
traffic and travel ,and also meaning “Transport” in the context @fimg information (data)
from a service provider to the end user. It was foreseenhthafPEG technology would be
able to handle information delivery as far outside the traditibhaldomain, as well as very

effectively within this domain.

Digital Audio Broadcasting is a new transmission system lmminthe benefits of digital to
the world of radio. With Digital Radio capturing the radio market, it has becoperative to
concentrate on the Data Services like TPEG which can be caueedAB.TPEG messages
are delivered from service providers to end users, and are usethgtetrapplication data

from the database of a service provider to an end user's equipment.

The motive behind TPEG was to develop a new protocol for use in themmedikdi
broadcasting environment to develop applications, service and transgiantes which will

enable travel related messages to be coded, decoded and filtered.

During the TPEG project many ideas were developed and offere@EN/ISO for

standardization. Now the EBU is supporting the open TPEG Forum tmwerevelopment

1

and maintenance of the TPEG technology specifications and promptenientation of

TPEG services.

The TPEG Forum was established with the following objectives:

To encourage implementation of TPEG in services and products.

To facilitate exchange of information about practical implementation BGIP
To maintain the existing TPEG standards.

A

To develop new applications of TPEG and, where appropriate to develop new

specifications.

1.2 MOTIVATION 23

TPEG is relatively new protocol for Travel and Traffic Imf@tion. But with the Digital
Broadcasting going to replace the present system, it isratiye that in future TPEG will be
the ISO standard as other protocol like JPEG, MPEG.

TPEG can be used on many language media (DAB, DVB, Intertig¢tfer the broadcasting
of language independent TTI. TPEG permits to achieve many innoviaaic and Travel
Information (TTI) services that can support all modes of transydtt full language
independence and location database independence. The existing systeimMRD(Radio
Data System—Traffic Message Channel) suffers from the deficienciy #uftresses only road
traffic. TPEG already support the following three applications:

1. TPEG-RTM/Road Traffic Information

2. TPEG-PTI/Public Transport Information

3. TPEG-SNI/Service and Network Information.

Basically the application generates the TPEG data in theybfpamat which has to be
decoded by the TPEG decoder in the receiver.

A number of other applications are feasible such as Parking Information, Wieddneration,
Road Congestion status and travel time information, Emergency and Enemahm
Information etc. TPEG in combination with DAB (digital radio)llwievolutionalize the
people’s opportunities to get more and better traffic information alang life simpler for

many people. Digital Radio will use TPEG Technology to delioad traffic messages,

2

public transport information and many other TTI services. The spaidh for the Road

Traffic Message (RTM) Application and SNI (Service and Nekyw@&pplication are stable,

therefore it is required to implement Decoder for the respeappécations. In this thesis the

major aim is to develop decoder for the SNI application.

1.3GOAL OF THE MASTER THESIS

13.1

PROBLEM DISCUSSION

The problem to be solved consisted of many parts consisting of sefragineering

problems and problems relating to the TPEG Protocol and Technologyrdlilem can be

described as follows:

1) Architecture View (Implementation View): It was of utmost importance to have a

2)

3)

4)

portable system, which could be easily re-engineering with mireff@t to work on

other environments such as Linux. Also the component had to be reusable.

Robust Design: The problem also consisted of producing a robust Design which
fulfills the Use Case Model. It is felt that design is momportant than the code
because design visualizes the code and makes it easy for thirdngarding clients

to understand the code in a better way and also leaves suffio@nt for further
enhancements. Also it is a well known fact that coding is aivelateasier process,

but having a design guides the programmer to deliver code in an effective way.

Decoder Implementation and Memory Management:Since there is a resource
limitation in terms of memory, it is of prime importance tosdaffective memory
optimization techniques incorporated in the software which preventsomdeaks

and subsequent wastage of memory.

Buffer Mechanism Decision:Since the TPEG signal arrives over DAB continuously,

there should be an appropriate Buffer mechanism which handles the incoming data.

1.3.2IMPLEMENTATION VIEW

TPEG Transcoder DAF Lib | | DAF P .| DAB Receiver
(SNI Decoder) ~ 7| Interface | | (Digital radio)
: File
| File - > ,
" Interface Handling
TPEG CI

TPEG Controlling

Framework
TPEG ul User

<«—> UI-IF

RTM Decoder

Part of Master
Thesis

Figure 1.1: Implementation block diagram

The following is the brief explanation of the different components of the diagram:

TPEG Transcoder
» Decodes SNI Component
* Returns the transcoded TPEG Message to TPEG Controlling Framework

* This component is portable (with trivial modification) and reusable.

TPEG Controlling Framework

* Interface between GUI and Transcoder

* This component is responsible for initiating the decoding process.
TPEG CI

» Standard Interface of the Transcoder Component
TPEG-UI IF

+ Standard Interface between Framework and GUI

1.4 OVERVIEW OF THE REPORT

The second chapter discusses the TPEG Protocol and its chatiastefitiis chapter
primarily deals with developing the background understanding of BteGTProtocol. The
third chapter discusses the Rational Unified Process and its anpertas a software
engineering process. The fourth chapter describes the process Gfags Analysis in detall
and also puts forward the important result in the analysis angndpkase. Finally the fifth
chapter discusses the importance of memory optimization and impdemiiques of

memory optimization.

CHAPTER 2
TPEG PROTOCOL
2.1 TPEG BASICS*

Content segment Delivery segment

EditinqandMessageﬁanagementl | Uni-directional deliveryto end-users

TPEG Service o
: b ™ £
Provider (e
i |
I .
L In-vehicle chent
1 = (e.g. Navigation
I System)
0 Dag g
2 Thge o
o DF-be,-,,::;?
i
RTM content
Message ¥ : | POAclent
compilation, | PTl content | withDAB
editing and | fconformance to = orWi-Fi
generation TEEG w %
i (fuman mental | specifications) \e%,\, w2
o processes) @\"‘Na b
using PDA client
| TPEG-Loc wired, in
‘cradle” -]
] = wired
tpegML
ar 2. . -r
e 4 =8 wired wired /
i i o treghl tpagML
Tic | .
\conformingto | i J
DATEX Ceskor lap computer
standards)

Figure 2.1: TPEG in a NUTSHELL

Traffic and Travel Information content is delivered to end-udssrsmany mechanisms,
especially from the public service broadcasters (PSB) who deyploken announcements,
RDS-TMC, teletext and the internet to deliver such content. Bupwfe the content has to
be collected and edited according to rigorous standards to ensure it isandedgcurate. TTI

service provision is therefore all about collection, editing and delivery of iataym

To facilitate a good understanding of the processes, two segmeatbden coined which are
shown in the figure 2.1. Theontent segmerdovers all possible sources of information that
6

must be collected and processed beforedidlerery segmentan be deployed to send the

information to the end-user.

2.2 REQUIREMENTS

The requirements which TPEG fulfills are:

1.

Bearer Independence (TPEG data is transported via DAB, DVBInternet, GSM
etc): The same TTI is transportable via all bearer systems @aiadsignals (Digital
Radio, Digital Television, Internet, Mobile Communication, Networks) et order to

reach the customers whenever they are and whichever vehicle they are using

Language IndependenceUser is free to selects his preferred language.

Personalized Information: Through Advanced filter options (geographical area,
severity of events, application selection etc.) the user istatdasily personalize the

information presented to him/her.

Multi and Inter Modality: Information for all transport modes (rail, road, air ...) is
provided in order to enable the journey with all transport modes and mudal

mobility.

Independence from the location database on the terminal sid& generic Location
Information Referencing System enables the description of geoigal points,
segments and areas for all Information with geographicalaetey independent from
Transport modes and applications. TPEG uses common forms of locfgoencing

to enable the receiver need not have a location database.

Addresses all kind of terminal: It addresses all kind of terminal from cheap ones

equipped with simple text displays up to devices with digital maps ,GPS receiver et

Ease Implementation both cost wise and technicallyOffers a high level of

precision concerning event description and geographical referencing.

2.2.1 LANGUAGE INDEPENDENCE °

RDS-TMC has shown the way for information data delivery sergimgobile end-user who
wishes to obtain content when in a locality using a language tther her/his native
language. The concept is implemented such that the client deesengs information in the
language of choice of the end-user. RDS-TMC is limited becauselieés upon pre-
determined phrases - often not exactly what the service provider would wish to express

TPEG technology easily satisfies the language independence requitgmusing table code

values across the “on-air” interface to deliver much of the content.

The tables are extensible, with legacy compatibility. Evabjet contains a so called “default
word” which is a generic word for the content of the table andatlos/s a client device that
does not have the most recent table installed to display the“defandt to convey a slightly

more general meaning in the case when it cannot display é faothe actual transmitted

code value.

There are various possible client device “models” which the TRibl&s method permits
those with embedded tables and those without tables .Specific ThiaGdevices(i.e. such
as DAB based navigation systems) will be manufactured withTBPEEG tables already
installed, appropriate to the market in which they are sold. Thuswiiielye able to display
all the words up to their time of manufacture and any extendedswsed by a service after
that time will require the client device to resort to the use of the default word.

In the case of non specific client devices (i.e. devices not dpeltially for TPEG services
and thus not internally equipped with the TPEG tables) then table dalingoéof the
appropriate language required) at the time of use is implechestich as when accessing a
web based service, delivering tpegML, and using a standard browsedty the content in a
suitable language on an appropriate display. This situationngllide any extended words

and does not require the use of a default word.

TPEG technology goes a step further by "decomposing” the inflormatto essentially
single words, which can be more readily translated into variowgidages. Then the TPEG

message construction concept allows for the available information almoetent to be

assembled into potentially very rich and informing messages,|gxacthe service provider

would wish.

2.2.2 FILTERING °©

TPEG technology has been developed in the context of broadcast service delivexy, wher
messages are delivered to many, many client devices. Atantyin time only some of the
end-users would wish to receive particular information (e.g.nméition about traffic jams in
a city more than 200 km away is not useful).To allow large amountsfaymation to be
broadcast, and yet not overload the end-users with data of little t/sem, the TPEG design
philosophy, through explicit coding, is built on the idea of clieneriftg. This allows end-
users to choose messages based on any number of criteria, syph as event, location,

mode of transport, direction of travel etc.

2.2.3 MULTIMODAL APPLICATIONS

TPEG is the first European TTI application that covers all modes of transpuss dlce entire
transport landscape. It can serve the motorist in the urban avesll &s the bus passenger,
the intercity traveler and the long distance driver. TPEG-R¥Ed been designed to cover
Road Traffic Messages regardless of location. It is idealtgd to urban information because
of the richness of content that it can offer. But furthermore@ Btthnology is designed to
facilitate many more applications covering many other aspeficthe TTI domain. Already
TPEG-PTI allows a service provider to deliver comprehensive ptralitsport information

about airplane, bus, ferry, tram, and train services.

It does not attempt to deliver full timetable information, whielm be obtained from many
other sources already, but it does allow very detailed sensocagdion information changes
to be delivered to end-users. With the ability to link informatiors ipossible to deliver

various alternate routings to a particular destination.

So TPEG technology extends multi-modal information services far beyond angthiag
attempted by such technologies as RDS-TMC and puts the delivE€iiy back on track to be

a ubiquitous source of information that ideally suits Europe’s mobility objectives.

2.2.4 TPEG HAS NO NEED FOR LOCATION DATABASE IN CLIENT DEVICE

Public Service Broadcasters collect and deliver wide ranginlgimodal content, but the
possibility for data delivery provided by Europe’s first TTtaléechnology RDS-TMC had
significant limitations. The system is essentially limitednter-urban road events amdery
decoder client must have a location database to inteapsetmessage received. This has
created a complex situation for all end-users, and this drawback is still noegdlyed.

TPEG technology overcomes this limitation by the introduction of G®Bc, which is a
method of delivering very rich location referencing information vewerymessage, so that
client devices dmat need a location database. The biggest advantage is that Tddrsely
populated urban areas can now be delivered. Navigation systems witl digips can
"machine read" the location content and localize an event directty the map display. A
text only client device (e.g. a PDA) is able to present lodallyyd names such as a railway

station name and a platform number, directly to an end-user as a text message.

The TPEG location referencing system is built on the prin¢hae the location is generated

when needed and not taken from predefined locations stored in a database.

This means that the service provider must have a vector map conersegvice area. These
maps are quite expensive and most providers using predefined locét®isvIC do not

have vector maps.

The availability of this map made it possible to develop a toolghvban generate locations
on the fly according to the structure in the TPEG locatiomreatgng system. The vector map
is built from multiple maps layers; each layer contains iffe types of information. The
bottom layers generate contours of the country, lakes etc. By chamsgate map layers,
the area covered by the circle will filter out relevanbiniation for that point, eg: road

numbers, street names, community names etc.
It is possible to choose which map layers (e.g. national roagsstitets etc.) are to be used

for each type of location, and there are possibilities to define @gihdpecific map layers to

get relevant information automatically. Even the type of localike different road objects,

10

building and geographical sites can be utilized by referringlite tentries in the actual map

layer. The output from the map tool produces the actual location in the locML format.

2.3 TPEG TRANSMISSION

TPEG Technology uses a byte oriented stream format, whichbmawarried on almost any
digital bearer with an appropriate adaptation layer. TPEG messag delivered from service
providers to end users and the used to transfer application datth&atatabase of a service
provider to the end user equipment. TPEG is intended to operate vid amgasmple digital
data channel, and it assumes nothing of the channel other than thetalubtyvey a stream
of bytes.

In Figure 2.2, a variety of possible transmission channels are shoemnly requirement of
the channel is that a sequence of bytes may be carrieédretive TPEG generator and the
TPEG decoder. This requirement is described as “transparencweuvdo it is recognized
that data channels may introduce errors. Bytes may be omittadaf sequence, bytes may be
corrupted or additional and erroneous data could be received. TheFéfafe incorporates

error detection feature at appropriate points and levels.

There are basically two formats for TPEG messages —tpegMl TPEG binary. The

difference between tpegML and TPEG binary concerns only the format areeroatritent, as

both variants are designed to map on onto each other preciselgforbethe differences

concern mainly the size of the data used and the accessibilithefes exist already a lot of
software tools and libraries it is comparatively easy to ham#issages in XML format as
long as there are enough hardware resources and bandwidth. Howemerariea of limited

resources, one can save memory and/or bandwidth by using the binaay. féomthis reason

the binary format is preferred for the DAB while on the interhis possible to use both, the
binary and the XML.

11

DAB
DARC
TPEG DVB
generat Internet TPEG
or — — Decoder
Byte Byte

Figure 2.2: TPEG data may be delivered simultaneously via different bearer channels.

2.4 TPEG LAYER MODEL

The TPEG protocol is structured in a layered manner and emplpatseaal purpose framing
system which is adaptable and extensible, and which carriesdrafwariable length. This
has been designed with the capability of explicit frame length id=attdn at nearly all levels,
giving greater flexibility and integrity, and permitting thedification of the protocol and the
addition of new features without disturbing the operation of earle®iver/decoder model.
TPEG application contains all the information by a client TPEGdeer to present all the

information intended for the end-user when it was originated by the servicdgatovi
TPEG technology has been designed to be usable for a wide raagalioétions that require
the efficient transmission of point to point and multicast and nagylyebe encapsulated in

Internet Protocol.

* Layer 1 is the physical layer:This defines the transmission medium (radio waves,

wire, optical etc.) .One particular bearer can make use of different phigsiers.

12

Layer 2 is the Data Link layer: This layer consists of wide range of bearers, which
are suitable carriers for the TPEG protocol. An adaptation langgr be required in

order to map the TPEG stream onto the bearer.

Layer 3 is the Network Layer: This layer defines the meaning for synchronization

and routing.

Layer 4 is the Packetization Layer:Components are merged into a single stream and

encrypted and/or compressed.

Layer 7 is the Application Layer: top most level in TPEG.

Application Service and Network (e.g.) Road Traffic
Layer OSI Information Message

Layer 7 Application Application

Packetization
Layer OSI
Layer 4,5,6 TPEG Frame Structure

Network
Layer OSI Synchronization
Layer 3

Data Link Adaptation | Adaptation | Adaptation Adaptation
Layer OSI
Layer 2

DAB DVB DARC Internet

Physical

Layer OSI Radio Wave “piece of wire”
Layer 1

Figure 2.3: TPEG Protocol Layers

13

CHAPTER 3
RATIONAL UNIFIED PROCESS
3.1INTRODUCTION &°

The Rational Unified Process is iterative software engingeprocess developed and
marketed originally by Rational Software and now IBM. Thel gufathis process is to
produce, within a predictable schedule and budget, high quality softward&RUméds not a
single concrete prescriptive process, but rather an adaptable sofcm@ework. As such,
RUP describes how to develop software effectively using provémitgees. While the RUP
encompasses a large number of different activities, it is atsaded to be tailored, in the
sense of selecting the development processes appropriate tibcalgrasoftware project or
development organization. Rational Software offers a product (knowre &ational Unified
Process Product) that provides tools and technology for customizing acdtieg the
process®*

The Unified Process has three distinguishing characteristics whiels éo#iows:'°

+ Use-Case Driven— A large part of the RUP focuses of modeling. The process

employs Use Cases to drive the development process from inception to deployment.

« Architecture-Centric - The process seeks to understand the most significant static
and dynamic aspects in terms of software architecture. Théeture is a function
of the needs of the users and is captured in the core Use ChaesuBgests a five

view approach. The following summarizes the five views :

The Logical ViewThis view of the architecture addresses the functional requiteme
of the system, what the system should do for its end usersaritabstraction of the

design model and identifies major design packages, subsystems and classes.

The Implementation Viewlhis view describes the organization of the static software
modules in the development environment in terms of packaging amuhtayed in

terms of configuration management.

The Process ViewThis view addresses the concurrent aspects of the system at

runtime-tasks, threads, or processes as well as their interactions.

14

The Deployment Viewthis view shows how the various executables and other runtime

components are mapped to the underlying platforms or computing nodes.

The Use Case Vieult consists of few key scenarios or use cases. Initially dheyised to

drive the discovery and design of the architecture.

Iterative and Incremental - The process recognizes that it is practical to divide large
projects into smaller projects or mini-projects. Each mini-gtojeomprises an

iteration that results in an increment. Iteration may enconmglbegthe workflows in

the process. Iteration is planned using Use Cases.

3.2 FOUR PROCESS PHASES$!

The Unified Process consists of cycles that may repeattio@dong-term life of a system. A

cycle consists of four phases: Inception, Elaboration, Construction andiffloan. Each cycle

is concluded with a release, there are also releases withitiea In each phase on progresses

iteratively, and each phase consists of one or severalatesal he four phases are as follows:

Inception Phase- During the inception phase the core idea is developed into a
product vision. In this phase, reviewing and confirming of the undelis@of the

core business drivers is done. The basic stress is on understdredimgsiness case
for why the project should be attempted. The inception phase estakhshgsduct

feasibility and delimits the project scope.

Elaboration Phase- During the elaboration phase the majority of the Use Cases ar
specified in detail and the system architecture is designed.phiaise focuses on the
requirements, but some software design and implementation is airpect@yping

the architecture, mitigating certain technical risks bying solutions, and learning

how to use certain tools and techniques
Construction Phase- During the construction phase the product is moved from the

architectural baseline to a system complete enough to trarsitiba user community.

The primary focus is on design and implementation.

15

- Transition Phase- In the transition phase the goal is to ensure that the requiteme
have been met to the satisfaction of the stakeholders. This ighafsen initiated with
a beta release of the application. Other activities incluge pparation, manual
completion, and defect identification and correction. The transition mratewith a

postmortem devoted to learning and recording lessons for future cycles.

3.3 CORE WORKFLOWS

The Unified Process identifies core workflows that occur duringstifevare development
process. These workflows include Business Modeling, RequirementsysAnabDesign,
Implementation and Test. The workflows are not sequential and N«dlyoe worked on
during all of the four phases. The workflows are described sepanathe process for clarity

but they do in fact run concurrently, interacting and using each other’s artifacts

Phases
Disciplines | | Inception Elaboration Construction Transition

Business Modeling

Requirements &MW
Analysis & Design M
P e
Implementation aer : S
Deployment i : -‘

Configuration
& Change Mgmt

Project Management
Environment |

ik

g
@
g
g

iti Elab #1 | | Elab #2|| Const || Const
Initial %1 &3

o
=
*
-
%
I

Iterations

Figure 3.1: Rational Unified Process.

As the "humps" in Figure 3.1 illustrate, the relative emphas#éseoflisciplines change over
the life of the project. For example, in early iterations mone tis spent on Requirements,

and in later iterations more time is spent on Implementation. Coafignrand Change

16

Management, Environment, and Project Management activities acemed throughout the

project. However all disciplines are considered within every iteration.

3.4 BEST PRACTICES OF SOFTWARE ENGINEERING

Develop Iteratively

Manage Requirements

Use component Architectures
Model Visually

Continuously Verify Quality

S o

Manage change

3.4.1 DEVELOP ITERATIVELY

Developing iteratively is a technique that is used to delivefuhetionality of a system in a
successive series of releases of increasing completenads. rélease is developed in a
specific, fixed time period called iteration. The earliéstation addresses the greatest risks.
Each iteration includes integration and testing producing an executabkerelea
Iterations help to accomplish the following:

* Resolve major risks before making large investments.

» Enable early user feedback.

» Focus project short term objective milestones.

* Make possible deployment of partial implementations.
One applies the waterfall model within each iteration and the system evoharaemtally.

3.4.2 MANAGE REQUIREMENTS

Many of the failures in the software development are attributeshdorrect requirement
definition from the start of the project to poor requirements manege throughout the
development lifecycle. Therefore it is very important to manhgedquirements throughout
the software lifecycle .Requirement management deals withptbelem that the right
problem is being solved and the right system is being built.
The following are the important aspects of requirement Management:

* Analyze the Problem

* Understand User Needs

17

* Define the System
 Manage Scope
* Refine the System Definition

* Manage Changing Requirements

Managing Requirements involve the translation of stakeholder reguésts set of key
stakeholder needs and system features. These in turn are dettlespecifications for
functional and nonfunctional requirements. Detailed specificationdranslated into test

procedures and user documentation.

Problem
Space
Needs P
Features P .
< 4 Solution
o Space
Software 3
Requirement | %
Test Script |, =
Design
User
Docs

Figure 3.2: Traceability Block Diagram

Traceability allows us to:
» Assess the project impact of a change in a requirement.
* Assess the impact of a failure of a test on requirementsithié the test fails, the
requirements may not be specified).
* Manage the scope of the project.
» Verify that all the requirements of the system are fulfilled by theemphtation.
» Verify that the application does only what it is intended to do.
* Manage change.
18

3.4.3_ USE COMPONENT ARCHITECTURE.

A software component can be defined as a physical, replaceablefpdie system that
packages implementation, and conforms and provides the realizationtadfargerfaces. A
component represents a physical piece of the implementation sfesmsyncluding software
code or equivalent such as scripts or command files. A softwatens's architecture is
perhaps the most important aspect that can be used to contrtdrdieve and incremental

development of a system throughout its life cycle.

The most important property of architecture is resiliencexility in the face of change. To
achieve it, architects must anticipate evolution in both the problemaidorlind the
implementation technologies to produce a design that can gracefubynaozlate such
changes. Key techniques are abstraction, encapsulation and olggtedranalysis and

design. The result is that applications are more maintainable and extensible.

3.4.4 MODEL VISUALLY

A model is a simplification of reality that provides a compbiscription of a system from a
particular perspective. Modeling is important because it helps the developnmenigealize,

specify, construct and document the structure and behavior of system arahitectur

In building the visual model of a system, many different diagrarasneeded to represent
different views of the system. The UML provides a rich notation for visualizing siodel
This includes the following key diagrams:

» Use Case diagrams to illustrate user interactions

» Class Diagrams to illustrate logical structure

* Object Diagrams to illustrate objects and links

» Deployment diagrams to illustrate physical structure of the software

» Activity Diagrams to show the mapping of software to hardware configurations.

» State chart diagrams to illustrate behavior

* Interaction diagrams to illustrate behavior.

19

3.4.5 CONTINUOUSLY VERIFY QUALITY

In many organizations, software testing accounts for 30% to 50 %ftefase development
costs. Yet most people believe that software is not well tdstémte it is delivered. This
contradiction is rooted in clear facts. First, testing softwarenormously difficult. The
different ways particular program may behave are almost ifiS¢écond, testing is typically
done without clear methodology and without the required automation or tool sWMbdle
the complexity of software makes complete testing an imposgidé a well conceived
methodology and use of state of art tools can greatly improve the pvitgueind
effectiveness of the software testing. It is lot less egpe to correct defects during
development than to correct them after deployment. Important Points are:

» Test for key scenarios ensure that all requirements are properly impbeinent

» Poor application performance hurts as much as poor reliability.

* Verify software reliability —memory leaks, bottlenecks.

» Test every iteration — automate test.

3.4.6 BEST PRACTICES REINFORCE EACH OTHER

Best Practices

Develop Iteratively

A 4

Manage Requirements Ensures users are involved as
reauirement evol\

A

Use Component Architecture

A

Validates architectural decisions early
on

Model Visually

A

Addresses complexity of
desian/implementatic

Measures quality early and often

Continuously Verify Quality

A

Manage Change '

Evolves baselines incrementally

A

Figure 3.3: Best Practices Reinforce Each Other

20

Each of the best practices reinforces each other and in somenzddes each other. Figure
3.3 shows an example how iterative development leverages the athevelt practices.
However, each of the other five practices also enhancesvedgvelopment .For example
iterative development done without adequate requirements managesnertgily fail to
converge into solution. Requirements can change at will, users cannot agree, amndtibest
go on forever.

When requirements are managed, this is les likely to happen. Changes to reujsi @
visible, and the impact on the development process is assessed before the chaagtets ac
Convergence on a stable set of requirements is ensured .Similarly; each paipcdiees

provides mutual support.

3.5 RUP IMPLEMENTS BEST PRACTICES ™

The RUP captures the best practices in modern software developnee form that can be
adapted for a wide range of projects and organizations. The Ratioifi@id Process provides
each team member with the guidelines, templates and tool mentassagy for the entire
team to take full advantage of among others the following best practices. Theidvites a
standard for the artifacts of development (semantic models, sgmtatation, and diagrams):
the things that must be controlled and exchanged.
The following characteristics of RUP help to implements best practices:
* The dynamic structure of RUP creates the basis of iterative development
* The Project Management discipline describes how to set up andtexegroject
using phases and iterations
* The Use Case Model of the Requirements discipline and the tisletsrmine what
functionality has to implemented during iteration
» The workflow details of the requirements discipline show the aesvand artifacts
that make requirement management possible.
* The iterative approach allows to identify components, and to decidén whie to
develop, which one to reuse and which one to buy.
* The UML used in the process represents the basis of visual modedngas become
the de facto modeling language standard.
» The focus on the software architecture allows articulating dtrecture: the
components, the ways in which they integrate and the fundamental mseebaand
patterns by which they interact.

21

CHAPTER FOUR
USE CASE ANALYSIS

4.1 REQUIREMENT ENGINEERING *

The purpose of the requirement discipline is to:

* To establish and maintain agreement with the customers and otkenalteers on
what the system should do.
* To provide system developers with a better understanding of the system requirements
* To define the boundaries of (delimit) the system.
» To provide the basis for the planning the technical contents of iterations.
* To provide a basis for estimating cost and time to develop the system.

* To define a user interface for the system, focusing on the needs and goals afsthe use

The analysis and design discipline gets its primary inputs Qdse Model and Requirement
Specification) from Requirements. Flaws in the Use Case Mmatelbe discovered during

Analysis and Design; change requests are then generated, and applied toGhsdJgedel.

Relevant Requirements Artifacts:

A use case is an object-oriented modeling construct that is asefihe the behavior of a
system The Use Case Model describes what the system will do. Th€akse Model serves
as a contract between the customer, the users, and the systéopefsvédt allows customers
and users to validate that the system will become what thpgcexand allow system
developers to ensure that what they build is what they expectetiisEh€ase Model consists
of the use cases and actor. Each use case in the model ibetbgtetail, showing step-by-
step how the system interacts with the actors and what ttensgoes in the use case. The
Use Case Specifications is a document where all of the gsepcaperties are documented

(for example brief description and use case flow of events).

22

4.2 USE CASE DIAGRAMS® 4

The use case view models the functionality of the system asiyeddy outside users, called
actors. A use case is a coherent unit of functionality expressadransaction among actors
and the system. Use Case Diagrams are started by idegt#yimany actors as possible. One
should ask how the actors interact with the system to identiipiaal set of use cases. If
actor supplies information, initiates the use case, or recenes@rmation as a result of the

use case, then there should be an association between them.

Associations are modeled as lines connecting use casestargitacone another, with an
optional arrowhead on one end of the line. The arrowhead is often usedidating the
direction of the initial invocation of the relationship or to indidte primary actor within the

use case.

Figure 4.1 shows the three types of relationships between wese -easxtends, includes, and
inheritance -- as well as inheritance between actors. Tieadxelationships can be thought
of as the equivalent of a "hardware interrupt" because one dodsxawtwhen or if the
extending use case will be invoked (perhaps a better way to Idois & extending use cases
are conditional). Include relationships is the equivalent of a procemhlkerhe include
relationship points to the use case to be included; and extend rélgtigoénts to the use
case to be extended. Inheritance (Generalization) is applibée isatme way as on the Class
Diagram-- to model specialization of use cases or actors inc#ss. It can be said as
relationship between a general use case and a more specifiasesthat inherits and adds
features to it. It is also possible one use case uses anotlesesdy an arrow with the title

uses.

23

Registrar

Student

International
Student

Applicant

<<Include>>

Enroll in
Seminar

T

<<Extends>>

Perform
Security
Checl

Perform
Security
Checl

Figure 4.1: Use Case Diagram Example

24

4.3 USE CASE ANALYSIS™ 12

Use case analysis is performed to identify the initialsgdasf our system. After making an
initial attempt at defining the architecture, the key abstrastiand some key analysis
mechanisms, use case analysis is performed. The initialentting along with the software
requirements defined in the requirement discipline guides and asraa input to the Use
Case Analysis activity. An instance of Use Case Analygeiormed for each use case to be
developed during iteration. The focus during Use Case Analysis & particular use case.
Use case analysis is performed by the designer, once per iteration peseiSealization.

Use Case Analysis Steps:
1. Supplement the Use Case Description
2. For each Use Case Realization
» Find Classes from Use Case Realization
» Distribute Use Case behavior to Classes.
3. For each resulting analysis class:
» Describe responsibilities.
» Describe Attributes and Associations.
* Qualify Analysis Mechanisms

4. Unify Analysis Classes.

Stereotypes and Use Case Realization are two important cand@égtsfollowing is the
explanation:
Stereotypes

Stereotypes define a new model element in terms of another model element.

<<Stereotype>z Stereotype
Class

Figure 4.2: Stereotype Representation

25

A stereotype can be defined as:
An extension of the basic UML notation that allows defining a new modeling elensaat ba
on an existing modeling element.
* The new element may contain additional semantics but still applies in alwheee
the original element is used.
* The name of the stereotype is shown in guillemets.
* A unique icon may be defined for the stereotype, and the new element may be
modeled using the defined icon or the original icon with the stereotype name displayed
» Stereotypes can be applied to all modeling elements, including classisnseias,
and components and so on.

* Each UML element can have only one stereotype.

Use Case Realization
A use case realization describes how a particular use cesdired within the design model
in terms of collaborating objects. A realization relationshipdigwn from the use—case

realization to the use case it realizes.

Use-Case Model Design Model

\ /" UseCase
] A Realization |

Use Case Use Case
Realization

Figure 4.3: Depiction of Use Case Realization

A Use Case Realization can be represented using a set adirdsalke Sequence diagrams
and Class Diagrams. During Use Case Analysis the Use Cadizdien diagrams are
outlined. In subsequent design activities these diagrams are rafidagpodated according to

more formal class interface definitions.

26

4.3.1 SUPPLEMENT THE USE CASE DESCRIPTION

The use case description developed in the Requirement Enggng@éase is enhanced to
include enough details to begin developing a model. The primarypfaihe Supplement the
description of the Use Case is to capture additional information diéededer to understand
the required internal behavior of the system that may be midsimy the Use Case
Description. In some cases it may be found out that some of theeraguits were incorrect
or not well understood then the original use case flow of events shoufatbted and iterate

again the requirement engineering.

4.3.2 FIND CLASSES FROM USE CASE BEHAVIOR

The use case flow of events is analyzed to identify the apatiasses and allocate the use
case responsibilities to the analysis classes. To find thetslijeat perform the use case, a
“white box” description of what the system does from an internal perspective igsineede

The purpose of the find classes from use case behavior step istifyidecandidate set of
model elements (analysis classes) that will be capablefoirmeng the behavior described in
the use case.

Analysis Classes

Finding a candidate set of roles is the first step in the tamation of the system from a
mere statement of required behavior to a description of how thersysié work. The
analysis classes taken together represent an early conceptdal of the system. This
conceptual model evolves quickly and remains fluid for some time as diffepeaseatations
and their implications are explored. Analysis classes amdfmasses” which is essentially
“clump of behavior” .These analysis classes are early congsctfrthe composition of the
system: they rarely survive intact into implementation. They prowitie a way of capturing
the required behaviors in a form that can be used to explore the dretiadicomposition of
the system. Analysis classes permits to “play” with theridigion of responsibilities, re-
allocating as necessary. The technique for finding analysiseslasses three different
perspectives of the system to drive the identification of candidate classes:

These three perspectives are:

* The boundary between the system and its actors(Boundary Class)

27

* The information the system uses(Entity Class)

» The control logic of the system(Control Class)

<<Boundary>> <<Entity>>
System
Information
System
Boundary Use case
<<Control>> <<Boundary>>
System
Boundary
Use Case
Behavior

Coordination

Figure 4.4:The complete behavior of use case is distributed to analysis classes.

Boundary Classes

These are intermediates between the interface and somethinde dbts system. Boundary
Classes insulate the system from changes in the surroundorgex@dmple, changes in
interfaces to other systems and changes in user requiremiargp)ng these changes from

affecting the system. A system can have several types of boundargclasse

User Interface ClassesClasses that intermediate communication with human users of the
system.

System Interface ClassesClasses that intermediate communication with other systems.
Device Interface Class:Classes that provide the interface to devices which detechalxte

events .These boundary classes capture the responsibilities of the devicerr sens

28

A boundary classes is used to model interaction between the systemsndings and its
inner workings. Such interaction involves transforming and translavwamts and noting
changes in the system presentation (such as interface).Boutassgs model the parts of the
system that depend on its surroundings. They make it easier tsiamdethe system because
they clarify the system’s boundaries and aid design by providyogd point of departure for
identifying related services. Because boundary classes ate beteeen actors and the
working of the external system (actors can only communicate lbatindary classes), they
insulate the external forces from internal mechanisms and visa.v@ne way of the initial
identification of boundary classes is one boundary class per actecasseoair. This class
can be viewed as having the responsibility of coordinating the ititaragith the actor. This
may be refined as a more detailed analysis is performed.sTpaticularly true for window-
based GUI applications where there is typically one boundary fdassch window, or one

for each dialog box.

Entity Classes

Entity classes represent stores of information in the systdémy @are typically used to
represent the key concepts the system manages. Entity odjjeaised to hold and update
information about some phenomenon, such as an event, a person or aobgdifeThey are
usually persistent, having attributes and relationships neededdng @ériod, sometimes for
the lifetime of the system. The main responsibility of entigsg is to store and manage
information in the system. An entity object is not usually spedificone Use — Case
Realization and sometimes it is not even specific to the mydtelf. The values of its
attributes and relationships are given by an actor. Entity objenise the behavior as

complicated as that of other object stereotypes.

Taking the use case flow of events as input, noun phrases are undertimedlamw of events.
These form the initial candidate list of analysis classest Heseries of filtering steps are
applied where some candidate classes are eliminated. Theafethi# filtering exercise is a
refined list of candidate entity classes. Normally it sbadasier to identify the entity classes

by reading the use case specification carefully.

Control Class
Control Class provides coordinating behavior in the system. The sgsterperform some

use cases without control classes by just using entity slas®k boundary classes. This is

29

particularly true for the use cases that involve only the simmeipulation of stored
information. More complex use cases require one or more contsslesldo coordinate the
behavior of other objects in the system. Control classes eHbctilecouple boundary and
entity objects from one another, making the system more toleraftanfes in the system
boundary. They also decouple the use-case specific behavior from @gtts, making

them more reusable across use cases and systems.

Control classes provide behavior that:
» Is surrounding independent (does not change when the surroundings change).
» Defines control logic (order between events) and transactions within use case.
» Changes little if the internal structure or behavior of the entity clatsegyes.
» Uses or sets the contents of several entity classes, anidbtbemekds to coordinate
the behavior of these entity classes.
* Is not performed in the same way every time it is acti(flitav of events feature

several states)

Control objects (instances of control classes) often control othest®bg® their behavior is
of the coordinating type. Control classes encapsulate use-cagesdpeicavior. When the
system performs the use case, a control object is created. Calmjgots usually die when

their corresponding use case has been performed.

4.3.3 DISTRIBUTE USE —CASE BEHAVIOR TO CLASSES

The responsibilities of the use case is allocated to the @algsses and this allocation is
modeled by describing the way the class instances collaliorptform the use case in Use
Case Realization. The purpose of “Distribute Use — Case Behavior to ClassessEsis:

» Express the use case behavior in terms of collaborating analysisclasse

* Determine the responsibilities of analysis classes.

The allocation of responsibilities in analysis is a crucial amdetimes difficult activity. The
three stereotypes mentioned above makes the process easi@vioyng a set of canned
responsibilities that can be used to build a robust system. Thedefipee responsibilities

isolate the parts of the system that are most likely to change.

30

A driving influence on where the responsibility should go is the locaif the data needed to
perform the operation. The best case is that there is one thiashas all the information
needed to perform the responsibility .In that case, the responsibility gbethevdata.

If this is not the case then the responsibility may need @llbeated to a “third party” class
that has access to the information needed to perform the responsiBGiktsses and

relationship might need to be created to make this happen.

4.3.4 DESCRIBE RESPONSIBILITIES

At this point, analysis classes have been identified and use egsansibilities have been
allocated to those classes. This was done on a use case bgsaskasis, with the focus
primarily on the use-case flow of events. Now it is time umn tattention to each of the

analysis classes and see what each of the use cases will require of them.

The ultimate objective of these class focused activities dotument what the class knows
and what the class does. The resulting Analysis Model gives@dbige and a visual idea of
the way responsibilities are allocated and what such an atiocatbes to the class
collaborations. The purpose of describe responsibilities step is nelynaescribe the
responsibilities of the analysis classes.

A responsibility is a statement of something an object can lkedaso provide.
Responsibilities evolve into one or more operations on classes inndésey can be
characterized as:

» The actions that the object can perform.

* The knowledge that the object maintains and provides to other objects.
The View of participating classes(VOPC) class diagcamtains the classes whose instances

participate in the Use Case Realization Interaction diagrasmsvell as the relationships

required to support the interactions.

31

4.3.5 QUALIFY ANALYSIS MECHANISMS

At this point a good understanding of the analysis classes, tlsponsbilities, and the
collaborations required to support the functionality described in teecases has been
developed.
The purpose of the Qualify Analysis Mechanisms step is to:

* ldentify analysis mechanisms used by the class.

* Provide additional information about how the class applies the analysis mechanism.

An Analysis mechanism represents a pattern that constitutearaan solution to a common
problem. These patterns may show patterns of structure, pattelbefafior or both. They
are used during Analysis to reduce the complexity of Analysig, tanimprove the

consistency its consistency by providing designers with a shorttegandsentation for the

complex behavior.

Mechanisms allow the Analysis effort to focus on translatingiuthetional requirements into
software concepts without bogging down into specification of relgtigemplex behavior
needed to support the functionality but which is not central to it.y&isamechanism often
result from the instantiation of one or more architectural oryarsabpatterns. Persistence
provides an example of analysis mechanisms. A persistent obaat ighat logically exists
beyond the scope of the program that created it. During analysigjo@senot want to be
distracted by the details of how one is going to achieve thgsparce. This gives rise to a
“persistence” analysis mechanism that allows to speak ofspErsiobjects and capture the
requirements one will have on the persistence mechanism withoutivgorpout what
exactly the persistence mechanism will or how it will woik aalysis classes are identified,
it is important to identify the analysis mechanisms that afiplthe identified classes. For
example the classes that are persistent are mapped to the persisigmyisne

4.3.6_ UNIFY ANALYSIS CLASSES

The purpose of the Unify Analysis Classes is to ensure thhtaeadysis classes represents
single well defined concept, with non overlapping responsibilitiesei@ifit Use Cases will
contribute to the same classes .A class can participate imwanper of Use Cases. It is

therefore important to examine each class for consistencysattresvhole system. Merge

32

Classes that define similar behaviors or that representathe phenomenon. Merge entity
classes that define the same attributes, even if their ddfiglealior is different; aggregate
the behaviors of the merged classes.

4. 4IDENTIFY DESIGN ELEMENTS

In Identify Design Elements, the analysis classes are refined into desigenés (design
classes and subsystems). The purpose of Identify Classes and Subsystegisesthe
analysis classes into appropriate Design Model Elements. The archifeangadentify
Design Elements once per iteration.
The following are the steps for the Identify Design Elements:

» Identify classes and subsystems

* ldentify subsystem interfaces

* Identify reuse opportunities

* Update the organization of the design Model

4.4.1 IDENTIFY CLASSES AND SUBSYSTEMS

The purpose of Identify Classes and subsystems is to refinentigsia classes into
appropriate design model elements (for example classes or tmmbsysAnalysis classes
handle primarily functional requirements, and model objects from pghaeblem” domain;
design elements handle the nonfunctional requirements, and model objutsthe
“solution” domain. It is in Identify Design Elements that the deniss taken which analysis
“classes” are really classes , which are subsystemshwist be further decomposed), and

which are existing components and do not need to be “designed “ at all.

4.4.2 IDENTIFY DESIGN CLASSES

If the analysis class is simple and already represesitg)ke logical abstraction, then it can be
directly mapped, one-to-one, to a design class. Typically, eclagses survive relatively
intact into design. Throughout the design activities, some analgsises can be split, joined,
removed or otherwise manipulated. In general there is many ty mapping between
analysis classes and design elements. The possible mapping includes thedollow

33

An analysis class can become:

One single class in the design model.

A part of a class in the design model.

An aggregate class in the design model (meaning that the parts in this aggesgate m
not be explicitly modeled in the Analysis class).

A group of classes that inherits from the same class in the design model.

A group of functionality related classes in the design model (for example, agpacka
A subsystem in the design model.

A relationship in the design model.

A relationship between analysis classes can become a class in the desén m

Part of an analysis class can be realized by hardware and not modeled in the desig
model at all.

Any combination of the above.

4.4.3_ GROUP DESIGN CLASSES IN PACKAGES

When identifying classes, one should group them into packages, famizaijanal and

configuration management purposes. The design model can be swuatorsmaller units to

make it easier to understand. By grouping Design Model elemerdspatkages and

subsystems, then showing how those groupings relate to one anotleasigisto understand

the overall structure of the model.

There are different reasons for partitioning the design model:

Packages and subsystem can be used as order, configuration, and order delivery units
when a system is finished.

Allocation of resources and the competence of different developmams tenight
require that the project be divided among different groups at different sites.
Subsystems can be used to structure the Design Model in a wagftbets the user
types. Many changes requirement originate from users; subsystéasure that
changes from a particular user types will affect only théspaf the system that
correspond to that user type.

Subsystems are used to represent the existing products and straicdse system

uses.

34

Subsystem and Interfaces

A subsystem is a model element that has the semanticsaskage, such that it can contain
other model elements, and a class, such that it has behavior. A sobsatizes one or more

interfaces, which define the behavior it can perform. A subsystecapsulates its

implementation behind one or more interfaces. Interfaces isolateshef the architecture

from the details of the implementation.

Interface <<Subsystem>>
«—————fp————— Subsystem Name

Realization (Canonical Form)

Figure 4.5: A Subsystem and Interface

An interface is a model element that defines a set of behagiset(of operations) offered by
a classifier model element (specifically a class ,subsys or component).The relationship
between interfaces and classifiers (subsystem) is not alovee/$o one .An interface can be

realized by multiple classifiers, and a classifier can realiz@pte interfaces.

Interfaces are a natural evolution from the public classes atkapge to abstractions outside
the subsystem. All classes inside the subsystem are thetepaivéh not accessible from the
outside. Operations defined for the interface are implemented byoromeore elements
contained within the subsystems. The benefit of this is that, unpkelage, the contents and
internal behaviors of a subsystem can change with complete freestorfong as the
subsystem’s interfaces remain constant. A subsystem providetagete by which the
behavior it contains can be accessed. Packages provide no behavior; éhsynple
containers of things that have behavior. With packages it is imp@ssiBubstitute packages
for another one unless they have the same public classes. ThegmgsiEs and their public
operations get frozen by the dependencies that external clasgeson them. Thus the

designer is not free to eliminate these classes or change their behavior.

35

Subsystems can be used to partition the system into parts that can be independently:
» Ordered, configured or delivered
* Developed, as long as the interface remains.
» Deployed across a set of distributed computational nodes.

» Changed without breaking other parts of the system.

4.3.4 IDENTIFY SUBSYSTEM INTERFACES

Interfaces define a set of operations that are realizgdorne classifier. In the Design Model,
interfaces are principally used to define the interfacesuosystems. This is not to say that
they cannot be used for classes as well .But as a singleitdassually sufficient to define
public operations on the class. These operators, in effect, disfihetérface”. Interfaces are
important for subsystems because they allow separation of theratesi of behavior (the
interface) from the realization of behavior (the specific eassithin the subsystem that
realize the interface).This de-coupling provides us with a waytease the independence of
development teams working on different parts of the system, whignirey precise
definitions of the “contracts” between these different parts. Tikerfaces are completely
defined using their signatures. This is important, as these aoésfwill serve as

synchronization points that enable parallel development.

4.4.5 IDENTIFY REUSE OPPORTUNITIES

The identification of reuse opportunities is an important architdctiep. It will help to
determine which subsystems and packages to develop, which one tocareligéhich one to
buy. It is desirable to reuse existing components, wherever poseitdadentification of the
reuse opportunities is a unification effort, since it is deterchihéthings” that have been

identified can be satisfied by what already exists.

The advent of commercially successful component infrastrucguoth as CORBA, the
Internet, ActiveX and JavaBeans trigger a whole industry of offsttedf components for
various domains, allowing buying and integrating components rather thaloglegethem
in-house. Reusable components provide common solutions to a wide range of common
problems and may be larger than just collections of utilitiesassdibraries; they form the

basis of reuse within an organization, increasing overall productivity and quality

36

4.4.6 UPDATE THE ORGANIZATION OF THE DESIGN ELEMENTS

As new elements have been added to the design model, repackagingniaet® of the
design model is necessary. Repackaging achieves several oBjeatdeices coupling
between packages and improves cohesion within packages in the designTheddtimate
goal is to allow different packages (and subsystems) to be neesignd developed
independently of one another by separate individuals or teams. Asnodel elements are
added to the system, existing packages may grow too largenbareged by a single team:
the package must be split into several packages which are hagtdgice within the package
but loosely coupled. Doing this may be difficult —some elements raalifficult to place in
one specific package because they are used by elements of bk#ygsm There are two
possible solutions:

» Split the elements into several objects, one in each package

* Move the elements into a package in a lower layer, where allrhigyer elements

might depend upon it equally.

Layering provides a logical partitioning of packages into layetis certain rules concerning
the relationship between layers. Restricting the inter-layer inter-package dependencies
makes the system more loosely coupled and easier to maintalore Feo restrict
dependencies causes architectural degradation, and makes the lsygte and difficult to

maintain.

37

4.5 ANALSYSIS AND DESIGN RESULTS" 71819

4.5.1 USER INTERFACE PROTOTYPE

TPEG DAE View Filtering Help

=10l x|

Clear
teszages

Save
teszanes

—Input

File

DAB

Figure 4.6: User Interface Prototype

Brief Explanation: The interface is implemented in VB.net. The menu controlslifferent

options of the interface like save and read directory locatioresjridf settings and switching

from Engineering (with more detail output) to Normal View. Thare two channels —File
and DAB, as the decoder reads data from the two channels. The Comgtdts of list of
decoded messages and corresponding messages in XML format.

38

4.5.2 USE CASE MODEL

TPEGTranscoder

—_— send data send result to TPEG Transcoder Receiver

\ transcode TPEG Transcoder Receiver
/ 4
- /
Set TPEG set the filters
filter

= Get Bearer Info
GetBearerinfo

open gommunication with DAF/Filesystem

TPEG Data Source

\ Wtion

scan DAF(services)fFi

return list'of services/name of|

fi[%

esystem(files)

retdrn result:succgss ferror
transcoding and saving function

Select
Service

Stop Scan
Stops the

Figure 4.7: Use Case Model

Brief Explanation: The requirement engineering resulted in the Use Case Model. The

following are the different use cases overview:
* Open:Opens the communication to the DAB/directory.
» Close:Closes the communication to the DAB/directory.
» Scan: Scans the DAB (for the list of services) or from directory (for the lifites).

+ Select ServiceReads the data and start transcode.

39

The actor TPEG Data Source is the source of the TPEG Data—eithgsteihesor DAB and
the actor TPEG Transocoder Receiver is the TPEG Controlling Framewqlefientation

View).

4.5.3 CLASS DIAGRAM

0.1 i
CDAFInterface

IDAFListener

+deMtfvoid

SHIC

+CSNIComponent

+CSNIComponent00
+CSNIComponent
+CSNIComponentd2
+CENIComponentd3
+CSNIComponentD4
+CSNIComponentds
+CSNIComponentDs

)

Figure 4.8: Class Diagram

rn_CdiListener

DAFListener <<interface==
DarManager TTCHTCAiProvider
0.1
0.1 “in_Datgr o =
%_Daﬂ.istene LTI
+tlosevoid
= +selectSPwoid
o +stanvoid
+stanStopvaid
+nnannin =]
r_Filehgr 0.1
TPEGTranscoderManager FileSystemManager 0.1
tciCdiBearerinfo 0.1 m_CdiListener
= TTCtifCdiListener
+initwoid =
+closemwoid
::LE;EISUEVM == — 1 +getBearerinfoCnfyoid
. +appFiltertvipplds
+getBearerinfovoid -)
nnnnn umicd =] gClselitiaid
| 0.0M 0.
ri_CdiListener
0.1 TPEGTranscoder 0.1 |
m_Transcode 'ﬁ_Transcnjer |
|
Hranscode:list m_Transcofer f
+sefFiltervaid 0.1 _ |
telCdiMsyData |
|
-mpHeaderchar* |
T -mpData:char* =
|
|
|
|
_____________________ —
0.1+|,m_Filterlnfo 0.1
teiCdiFitterinfo

Brief Explanation:The two classes TTCCdiProvider and TTCCdiListener are thefang

classes for the transcoder component. They follow the event listestetecture. The Class

DAFManager and FileSystemManager are controlling clakseshe respective mediums.

DAFListener is the interface to the DAF component which helps to interactheitDAB.

TPEGTranscoder is the main class which is contains the fogithe transocding and

decoding of the SNI Component.

40

4.5.4 STATE DIAGRAM

Channel Closed

construct

destruct
close

init(params, listener)

Channel Open

select SP{SFI[SPF avail]

Idle Data Transmission

[SP lost]

stopScan
[end of SP-blocks] selectSP(SP)

scan(fromsP) scani fromSP)

| Scanning

Figure 4.9: State Diagram

Brief Explanation:The above is the state diagram for the transcoder. The initial state is the

“Channel Closed” state. Upon the initialization the state changes to “Chapere] I0le”.
It can go to the “Scanning state” in case the Service (DAB of File) is ndalaleailf the

service (DAB of File) is available then it goes to the “Data Transom'$state.

41

4.5.5 USE CASE REALIZATION

CDAFInterface
0.1
IDAFListener DAFListener DAFManager ==interface==
0. 0.1 TTCtifCdiProvider
_Daflistener _Dafdgr
+dchttvoid
+initvoid
+closewoid
+5electSPvoid
+scanvoid
+scanstopvoid
+openyaid
+setFiltervaid - 0-%q,m_CdiListener
TPEGTranscoderManager guelBeEE bl TTCtifCdiListener
+initvoid 1 +getBearerinfaCnfyvoid
+closewoid 01 Filah +appFiltertlvApplds
+gelectSPvoid - m_renar +clogeMityoid
+5canyoid FileSystemManager
+getBearerinfovaid o I 0.1 Avm_CdiListener
+openyoid

Figure 4.12: Use Case Realization for Scan Use Case

Brief Explanation: This is the Use Case Realization of the Scan Use case. It consists of the

classes which participate to complete the scan use case.

42

CHAPTER FIVE
MEMORY MANAGEMENT
5.1 INTRODUCTION

The memory system often determines a great deal about the belfeatioembedded system:
performance, power, and manufacturing cost. A great many seft@ahniques have been

developed over the past decade to optimize software to improve these chécacteris

The memory system is a main contributor to the performance andr powsumption of
embedded software; the total amount of memory required is alsonacoraponent of the
manufacturing cost of the hardware. Because memory systemidrelsgaso important to
embedded systems, a great deal of attention has been paid oversttdeqade to the

optimization of the memory characteristics of embedded softwre.

Memory management is usually divided into three areas: hardopeeating system, and
application, although the distinctions are a little fuzzy. The MenWapagement is mostly

concerned with application memory management.

Hardware memory management:Memory management at the hardware level is concerned
with the electronic devices that actually store data. Thikides things like RAM and

memory caches.

Operating system memory managementin the operating system, memory must be
allocated to user programs, and reused by other programs wheritosger required. The
operating system can pretend that the computer has more m#raorif actually does, and
also that each program has the machine's memory to itself; both of thésatanes of virtual

memorysystems.

Application memory management: Application memory management involves supplying
the memory needed for a program's objects and data struétomeghe limited resources
available, and recycling that memory for reuse when it is no tongguired. Because
application programs cannot in general predict in advance how much m#éregrgre going

to require, they need additional code to handle their changing memory requirements.

43

Application memory management combines two related tasks:
Allocation: When the program requests a block of memory, the memory manager m
allocate that block out of the larger blocks it has received thenoperating system. The part

of the memory manager that does this is known as the allocator.

Recycling: When memory blocks have been allocated, but the data they contaiforggan
required by the program, then the blocks can be recycled fae.r€hsre are two approaches
to recycling memory: either the programmer must decide whemory can be reused
(known as manual memory management); or the memory manageberaise to work it out

(known as automatic memory management).

5.2 FORM OF NEW AND DELETE %

Memory management concerns in C++ fall into two generabosdts: getting it right and
making it perform efficiently. Getting things right means iogllmemory allocation and
deallocation routines correctly. Making things perform efficientlly,the other hand, often

means writing custom versions of the allocation and deallocation routines.

Use the same form in corresponding uses of new and delete

Ex: string * stringArray =new string [100];

delete stringArray;

Everything above appears to be in order — the use of new is matchetheviise of delete,

but the programs behavior is undefined. At the very least, 99 aDthstring objects pointed

to by stringArray are unlikely to be properly destroyed, becthese destructors will not be

properly destroyed.

When new operator is used two things happen — First memory isiteliihpcsecond one or

more constructors are called for that memory .When delete iswedtiings happen: one or

more destructors are called for that memory, and then the measnde-allocated. Now the

guestion is that does the pointer being deleted point to a single objecrarray of objects?

The only way for delete to know is to use brackets in delete.

44

The correct code is as follows:

string * stringArray =new string [100];

delete [] stringArray;

Use Delete on pointer members in destructors.

Classes performing dynamic memory allocation will use netlvarconstructor to allocate the
memory and will later use delete in the destructor to dgeéhe memory. This is easy to get
right when first writing the class, provided of course, th& remembered to employ delete
on all the members that could have been assigned memory koastyuctor. However the

situation becomes more difficult as classes are maintained @img@need because the
programmers making the modifications to the class may not be ésewdro wrote the class

in the first place. Under these conditions, it's easy to fotygt adding a pointer member
almost always requires each of the following:

» Initialization of the pointer in each of the constructors. If no menwty be allocated
to the pointer in a particular constructor, the pointer should be inéthlio O(i.e. the
null pointer).

* Deletion of the existing memory and assignment of new memoryeiragsignment
operator.

* Deletion of the pointer in the destructor.

Failing to delete the pointer in the destructor, however, exhibily fao obvious external
symptoms. Instead it manifests itself as a subtle memoky le& also useful to delete the

null pointer in the destructor.

5.3 0UT OF MEMORY CONDITIONS

When operator new can't allocate the memory requested, it tlowsception. To solve this
problem a common C idiom is to define a type independent macrootatallmemory and
then check to make sure the allocation succeeded. For C++, su@tra might look

something as follows:

#define NEW (PTR, TYPE)
try

45

{
PTR =new TYPE;

}

catch

{
std::bad_alloc&

}

assert (0);

But the above macro suffers from the common error of using an ass$est a condition that
might occur in the production code (after all one can run out of meatagy time), but it

also has a drawback specific to C++: it fails to take int@@aicthe myriad ways in which
new can be used. There are three syntactic forms for gettim@lnjects of type T, and one

need to deal with the possibility of exceptions for each of this forms:

new T,
new T (constructor arguments);

new T[size];

This simplifies the problem, because clients can define their averloaded versions of
operator new, so programs may contain an arbitrary number efatiff syntactic forms for
using new. It is easier to set up things in such a way thheif@équest for memory is not
satisfied, an error handling function is called. This strateigs on the convention that when
the operator new cannot satisfy a request, it calls a cledif@ble error handling function
often called amew handleibefore it throws an exception.

To specify the out of memory handling function, clients cat_new_handlerwhich is
specified in the header <new> more or less like this:

typedef void(* new_handler)();

new_handler set_new_handler(new_handler p) throw()

new_handleris a typedef for a pointer to a function that takes and returnsngoptand

set_new_handles a function that takes and returnseav_handler

46

set_new_handler'parameter is a pointer to the function operator new should daltan’t

allocate the requested memory. The return valusebfnew_ handlers a pointer to the

function in effect for that purpose befaet_new_handlewas called.

set_new_handles used as follows:

/[function to call if operator new can’t allocate enough memory
void noMoreMemory()

{

cerr<<’Unable to satisfy request to memory\n”;

Abort ();

}

int main()

{

set_new_handler (hoMoreMemory);

int *pBigDataArray =new int{1000000000];

}

As it seems likely, operator new is unable to allocate spacesd many integers,

noMoreMemorywill be called, and the program will abort after issuing an emessage.

When operator new cannot satisfy a request for memory, ittballsew handler function not

once, but repeatedly until it can find enough memaory.

5.3.1. NEW HANDLER FUNCTION

A well defined new-handler must do one of the following:

Make more memory availabl&his allow operator new’s next attempt to allocate the
memory to succeed. One way to implement this strategyakowate a large block of
memory at program start up and then release it the firg thre new handler is
invoked. Such a release is often accompanied by some kind of warning usetise
that memory is low and the future requests may fail unlesséreory is somehow

made available.

Throw an exceptionThrow an exception of type std::bad_alloc or some type derived

from std::bad_alloc .Such exceptions will not be caught by operatqrseethey will

a7

propagate to the site originating the request for memory .(Thgpam exception of
different type will violate operator new’s exception specifaa) The default action
when that happens is to call abort so if the new handler is gothgpte an exception,

definitely want to make sure it's from std::bad_alloc hierarchy.

* Not Return:Typically by calling abort or exit, both of which are found in stendard
C library.

» Deinstall the new-handleii.e. pass the null pointer s®t_new_pointeilWith no new
handler installed, operator new will throw an exception of typebstd::alloc when it

attempts to allocate memory is unsuccessful.

* Install a different new-handlerlf the current new handler can't make any more
memory available, perhaps it knows of a different new handler ithahore
resourceful. If so, the current new handler can install the otkehardler in its place
(by calling set_new_handlg¢r The next time operator new calls the new handler

function it will get the one most recently installed.

This choice gives a considerable flexibility in implementing new handfeations.
C++ has no support for class specific new handlers. This behavidrecanplemented by
having each class provide its own versionseif new_handleand operator new. The classes
set_new_handleallows clients to specify the new handler for the clas$ [jkesthe standard
set_new_handleallows clients to specify the global new handler).The clagsé&ator new
ensures that the class specific new handler is used in pldbe gfobal new handler when
memory for class objects is allocated. Consider a class Mtah the memory allocation
failures have to be handled:

Class X

{

public:

static new_handler set_new_handler(new_handler p);

static void * operator new (size_t size);

private:

static new_handler currentHandler;

h

48

Static class members must be defined outside the class definition.

new_handler X::currentHandler; //sets currentHandler to O (i.e., null) by default

The set_new_handlefunction in class X will save whatever pointer is passed. tti will
return whatever pointer had been saved prior to the call. This istihatandard version of

set_new_handledoes:

new_handler X::set_new_handler(new_handler p)
{

new_handler oldHandler = currentHandler;
currentHandler =p;

return oldHandler;

}

The X operator new can be defined as follows:

void * X:.operator new(size_t size)

{

new_handler globalHandler = std::set_new_handler(currentHandler);
void *memory;

try

{

memory=::operator new(size);

}

catch(std::bad_alloc&)

{
std::set_new_handler(globalHandler);
throw;

}
std::set_new_handler(globalHandler);

return memory;

}

49

Clients of class X use its new-handling capabilities like this:

void noMoreMemory(); /ldeclaration of function to call if memory

allocation for X objects fails
X::set_new_handler(noMoreMemory); //set noMoreMemory as X’'s new-handling function
X *px1 = new X, /lif memory allocation fails, calls noMoreMemory
string *ps =new string; /lif memory allocation fails, calls the global new-

handling function (if there is one).

X::set_new_handler(0); IIset the X-specific new-handling function to nothing(i.e.
Null)
X * px2 = new X; /lif memory allocation fails, throw an exception immediately.

(There is no new-handling function for class X).

Using set_new_handlers a convenient, easy way to cope with the possibility of out of
memory conditions. Certainly it's a lot more attractive thanppmag every use of new inside

a try block.

Until 1993, C++ required that operator new return 0 when it was uralgisfy a memory
request. The current behavior is for operator new to throw a std:llzedexception, but a lot
of C++ was written before compilers began supporting the rewgedification. The C++
standardization committee didn’t want to abandon the establishi€drt@scode base so they
provided alternative forms of operator new (and operator new [f)cth@inue to offer the
traditional failure yields O behavior. These forms are called “pothforms because, they
never do a throw, and they employ nothrow objects (defined in the standaet kmew>) at

the point where new is used:

Class Widget { };

Widget *pwl= new Widget;

if (pw1l==0)

Widget *pw2 = new (nothrow) Widget;
if (pw2==0)...

50

Regardless of whether one uses “ normal” (i.e. exception —thgdwiew or "nothrow” new,
it's important to be prepared to handle memory allocation faildites easiest way to do that
is to take advantage eét_new_handler.

5.3.2 OPERATOR NEW AND DELETE %°

Conventions should be followed when writing operator new and operator .ddleEn

writing the operator new the following things should be taken care of.

Right Return Value: If the required memory is available then a pointer to it isrned .If
not then the exception of type std::bad_alloc is returned.

Calling an error handling function: Operator new actually tries to allocate memory more
than once, calling the error handling function after each faitheeassumption being that the
error handling function might be able to do something to free up somm®yeOnly when
the pointer to the error handling function is null does operator new throw an exception.

In addition C++ requires that operator new returns a legitipaitger even when 0 bytes are
requested.

Pseudo Code for a non member new looks like as follows:

void * operator new (size_t size)

{

if (size==0)

{

size=1,;

}

while (true)

{

//attempt to allocate sizes bytes;

if (the allocation was successful)

return (a pointer to the memory);

/lallocation was unsuccessful, find out what was the current error handling function is
new_handler globalhandler =set_new_handler(0);

set_new_handler(globalhandler);

51

if (globalHandler)(*globalHandler());

else throw std::bad_alloc();

}

}
Unfortunately there is no way to get at the error-handling fongbointer directly, so only
was to calket_new _handleo find out what it is.

For delete the things are less complex. The following is the pseudocode forrdieopelete:

void operator delete (void *rawMemory)

{

if (rawMemory == 0) return; //do nothing if the null pointer is being deleted.
//deallocate the memory pointed to by the rawMemory

return;

}

One of the common mistakes is that the operator new can be idhsrigibclasses. Most of
the class specific versions of operator new are designedsfoedic class, not for a class or
any of its subclasses. That is, given an operator new forsa #athe behavior of that

function is almost always carefully tuned for objects of sizedd{(X) — nothing larger and

nothing smaller .Because of inheritance, however it is possiblénhalperator new in a base
class will be called to allocate memory for an object of avedrclass. The best way to
handle this is to slough off calls requesting the “wrong” amoumh@iory to the standard

operator new:

void * Base::operator new(size_t size)

{

if(sizel=sizeof(Base)) //if size is wrong

return::operator new(size); //have standard operator
/Inew handle the request

/lotherwise handle the request here

52

The member version is also simple which is as follows:
Class Base
{
public:
static void*operator new(size_t size);

static void operator delete (void *rawMemory,size_t size);

¥
void Base:.operator delete(void *rawMemory ,size_t size)

{

if(rawMemory == 0) return; //do nothing if the null pointer is being deleted.

if(size!=sizeof(Base))
{
..operator delete(rawMemory);

return;

}

//deallocate the memory pointed to by the rawMemory

return;

}

5.4 AVOID HIDING THE NORMAL FORM OF NEW

A declaration of a name in an inner scope hides the same name rirscopes, so for a
function f at both global and class scope, the member functions will hide the gloliairfunc

void f (); //global function

Class X

{

Public:

void f (); /Imember function

%

X X;

FO; //calls global function

x.f(); /[calls X::f

53

This does not causes confusion, because global and member functiasuahe invoked
using different syntactic forms .However , if an operator newdded taking additional

parameters then it is as follows :

class X

{

public: void f();

/loperator new allowing specification of a new-handling function

static void * operator new(size _t size,new_handler p);

K

void specialErrorHandler(); //definition is elsewhere

X * px1 = new (specialErrorHandler) X; //calls X:: operator new

X *px2 = new X; [lerror
By declaring the function called “operator new “inside the ¢ldss access to the “normal”
flow of new is blocked.
One solution is to write a class specific operator new that sigpft “normal” invocation
form. If it does the same thing as the global version, that eaefficiently and elegantly
encapsulated as an inline function:

class X

{

public:

void f ();

static void * operator new (size_t size ,new_handler p);

static void * operator new(size_t size)

{

return::operator new (size);

}

X *px1 = new (specialErrorHandler) X;

/[callsX::operator new (size_t,new_handler)

X * px2 =new X; /[calls X::operator new (size_t)

h

54

An alternative is to provide a default parameter value for each additionalgtarame add to

the operator new:

Class X

{

public:

void f ();

static void * operator new (size_t size, new_handler p=0);
¥

X * px1 = new (specialErrorHandler) X;

X *px2 = new X;

Either way if it is needed to customize the behavior of the “airform of new , only the

function has to be rewritten ;callers will get the customizddthbier automatically when the

relink.

5.5 OTHER MEMORY MANAGEMENT TECHINQUES #%%2326

Shared Use of Memory

If some parts of the program work on data of the same typezmdat at strictly disjunctive
times, they can all store their data at the same locationvdacks are that this is likely to
introduce errors if the program is changed, so that the usageailst start to overlap. Also

initialization and/or cleanup of shared areas need to be considered carefully.

C and C++ offer the data type union to allow storing data of diftetgpes at the same
memory location. This is expansion of the concept of shared use of the same location.
Shared use of the same memory location is potentially dangebmuiswith good
documentation of the intention and usage of shared memory areaognanprshould stay

maintainable.
Data structure - Loosely associated values

If there is a structured data type with fields that are asd for a small number of allocated

objects, those fields can be removed from the object and accesbeal lmokup table. The

55

key for the lookup is usually the objects address. Removing the Widldshrink the objects
size, but the tradeoff is a slower access to the off-loaded fields.

Example:
Let's assume, there is a structure like this:
struct example_t

{

char * description;

/* more fields here */

And description is used only for a small fraction of all createdle_t structures, and then
4 bytes for most of them are being wasted. Those 4 bytes ceavbd at the expense of a
slower lookup and a lookup table. Overall the savings will only payf ¢iffe lookup table
needs less memory than the saved memory (4 bytes * number ofplexarnwvithout
description).
The lookup could be done with a hashtable that maps the object to the description string:
static Hashtable description_table;
void store_description(struct example_t *ex, char * description)

{

description_table.put(ex, description);

}

char * lookup_description(const struct example_t *ex)

{

return description_table.get(ex);

This way 4 bytes can be saved for each allocated examplghe Bum of those savings
outweights the size of the lookup table (i.e. because a huge numbeangdlext get allocated
and only very few have description strings) then overall this agstsinll reduce the memory

consumption of program.

56

5.6 BUFFER

The buffer is very important consideration while implementing the TPEG Decodee. t8e

data from the DAB arrives continuously and also the size of the binary TPES&diféerent,
therefore proper buffer mechanism is of utmost importance to avoid the loss of incotaing da
The buffer stores the incoming TPEG data which in turn is decoded by the decoder. The

buffer implemented in the software system was as follows:

Fixed Size Buffer:In this case only a limited number of messages can arrive at the same time
to the decoder. It is because the message buffer has a fixed buffer size.féhsizaif
implemented in the system was 1kb. There were various reason to choose such an simple
buffer mechanism:
» Simple Code:lt yields in a simple code, which can be tested, modified and corrected
easily.
» Ease in Testing:To test the code it was required to have a buffer which does not have
an overflow so the size was chosen at 1kb.
 TPEG over DAB: Since the TPEG signals over DAB are in testing phase at present,
therefore the possibility of buffer overflow is remote.
* No effect On DesignSince the Design of the module remains consistent irrespective
of the choice of the buffer mechanism, it would be relatively easy to replacgdtie fi

buffer with a floating self adjusting buffer later on.

BETTER ALTERNATIVE

Variable Self Adjusting Buffer: At the beginning of the decoding process the size of the
message buffer is fixed. Assume this size is 1KB (Say fk@mele it can store 200
messages).If at any moment there are more than 200 me#saigess to be stored, then the
size of the buffer is doubled. As soon as the size of the buffer isedbtii@re is buffer space

to store new messages. If this size turns out to be not enoughotiespwill be repeated and

the new size of the buffer will be of 800.

57

DISCUSSION OF THE SOLUTIONS

The process followed can be considered as one of the best methods to solve the gieem probl

Rational Unified Process helps to develop an iteration plan whichot®rttie project
lifecycle. Also the RUP prescribes certain important methaods tachniques which when

incorporated during the software engineering process give a robust design.

Requirement Engineering is of utmost importance which yieldsa vision of the long term
expectations of the clients from the software. It also miresthe risk in the failure of the
project as continuous interaction with the client stabilizes the design to atéait.e

Use Case Analysis leads to a robust, stable software desigm ug the basis of the
implementation. Since the software has to be finally embeddedhetoavigation system

memory issues have to be considered while implementation.

Memory Optimization is quite important and there should be a falanba with
implementation of memory management techniques to reduce the caynpfeke software
system .Therefore to limit the complexity of the softwasely important memory
management features are incorporated in the code. Robust desigualitg code helps

future developers to work easily.

In the project, | have synchronized the code with model using thelimgpdeol Together.
This helps to deliver a module which is consistent with the modeb. &by change in the
model automatically changes the code, thereby easing the pmfcessngineering. This
technique is most efficient in delivering high quality code syncheahizith the model view.
The client can view the model abstraction of the source code arebyhsuggest future

improvement easily.

The major disadvantage of the process which was felt during dfecpwas that it's a time
demanding process. But it was strongly felt by the company;ttiea¢ is higher need to
deliver high quality code along with design .This was the tradeoff betweerand quality.
Time restriction forced to take certain strategic implentemtadecision but the consistency

of code and model was maintained during the project lifecycle.

58

CONCLUSIONS

The TPEG Technology is an upcoming technology in the field of Trawmel Traffic
Information over Digital Audio Broadcasting. With the TPEG in thcess of being
standardized as an ISO Standard the importance of the thesis problem is evident.

There is future scope in the problem domain for better implenemtatf the buffer

techniqgues .A better buffer mechanism is suggested alreadyei thesis. The better
alternative suggests having a variable self adjusting buffezadsof the fixed buffer size.
When there is a possibility of a buffer overflow then the bufiee sxcreases to avoid the

problem.

Further when there is real time signal of TPEG over DAB th&ould be possible to test for
the buffer overflow conditions. Some unpredictable errors can arighe new buffer

mechanism which might have to be corrected. But it can bewstidconfidence that such
implementation corrections would be trivial. Also there is scodatbout the effectiveness

of the memory management in the code.

This component will be used by Robert BOSCH Group in the GST S@fepnel project;
Safety Channel is a three-year sub-project within the EC-siggp&ST (Global System for
Telematics) Integrated Project and runs from March 2004 - MagfD7.

http://gstforum.org/en/subprojects/safety channel/about gst safety kEhanne

Applications are under active development across Europe to deliver safetg-refatmation
to drivers. Safety Channel aims to define and develop a solution thansure the creation
and delivery of detailed safety information for all drivers, in all areessa&urope

Robert BOSCH Group is a member of the GST project and therefore this TPEG Decoder

software component is a part of the GST project.

59

REFERENCES

1) Why TPEG? ; The TPEG Project; 2003;
http://www.tpeg.org/pdf/iwhat_is_tpeg/T5_030807BM_D13 Why%20TPEG_6gr.pdf

2) Future TPEG Applications; The TPEG Project; 2003;
http://www.tpeg.org/pdf/standardisation/T5_030804DK_D13 future_3gr.pdf

3) End Users Friendly location Concepts; The TPEG Project; 2003;
http://www.tpeq.org/pdf/iwhat_is_tpeqg/T5 030804DK D13 _map%20tool_3gr.pdf

4) JPEG, MPEG and now TPEG why? ; The TPEG Project; 2003;
http://www.tpeg.org/pdf/what_is_tpeg/T5 031030BM_DK D13 Quick%20guide_10.pdf

5) TPEG —Design Philosophy; The TPEG Project; 2003;
http://www.tpeg.org/pdf/iwhat_is_tpeqg/T5_030804BM_D13 Design%20philosophy 6gr.pdf
6) TPEG clients- how they will be used? The TPEG Project; 2003;
http://www.tpeg.org/pdf/what_is_tpeg/T5_030804DK_D13_terminals_3gr.pdf

7) TPEG Location Referencing; The TPEG Project; 2003
http://www.tpeg.org/pdf/what_is_tpeg/T5_030804BM_D13 TPEG%20Loc%20coding%20co

ncept_4gr.pdf
8) How to migrate from code-centric to model-centric development using RaBoftalare

Architect; Aaron Lloydhttp://www-128.ibm.com/developerworks/rational/library/04/r-3247/

9) The Rational Unified Process; Thomas Meloche; President and Fellow Msiiate;
2003; http://www.menloinstitute.com/freestuff/whitepapers/rup.htm

10) The Rational Unified Process-An Introduction, Third Edition, Phillipe Kruchten,saddi
Wesley.

11) Agile Modeling and the Rational Unified Process (RUP); Scott W.Ambler;
http://www.agilemodeling.com/essays/agileModelingRUP.htm

12) Mastering Object-Oriented Analysis and Design with UML, 2003, Rational &aftw
13) A Survey of Approaches for Describing and Formalizing Use Cases; Rrisbkitibut;
http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html

14) UML 2 Use Case DiagramBhe Object Primer 3rd Edition: Agile Model Driven
Development with UML 2.

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
15) Getting from use cases to code, Part 1: Use-Case Analysis; Gary liEt@hnsww-

128.ibm.com/developerworks/rational/library/5383.html

60

16) Project Communication and the Unified Modeling Language; Art Taylor

http://www.informit.com/articles/article.asp?p=31942&segNum=3&ri=1

17) Designing GUI Applications with Windows FormErik Rubin, Ronnie Yates
http://www.informit.com/articles/article.asp?p=101720&seqNum=19
18) Lecture on UML and Use Cases; Dr. Harsh Verma; MIT EceroenArchitecture Project,

2000http://ac.mit.edu/ecap-general00/resources/uml.htm

19) The Unified Modeling Language-Reference Manual, James Rumbaugdadedson,
Grady Booch; Addison Wesley.

20) Effective C++: 50 Special Ways to Improve Your Program and De<iyBdRion; Scott
Meyers

21) Memory Model for Multithreaded C++; Andrei Alexandrescu, Hans Boehm
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2004/n1680.pdf

22) C++ Memory Management: From Fear to Triumph, Part 3; George Belotskgill®’
Emerging Telephony Conference, CA
http://www.linuxdevcenter.com/pub/a/linux/2003/08/07/cpp_mm-3.htmi?page=1

23) Rediscover the Lost Art of Memory Optimization in Your Managed Code; ErikiBrow
MSDN Magazine January 2005;
http://msdn.microsoft.com/msdnmag/issues/05/01/MemoryOptimization/tatpx

24) Introduction to Rational Unified Process; Prof.Kevin Englehart, Departmelgaifi&al
and Computer Engineering, University of New Brunswick.
http://www.ee.unb.ca/kengleha/courses/ CMPE3213/0O0AD/02UnifiedProcessleigfram

e.htm

25) C++ Memory and Resource Management; Stephen Dewhurst;

http://www.informit.com/articles/article.asp?p=30642&seagNum=2

26) Code Optimization; Hansjorg Malthaner;
http://library.simugraph.com/articles/opti/optimizing.html

27) .NET Code OptimizatiorRichard Grimes; Net Newsletter; Jan 2003
http://www.windevnet.com/documents/s=7446/win1055785679994/

28) Managed C++: Read and Write Registry Keys and Values; Tom Archer, Archer

Consulting Group; December 2004
http://www.codeguru.com/Cpp/W-P/ce/registry/article.php/c8859/
29) The C++ Standard Library — A Tutorial and Reference, Nicolai M.Josuttis; &xddis

Wesley

61

