
 1

Master Thesis

Implementation of a TPEG Decoder.

By

Rahul Goel

Supervised By
Prof. Dr.rer.nat. Ralf Moeller

Arbeitsbereiche Softwaresysteme

Prof.Dr.F. Mayer Lindenberg
Arbeitsbereiche Technische Informatik VI

At

Robert Bosch Group, Hildesheim
Department of Corporate Research/Advanced Engineering &

Multimedia
 Advisor: Frau Elisa Liebanas

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Information and Media Technologies

 2

DECLARATION

I declare that:

I have carried out this work myself, all literally or content-related quotations from other

sources are clearly pointed out, and no other sources or aids other than the ones specified

are used.

Hildesheim, January 2006.

Rahul Goel.

 3

ACKNOWLEDGEMENT

I am deeply indebted to my supervisor and guide Prof. Dr. Ralf Moeller for his invaluable

technical guidance, constructive criticism and moral support provided during my entire tenure

of work.

I would like to additionally thank him for providing me an opportunity to work under his

guidance and gain valuable experience.

I am also thankful to Frau Elisa Liebanas, my advisor at Robert BOSCH for constant guidance

and motivation without which this thesis would not have been possible.

I am grateful to her for providing me the direction and support throughout my tenure in

Robert BOSCH Group and also giving me an opportunity to work on a development project

during my thesis.

I would also like to give my special thanks to Prof. Ulrich Killat, Course Coordinator

Information and Media Technologies and all the teaching staff of Technical University

Hamburg-Harburg, Germany for giving me help and encouragement that I needed during my

Masters Studies at the University.

Rahul Goel.

24 January, 2006.

Hildesheim, Germany.

 4

CONTENTS

1. Introduction

1.1 Introduction 1

1.2 Motivation 2

1.3 Goals of the Master Thesis 3

1.3.1 Problem Discussion 3

1.3.2 Implementation View 4

1.4 Overview of the Report 5

2. TPEG Protocol 6

2.1 TPEG Basics 6

2.2 Requirements 7

2.2.1 Language Independence 8

 2.2.2 Filtering 9

 2.2.3 Multimodal Applications 9

 2.2.4 No need of Location Database in Client Device 10

2.3 TPEG Transmission 11

2.4 TPEG Layer Model 12

3. Rational Unified Process 14

 3.1 Introduction 14

 3.2 Four Process Phases 15

 3.3 Core Workflows 16

 3.4 Best Practices of Software Engineering 17

 3.4.1 Develop Iteratively 17

 3.4.2 Manage Requirements 17

 3.4.3 Use component Architectures 19

 3.4.4 Model Visually 19

 3.4.5 Continuously Verify Quality 19

 3.4.6 Best Practices Reinforce Each Other 20

 3.5 RUP implements Best Practices 21

 4. Use Case Analysis 22

 4.1 Requirements Engineering 22

 4.2 Use Case Diagrams 23

 5

 4.3 Use Case Analysis 25

 4.3.1 Supplement the Use Case Description 27

 4.3.2 Find Classes from Use Case Behavior 27

 4.3.3 Distribute Use Case Behavior to Classes 30

 4.3.4 Describe Responsibilities 31

 4.3.5 Qualify Analysis Mechanisms 31

 4.3.6 Unify Analysis Classes 32

 4.4 Identify Design Elements 33

 4.4.1 Identify Classes and Subsystem 33

 4.4.2 Identify Design Classes 33

 4.4.3 Group Design Classes in Packages 34

 4.4.4 Identify Subsystem Interfaces 36

 4.4.5 Identify Reuse Opportunities 36

 4.4.6 Update Organization of Design Elements 36

 4.5 Analysis and Design Results 38

 4.5.1 User Interface Prototype 38

 4.5.2 Use Case Model 39

 4.5.3 Class Diagram 40

 4.5.4 State Diagram 41

 4.5.5 Use Case Realization 42

 5. Memory Management 43

 5.1 Introduction 43

 5.2 Memory Management in C++ 44

 5.3 Out of Memory Conditions 45

 5.3.1 New Handler Function 47

 5.3.2 New and Delete 50

 5.4 Avoid Hiding the Normal Flow of New and Delete 53

 5.5 Other Important Memory Optimization Techniques 55

 5.6 Buffer 57

 6. Discussion of the Solution 58

 6. Conclusions 59

 7. References 60

 1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION 1

TPEG stands for Transport Protocol Experts Group. TPEG Technology is an upcoming

European and ISO pre-standard. TPEG is a new bearer independent TTI (Travel and Traffic

Information) broadcast protocol that was initiated by BBC in 1997.The TPEG Project

obtained EC funding within the 5th Framework program covering research and development

for new information society technologies. TPEG project dealt with the development of

language independent and multi – modal traffic and travel information broadcasting for the

European citizen. TPEG is developed with the support of major European broadcasters Union

and is being developed by EBU (European Broadcasting Union, is an international association

that groups all national network/public service broadcasters in Europe.) in full partnership

with the receiving industry.

The name “Transport” was chosen to indicate two meaning “Transport “as in the context of

traffic and travel ,and also meaning “Transport” in the context of moving information (data)

from a service provider to the end user. It was foreseen that the TPEG technology would be

able to handle information delivery as far outside the traditional TTI domain, as well as very

effectively within this domain.

 Digital Audio Broadcasting is a new transmission system bringing the benefits of digital to

the world of radio. With Digital Radio capturing the radio market, it has become imperative to

concentrate on the Data Services like TPEG which can be carried over DAB.TPEG messages

are delivered from service providers to end users, and are used to transfer application data

from the database of a service provider to an end user‘s equipment.

The motive behind TPEG was to develop a new protocol for use in the multimedia

broadcasting environment to develop applications, service and transport features which will

enable travel related messages to be coded, decoded and filtered.

During the TPEG project many ideas were developed and offered to CEN/ISO for

standardization. Now the EBU is supporting the open TPEG Forum to continue development

 2

and maintenance of the TPEG technology specifications and promote implementation of

TPEG services.

The TPEG Forum was established with the following objectives:

1. To encourage implementation of TPEG in services and products.

2. To facilitate exchange of information about practical implementation of TPEG.

3. To maintain the existing TPEG standards.

4. To develop new applications of TPEG and, where appropriate to develop new

specifications.

1.2 MOTIVATION 2,3

 TPEG is relatively new protocol for Travel and Traffic Information. But with the Digital

Broadcasting going to replace the present system, it is imperative that in future TPEG will be

the ISO standard as other protocol like JPEG, MPEG.

TPEG can be used on many language media (DAB, DVB, Internet etc.) for the broadcasting

of language independent TTI. TPEG permits to achieve many innovative Traffic and Travel

Information (TTI) services that can support all modes of transport with full language

independence and location database independence. The existing system RDS-TMC (Radio

Data System–Traffic Message Channel) suffers from the deficiency that it addresses only road

traffic. TPEG already support the following three applications:

1. TPEG-RTM/Road Traffic Information

2. TPEG-PTI/Public Transport Information

3. TPEG-SNI/Service and Network Information.

Basically the application generates the TPEG data in the binary format which has to be

decoded by the TPEG decoder in the receiver.

A number of other applications are feasible such as Parking Information, Weather Information,

Road Congestion status and travel time information, Emergency and Environmental

Information etc. TPEG in combination with DAB (digital radio) will revolutionalize the

people’s opportunities to get more and better traffic information thus making life simpler for

many people. Digital Radio will use TPEG Technology to deliver road traffic messages,

 3

public transport information and many other TTI services. The specification for the Road

Traffic Message (RTM) Application and SNI (Service and Network) Application are stable,

therefore it is required to implement Decoder for the respective applications. In this thesis the

major aim is to develop decoder for the SNI application.

1.3 GOAL OF THE MASTER THESIS

1.3.1 PROBLEM DISCUSSION

The problem to be solved consisted of many parts consisting of software engineering

problems and problems relating to the TPEG Protocol and Technology. The problem can be

described as follows:

1) Architecture View (Implementation View): It was of utmost importance to have a

portable system, which could be easily re-engineering with minimal effort to work on

other environments such as Linux. Also the component had to be reusable.

2) Robust Design: The problem also consisted of producing a robust Design which

fulfills the Use Case Model. It is felt that design is more important than the code

because design visualizes the code and makes it easy for third party including clients

to understand the code in a better way and also leaves sufficient room for further

enhancements. Also it is a well known fact that coding is a relatively easier process,

but having a design guides the programmer to deliver code in an effective way.

3) Decoder Implementation and Memory Management: Since there is a resource

limitation in terms of memory, it is of prime importance to have effective memory

optimization techniques incorporated in the software which prevents memory leaks

and subsequent wastage of memory.

4) Buffer Mechanism Decision: Since the TPEG signal arrives over DAB continuously,

there should be an appropriate Buffer mechanism which handles the incoming data.

 4

1.3.2 IMPLEMENTATION VIEW

Figure 1.1: Implementation block diagram

The following is the brief explanation of the different components of the diagram:

• TPEG Transcoder

• Decodes SNI Component

• Returns the transcoded TPEG Message to TPEG Controlling Framework

• This component is portable (with trivial modification) and reusable.

• TPEG Controlling Framework

• Interface between GUI and Transcoder

• This component is responsible for initiating the decoding process.

• TPEG CI

• Standard Interface of the Transcoder Component

• TPEG-UI IF

• Standard Interface between Framework and GUI

File
Handling

DAF Lib DAF
Interface

TPEG Transcoder
(SNI Decoder)

DAB Receiver
(Digital radio)

TPEG
UI-IF

User UI

TPEG Controlling
Framework

RTM Decoder

TPEG CI

Part of Master
Thesis

File
Interface

 5

1.4 OVERVIEW OF THE REPORT

The second chapter discusses the TPEG Protocol and its characteristics. This chapter

primarily deals with developing the background understanding of the TPEG Protocol. The

third chapter discusses the Rational Unified Process and its importance as a software

engineering process. The fourth chapter describes the process of Use Case Analysis in detail

and also puts forward the important result in the analysis and design phase. Finally the fifth

chapter discusses the importance of memory optimization and important techniques of

memory optimization.

 6

CHAPTER 2

TPEG PROTOCOL

2.1 TPEG BASICS 4

Figure 2.1: TPEG in a NUTSHELL

Traffic and Travel Information content is delivered to end-users by many mechanisms,

especially from the public service broadcasters (PSB) who deploy spoken announcements,

RDS-TMC, teletext and the internet to deliver such content. But, of course the content has to

be collected and edited according to rigorous standards to ensure it is timely and accurate. TTI

service provision is therefore all about collection, editing and delivery of information.

To facilitate a good understanding of the processes, two segments have been coined which are

shown in the figure 2.1. The content segment covers all possible sources of information that

 7

must be collected and processed before the delivery segment can be deployed to send the

information to the end-user.

2.2 REQUIREMENTS

The requirements which TPEG fulfills are:

1. Bearer Independence (TPEG data is transported via DAB, DVB, Internet, GSM

etc): The same TTI is transportable via all bearer systems for digital signals (Digital

Radio, Digital Television, Internet, Mobile Communication, Networks etc.) in order to

reach the customers whenever they are and whichever vehicle they are using.

2. Language Independence: User is free to selects his preferred language.

3. Personalized Information: Through Advanced filter options (geographical area,

severity of events, application selection etc.) the user is able to easily personalize the

information presented to him/her.

4. Multi and Inter Modality: Information for all transport modes (rail, road, air ...) is

provided in order to enable the journey with all transport modes and inter modal

mobility.

5. Independence from the location database on the terminal side: A generic Location

Information Referencing System enables the description of geographical points,

segments and areas for all Information with geographical relevance, independent from

Transport modes and applications. TPEG uses common forms of location referencing

to enable the receiver need not have a location database.

6. Addresses all kind of terminal : It addresses all kind of terminal from cheap ones

equipped with simple text displays up to devices with digital maps ,GPS receiver etc

7. Ease Implementation both cost wise and technically: Offers a high level of

precision concerning event description and geographical referencing.

 8

2.2.1 LANGUAGE INDEPENDENCE 5

RDS-TMC has shown the way for information data delivery serving a mobile end-user who

wishes to obtain content when in a locality using a language other than her/his native

language. The concept is implemented such that the client device presents information in the

language of choice of the end-user. RDS-TMC is limited because it relies upon pre-

determined phrases - often not exactly what the service provider would wish to express.

TPEG technology easily satisfies the language independence requirement by using table code

values across the “on-air” interface to deliver much of the content.

The tables are extensible, with legacy compatibility. Every table contains a so called “default

word” which is a generic word for the content of the table and this allows a client device that

does not have the most recent table installed to display the“default word” to convey a slightly

more general meaning in the case when it cannot display a word for the actual transmitted

code value.

There are various possible client device “models” which the TPEG tables method permits

those with embedded tables and those without tables .Specific TPEG client devices(i.e. such

as DAB based navigation systems) will be manufactured with the TPEG tables already

installed, appropriate to the market in which they are sold. Thus they will be able to display

all the words up to their time of manufacture and any extended words used by a service after

that time will require the client device to resort to the use of the default word.

In the case of non specific client devices (i.e. devices not built specially for TPEG services

and thus not internally equipped with the TPEG tables) then table downloading (of the

appropriate language required) at the time of use is implemented, such as when accessing a

web based service, delivering tpegML, and using a standard browser to render the content in a

suitable language on an appropriate display. This situation will include any extended words

and does not require the use of a default word.

TPEG technology goes a step further by "decomposing" the information into essentially

single words, which can be more readily translated into various languages. Then the TPEG

message construction concept allows for the available information about an event to be

 9

assembled into potentially very rich and informing messages, exactly as the service provider

would wish.

2.2.2 FILTERING 6

TPEG technology has been developed in the context of broadcast service delivery, where

messages are delivered to many, many client devices. At any point in time only some of the

end-users would wish to receive particular information (e.g. information about traffic jams in

a city more than 200 km away is not useful).To allow large amounts of information to be

broadcast, and yet not overload the end-users with data of little use to them, the TPEG design

philosophy, through explicit coding, is built on the idea of client filtering. This allows end-

users to choose messages based on any number of criteria, such as type of event, location,

mode of transport, direction of travel etc.

2.2.3 MULTIMODAL APPLICATIONS

TPEG is the first European TTI application that covers all modes of transport across the entire

transport landscape. It can serve the motorist in the urban area as well as the bus passenger,

the intercity traveler and the long distance driver. TPEG-RTM has been designed to cover

Road Traffic Messages regardless of location. It is ideally suited to urban information because

of the richness of content that it can offer. But furthermore TPEG technology is designed to

facilitate many more applications covering many other aspects of the TTI domain. Already

TPEG-PTI allows a service provider to deliver comprehensive public transport information

about airplane, bus, ferry, tram, and train services.

It does not attempt to deliver full timetable information, which can be obtained from many

other sources already, but it does allow very detailed service/disruption information changes

to be delivered to end-users. With the ability to link information it is possible to deliver

various alternate routings to a particular destination.

So TPEG technology extends multi-modal information services far beyond anything so far

attempted by such technologies as RDS-TMC and puts the delivery of TTI back on track to be

a ubiquitous source of information that ideally suits Europe’s mobility objectives.

 10

2.2.4 TPEG HAS NO NEED FOR LOCATION DATABASE IN CLIENT DEVICE 7

Public Service Broadcasters collect and deliver wide ranging multimodal content, but the

possibility for data delivery provided by Europe’s first TTI data technology RDS-TMC had

significant limitations. The system is essentially limited to inter-urban road events and every

decoder client must have a location database to interpret any message received. This has

created a complex situation for all end-users, and this drawback is still not fully resolved.

TPEG technology overcomes this limitation by the introduction of TPEG-Loc, which is a

method of delivering very rich location referencing information with every message, so that

client devices do not need a location database. The biggest advantage is that TTI for densely

populated urban areas can now be delivered. Navigation systems with digital maps can

"machine read" the location content and localize an event directly onto the map display. A

text only client device (e.g. a PDA) is able to present locally found names such as a railway

station name and a platform number, directly to an end-user as a text message.

The TPEG location referencing system is built on the principle that the location is generated

when needed and not taken from predefined locations stored in a database.

This means that the service provider must have a vector map covering its service area. These

maps are quite expensive and most providers using predefined locations like TMC do not

have vector maps.

The availability of this map made it possible to develop a tool, which can generate locations

on the fly according to the structure in the TPEG location referencing system. The vector map

is built from multiple maps layers; each layer contains different types of information. The

bottom layers generate contours of the country, lakes etc. By choosing adequate map layers,

the area covered by the circle will filter out relevant information for that point, eg: road

numbers, street names, community names etc.

It is possible to choose which map layers (e.g. national roads, city, streets etc.) are to be used

for each type of location, and there are possibilities to define and edit specific map layers to

get relevant information automatically. Even the type of location like different road objects,

 11

building and geographical sites can be utilized by referring to table entries in the actual map

layer. The output from the map tool produces the actual location in the locML format.

2.3 TPEG TRANSMISSION

TPEG Technology uses a byte oriented stream format, which may be carried on almost any

digital bearer with an appropriate adaptation layer. TPEG messages are delivered from service

providers to end users and the used to transfer application data from the database of a service

provider to the end user equipment. TPEG is intended to operate via almost any simple digital

data channel, and it assumes nothing of the channel other than the ability to convey a stream

of bytes.

In Figure 2.2, a variety of possible transmission channels are shown. The only requirement of

the channel is that a sequence of bytes may be carried between the TPEG generator and the

TPEG decoder. This requirement is described as “transparency“. However it is recognized

that data channels may introduce errors. Bytes may be omitted from a sequence, bytes may be

corrupted or additional and erroneous data could be received. Therefore TPEG incorporates

error detection feature at appropriate points and levels.

There are basically two formats for TPEG messages –tpegML and TPEG binary. The

difference between tpegML and TPEG binary concerns only the format and not the content, as

both variants are designed to map on onto each other precisely. Therefore the differences

concern mainly the size of the data used and the accessibility. As there exist already a lot of

software tools and libraries it is comparatively easy to handle messages in XML format as

long as there are enough hardware resources and bandwidth. However, in an area of limited

resources, one can save memory and/or bandwidth by using the binary format. For this reason

the binary format is preferred for the DAB while on the internet it is possible to use both, the

binary and the XML.

 12

Figure 2.2: TPEG data may be delivered simultaneously via different bearer channels.

2.4 TPEG LAYER MODEL

The TPEG protocol is structured in a layered manner and employs a general purpose framing

system which is adaptable and extensible, and which carries frames of variable length. This

has been designed with the capability of explicit frame length identification at nearly all levels,

giving greater flexibility and integrity, and permitting the modification of the protocol and the

addition of new features without disturbing the operation of earlier receiver/decoder model.

TPEG application contains all the information by a client TPEG decoder to present all the

information intended for the end-user when it was originated by the service provider.

TPEG technology has been designed to be usable for a wide range of applications that require

the efficient transmission of point to point and multicast and may easily be encapsulated in

Internet Protocol.

• Layer 1 is the physical layer: This defines the transmission medium (radio waves,

wire, optical etc.) .One particular bearer can make use of different physical layers.

TPEG
generat
or

DAB
DARC
DVB
Internet TPEG

Decoder

Graphics

Text

Navigation

Speech

Byte Byte

 13

• Layer 2 is the Data Link layer: This layer consists of wide range of bearers, which

are suitable carriers for the TPEG protocol. An adaptation layer may be required in

order to map the TPEG stream onto the bearer.

• Layer 3 is the Network Layer: This layer defines the meaning for synchronization

and routing.

• Layer 4 is the Packetization Layer: Components are merged into a single stream and

encrypted and/or compressed.

• Layer 7 is the Application Layer: top most level in TPEG.

Application

Layer OSI

Layer 7

Packetization

Layer OSI

Layer 4,5,6

Network

Layer OSI

Layer 3

Data Link

Layer OSI

Layer 2

Physical

Layer OSI

Layer 1

Figure 2.3: TPEG Protocol Layers

Service and Network

Information

Application

 (e.g.) Road Traffic

Message

Application

TPEG Frame Structure

Synchronization

Adaptation Adaptation Adaptation Adaptation

DAB

DVB

DARC

Internet

Radio Wave

“piece of wire”

 14

CHAPTER 3

RATIONAL UNIFIED PROCESS

3.1 INTRODUCTION 8, 9

The Rational Unified Process is iterative software engineering process developed and

marketed originally by Rational Software and now IBM. The goal of this process is to

produce, within a predictable schedule and budget, high quality software. The RUP is not a

single concrete prescriptive process, but rather an adaptable process framework. As such,

RUP describes how to develop software effectively using proven techniques. While the RUP

encompasses a large number of different activities, it is also intended to be tailored, in the

sense of selecting the development processes appropriate to a particular software project or

development organization. Rational Software offers a product (known as the Rational Unified

Process Product) that provides tools and technology for customizing and executing the

process. 24

The Unified Process has three distinguishing characteristics which are as follows: 10

• Use-Case Driven – A large part of the RUP focuses of modeling. The process

employs Use Cases to drive the development process from inception to deployment.

• Architecture-Centric - The process seeks to understand the most significant static

and dynamic aspects in terms of software architecture. The architecture is a function

of the needs of the users and is captured in the core Use Cases. RUP suggests a five

view approach. The following summarizes the five views :

The Logical View: This view of the architecture addresses the functional requirement

of the system, what the system should do for its end users. It is an abstraction of the

design model and identifies major design packages, subsystems and classes.

The Implementation View: This view describes the organization of the static software

modules in the development environment in terms of packaging and layering and in

terms of configuration management.

The Process View: This view addresses the concurrent aspects of the system at

runtime-tasks, threads, or processes as well as their interactions.

 15

The Deployment View: This view shows how the various executables and other runtime

components are mapped to the underlying platforms or computing nodes.

The Use Case View: It consists of few key scenarios or use cases. Initially they are used to

drive the discovery and design of the architecture.

• Iterative and Incremental - The process recognizes that it is practical to divide large

projects into smaller projects or mini-projects. Each mini-project comprises an

iteration that results in an increment. Iteration may encompass all of the workflows in

the process. Iteration is planned using Use Cases.

3.2 FOUR PROCESS PHASES 11

The Unified Process consists of cycles that may repeat over the long-term life of a system. A

cycle consists of four phases: Inception, Elaboration, Construction and Transition. Each cycle

is concluded with a release, there are also releases within a cycle. In each phase on progresses

iteratively, and each phase consists of one or several iterations .The four phases are as follows:

• Inception Phase - During the inception phase the core idea is developed into a

product vision. In this phase, reviewing and confirming of the understanding of the

core business drivers is done. The basic stress is on understanding the business case

for why the project should be attempted. The inception phase establishes the product

feasibility and delimits the project scope.

• Elaboration Phase - During the elaboration phase the majority of the Use Cases are

specified in detail and the system architecture is designed. This phase focuses on the

requirements, but some software design and implementation is aimed at prototyping

the architecture, mitigating certain technical risks by trying solutions, and learning

how to use certain tools and techniques

• Construction Phase - During the construction phase the product is moved from the

architectural baseline to a system complete enough to transition to the user community.

The primary focus is on design and implementation.

 16

• Transition Phase - In the transition phase the goal is to ensure that the requirements

have been met to the satisfaction of the stakeholders. This phase is often initiated with

a beta release of the application. Other activities include site preparation, manual

completion, and defect identification and correction. The transition phase ends with a

postmortem devoted to learning and recording lessons for future cycles.

3.3 CORE WORKFLOWS

The Unified Process identifies core workflows that occur during the software development

process. These workflows include Business Modeling, Requirements, Analysis, Design,

Implementation and Test. The workflows are not sequential and likely will be worked on

during all of the four phases. The workflows are described separately in the process for clarity

but they do in fact run concurrently, interacting and using each other’s artifacts.

Figure 3.1: Rational Unified Process.

As the "humps" in Figure 3.1 illustrate, the relative emphases of the disciplines change over

the life of the project. For example, in early iterations more time is spent on Requirements,

and in later iterations more time is spent on Implementation. Configuration and Change

 17

Management, Environment, and Project Management activities are performed throughout the

project. However all disciplines are considered within every iteration.

3.4 BEST PRACTICES OF SOFTWARE ENGINEERING

1. Develop Iteratively

2. Manage Requirements

3. Use component Architectures

4. Model Visually

5. Continuously Verify Quality

6. Manage change

3.4.1 DEVELOP ITERATIVELY

Developing iteratively is a technique that is used to deliver the functionality of a system in a

successive series of releases of increasing completeness. Each release is developed in a

specific, fixed time period called iteration. The earliest iteration addresses the greatest risks.

Each iteration includes integration and testing producing an executable release.

Iterations help to accomplish the following:

• Resolve major risks before making large investments.

• Enable early user feedback.

• Focus project short term objective milestones.

• Make possible deployment of partial implementations.

One applies the waterfall model within each iteration and the system evolves incrementally.

3.4.2 MANAGE REQUIREMENTS

Many of the failures in the software development are attributed to incorrect requirement

definition from the start of the project to poor requirements management throughout the

development lifecycle. Therefore it is very important to manage the requirements throughout

the software lifecycle .Requirement management deals with the problem that the right

problem is being solved and the right system is being built.

The following are the important aspects of requirement Management:

• Analyze the Problem

• Understand User Needs

 18

• Define the System

• Manage Scope

• Refine the System Definition

• Manage Changing Requirements

Managing Requirements involve the translation of stakeholder requests into a set of key

stakeholder needs and system features. These in turn are detailed into specifications for

functional and nonfunctional requirements. Detailed specifications are translated into test

procedures and user documentation.

Figure 3.2: Traceability Block Diagram

Traceability allows us to:

• Assess the project impact of a change in a requirement.

• Assess the impact of a failure of a test on requirements (that is, if the test fails, the

requirements may not be specified).

• Manage the scope of the project.

• Verify that all the requirements of the system are fulfilled by the implementation.

• Verify that the application does only what it is intended to do.

• Manage change.

Needs

Features

Software
Requirement

Test Script

Design

User
Docs

T
raceability

Solution
Space

Problem
Space

Problem

 19

3.4.3 USE COMPONENT ARCHITECTURE.

A software component can be defined as a physical, replaceable part of the system that

packages implementation, and conforms and provides the realization of a set of interfaces. A

component represents a physical piece of the implementation of a system, including software

code or equivalent such as scripts or command files. A software system’s architecture is

perhaps the most important aspect that can be used to control the iterative and incremental

development of a system throughout its life cycle.

The most important property of architecture is resilience – flexibility in the face of change. To

achieve it, architects must anticipate evolution in both the problem domain and the

implementation technologies to produce a design that can gracefully accommodate such

changes. Key techniques are abstraction, encapsulation and object oriented analysis and

design. The result is that applications are more maintainable and extensible.

3.4.4 MODEL VISUALLY

A model is a simplification of reality that provides a complete description of a system from a

particular perspective. Modeling is important because it helps the development team visualize,

specify, construct and document the structure and behavior of system architecture.

In building the visual model of a system, many different diagrams are needed to represent

different views of the system. The UML provides a rich notation for visualizing models.

This includes the following key diagrams:

• Use Case diagrams to illustrate user interactions

• Class Diagrams to illustrate logical structure

• Object Diagrams to illustrate objects and links

• Deployment diagrams to illustrate physical structure of the software

• Activity Diagrams to show the mapping of software to hardware configurations.

• State chart diagrams to illustrate behavior

• Interaction diagrams to illustrate behavior.

 20

3.4.5 CONTINUOUSLY VERIFY QUALITY

In many organizations, software testing accounts for 30% to 50 % of software development

costs. Yet most people believe that software is not well tested before it is delivered. This

contradiction is rooted in clear facts. First, testing software is enormously difficult. The

different ways particular program may behave are almost infinite. Second, testing is typically

done without clear methodology and without the required automation or tool support. While

the complexity of software makes complete testing an impossible goal, a well conceived

methodology and use of state of art tools can greatly improve the productivity and

effectiveness of the software testing. It is lot less expensive to correct defects during

development than to correct them after deployment. Important Points are:

• Test for key scenarios ensure that all requirements are properly implemented.

• Poor application performance hurts as much as poor reliability.

• Verify software reliability –memory leaks, bottlenecks.

• Test every iteration – automate test.

3.4.6 BEST PRACTICES REINFORCE EACH OTHER

Best Practices

Develop Iteratively

Manage Requirements

Use Component Architecture

Model Visually

Continuously Verify Quality

Manage Change

Figure 3.3: Best Practices Reinforce Each Other

Ensures users are involved as
requirement evolve

Validates architectural decisions early
on

Addresses complexity of
design/implementation

Measures quality early and often

Evolves baselines incrementally

 21

Each of the best practices reinforces each other and in some case enables each other. Figure

3.3 shows an example how iterative development leverages the other five best practices.

However, each of the other five practices also enhances iterative development .For example

iterative development done without adequate requirements management can easily fail to

converge into solution. Requirements can change at will, users cannot agree, and the iterations

go on forever.

When requirements are managed, this is les likely to happen. Changes to requirements are

visible, and the impact on the development process is assessed before the change is accepted.

Convergence on a stable set of requirements is ensured .Similarly; each pair of best practices

provides mutual support.

3.5 RUP IMPLEMENTS BEST PRACTICES 11

The RUP captures the best practices in modern software development in a form that can be

adapted for a wide range of projects and organizations. The Rational Unified Process provides

each team member with the guidelines, templates and tool mentors necessary for the entire

team to take full advantage of among others the following best practices. The UML provides a

standard for the artifacts of development (semantic models, syntactic notation, and diagrams):

the things that must be controlled and exchanged.

The following characteristics of RUP help to implements best practices:

• The dynamic structure of RUP creates the basis of iterative development

• The Project Management discipline describes how to set up and execute a project

using phases and iterations

• The Use Case Model of the Requirements discipline and the risk list determine what

functionality has to implemented during iteration

• The workflow details of the requirements discipline show the activities and artifacts

that make requirement management possible.

• The iterative approach allows to identify components, and to decide which one to

develop, which one to reuse and which one to buy.

• The UML used in the process represents the basis of visual modeling and has become

the de facto modeling language standard.

• The focus on the software architecture allows articulating the structure: the

components, the ways in which they integrate and the fundamental mechanisms and

patterns by which they interact.

 22

CHAPTER FOUR

USE CASE ANALYSIS

4.1 REQUIREMENT ENGINEERING 12

The purpose of the requirement discipline is to:

• To establish and maintain agreement with the customers and other stakeholders on

what the system should do.

• To provide system developers with a better understanding of the system requirements.

• To define the boundaries of (delimit) the system.

• To provide the basis for the planning the technical contents of iterations.

• To provide a basis for estimating cost and time to develop the system.

• To define a user interface for the system, focusing on the needs and goals of the users.

The analysis and design discipline gets its primary inputs (Use Case Model and Requirement

Specification) from Requirements. Flaws in the Use Case Model can be discovered during

Analysis and Design; change requests are then generated, and applied to the Use Case Model.

Relevant Requirements Artifacts:

A use case is an object-oriented modeling construct that is used to define the behavior of a

system. The Use Case Model describes what the system will do. The Use Case Model serves

as a contract between the customer, the users, and the system developers .It allows customers

and users to validate that the system will become what they expect and allow system

developers to ensure that what they build is what they expected. The Use Case Model consists

of the use cases and actor. Each use case in the model is described in detail, showing step-by-

step how the system interacts with the actors and what the system does in the use case. The

Use Case Specifications is a document where all of the use case properties are documented

(for example brief description and use case flow of events).

 23

4.2 USE CASE DIAGRAMS 13, 14

The use case view models the functionality of the system as perceived by outside users, called

actors. A use case is a coherent unit of functionality expressed as a transaction among actors

and the system. Use Case Diagrams are started by identifying as many actors as possible. One

should ask how the actors interact with the system to identify an initial set of use cases. If

actor supplies information, initiates the use case, or receives any information as a result of the

use case, then there should be an association between them.

 Associations are modeled as lines connecting use cases and actors to one another, with an

optional arrowhead on one end of the line. The arrowhead is often used to indicating the

direction of the initial invocation of the relationship or to indicate the primary actor within the

use case.

Figure 4.1 shows the three types of relationships between use cases -- extends, includes, and

inheritance -- as well as inheritance between actors. The extend relationships can be thought

of as the equivalent of a "hardware interrupt" because one does not know when or if the

extending use case will be invoked (perhaps a better way to look at this is extending use cases

are conditional). Include relationships is the equivalent of a procedure call. The include

relationship points to the use case to be included; and extend relationship points to the use

case to be extended. Inheritance (Generalization) is applied in the same way as on the Class

Diagram-- to model specialization of use cases or actors in this case. It can be said as

relationship between a general use case and a more specific use case that inherits and adds

features to it. It is also possible one use case uses another use case, by an arrow with the title

uses.

 24

Figure 4.1: Use Case Diagram Example

Enroll in
University

Enroll in
Seminar

Perform
Security
Check

Perform
Security
Check

Registrar

Student

International
Student

Applicant

<<Extends>>

<<Include>>

 25

4.3 USE CASE ANALYSIS 15, 12

Use case analysis is performed to identify the initial classes of our system. After making an

initial attempt at defining the architecture, the key abstractions and some key analysis

mechanisms, use case analysis is performed. The initial architecture along with the software

requirements defined in the requirement discipline guides and serve as an input to the Use

Case Analysis activity. An instance of Use Case Analysis is performed for each use case to be

developed during iteration. The focus during Use Case Analysis is on a particular use case.

Use case analysis is performed by the designer, once per iteration per use case Realization.

Use Case Analysis Steps:

1. Supplement the Use Case Description

2. For each Use Case Realization

• Find Classes from Use Case Realization

• Distribute Use Case behavior to Classes.

3. For each resulting analysis class:

• Describe responsibilities.

• Describe Attributes and Associations.

• Qualify Analysis Mechanisms

4. Unify Analysis Classes.

Stereotypes and Use Case Realization are two important concepts. The following is the

explanation:

Stereotypes

Stereotypes define a new model element in terms of another model element.

Figure 4.2: Stereotype Representation

 <<Stereotype>>
 Class

Stereotype

 26

A stereotype can be defined as:

An extension of the basic UML notation that allows defining a new modeling element based

on an existing modeling element.

• The new element may contain additional semantics but still applies in all cases where

the original element is used.

• The name of the stereotype is shown in guillemets.

• A unique icon may be defined for the stereotype, and the new element may be

modeled using the defined icon or the original icon with the stereotype name displayed.

• Stereotypes can be applied to all modeling elements, including classes, relationships,

and components and so on.

• Each UML element can have only one stereotype.

Use Case Realization

A use case realization describes how a particular use case is realized within the design model

in terms of collaborating objects. A realization relationship is drawn from the use–case

realization to the use case it realizes.

Figure 4.3: Depiction of Use Case Realization

A Use Case Realization can be represented using a set of diagrams like Sequence diagrams

and Class Diagrams. During Use Case Analysis the Use Case Realization diagrams are

outlined. In subsequent design activities these diagrams are refined and updated according to

more formal class interface definitions.

 Use Case
Realization

Use Case Use Case
Realization

Use-Case Model Design Model

 27

4.3.1 SUPPLEMENT THE USE CASE DESCRIPTION

The use case description developed in the Requirement Engineering phase is enhanced to

include enough details to begin developing a model. The primary aim of the Supplement the

description of the Use Case is to capture additional information needed in order to understand

the required internal behavior of the system that may be missing from the Use Case

Description. In some cases it may be found out that some of the requirements were incorrect

or not well understood then the original use case flow of events should be updated and iterate

again the requirement engineering.

4.3.2 FIND CLASSES FROM USE CASE BEHAVIOR

The use case flow of events is analyzed to identify the analysis classes and allocate the use

case responsibilities to the analysis classes. To find the objects that perform the use case, a

“white box” description of what the system does from an internal perspective is needed.

The purpose of the find classes from use case behavior step is to identify a candidate set of

model elements (analysis classes) that will be capable of performing the behavior described in

the use case.

Analysis Classes

Finding a candidate set of roles is the first step in the transformation of the system from a

mere statement of required behavior to a description of how the system will work. The

analysis classes taken together represent an early conceptual model of the system. This

conceptual model evolves quickly and remains fluid for some time as different representations

and their implications are explored. Analysis classes are “proto-classes” which is essentially

“clump of behavior” .These analysis classes are early conjectures of the composition of the

system: they rarely survive intact into implementation. They provide with a way of capturing

the required behaviors in a form that can be used to explore the behavior and composition of

the system. Analysis classes permits to “play” with the distribution of responsibilities, re-

allocating as necessary. The technique for finding analysis classes uses three different

perspectives of the system to drive the identification of candidate classes:

These three perspectives are:

• The boundary between the system and its actors(Boundary Class)

 28

• The information the system uses(Entity Class)

• The control logic of the system(Control Class)

Figure 4.4: The complete behavior of use case is distributed to analysis classes.

Boundary Classes

These are intermediates between the interface and something outside the system. Boundary

Classes insulate the system from changes in the surroundings (for example, changes in

interfaces to other systems and changes in user requirements), keeping these changes from

affecting the system. A system can have several types of boundary classes:

User Interface Classes: Classes that intermediate communication with human users of the

system.

System Interface Classes: Classes that intermediate communication with other systems.

Device Interface Class: Classes that provide the interface to devices which detect external

events .These boundary classes capture the responsibilities of the device or sensor.

Use case

<<Boundary>>

System
Information

<<Entity>>

System
Boundary

<<Boundary>>

System
Boundary

Use Case
Behavior
Coordination

<<Control>>

 29

A boundary classes is used to model interaction between the systems surroundings and its

inner workings. Such interaction involves transforming and translating events and noting

changes in the system presentation (such as interface).Boundary classes model the parts of the

system that depend on its surroundings. They make it easier to understand the system because

they clarify the system’s boundaries and aid design by providing a good point of departure for

identifying related services. Because boundary classes are used between actors and the

working of the external system (actors can only communicate with boundary classes), they

insulate the external forces from internal mechanisms and vice versa. One way of the initial

identification of boundary classes is one boundary class per actor /use-case pair. This class

can be viewed as having the responsibility of coordinating the interaction with the actor. This

may be refined as a more detailed analysis is performed. This is particularly true for window-

based GUI applications where there is typically one boundary class for each window, or one

for each dialog box.

Entity Classes

Entity classes represent stores of information in the system. They are typically used to

represent the key concepts the system manages. Entity objects are used to hold and update

information about some phenomenon, such as an event, a person or a real life object. They are

usually persistent, having attributes and relationships needed for a long period, sometimes for

the lifetime of the system. The main responsibility of entity class is to store and manage

information in the system. An entity object is not usually specific to one Use – Case

Realization and sometimes it is not even specific to the system itself. The values of its

attributes and relationships are given by an actor. Entity objects have the behavior as

complicated as that of other object stereotypes.

Taking the use case flow of events as input, noun phrases are underlined in the flow of events.

These form the initial candidate list of analysis classes. Next a series of filtering steps are

applied where some candidate classes are eliminated. The result of this filtering exercise is a

refined list of candidate entity classes. Normally it is also easier to identify the entity classes

by reading the use case specification carefully.

Control Class

Control Class provides coordinating behavior in the system. The system can perform some

use cases without control classes by just using entity classes and boundary classes. This is

 30

particularly true for the use cases that involve only the simple manipulation of stored

information. More complex use cases require one or more control classes to coordinate the

behavior of other objects in the system. Control classes effectively decouple boundary and

entity objects from one another, making the system more tolerant of changes in the system

boundary. They also decouple the use-case specific behavior from entity objects, making

them more reusable across use cases and systems.

Control classes provide behavior that:

• Is surrounding independent (does not change when the surroundings change).

• Defines control logic (order between events) and transactions within use case.

• Changes little if the internal structure or behavior of the entity classes changes.

• Uses or sets the contents of several entity classes, and therefore needs to coordinate

the behavior of these entity classes.

• Is not performed in the same way every time it is activated(flow of events feature

several states)

Control objects (instances of control classes) often control other objects, so their behavior is

of the coordinating type. Control classes encapsulate use-case-specific behavior. When the

system performs the use case, a control object is created. Control objects usually die when

their corresponding use case has been performed.

4.3.3 DISTRIBUTE USE –CASE BEHAVIOR TO CLASSES

The responsibilities of the use case is allocated to the analysis classes and this allocation is

modeled by describing the way the class instances collaborate to perform the use case in Use

Case Realization. The purpose of “Distribute Use – Case Behavior to Classes Use case “is:

• Express the use case behavior in terms of collaborating analysis classes.

• Determine the responsibilities of analysis classes.

The allocation of responsibilities in analysis is a crucial and sometimes difficult activity. The

three stereotypes mentioned above makes the process easier by providing a set of canned

responsibilities that can be used to build a robust system. These predefined responsibilities

isolate the parts of the system that are most likely to change.

 31

A driving influence on where the responsibility should go is the location of the data needed to

perform the operation. The best case is that there is one class that has all the information

needed to perform the responsibility .In that case, the responsibility goes with the data.

If this is not the case then the responsibility may need to be allocated to a “third party” class

that has access to the information needed to perform the responsibility. Classes and

relationship might need to be created to make this happen.

4.3.4 DESCRIBE RESPONSIBILITIES

At this point, analysis classes have been identified and use case responsibilities have been

allocated to those classes. This was done on a use case by use case basis, with the focus

primarily on the use-case flow of events. Now it is time to turn attention to each of the

analysis classes and see what each of the use cases will require of them.

The ultimate objective of these class focused activities is to document what the class knows

and what the class does. The resulting Analysis Model gives a big picture and a visual idea of

the way responsibilities are allocated and what such an allocation does to the class

collaborations. The purpose of describe responsibilities step is to namely describe the

responsibilities of the analysis classes.

A responsibility is a statement of something an object can be asked to provide.

Responsibilities evolve into one or more operations on classes in design; they can be

characterized as:

• The actions that the object can perform.

• The knowledge that the object maintains and provides to other objects.

The View of participating classes(VOPC) class diagram contains the classes whose instances

participate in the Use Case Realization Interaction diagrams, as well as the relationships

required to support the interactions.

 32

4.3.5 QUALIFY ANALYSIS MECHANISMS

At this point a good understanding of the analysis classes, their responsibilities, and the

collaborations required to support the functionality described in the use cases has been

developed.

The purpose of the Qualify Analysis Mechanisms step is to:

• Identify analysis mechanisms used by the class.

• Provide additional information about how the class applies the analysis mechanism.

An Analysis mechanism represents a pattern that constitutes a common solution to a common

problem. These patterns may show patterns of structure, patterns of behavior or both. They

are used during Analysis to reduce the complexity of Analysis, and to improve the

consistency its consistency by providing designers with a shorthand representation for the

complex behavior.

Mechanisms allow the Analysis effort to focus on translating the functional requirements into

software concepts without bogging down into specification of relatively complex behavior

needed to support the functionality but which is not central to it. Analysis mechanism often

result from the instantiation of one or more architectural or analysis patterns. Persistence

provides an example of analysis mechanisms. A persistent object is one that logically exists

beyond the scope of the program that created it. During analysis, one does not want to be

distracted by the details of how one is going to achieve the persistence. This gives rise to a

“persistence” analysis mechanism that allows to speak of persistent objects and capture the

requirements one will have on the persistence mechanism without worrying about what

exactly the persistence mechanism will or how it will work As analysis classes are identified,

it is important to identify the analysis mechanisms that apply to the identified classes. For

example the classes that are persistent are mapped to the persistency mechanism.

4.3.6 UNIFY ANALYSIS CLASSES

The purpose of the Unify Analysis Classes is to ensure that each analysis classes represents

single well defined concept, with non overlapping responsibilities. Different Use Cases will

contribute to the same classes .A class can participate in any number of Use Cases. It is

therefore important to examine each class for consistency across the whole system. Merge

 33

Classes that define similar behaviors or that represent the same phenomenon. Merge entity

classes that define the same attributes, even if their defined behavior is different; aggregate

the behaviors of the merged classes.

4.4 IDENTIFY DESIGN ELEMENTS

In Identify Design Elements, the analysis classes are refined into design elements (design

classes and subsystems). The purpose of Identify Classes and Subsystems is to refine the

analysis classes into appropriate Design Model Elements. The architect performs Identify

Design Elements once per iteration.

The following are the steps for the Identify Design Elements:

• Identify classes and subsystems

• Identify subsystem interfaces

• Identify reuse opportunities

• Update the organization of the design Model

4.4.1 IDENTIFY CLASSES AND SUBSYSTEMS

The purpose of Identify Classes and subsystems is to refine the analysis classes into

appropriate design model elements (for example classes or subsystems). Analysis classes

handle primarily functional requirements, and model objects from the “problem” domain;

design elements handle the nonfunctional requirements, and model objects from the

“solution” domain. It is in Identify Design Elements that the decision is taken which analysis

“classes” are really classes , which are subsystems (which must be further decomposed), and

which are existing components and do not need to be “designed “ at all.

4.4.2 IDENTIFY DESIGN CLASSES

If the analysis class is simple and already represents a single logical abstraction, then it can be

directly mapped, one-to-one, to a design class. Typically, entity classes survive relatively

intact into design. Throughout the design activities, some analysis classes can be split, joined,

removed or otherwise manipulated. In general there is many to many mapping between

analysis classes and design elements. The possible mapping includes the following:

 34

An analysis class can become:

• One single class in the design model.

• A part of a class in the design model.

• An aggregate class in the design model (meaning that the parts in this aggregate may

not be explicitly modeled in the Analysis class).

• A group of classes that inherits from the same class in the design model.

• A group of functionality related classes in the design model (for example, a package)

• A subsystem in the design model.

• A relationship in the design model.

• A relationship between analysis classes can become a class in the design model.

• Part of an analysis class can be realized by hardware and not modeled in the design

model at all.

• Any combination of the above.

 4.4.3 GROUP DESIGN CLASSES IN PACKAGES.

When identifying classes, one should group them into packages, for organizational and

configuration management purposes. The design model can be structured into smaller units to

make it easier to understand. By grouping Design Model elements into packages and

subsystems, then showing how those groupings relate to one another, it’s easier to understand

the overall structure of the model.

There are different reasons for partitioning the design model:

• Packages and subsystem can be used as order, configuration, and order delivery units

when a system is finished.

• Allocation of resources and the competence of different development teams might

require that the project be divided among different groups at different sites.

• Subsystems can be used to structure the Design Model in a way that reflects the user

types. Many changes requirement originate from users; subsystems ensure that

changes from a particular user types will affect only the parts of the system that

correspond to that user type.

• Subsystems are used to represent the existing products and services that the system

uses.

 35

Subsystem and Interfaces

A subsystem is a model element that has the semantics of a package, such that it can contain

other model elements, and a class, such that it has behavior. A subsystem realizes one or more

interfaces, which define the behavior it can perform. A subsystem encapsulates its

implementation behind one or more interfaces. Interfaces isolate the rest of the architecture

from the details of the implementation.

Figure 4.5: A Subsystem and Interface

An interface is a model element that defines a set of behaviors(a set of operations) offered by

a classifier model element (specifically a class ,subsystem , or component).The relationship

between interfaces and classifiers (subsystem) is not always one to one .An interface can be

realized by multiple classifiers, and a classifier can realize multiple interfaces.

Interfaces are a natural evolution from the public classes of a package to abstractions outside

the subsystem. All classes inside the subsystem are then private and not accessible from the

outside. Operations defined for the interface are implemented by one or more elements

contained within the subsystems. The benefit of this is that, unlike a package, the contents and

internal behaviors of a subsystem can change with complete freedom, so long as the

subsystem’s interfaces remain constant. A subsystem provides interfaces by which the

behavior it contains can be accessed. Packages provide no behavior; they are simple

containers of things that have behavior. With packages it is impossible to substitute packages

for another one unless they have the same public classes. The public classes and their public

operations get frozen by the dependencies that external classes have on them. Thus the

designer is not free to eliminate these classes or change their behavior.

<<Subsystem>>
Subsystem Name

Interface

Realization (Canonical Form)

 36

Subsystems can be used to partition the system into parts that can be independently:

• Ordered, configured or delivered

• Developed, as long as the interface remains.

• Deployed across a set of distributed computational nodes.

• Changed without breaking other parts of the system.

4.3.4 IDENTIFY SUBSYSTEM INTERFACES

Interfaces define a set of operations that are realized by some classifier. In the Design Model,

interfaces are principally used to define the interfaces for subsystems. This is not to say that

they cannot be used for classes as well .But as a single class it is usually sufficient to define

public operations on the class. These operators, in effect, define its “interface“. Interfaces are

important for subsystems because they allow separation of the declaration of behavior (the

interface) from the realization of behavior (the specific classes within the subsystem that

realize the interface).This de-coupling provides us with a way to increase the independence of

development teams working on different parts of the system, while retaining precise

definitions of the “contracts” between these different parts. The interfaces are completely

defined using their signatures. This is important, as these interfaces will serve as

synchronization points that enable parallel development.

4.4.5 IDENTIFY REUSE OPPORTUNITIES

The identification of reuse opportunities is an important architectural step. It will help to

determine which subsystems and packages to develop, which one to reuse, and which one to

buy. It is desirable to reuse existing components, wherever possible. The identification of the

reuse opportunities is a unification effort, since it is determined if “things” that have been

identified can be satisfied by what already exists.

The advent of commercially successful component infrastructure such as CORBA, the

Internet, ActiveX and JavaBeans trigger a whole industry of off the shelf components for

various domains, allowing buying and integrating components rather than developing them

in-house. Reusable components provide common solutions to a wide range of common

problems and may be larger than just collections of utilities or class libraries; they form the

basis of reuse within an organization, increasing overall productivity and quality.

 37

4.4.6 UPDATE THE ORGANIZATION OF THE DESIGN ELEMENTS

 As new elements have been added to the design model, repackaging the elements of the

design model is necessary. Repackaging achieves several objectives- reduces coupling

between packages and improves cohesion within packages in the design model. The ultimate

goal is to allow different packages (and subsystems) to be designed and developed

independently of one another by separate individuals or teams. As new model elements are

added to the system, existing packages may grow too large to be managed by a single team:

the package must be split into several packages which are highly cohesive within the package

but loosely coupled. Doing this may be difficult –some elements may be difficult to place in

one specific package because they are used by elements of both packages. There are two

possible solutions:

• Split the elements into several objects, one in each package

• Move the elements into a package in a lower layer, where all higher layer elements

might depend upon it equally.

Layering provides a logical partitioning of packages into layers with certain rules concerning

the relationship between layers. Restricting the inter-layer and inter-package dependencies

makes the system more loosely coupled and easier to maintain. Failure to restrict

dependencies causes architectural degradation, and makes the system brittle and difficult to

maintain.

 38

4.5 ANALSYSIS AND DESIGN RESULTS 16,17,18,19

4.5.1 USER INTERFACE PROTOTYPE

Figure 4.6: User Interface Prototype

Brief Explanation: The interface is implemented in VB.net. The menu controls the different

options of the interface like save and read directory locations, filtering settings and switching

from Engineering (with more detail output) to Normal View. There are two channels –File

and DAB, as the decoder reads data from the two channels. The Output consists of list of

decoded messages and corresponding messages in XML format.

 39

4.5.2 USE CASE MODEL

Figure 4.7: Use Case Model

Brief Explanation: The requirement engineering resulted in the Use Case Model. The

following are the different use cases overview:

• Open: Opens the communication to the DAB/directory.

• Close: Closes the communication to the DAB/directory.

• Scan: Scans the DAB (for the list of services) or from directory (for the list of files).

• Select Service: Reads the data and start transcode.

 40

The actor TPEG Data Source is the source of the TPEG Data–either Filesystem or DAB and

the actor TPEG Transocoder Receiver is the TPEG Controlling Framework (Implementation

View).

4.5.3 CLASS DIAGRAM

Figure 4.8: Class Diagram

Brief Explanation: The two classes TTCCdiProvider and TTCCdiListener are the interface

classes for the transcoder component. They follow the event listener architecture. The Class

DAFManager and FileSystemManager are controlling classes for the respective mediums.

DAFListener is the interface to the DAF component which helps to interact with the DAB.

TPEGTranscoder is the main class which is contains the logic for the transocding and

decoding of the SNI Component.

 41

4.5.4 STATE DIAGRAM

Figure 4.9: State Diagram

Brief Explanation: The above is the state diagram for the transcoder. The initial state is the

“Channel Closed” state. Upon the initialization the state changes to “Channel Open, Idle”.

It can go to the “Scanning state” in case the Service (DAB of File) is not available .If the

service (DAB of File) is available then it goes to the “Data Transmission” state.

 42

4.5.5 USE CASE REALIZATION

Figure 4.12: Use Case Realization for Scan Use Case

Brief Explanation: This is the Use Case Realization of the Scan Use case. It consists of the

classes which participate to complete the scan use case.

 43

CHAPTER FIVE

MEMORY MANAGEMENT

5.1 INTRODUCTION

The memory system often determines a great deal about the behavior of an embedded system:

performance, power, and manufacturing cost. A great many software techniques have been

developed over the past decade to optimize software to improve these characteristics.

The memory system is a main contributor to the performance and power consumption of

embedded software; the total amount of memory required is also a main component of the

manufacturing cost of the hardware. Because memory system behavior is so important to

embedded systems, a great deal of attention has been paid over the past decade to the

optimization of the memory characteristics of embedded software. 5, 6

Memory management is usually divided into three areas: hardware, operating system, and

application, although the distinctions are a little fuzzy. The Memory Management is mostly

concerned with application memory management.

Hardware memory management: Memory management at the hardware level is concerned

with the electronic devices that actually store data. This includes things like RAM and

memory caches.

Operating system memory management: In the operating system, memory must be

allocated to user programs, and reused by other programs when it is no longer required. The

operating system can pretend that the computer has more memory than it actually does, and

also that each program has the machine's memory to itself; both of these are features of virtual

memory systems.

Application memory management: Application memory management involves supplying

the memory needed for a program's objects and data structures from the limited resources

available, and recycling that memory for reuse when it is no longer required. Because

application programs cannot in general predict in advance how much memory they are going

to require, they need additional code to handle their changing memory requirements.

 44

Application memory management combines two related tasks:

Allocation: When the program requests a block of memory, the memory manager must

allocate that block out of the larger blocks it has received from the operating system. The part

of the memory manager that does this is known as the allocator.

Recycling: When memory blocks have been allocated, but the data they contain is no longer

required by the program, then the blocks can be recycled for reuse. There are two approaches

to recycling memory: either the programmer must decide when memory can be reused

(known as manual memory management); or the memory manager must be able to work it out

(known as automatic memory management).

5.2 FORM OF NEW AND DELETE 20

Memory management concerns in C++ fall into two general categories: getting it right and

making it perform efficiently. Getting things right means calling memory allocation and

deallocation routines correctly. Making things perform efficiently, on the other hand, often

means writing custom versions of the allocation and deallocation routines.

Use the same form in corresponding uses of new and delete

Ex: string * stringArray =new string [100];

…

delete stringArray;

Everything above appears to be in order – the use of new is matched with the use of delete,

but the programs behavior is undefined. At the very least, 99 of the 100 string objects pointed

to by stringArray are unlikely to be properly destroyed, because their destructors will not be

properly destroyed.

When new operator is used two things happen – First memory is allocated, second one or

more constructors are called for that memory .When delete is used two things happen: one or

more destructors are called for that memory, and then the memory is de-allocated. Now the

question is that does the pointer being deleted point to a single object or to an array of objects?

The only way for delete to know is to use brackets in delete.

 45

 The correct code is as follows:

string * stringArray =new string [100];

…

delete [] stringArray;

Use Delete on pointer members in destructors.

Classes performing dynamic memory allocation will use new in the constructor to allocate the

memory and will later use delete in the destructor to free up the memory. This is easy to get

right when first writing the class, provided of course, that it is remembered to employ delete

on all the members that could have been assigned memory in any constructor. However the

situation becomes more difficult as classes are maintained and enhanced because the

programmers making the modifications to the class may not be the ones who wrote the class

in the first place. Under these conditions, it’s easy to forget that adding a pointer member

almost always requires each of the following:

• Initialization of the pointer in each of the constructors. If no memory is to be allocated

to the pointer in a particular constructor, the pointer should be initialized to 0(i.e. the

null pointer).

• Deletion of the existing memory and assignment of new memory in the assignment

operator.

• Deletion of the pointer in the destructor.

Failing to delete the pointer in the destructor, however, exhibits fairly no obvious external

symptoms. Instead it manifests itself as a subtle memory leak. It is also useful to delete the

null pointer in the destructor.

5.3 OUT OF MEMORY CONDITIONS

When operator new can’t allocate the memory requested, it throws an exception. To solve this

problem a common C idiom is to define a type independent macro to allocate memory and

then check to make sure the allocation succeeded. For C++, such a macro might look

something as follows:

#define NEW (PTR, TYPE)

try

 46

 {

 PTR =new TYPE;

}

catch

{

std::bad_alloc&

}

assert (0);

But the above macro suffers from the common error of using an assert to test a condition that

might occur in the production code (after all one can run out of memory at any time), but it

also has a drawback specific to C++: it fails to take into account the myriad ways in which

new can be used. There are three syntactic forms for getting new objects of type T, and one

need to deal with the possibility of exceptions for each of this forms:

new T;

new T (constructor arguments);

new T[size];

This simplifies the problem, because clients can define their own overloaded versions of

operator new, so programs may contain an arbitrary number of different syntactic forms for

using new. It is easier to set up things in such a way that if the request for memory is not

satisfied, an error handling function is called. This strategy relies on the convention that when

the operator new cannot satisfy a request, it calls a client specifiable error handling function

often called a new handler before it throws an exception.

To specify the out of memory handling function, clients call set_new_handler, which is

specified in the header <new> more or less like this:

typedef void(* new_handler)();

new_handler set_new_handler(new_handler p) throw()

 new_handler is a typedef for a pointer to a function that takes and returns nothing, and

set_new_handler is a function that takes and returns a new_handler.

 47

set_new_handler’s parameter is a pointer to the function operator new should call if it can’t

allocate the requested memory. The return value of set_new_handler is a pointer to the

function in effect for that purpose before set_new_handler was called.

 set_new_handler is used as follows:

//function to call if operator new can’t allocate enough memory

void noMoreMemory()

{

cerr<<”Unable to satisfy request to memory\n”;

Abort ();

}

int main()

{

set_new_handler (noMoreMemory);

int *pBigDataArray =new int[1000000000];

…

}

As it seems likely, operator new is unable to allocate space for so many integers,

noMoreMemory will be called, and the program will abort after issuing an error message.

When operator new cannot satisfy a request for memory, it calls the new handler function not

once, but repeatedly until it can find enough memory.

5.3.1 NEW_HANDLER FUNCTION

A well defined new-handler must do one of the following:

• Make more memory available: This allow operator new’s next attempt to allocate the

memory to succeed. One way to implement this strategy is to allocate a large block of

memory at program start up and then release it the first time the new handler is

invoked. Such a release is often accompanied by some kind of warning to the users

that memory is low and the future requests may fail unless the memory is somehow

made available.

• Throw an exception: Throw an exception of type std::bad_alloc or some type derived

from std::bad_alloc .Such exceptions will not be caught by operator new, so they will

 48

propagate to the site originating the request for memory .(Throwing an exception of

different type will violate operator new’s exception specification.) The default action

when that happens is to call abort so if the new handler is going to throw an exception,

definitely want to make sure it’s from std::bad_alloc hierarchy.

• Not Return: Typically by calling abort or exit, both of which are found in the standard

C library.

• Deinstall the new-handler: i.e. pass the null pointer to set_new_pointer. With no new

handler installed, operator new will throw an exception of type std::bad_alloc when it

attempts to allocate memory is unsuccessful.

• Install a different new-handler: If the current new handler can’t make any more

memory available, perhaps it knows of a different new handler that is more

resourceful. If so, the current new handler can install the other new handler in its place

(by calling set_new_handler). The next time operator new calls the new handler

function it will get the one most recently installed.

This choice gives a considerable flexibility in implementing new handler functions.

C++ has no support for class specific new handlers. This behavior can be implemented by

having each class provide its own versions of set_new_handler and operator new. The classes

set_new_handler allows clients to specify the new handler for the class (just like the standard

set_new_handler allows clients to specify the global new handler).The class’s operator new

ensures that the class specific new handler is used in place of the global new handler when

memory for class objects is allocated. Consider a class X for which the memory allocation

failures have to be handled:

Class X

{

public:

static new_handler set_new_handler(new_handler p);

static void * operator new (size_t size);

private:

static new_handler currentHandler;

};

 49

Static class members must be defined outside the class definition.

new_handler X::currentHandler; //sets currentHandler to 0 (i.e., null) by default

The set_new_handler function in class X will save whatever pointer is passed to it. It will

return whatever pointer had been saved prior to the call. This is what the standard version of

set_new_handler does:

new_handler X::set_new_handler(new_handler p)

{

new_handler oldHandler = currentHandler;

currentHandler =p;

return oldHandler;

}

The X operator new can be defined as follows:

void * X::operator new(size_t size)

{

new_handler globalHandler = std::set_new_handler(currentHandler);

void *memory;

try

{

memory=::operator new(size);

}

catch(std::bad_alloc&)

{

std::set_new_handler(globalHandler);

throw;

}

std::set_new_handler(globalHandler);

return memory;

}

 50

Clients of class X use its new-handling capabilities like this:

void noMoreMemory(); //declaration of function to call if memory

 allocation for X objects fails

X::set_new_handler(noMoreMemory); //set noMoreMemory as X’s new-handling function

X *px1 = new X; //if memory allocation fails, calls noMoreMemory

string *ps =new string; //if memory allocation fails, calls the global new-

 handling function (if there is one).

X::set_new_handler(0); //set the X-specific new-handling function to nothing(i.e.

 Null)

X * px2 = new X; //if memory allocation fails, throw an exception immediately.

 (There is no new-handling function for class X).

Using set_new_handler is a convenient, easy way to cope with the possibility of out of

memory conditions. Certainly it’s a lot more attractive than wrapping every use of new inside

a try block.

Until 1993, C++ required that operator new return 0 when it was unable to satisfy a memory

request. The current behavior is for operator new to throw a std::bad_alloc exception, but a lot

of C++ was written before compilers began supporting the revised specification. The C++

standardization committee didn’t want to abandon the established test for 0 code base so they

provided alternative forms of operator new (and operator new []) that continue to offer the

traditional failure yields 0 behavior. These forms are called “nothrow” forms because, they

never do a throw, and they employ nothrow objects (defined in the standard header <new>) at

the point where new is used:

Class Widget { };

Widget *pw1= new Widget;

if (pw1==0)

Widget *pw2 = new (nothrow) Widget;

if (pw2==0)…

 51

Regardless of whether one uses “ normal” (i.e. exception –throwing) new or ”nothrow” new,

it’s important to be prepared to handle memory allocation failures .The easiest way to do that

is to take advantage of set_new_handler.

5.3.2 OPERATOR NEW AND DELETE 25

Conventions should be followed when writing operator new and operator delete. When

writing the operator new the following things should be taken care of.

Right Return Value: If the required memory is available then a pointer to it is returned .If

not then the exception of type std::bad_alloc is returned.

Calling an error handling function: Operator new actually tries to allocate memory more

than once, calling the error handling function after each failure, the assumption being that the

error handling function might be able to do something to free up some memory .Only when

the pointer to the error handling function is null does operator new throw an exception.

In addition C++ requires that operator new returns a legitimate pointer even when 0 bytes are

requested.

Pseudo Code for a non member new looks like as follows:

void * operator new (size_t size)

{

if (size==0)

{

size=1;

}

while (true)

 {

//attempt to allocate sizes bytes;

if (the allocation was successful)

return (a pointer to the memory);

//allocation was unsuccessful, find out what was the current error handling function is

new_handler globalhandler =set_new_handler(0);

set_new_handler(globalhandler);

 52

if (globalHandler)(*globalHandler());

else throw std::bad_alloc();

}

}

Unfortunately there is no way to get at the error-handling function pointer directly, so only

was to call set_new_handler to find out what it is.

For delete the things are less complex. The following is the pseudocode for the operator delete:

void operator delete (void *rawMemory)

{

if (rawMemory == 0) return; //do nothing if the null pointer is being deleted.

//deallocate the memory pointed to by the rawMemory

return;

}

One of the common mistakes is that the operator new can be inherited by subclasses. Most of

the class specific versions of operator new are designed for a specific class, not for a class or

any of its subclasses. That is, given an operator new for a class X, the behavior of that

function is almost always carefully tuned for objects of size sizeof(X) – nothing larger and

nothing smaller .Because of inheritance, however it is possible that the operator new in a base

class will be called to allocate memory for an object of a derived class. The best way to

handle this is to slough off calls requesting the “wrong” amount of memory to the standard

operator new:

void * Base::operator new(size_t size)

{

if(size!=sizeof(Base)) //if size is wrong

return::operator new(size); //have standard operator

 //new handle the request

 //otherwise handle the request here

…

}

 53

The member version is also simple which is as follows:

Class Base

{

public:

static void*operator new(size_t size);

static void operator delete (void *rawMemory,size_t size);

…

};

void Base::operator delete(void *rawMemory ,size_t size)

{

if(rawMemory == 0) return; //do nothing if the null pointer is being deleted.

if(size!=sizeof(Base))

{

::operator delete(rawMemory);

return;

}

//deallocate the memory pointed to by the rawMemory

return;

}

5.4 AVOID HIDING THE NORMAL FORM OF NEW

A declaration of a name in an inner scope hides the same name in outer scopes, so for a

function f at both global and class scope, the member functions will hide the global function:

void f (); //global function

Class X

 {

Public:

void f (); //member function

};

X x;

F (); //calls global function

x.f(); //calls X::f

 54

This does not causes confusion, because global and member functions are usually invoked

using different syntactic forms .However , if an operator new is added taking additional

parameters then it is as follows :

class X

{

public: void f();

//operator new allowing specification of a new-handling function

static void * operator new(size_t size,new_handler p);

};

void specialErrorHandler(); //definition is elsewhere

X * px1 = new (specialErrorHandler) X; //calls X:: operator new

X *px2 = new X; //error

By declaring the function called “operator new “inside the class, the access to the “normal”

flow of new is blocked.

One solution is to write a class specific operator new that supports the “normal” invocation

form. If it does the same thing as the global version, that can be efficiently and elegantly

encapsulated as an inline function:

class X

{

public:

void f ();

static void * operator new (size_t size ,new_handler p);

static void * operator new(size_t size)

{

return::operator new (size);

}

X *px1 = new (specialErrorHandler) X;

//callsX::operator new (size_t,new_handler)

X * px2 =new X; //calls X::operator new (size_t)

};

 55

An alternative is to provide a default parameter value for each additional parameter one add to

the operator new:

Class X

{

public:

void f ();

static void * operator new (size_t size, new_handler p=0);

};

X * px1 = new (specialErrorHandler) X;

X *px2 = new X;

Either way if it is needed to customize the behavior of the “normal” form of new , only the

function has to be rewritten ;callers will get the customized behavior automatically when the

relink.

5.5 OTHER MEMORY MANAGEMENT TECHINQUES 21, 22, 23, 26

Shared Use of Memory

If some parts of the program work on data of the same type and size, but at strictly disjunctive

times, they can all store their data at the same location. Drawbacks are that this is likely to

introduce errors if the program is changed, so that the usage intervals start to overlap. Also

initialization and/or cleanup of shared areas need to be considered carefully.

C and C++ offer the data type union to allow storing data of different types at the same

memory location. This is expansion of the concept of shared use of the same location.

Shared use of the same memory location is potentially dangerous, but with good

documentation of the intention and usage of shared memory areas the program should stay

maintainable.

Data structure - Loosely associated values

If there is a structured data type with fields that are only used for a small number of allocated

objects, those fields can be removed from the object and accessed with a lookup table. The

 56

key for the lookup is usually the objects address. Removing the fields will shrink the objects

size, but the tradeoff is a slower access to the off-loaded fields.

Example:

Let's assume, there is a structure like this:

 struct example_t

 {

 char * description;

 /* more fields here */

 };

And description is used only for a small fraction of all created example_t structures, and then

4 bytes for most of them are being wasted. Those 4 bytes can be saved at the expense of a

slower lookup and a lookup table. Overall the savings will only pay off if the lookup table

needs less memory than the saved memory (4 bytes * number of example_t without

description).

The lookup could be done with a hashtable that maps the object to the description string:

 static Hashtable description_table;

 void store_description(struct example_t *ex, char * description)

 {

 description_table.put(ex, description);

 }

 char * lookup_description(const struct example_t *ex)

 {

 return description_table.get(ex);

 }

This way 4 bytes can be saved for each allocated example_t. If the sum of those savings

outweights the size of the lookup table (i.e. because a huge number of example_t get allocated

and only very few have description strings) then overall this construct will reduce the memory

consumption of program.

 57

5.6 BUFFER

The buffer is very important consideration while implementing the TPEG Decoder. Since the

data from the DAB arrives continuously and also the size of the binary TPEG file is different,

therefore proper buffer mechanism is of utmost importance to avoid the loss of incoming data.

The buffer stores the incoming TPEG data which in turn is decoded by the decoder. The

buffer implemented in the software system was as follows:

Fixed Size Buffer: In this case only a limited number of messages can arrive at the same time

to the decoder. It is because the message buffer has a fixed buffer size. The buffer size

implemented in the system was 1kb. There were various reason to choose such an simple

buffer mechanism:

• Simple Code: It yields in a simple code, which can be tested, modified and corrected

easily.

• Ease in Testing: To test the code it was required to have a buffer which does not have

an overflow so the size was chosen at 1kb.

• TPEG over DAB: Since the TPEG signals over DAB are in testing phase at present,

therefore the possibility of buffer overflow is remote.

• No effect On Design: Since the Design of the module remains consistent irrespective

of the choice of the buffer mechanism, it would be relatively easy to replace the fixed

buffer with a floating self adjusting buffer later on.

BETTER ALTERNATIVE

Variable Self Adjusting Buffer: At the beginning of the decoding process the size of the

message buffer is fixed. Assume this size is 1KB (Say for example it can store 200

messages).If at any moment there are more than 200 messages that has to be stored, then the

size of the buffer is doubled. As soon as the size of the buffer is doubled there is buffer space

to store new messages. If this size turns out to be not enough, the process will be repeated and

the new size of the buffer will be of 800.

 58

DISCUSSION OF THE SOLUTIONS

The process followed can be considered as one of the best methods to solve the given problem.

Rational Unified Process helps to develop an iteration plan which controls the project

lifecycle. Also the RUP prescribes certain important methods and techniques which when

incorporated during the software engineering process give a robust design.

Requirement Engineering is of utmost importance which yields a clear vision of the long term

expectations of the clients from the software. It also minimizes the risk in the failure of the

project as continuous interaction with the client stabilizes the design to a fair extent.

Use Case Analysis leads to a robust, stable software design which is the basis of the

implementation. Since the software has to be finally embedded into the navigation system

memory issues have to be considered while implementation.

Memory Optimization is quite important and there should be a fair balance with

implementation of memory management techniques to reduce the complexity of the software

system .Therefore to limit the complexity of the software only important memory

management features are incorporated in the code. Robust design and quality code helps

future developers to work easily.

In the project, I have synchronized the code with model using the modeling tool Together.

This helps to deliver a module which is consistent with the model. Also any change in the

model automatically changes the code, thereby easing the process of reengineering. This

technique is most efficient in delivering high quality code synchronized with the model view.

The client can view the model abstraction of the source code and thereby suggest future

improvement easily.

The major disadvantage of the process which was felt during the project was that it’s a time

demanding process. But it was strongly felt by the company; that there is higher need to

deliver high quality code along with design .This was the tradeoff between time and quality.

 Time restriction forced to take certain strategic implementation decision but the consistency

of code and model was maintained during the project lifecycle.

 59

CONCLUSIONS

The TPEG Technology is an upcoming technology in the field of Travel and Traffic

Information over Digital Audio Broadcasting. With the TPEG in the process of being

standardized as an ISO Standard the importance of the thesis problem is evident.

There is future scope in the problem domain for better implementation of the buffer

techniques .A better buffer mechanism is suggested already in the thesis. The better

alternative suggests having a variable self adjusting buffer instead of the fixed buffer size.

When there is a possibility of a buffer overflow then the buffer size increases to avoid the

problem.

Further when there is real time signal of TPEG over DAB then it would be possible to test for

the buffer overflow conditions. Some unpredictable errors can arise in the new buffer

mechanism which might have to be corrected. But it can be said with confidence that such

implementation corrections would be trivial. Also there is scope to find out the effectiveness

of the memory management in the code.

This component will be used by Robert BOSCH Group in the GST Safety Channel project;

Safety Channel is a three-year sub-project within the EC-supported GST (Global System for

Telematics) Integrated Project and runs from March 2004 – March 2007.

http://gstforum.org/en/subprojects/safety_channel/about_gst_safety_channel/

Applications are under active development across Europe to deliver safety-related information

to drivers. Safety Channel aims to define and develop a solution that will ensure the creation

and delivery of detailed safety information for all drivers, in all areas across Europe

Robert BOSCH Group is a member of the GST project and therefore this TPEG Decoder

software component is a part of the GST project.

 60

REFERENCES

1) Why TPEG? ; The TPEG Project; 2003;

http://www.tpeg.org/pdf/what_is_tpeg/T5_030807BM_D13_Why%20TPEG_6gr.pdf

2) Future TPEG Applications; The TPEG Project; 2003;

http://www.tpeg.org/pdf/standardisation/T5_030804DK_D13_future_3gr.pdf

3) End Users Friendly location Concepts; The TPEG Project; 2003;

http://www.tpeg.org/pdf/what_is_tpeg/T5_030804DK_D13_map%20tool_3gr.pdf

4) JPEG, MPEG and now TPEG why? ; The TPEG Project; 2003;

http://www.tpeg.org/pdf/what_is_tpeg/T5_031030BM_DK_D13_Quick%20guide_10.pdf

5) TPEG –Design Philosophy; The TPEG Project; 2003;

http://www.tpeg.org/pdf/what_is_tpeg/T5_030804BM_D13_Design%20philosophy_6gr.pdf

6) TPEG clients- how they will be used? The TPEG Project; 2003;

http://www.tpeg.org/pdf/what_is_tpeg/T5_030804DK_D13_terminals_3gr.pdf

7) TPEG Location Referencing; The TPEG Project; 2003

http://www.tpeg.org/pdf/what_is_tpeg/T5_030804BM_D13_TPEG%20Loc%20coding%20co

ncept_4gr.pdf

8) How to migrate from code-centric to model-centric development using Rational Software

Architect; Aaron Lloyd; http://www-128.ibm.com/developerworks/rational/library/04/r-3247/

9) The Rational Unified Process; Thomas Meloche; President and Fellow Melno Institute;

2003; http://www.menloinstitute.com/freestuff/whitepapers/rup.htm

10) The Rational Unified Process-An Introduction, Third Edition, Phillipe Kruchten, Addison

Wesley.

11) Agile Modeling and the Rational Unified Process (RUP); Scott W.Ambler;

http://www.agilemodeling.com/essays/agileModelingRUP.htm

12) Mastering Object-Oriented Analysis and Design with UML, 2003, Rational Software.

13) A Survey of Approaches for Describing and Formalizing Use Cases; Russell R. Hurlbut;

http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html

14) UML 2 Use Case Diagrams; The Object Primer 3rd Edition: Agile Model Driven

Development with UML 2.

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

15) Getting from use cases to code, Part 1: Use-Case Analysis; Gary Evans; http://www-

128.ibm.com/developerworks/rational/library/5383.html

 61

16) Project Communication and the Unified Modeling Language; Art Taylor

http://www.informit.com/articles/article.asp?p=31942&seqNum=3&rl=1

17) Designing GUI Applications with Windows Forms; Erik Rubin, Ronnie Yates

http://www.informit.com/articles/article.asp?p=101720&seqNum=19

18) Lecture on UML and Use Cases; Dr. Harsh Verma; MIT Ecommerce Architecture Project,

2000 http://ac.mit.edu/ecap-general00/resources/uml.htm

19) The Unified Modeling Language-Reference Manual, James Rumbaugh, Ivar Jacobson,

Grady Booch; Addison Wesley.

20) Effective C++: 50 Special Ways to Improve Your Program and Design; 2nd Edition; Scott

Meyers

21) Memory Model for Multithreaded C++; Andrei Alexandrescu, Hans Boehm

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1680.pdf

22) C++ Memory Management: From Fear to Triumph, Part 3; George Belotsky; O’Reilly

Emerging Telephony Conference, CA

http://www.linuxdevcenter.com/pub/a/linux/2003/08/07/cpp_mm-3.html?page=1

23) Rediscover the Lost Art of Memory Optimization in Your Managed Code; Erik Brown;

MSDN Magazine January 2005;

http://msdn.microsoft.com/msdnmag/issues/05/01/MemoryOptimization/default.aspx

24) Introduction to Rational Unified Process; Prof.Kevin Englehart, Department of Electrical

and Computer Engineering, University of New Brunswick.

http://www.ee.unb.ca/kengleha/courses/CMPE3213/OOAD/02UnifiedProcess_ie4_files/fram

e.htm

25) C++ Memory and Resource Management; Stephen Dewhurst;

http://www.informit.com/articles/article.asp?p=30642&seqNum=2

26) Code Optimization; Hansjorg Malthaner;

http://library.simugraph.com/articles/opti/optimizing.html

27) .NET Code Optimization; Richard Grimes; Net Newsletter; Jan 2003

http://www.windevnet.com/documents/s=7446/win1055785679994/

28) Managed C++: Read and Write Registry Keys and Values; Tom Archer, Archer

Consulting Group; December 2004

http://www.codeguru.com/Cpp/W-P/ce/registry/article.php/c8859/

29) The C++ Standard Library – A Tutorial and Reference, Nicolai M.Josuttis; Addison

Wesley

