Techaisehe Dinveersital H.:--r:.h.;f,!:-H.arh.-;rL;

Generation of EJB3 Artifacts in a
Modeling Platform

Master Thesis
Submitted by:
Xinhua Gu
Informatik-Ingenieurwesen

Matriculation Number: 15248

Supervised by:

Prof. Dr. Ralf Mdller (STS)

Prof. Dr. Rolf-Rainer Grigat (T11)
M.Sc. Miguel Garcia (STS)

Hamburg, Germany

26th May 2006

Acknowledgment

I would like to thank Prof. Dr. Ralf Méller for giving me the opportunity to work on this
master thesis topic and supervising it. | also thank Prof. Dr. Rolf-Rainer Grigat for accepting being
my CO-Supervisor.

Furthermore, | would like to thank M. Sc. Miguel Garcia, for his valuable and continuous feedback
and help in enhancing the scope of this work.

Declaration

Hereby, | declare that this master thesis, with the subject “Generation of EJB3 Artifacts in a
Modeling Platform”, has been prepared by me. All literal and content related quotations from other
sources are clearly pointed out, and no other sources or aids than the declared ones have been used.

Xinhua Gu

Hamburg, Germany
28" May. 2006

Table of contents

N 0] 1 (o OSSPSR 6
Chapter 1. INTrOQUCTIONcceiiiiiiiiieiie e e 7
I I |V (o] £V 1[0 OSSOSO PSP 7
0 @] o 1< ox 1Y PSP STS 8
I T O oV =SOSR PRSP 9
Chapter 2. Thinking in Database Mappingccccceverieeiininneeneneeseese e 10
2.1. Classification of mapping annotationS...........cccocveieiiiiiieeic s 10
2.2, Classes and INtErTACE.........cuiiririeiie sttt 1
2.2.1. ENLItY MEPPING .eveieitiieeie s 11
2.2.2. Embeddable component Mapping ..o e 12

2.3. Inheritance and pOlYMOIPhISIM.......cc.ciiiiiiei e 12
2.4, AUribUteS aNd OPEIALIONScveiviiieeiee ettt te e sre e 13
2.5. Relationships between UML ClaSSIfiersccccovviiiiiiiiiiiinc e 14
25.1. Dependency and Generalization.............coeoiiereiiinenenese e 14
25.2. F o Tox - LA o o OSSR 14

2.6. Aggregation and COMPOSITIONcc.ciiiiiieeieieie e 22
2.7. Conclusion for model driven database Mappingcccccevveveeiiiienieeiesiese e 23
2.7.1. Main problems for database Mapping ..o 23
2.7.2. Selected annotations for geNEration.............ccveieiriiiiineie e 24

F T 10 1 110 1Y PSPPSR 24
Chapter 3. Thinking in Code Patterncccoceviiiiiiinieie e 25
3.1, Limitations of OCtOPUS UMLcccviiiiiiiiiiiiec et 25
3.2, OCtOPUS COUE PAEIMN.....cuiiticiieiecieite ettt e e s testeenaesrenreas 26
3.2.1. Generation OF FIEIASccviiciece e 27
3.2.2. Generation Of METhOASocviiiiec s 28
3.2.3. Generation of MEthod DOTYcoiviiiiiiii e 30

3.3. Cases where Octopus-generated code patterns are inadequate for EJB3..........c..ccccueue. 35
3.3.1L. Naming convention for field ... 35
3.3.2. Database Identity, object identity and object equalityc.ccoovoireiiininninie 35
3.3.3. LT T oSSR 36
3.3.4. ENUMEIAEA TYPE ..ottt bbbt 36
3.3.5. Collection type attribute defined field ... 36

3.4. Conclusion for Octopus code pattern analysisSccovveviieiiveiierie i 37
3.4.1. Main problems and Challenges ... 37
3.4.2. Possibility of fragments based code generation.............cocoeevevenieniesisieeiene e 37

T 10 111111 Y P TRTP 38

Chapter 4. Discussion of Concrete Problems...........ccccovveiiiiieeic e, 39

4.1. Problem of Collection type attribute defined field............ccccooveveiiiiiiinccc e, 39
4.1.1. In case of non-nested COIIECTION LYPE.........cviiriiiiiic s 40
4.1.2. In case of nested COIIECTION LYPE......c.erviiiiiiice s 45

4.2. Problem of non collection type attribute defined field............cccccovviiiviiiiiiiie 48
4.2.1. Field type is ENUMEration tYPEcoviiriiiiiiic et 48
4.2.2. Field type is a single 0bject INSLANCE ..ot e 50

4.3. Problem of indexed collection used in an assoCIAtioN...........ccceererereiie e 50
4.3.1. Association end is an Indexed Collection (without association class)...........ccccccveene. 51
4.3.2. Indexed Collection in association with association Classccccvevvireiiiniinenne, 55

A4, SUIMIMAIY .oeiitieiiiteete sttt ettt e et be st e b e e bt eb e eh e et e eb e e b2 e he et e ebeeb £ e me e e beebe e b e et e ebesbeaseenbeaneas 59

Chapter 5. Recipe for MDA driven EJB3 persistence artifacts 60

5.1. Extension of Octopus Java MOdEl..........ccceeiiiiiiiici e 60
511 Extension for Annotation (OJANNOLAION)cciiiiiiriniiieesee e 60
5.1.2. Extension for Enumeration (OJENUM)c..ovviiiiiiiniiiniecsieecsie e 61

5.2. Qualifications for imported EJB3 persistence Modelccccocvevieviiieiveiie i 62

5.3. Naming Algorithm for ,,Name collision* problem...........ccccoviiiiiiiciiicee e, 62

5.4, Strategy for Class Mapping.......c.ccceciiiiiiieieiiiici et se et ra e sre s 63
54.1. Recipe of Mapping ANNOTALION.ccriiiiiiiree e 63
5.4.2. Recipe of generated Code PALEINScvriiiiriieiree e 64

5.5. Strategy for Association mapping (without association class)ccceevevevieviiiiveiennnns 64
55.1 Recipe for Mapping ANNOTATIONccoeriiiiiiiiieree e 64
55.2. ReCIpe FOr COUE PALEIM......c.oiviieiiieieiiree e 66

5.6. Strategy for Association Mapping (with association Class)...........ccccevvvviveveiieniisieeiennens 69
56.1. Recipe for Mapping ANNOTATIONcccoeiiiiiiiiiese e 69
5.6.2. ReCipe FOr COUE PALtEIM........ciieeiiriiieiirieer bbb 71

5.7. Strategy for Attribute Mapping (Collection type)ccocveveviiiiiieiciie e 75
5.7.1. Creation process in ECC, 1€ SrategYc.covveriririerieiinierieiesieiesie st 75
5.7.2. Recipe for ANNOtation MapPingccvevverierieiineie e 76
5.7.3. ReCipe FOr COUE PALtEIN........ciiieeiiieiieiiriee e 77

5.8, SUIMMAIY ..ttt bbbt b e bt e e bt bt b e e b e sbesbesbeeneene e 81

Chapter 6. Introduction to OCtOPUSEE Beta..........cccccoveeiiiiiiinenieeee e 82

6.1, REQUITEMENLS ...ovviiiiiieieie sttt sttt ettt et et e s te e te et et e s te e te e e e s besbesteensesrestesneensenreens 82

6.2, SEIUP IN ECHIPSE. c.iitieii ittt ettt 82
6.2.1. Configuration in PrOPerty PAJEcooeeierieiieieenie ettt 82
6.2.2. Configuration of bBUIld Path:cccoiiiiiii 83

6.3, GENEIALEA FIlES ..o e 83

TS 1111 oo U PRPR 83
6.4.1. Creating database SChemMa.........c.cciiiiiic e 83
6.4.2. WWIIEING JUNTETESES ...ttt 84

8.5, SUIMIMAIY ..iiiiiiiiie ettt e st et e st e e sbeesbeesteesbeesbeesbaesbeesbaesbaesbeesreenneens 84

Chapter 7. CONCIUSIONoiiiiiiie et 85

APPENAIX A ettt b ettt R b b re et e e areenre s 87
APPENAIX B .ot 88
N o] 0 1=] 0 o | OSSR RR 101
RETEIBNCES ... 103

Abstract

EJB3 as a part of the new generation Java 5 Enterprise Edition has lots of improved features.
These features make an EJB3 persistence entity more object oriented and model driven friendly.
Despite the fact that EJB3 development has been greatly simplified, a significant amount of
repetitive work remains that burdens the developer during database mapping or code pattern
design. In this work, code generation of EJB3 artifacts based on MDA is discussed. Based on

analyses of catalogs of database mappings and of their associated code patterns, a generic recipe
for code generation is derived.

Chapter 1. Introduction

In this chapter the motivation and the goals of our work are described. Additionally, a short
overview of the chapters in this thesis is given.

1.1. Motivation

Compared with the previous version of Enterprise Java Beans, the upcoming generation of Java EE
(EJB3) has several great improvements, perhaps the most outstanding of which is the new standard
mechanism of EJB persistence, specified by JSR220. Such mechanism provides a transparent
persistence layer based on radical reforms. These new features not only simplify the development
process, while enhancing the software reusability at the same time, but also make EJB3 more
object oriented and model driven friendly. For example, an EJB3 entity can be written in POJO
and there are not anymore enforced callback methods. Furthermore, through elaborate mapping
annotations supported by the underlying EJB3 ORM engine, classes and relationships in a UML
model can be directly mapped into database schema. For all that, the assignment of annotations
and the code patterns for database manipulation still mean a lot of work for the programmer. For
example, a programmer could repeatedly apply a design pattern or a mapping strategy to maintain
the assurance that items will be kept in sequence not only at runtime but also in the database for an
indexed collection (e.g. a sequence or an ordered set for an association end). Such a development
approach is error prone and results in low productivity. In order to overcome it, we come up with
the idea to bring MDA concept to EJB3 persistence development, i.e. generate EJB3 codes of
persistence layer in a model driven manner.

In the realm of J2EE application, the concept “MDA” isn't a new word. There are already some
tools on the market for old the EJB version (EJB2.x). Although these MDA generated J2EE codes
cannot replace manual codes totally, but through MDA code generation, the development process
is hugely improved and the development cost is reduced enormously. But one disadvantage of
these tools is that the programmer must know J2EE design pattern very well so that he can tune
the generated pattern codes to the architect’s wish. There is a sentence from a J2EE MDA report
[Middleware03] to describe the disadvantages of these J2EE MDA tools: ““It makes brain surgeons
better brain surgeons, but it won’t make janitors into brain surgeons.” Similarly, we also
reviewed the tools for transparent persistence mechanism such as OpenAccessJDO for JDO.
Using this tool, the programmer is assumed to be very experienced in mapping object to database
with ORM mechanism e.g. for each relationship in the model, an explicit mapping must be
manually set. Therefore, to some extent, such tools are more like the tools for configuration.

In our viewpoint, when MDA concept is used in EJB3 persistence code generation, codes
generated from MDA tool should offer a higher level, more transparent API for programmers, i.e.
the programmer need not be forced to be familiar with the underlying ORM techniques. Ideally,
when manipulating POJOs at runtime, the programmer should be totally unaware of the
interaction with database.

1.2. Objective

The objective of this thesis is to generate EJB3 artifacts for persistence layer on the Octopus
modeling platform. The EJB3 artifacts to be generated can be placed in two categories: (1) Mapping
annotation and (2) Codes for database interaction.

The position and content of a mapping annotation in codes determines the physical schema in
database for a model-level class. Therefore, all databases mapping information are stored through
the assignment of Java 5 annotations. According to these assigned annotations, the underlying EJB3
ORM engine triggers appropriate EJB QL for each operation on objects at runtime. Through such
background EJB QL query, when the state of an object is changed at runtime, the database will
reflect this change transparently i.e. make the change persist. This behaviour is also known as
“object query”. To make things concrete, let us take a look at following example:

Suppose that we have two classes, A and B. A class contains a collection type (Set) field “col”, in
which the element type is again a collection (List).

A B
Feol ; SetListi B

We consider first how to map this model into database. A second question is how the code looks
like, as e.g. when adding a list of “B” instances into the collection “col”. Rather than solving this
isolated problem, the challenge is rather finding general mapping strategies for similar cases and
design a code pattern for the mapping strategies.

It should be noticed that our UML model (a class diagram) is subject to the limitation of Octopus
descriptive capability i.e. we cannot take an arbitrary Class diagram as our imported UML model.
As delivered “out-of-the-box”, the code generated by Octopus is compatible with Java 1.4 but not
with Java 1.5 which is the precondition for using EJB3. In this thesis, we will discuss the
extension of code generation in Octopous. We will however not extend Octopus UML to cover for
example all the innovations of UML 2.0.

1.3. Overview

In the next chapter (Thinking in Database mapping) we will discuss and analyze the database
mapping for some possible constructs in a class diagram. During the discussion we will give a
range of mapping annotation for generation and list all encountered problems at the end of chapter.
In chapter 3 (Thinking in Code pattern), we will perform an analysis integrated with Octopus
platform. After the anatomy of Octopus-generated code patterns, all potential problems and
challenges will be discussed. In the Chapter 4 (Concrete Problems discussion), along with analysis
process, we will attempt to give solutions to the problems gathered from previous chapter. Details
of all solutions for generation of EJB3 artifacts from discussion will be summarized as a complete
generic recipe in Chapter 5. In Chapter 6 an implemention of this recipe will be briefly introduced.
In the last chapter (Conclusion), the complete transformation recipe will be reviewed as well as
some suggestions and outlook for future work will also be given.

Chapter 2. Thinking in Database Mapping

In JSR-220 Persistence, source code annotations (so called “metadata™) have replaced the XML
configuration files of both JDO (Java Data Objects) and Hibernate ORM engines. The purpose
remains the same: to convey to the ORM engine the mapping between Java classes and the RDBMS
schema. These annotations not only determine the structure of such schema, but to a great degree the
performance of the applications interacting with the database. In view of these concerns, we need to
come up with an automatic procedure (informally, a “recipe”) for assigning JSR220 Persistence
annotations to the Java classes generated from an UML class model.

In this chapter we review the constructs of Octopus UML Class Diagrams and discuss for each of
them candidate ORM mappings. In order to choose among alternative mappings, we’ll anticipate
both potential problems and their solutions. The corresponding database schema layout will be
presented, in order to ease the exposition. The chapter closes with a summary of the annotations
selected for generation. This chapter assumes a working familiarity with the JSR220 Persistence
specification [JSR220-Persistence].

2.1. Classification of mapping annotations

In [Annotations], all metadata annotations are classified into two categories: logical and physical
mapping annotations.

The logical mapping annotations (allowing you to describe the object model, the class
associations, etc.) and the physical mapping annotations (describing the physical schema,
tables, columns, indexes, etc) [Annotation, Section 2.2]

This classification is equivocal because some annotations for association still affect the structure of
database schema, e.g. by creating a foreign key in a table. All along we are concerned only with
those annotations that influence the back-end database schema. Therefore, we will focus on Section
8.1 “Entity” and section 9.1 “Annotations for ORM” of [JSR220-Persistence]. All these annotations
were defined following a principle of “configuration by exception,” which is supposed to reduce the
amount of explicit information that needs to be given to those where a deviation from the usual case
oceurs.

10

2.2. Classes and Interface

In an EJB3 persistence model, there are only two different types of object, i.e. an entity and an
embeddable component® (which are annotated with @Entity or @Embeddable respectively.) The
difference between an entity and embeddable component is that an entity may have a mapped table
(and therefore, primary key) while an embeddable component is materialized as fields in row (thus
explaining the term “embedded”). An embeddable component must attach itself to a table mapped
by an entity. As can be seen, we won’t use the word “entity” in any general meaning (specifically
not in the sense of the Entity-Relationship Model) but with the specific meaning given by the
JSR-220 Persistence specification.

2.2.1. Entity mapping

Not all classifiers declared in a UML class model can be directly mapped as EJB3 entities. First of
all, let’s review the requirements for an entity mapping:

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as
well as entity classes, and non-entity classes may extend entity classes.([JSR220-Persistence]
Section 2.1)

From this, we can see that an interface cannot be mapped as entity, only a class type can. For UML
classes we’ll simply generate “@Entity” above the appropriate Java class header. The class name
(which will be used by default by the ORM engine as table name) presents however a potential
problem. If there are two classes with the same name in different packages, then a “table name
collision” will occur in the database. To prevent this “collision” the annotation “@Table” can be
used to specify a unique table name.

In “@Entity” annotation, there is an option element “AccessType” which designates the manner for
the entity manager to manipulate the instance variables of this entity. There are two choices for this
option “FIELD” of “PROPERTY”. (see Section 2.1.10f [JSR220-Persistence]) Here, we prefer to
use “FIELD”. The reasons are:

1. From the point of view of model driven generation, the accessor methods for an instance
variable are not supposed to include business logic. Therefore, an access type of
“PROPERTY” presents no advantages compared to “FIELD”.

2. Since in the Octopus code pattern a getter method for a collection type instance variable will
return an unmodifiable collection, this will prevent any update if “PROPERTY” is chosen.

! Enumerated type is treated as an embeddable component in EJB3 ORM mechanism.

11

2.2.2. Embeddable component mapping

An Embeddable component provides for a larger granularity of the database so that lots of
unnecessary “join query” (which are considered as “performance killer”) can be avoided. Normally,
an embeddable component is used in a “Has-A” relationship, e.g. Class A has an attribute of Class B
instance. In this case, Class B can be mapped without problems as an embeddable component (more
information in Section 9.1.32 and 9.1.33 of [JSR220-Persistence]).

Regarding the “@Embeddable” annotation, the following points should be noticed:

1. Suppose that we have two Classes A and B. Class A as embedded class and Class B as
embedding class. If A and B both have a String type attribute “name”. Then, the two attributes
will be mapped to different columns in the same table with same name! To avoid this overlap,
the optional element “OverrideColumn” in “@Embeddable” can be used. Alternatively, an
“@Column(name=xxx)" can be generated above each overlapping attribute. A unique column
name can be specified through “name” option element.

2. For an enumerated class type (JDK1.5) no annotation is necessary. By default, ordinal values
will be used.

2.3. Inheritance and polymorphism

The JSR220 specification offers three strategies for inheritance mapping. If an “@Inheritance”
annotation is not assigned, the “Single table per class” strategy will be used. The other two strategies
have specific drawbacks. Normally the “Table per class” strategy is not advocated especially
regarding polymorphic queries or association. Moreover, this strategy does not allow using
“AUTO” and “IDENTITY” for identity generation ([Annotations] section 2.2.4.1). For *“Joined
subclass”, separate tables for subclasses increase the granularity of the database layer, with a
consequently reduced performance. Therfore, we prefer to use the default mapping. For more
information about inheritance strategies, please read [Annotations] section 2.2.4 or [King05]
section 3.6.

If we follow the “Single per class” strategy, all we can do is to map subclasses as an Entity. By
default, a discriminator column named “TYPE” will be created in the table to distinguish each
subclass. We still need to notice the following points:

1. *AccessType” of a subclass will be inherited from super class (or root entity of the entity
hierarchy.). It is unnecessary to define it again in subclass.

2. In “Single table per class” strategy, although each subclass is annotated with “@Entity”, it is
actually embedded into its super class table i.e. that is not necessary to assign a primary key for
subclass. It is very important to know this, especially when we assign primary key for each
entity in model driven manner.

3. Because interfaces cannot be mapped at all (neither as entity nor as embeddable). The
inheritance strategies cannot be applied to “interface inheritance”.

12

2.4. Attributes and operations

From an UML class diagram, we can distinguish three cases that are relevant from the viewpoint of
persistence: “Inlined attributes”, “Attributes by relationship” and “Derived attributes”. “Inlined
attributes” and “Derived attribute” are directly defined in Class. “Attributes by relationship” are
actually the reference attributes which are generated as a result from UML associations (such fields
materialize the association ends) ([Pitman05] section2.2)

For a “Derived attribute”, there is a “@Transient” annotation. This annotation simply prevents the
attribute from being persisted in the database. If an attribute is an “Inlined attribute”, then things get
a bit more complex. The following problems are possible for the mapping of an “Inlined attribute™:

1. We cannot determine the character of the attribute, e.g. whether it is mutable (which can be
annotated with “@Temporal”) or whether it serves as a version field for an optimistic lock
mechanism (which can be annotated with “@Version”) etc.

2. Furthermore, from the model definition, we can not determine the database constrains for the
column mapped by this attribute, i.e. uniqueness, nullability, insertability, updatability, length
of column, precision etc.

3. We also do not know which attribute or attributes should be mapped as primary key. (It is also
possible that a class might contain no attribute declarations)

4. Unfortunately, the JSR220 specification does not offer corresponding annotations for
supporting indexed collection type (which would be handy in connection with association ends
marked as {ordered}). The developer should find the way to handle it himself. A generic recipe
for database mapping of attributes should handle not only the case of an “Inlined attribute”
whose type is an indexed collection, but also the case of nested collections.

A straightforward solution to the “primary key” problem is to create a “surrogate key” for the entity
([King05] Section 1.2.3). This additional attribute could be of type long and annotated with “@1d”.
We can set the option element “generate” to “GeneratorType. AUTO” which makes the entity
manager decide the appropriate identity generation strategy for underlying database. It should be
notice that the name of this additional attribute must be unique in the entity or a naming collision
will occur.

As a simple approach, we do not place any annotation for primitive type attributes and we the let
entity manager perform “configuration of exception”. The default database constrains for the
mapped column will be:

unique nullable insertable updatable length scale precision

false true true true 225 0 0

For single object type or collection type “Inlined attribute”, we will discuss them in the following
chapters.

UML model defined operations do not participate in our database mapping. Business logic is coded

in them and has only meaning at the code level. It does not make sense to assign mapping
annotations to them.

13

2.5. Relationships between UML classifiers

2.5.1. Dependency and Generalization

There are only three representations for a dependency relationship in model:
e aclass type is used as a local variable type in other class
e aclass type is used as parameter type in other class, or
o the static method of a class type is invoked by other class.

Consequently, dependency is a very weak relationship and it will be ignored by ORM.

Generalization is a “I1S-A” relationship between two types. In previous section, we have discussed it.
It should be noticed that in our case, generalization between interface and class (multiple inheritance)
or interface and interface (interface inheritance) cannot be mapped into database schema.

2.5.2. Association

Association is most common kind of relationship in UML modeling. Mapping a UML association
into a relationship at the database level is also a main task for an ORM engine. The JSR220
specification gives us four annotations for mapping associations: “@ManyToMany”,
“@ManyToOne”, ”@0OneToMany and “@OneToOne”. Using these annotations, the developer can
map unidirectional or bidirectional “one to many” “one to one” or “many to many” associations.
However, there are some other possible associations in a UML model that not covered, e.g.
association with association class, or self association. Mapping these associations is still the
responsibility of the developer. In our model driven approach, the developer is to be relieved from
this task.

In the following subsection, we will discuss how to use the four ORM mappings for annotations to
handle the different varieties of UML-level associations. All along we’ll consider the resulting
database schema for each mapping.

2.5.2.1. Unidirectional association mapping

» Unidirectional One to one

Scenario: There is a “one to one” association between A and B (from A to B). In Class A
@OneToOne is added on the reference field that refers to B. (“role_name” indicates role name of B
in this association)

14

A

e e

-rodle namne —

In table A, a unique constrain will be added on foreign key “role_name_id” to table B. (“role_name”
indicates the role name of B in this association)

A

PK |id Pk

FK1 |role name id

» Unidirectional One to many

Scenario: There is a “one to many” association between A and B. (From A to B) In Class A
@OneToMany is added on the reference field which refers to B. (“role_name” indicates the role
name of B in this association).

A

nide niETi

-role mame —»

1 "

Notice that, @OneToMany annotation used in a unidirectional association does not support direct
foreign key mapping. Furthermore, a unique constrain will be placed on the foreign key to table B.

A A B B
PK |id - PEK.FK2 | role name id — PK |id
FKI1 A id

» Unidirectional Many to one
Scenario: There is a “many to one” association between A and B. (From A to B) In Class A
@ManyToOne is added on reference field which refers to B.

A e nicTE B
-role_name —
= |
The mapped database schema:
A B
PK |id — PK |id
FE1 | role name id

Notice that, foreign key “role_name_id” to table B does not have unique constrain. This is the only
difference from the database schema of unidirectional “one to one”. In unidirectional “one to one”,
foreign key to table B must be unique, that is not required in unidirectional “Many to one”.

15

» Unidirectional Many to many
Scenario: There is a “many to many” association between A and B. (From A to B) In Class A
@ManyToMany is added on the reference field which refer to B.

A

nde nETE

-role_name —

L ¥

The database schema is similar to the one which is mapped by unidirectional “one to many”. The
only difference is, there is no unique constrain on foreign key “role_name_id” in join table “A_B”.

A - B

PFK

id

FK1
FK1

A id
role_name id

PFK

2.5.2.2. Bidirectional association mapping

> Bidirectional One to one

Scenario: There is a “one to one” association between A and B. If A is owner side, B is inverse side,
in Class A @OneToOne is added on the reference field which refers to B and in Class B
@OneToOne with option element “MappedBy” is added on the reference field which refers A.
(“role_a” is the role name of A, “role_b” is the role name of B)

A

vlir a2

e b

B

-role_b

=

roele_a

The schema is the same as unidirectional “one to one”. If B is owner side and A is inverse side, then
Table B will contain the foreign key “role_a_id” to table A, and a unique constrain will be putted on
it.

B
PK |id PK |id

Fk1 |role a id

> Bidirectional One to many / Many to one

Scenario: There is an “one to many” association between A and B.(A is one side) A is assigned as
inverse side, B is owner side, in Class B @ManyToOne is added on the reference field which refers
to B and in Class B @OneToMany with option element “MappedBy” is added on the reference field
which refers to A.

16

e b B

-role_b —w-Tile_a

molis

The schema is the same as unidirectional “many to one”.

A

B
PK |id g4 PK |id

FK1 |role a id

4

In @ManyToOne option element “mappedBY” is not defined, that means in bidirectional “one to
many” or “many to one” association, “many” side must be owner side.

» Bidirectional Many to many

Scenario: There is a “many to many” association between A and B. If A is owner side, B is inverse
side, in Class A @ManyToMany is added on the reference field which refers to B and in Class B
@ManyToMany with option element “MappedBY” is added on the reference field which refers to A.
(“role_a” indicates role name of A and “role_b” indicates role name of B)

A

-role_b —-rolc_a
L ¥

mdis @ ol b B

There is no any unique constrain on both foreign keys.

A s B
PK |id |g—ol I PK |id
FK1 |role_b_id
FK2 |role_a_id

» Bidirectional Many to many with association class

Scenario: A_B is an association class between A and B. The association between A and B can split
into two bidirectional associations. In case of “many to many”, they are bidirectional “one to many”
between Aand A_B (A is one side) and bidirectional “one to many” between B and A_B (B is one
side).

ah L a_h :D ah

-rali a -rule b

Because in bidirectional “one to many” or “many to one” association, “many” side must be owner
side, so, all foreign keys will be hold in association class. Then we have following figure. (“role_a”

17

indicates role name of A and “role_b” indicates role name of B)

A AB B
PK [id |g— ' [| Pk [id
FK1 |role_a
FK2 |role b

» Bidirectional One to many with association class
In case of one to many association between A and B (A is one side), the relationship between A_B
and B should be bidirectional “one to one” or “one to many”. (B is one side).

AR n A_R

a b robe_a a_h
A b |;’>

Fodes by

-mle_a -rode b

AB

- I N
» ! [rate 2 =
2 Lrale_b k

If “one to one” is used, that means each B instance can only be related to one A instance, i.e. B side
as a many side is an unique collection type. If B side is a non unique collection type, then
bidirectional “one to many” between B and A_B should be used. In this case, the mapping is same as
bidirectional Many to Many with association class.

A AB

PK [id |gq—1" [| yfek|ia
FK1 |role_a
FK2 |role b

In fact, if the association between B and A_B is one to one, the database schema will have two
possible forms. That is because in bidirectional “one to one”, arbitrary side can be owner side.
Suppose that if we assign B as the own side, then B table will hold the foreign key. The data schema
will be:

A A B B
PK |id |g—PK |id |g——PK |id
FK1 |role_a FK1 |role A B

Here, “role_A_B” indicates role name of A_B in association between B and A_B. Clearly, when B
is inverse side, association class A_B will hold the both foreign keys again.

» Bidirectional One to one with association class
In this case, the association can be split into two bidirectional “one to one” associations.

18

A l T ! B A

-rali a -l h

As a convention, we assign the both association end as inverse side, so that the association class can
hold the both foreign keys.

A A8 B
PK [id |g— ' | | ik [id
FK1 |role_a
FK2 | role_b

2.5.2.3. Polymorphic association

A polymorphic association is an association that may refer to instances of a subclass of the class
that was explicitly specified in the mapping metadata.([King05] section 6.4.1)

Scenario: In RandL project, “Transaction” class owns two sub classes “Burning” and “Earning”.

bvel i el 3 AT QU T
LoyaltyAccount color : Colof
e points : Integer fprimadiin
B number : Intager 1| ca
earn{i : Integer)

burn(i : Integer)
isEmply() : Boolean

account

il

trangactions] 0.."

Transaction

0.." | points : Integer I
nsachons| date - Date transaction
amount: Real

programi) :
LoyaltyProgram

A"}.
| Burning | | Earning |

If we use default inheritance mapping strategy “per single table” i.e. “Burning” and “Earning” Class
are only annotated with @Entity. All “Inlined attributes” in both Classes will be mapped as columns
in table Transaction. Suppose both “Burning” and “Earning” classes have a field “name”. For the
relationship between “LoyaltyAccount” and “Transaction” we can use normal bidirectional “one to
many” association mapping. Here, if “LoyaltyAccount” Class is set to be the owner side. Then, we
will get following database schema:

19

Transaction
Lovalty Account PK |id
PK |id FKI | account
< ' TYPE
points M
nurmber puints
date
amaout

(Column “TYPE” is the discriminator column).

2.5.2.4. Self-association

» One to one self association

Scenario: Class A has a bidirectional “one to one” association to itself. A has two role names; one is
“father” the other is “son”. Field “father” and “son” declared in Class A are corresponding reference
fields for the two roles. In this association the owner side and inverse side still need to be assigned.
Suppose that we assign “son” side as inverse side, i.e. to put @OneToOne annotation with option
element “mappedBy” on the “son” field and the “father” field will be only annotated with
@OneToOne.

Bidirectional Unidirectional

-futher - som
e >0n 501

Then we get following database schema:

r

A
PK |id
FK1 |son id

If the association is unidirectional (from father to son), the unnavigable side “father” is implicit
owner side. Class A will contain one reference field “son” which is annotated @OneToOne. The
database schema will be the same as above figure.

> One to many self association
Scenario: Class A has a bidirectional “one to one” association to itself. A has two role names; one is
“father” the other is “son”. Also, field “father” and “son” in Class A are corresponding reference

20

fields for the two roles.

Bidirectional Unidirectional
1
father K
A A
Lfather .
=501N . =011 . 2011

Because in bidirectional one to many, many side must be owner side, “son” will contain a foreign
key to “father”. Thus, the database schema will be:

-

A
PK |id
FE1 | father id

When the association is unidirectional, i.e. from “father” to “son”, “father” will be the owner side.
In database schema a join table will be created:

A A A

PK |id ‘ K. FK1 ST il
+— K2 A id

2.5.2.5.Multiplicity constrains

EJB3 ORM engine does not take care of the precise multiplicities value of an association end, i.e. it
does not distinguish [0..7] and [0..*]. At annotation level, we can only define an association either
“many” side or “one” side. But, we can use option element of association mapping annotation to
give a furthest support for multiplicity constrains. Suppose that there is a “one to many” association
between A and B. B has multiplicity [1..*]. That means, the association end must also exist, if the
association exists, i.e. association is not optional. Therefore, we can set option element “optional” in
association mapping annotation to give such constrain:

Observe the multiplicity of a navigable association end,

> If the lower bound of the multiplicity is “0”, then add “optional=false” in association mapping
annotation of the opposite side.

» If the lower bound is a number “>= 1, then add “optional=true” in association mapping
annotation of the opposite side. (Absence of “optional” option element in annotation, the
association will be also explained as an optional.)

21

2.5.2.6. Summary of association mapping annotation

Owner side and inverse side:

> In unidirectional association, unnavigable side must be owner side. There is no inverse side.

> “mappedBy” option element only appears in inverse side. It indicates the foreign key in the
owner side table.

» In bidirectional “one to many” association, owner side must be a “many” side. That is because
in “@ManyToOne” annotation there is no “mappedBy” to set.

> In bidirectional “one to one” or “many to many” association, arbitrary side can be owner side.

Non-supported association mapping
» Anindexed association end with upper-bound > 1 (with or without association class)

» A non-unique association end with upper-bound > 1 (in case of unidirectional one to many)

Position of forgein Key:

(FK=forgein key) owner side table Join table
One to | Uni. FKs for both sides
many Bi. FK points to one side

One to | Uni. FK points to navigable side

one Bi. FK points to inverse side

Many to | Uni. FKs for both sides
many Bi. FKs for both sides

2.6. Aggregation and composition

Both aggregation and composition are stronger version of association. (Composition is the
strongest). An Aggregation indicates a “...own a ...” relationship and the difference form normal
association is very subtle. This subtle semantic difference cannot be mapped in database. A
Composition is a stronger association. In this relationship, one side must be an “owner” and the
other side is/are “part”. The life cycle of “part” depends on the life cycle of “owner”, in other words,
if “owner” disappears, “part” cannot exist all by itself. In order to map this semantic constrain into
database, we should use option element “cascade” in association mapping annotation, i.e. set
“cascade=CascadeType.DELETE”.

22

2.7. Conclusion for model driven database mapping

2.7.1. Main problems for database mapping

1. Mapping decision for “@Entity’”” and “@Embeddable”

The problem is we must decide which class type is mapped as an Entity and which is mapped as an
embeddable component. A simplest approach is to map all the class type in model as entity. But in
consideration of performance, it is not a good approach.

Suppose we prescribe that all class types which is used as an “Inlined Attribute” type will be
mapped as embeddable component, e.g. “Date” class in RanL Project, there are still some problems
in special situations. For example, when “Date” class has a self association, because it is mapped as
embeddable component; it will not own a database identity and the association will not be mapped.

The possible solution for this problem is to give particular conditions for entity or embeddable
component mapping.

2. Potential problem of association class mapping

In our mapping strategy for association class mapping, association class will hold the both foreign
keys of the association ends. This schema will bring problem when we perform a remove operation.
For example, A_B is an association class between A and B. In A_B table, there is a record links to
two records in Atable and B table respectively (through foreign key), If we remove the association
from A side, only a “update” EJB3QL statement is executed on A_B table, not “delete” statement.
This result in that the record in A_B table actually will not removed. Only the both foreign keys will
be wiped off. This problem will make the A_B table increased unending.

The possible solution for this problem is to map the both foreign keys as a composite primary key of
the association class table. (Please refer to the database schema of unidirectional “one to many”).
Unfortunately, it is impossible to make such mapping in current entity manager (e.g. Hibernate
entity manager). In practice, by using embeddable class (as a primary key class) and
“@EmbeddedID”, we mapped the both foreign keys as composite primary key successfully, but
precondition is the association between Aand A_B or B and A_B must be unidirectional. In case of
bidirectional, we failed to map. For more information please consult the Hibernate Entity manager
community.

In next chapter we will find that this solution will collide with code pattern of Octopus.
3. Problem of various collection type mapping

An association end could be one of the four collection types i.e. Sequence, Bag, Set or Ordered Set.
By database mapping, EJB3 ORM engine does not take care this information of collection type.

23

» For the case that the association end is indexed collection (Sequence or Ordered Set)

Each element in indexed collection will be stored in order. Although there is an annotation
“@0OrderedBy” specified in JSR220 document, through this annotation, collection is only sorted at
runtime, the order of collection is actually not persist in database. Handling this index information
and making it persist in database is again the developer’s work. The challenge for us is to give a
generic strategy for supporting such indexed association (with association class or without
association class) in view of model driven.

» For the case that the association end is unique collection (Set or Ordered Set)

Suppose that there is a bidirectional “one to many” between A and B and B is the many side. In B
table, there will be foreign key points to Atable. If B is a Set or Ordered Set, the value of foreign key
in each B record cannot be duplicated. In order to make this constrain we have two approaches
available. One is to put “@UniqueConstraint” annotation to specify the unique column in the table.
Another simpler approach is based on codes, i.e. before saving a B instance into database, check if
same instance is already in the collection at runtime.

» For the case that the association end is non-unique collection (Bag and Sequence)

We will have problem when association is unidirectional “one to many”. This is so because the
mapped database enforces a unique collection type on “many” side.

2.7.2. Selected annotations for generation

According to the preceding discussion, the following metadata annotations are supposed to be
generated:

» @Entity » @ManyToOne
» @Embeddable » @OneToOne

> @Table » @OneToMany
> @lId » @ManyToMany
» @Transient » @OrderedBy

2.8. Summary

To achieve a model driven database mapping, a generic mapping strategy for each possible
construct in a UML class diagram must be given so that appropriate mapping annotations can be
automatically assigned in the right place in accordance with these strategies. In this chapter, we
attempted to give a mapping strategy for each construct in a Class diagram and listed all
encountered problems and difficulties by mapping. As a conclusion, all annotations which will be
generated in model driven database mapping are confirmed.

24

Chapter 3. Thinking in Code Pattern

We do not only want EJB3 artefacts generated with mapping information but also want the
generated code to provide for manipulating database data in an object-oriented manner. The
interaction behaviour on database depends on the logic presented in the generated code. Thus, in this
chapter, we will first analyze the Octopus code pattern in depth. Afterwards, we will expose and
discuss some differences between EJB3 artefacts and Octopus generated code style. Finally, a new
code generation approach will be introduced.

3.1. Limitations of Octopus UML

Octopus UML has its own textual syntax. The capability of its expression rather limited. It cannot be
used to represent the whole UML2.0 syntax. Since an imported UML model (Class diagram) will be
firstly conversed into Octopus UML, the limitation will also restrict the presentation of imported
UML model. In the following text we enumerate some of the limitations relevant for EJB3
generation.

» Absence of UML notation

There is no expression in Octopus UML syntax for some UML notations, especially, for the
constraint notation in generalization or multiple associations. These constraints could be performed
by using OCL, but at this point OCL is not part of the translation to EJB3. An example of constraints
notation which is used in two associations is shown in following figure:

|
|
|
captainOn | 0..* |{SUDSEH 1 | pilot
0.0 W 1.2
Flight [Fights & crew|__Person
attendedOn | 0..* I 0..7| flightAttendants
{ subset)
I

From [Kleppe03]

25

» Special enumerated type

Octopus UML has symbol <enum> to define an enumerated type. In <enum> definition, only
“string” can be set as enumeration value and no operations may be defined. This in contrast to the
more complex Enumeration supported by Java 1.5 or above.

» Limitation on type for attributes

The type of an attribute may be a primitive type, a user-defined classifier (class, interface,
enumeration) or a collection type (Sequence, Bag, OrderedSet, Set). Other than the String type,
OCL supports only three primitive types, i.e. “int”, “float” and “boolean”. The four OCL primitive
types together with the String type are known as “Basic types” (see section 7.2 in [Kleppe03])

» Some other limitations
Class, attribute and operation cannot be defined as “final”; meanwhile, attribute and operation can
not be defined as “static” etc. In our case, these should cause no trouble because, “final” class ,
attribute or operation will be ignored by EJB3 ORM engine and a static operation has no impact on
database schema.
The entity class must not be final. No methods or persistent instance variables of the entity class
may be final ([JSR220-Persistence] section 2.1)

3.2. Octopus Code Pattern

For convenience, we follow some naming conventions next:

1. An “attribute defined field” in Java code corresponds to “Inlined attribute” in UML. (Because,
this field is generated by <attribute> symbol in Octopus UML file)

2. An “association defined field” in code corresponds to “Attribute by relationship”. (Because,
this field is generated by <association> or <associationclass> symbol in Octopus UML file.)

Since the body of each Java file (class, interface and enumeration) consists of three parts, “field”,
“method” and “the code body in method”, we will also analyze the code pattern for each of them.

26

3.2.1. Generation of fields

3.2.1.1.Attribute defined field

If field is not of an object type, the generated type will be assigned as per the following table:

in Octopus UML file generated type
Real float
String String
Integer int
Boolean boolean

The type of attribute defined field could be a collection type which must be one of OCL supported
collection types, i.e. “Bag”, “Set”, “Sequence” or “Ordered Set”. The collection could be nested, e.g.
Set(Bag(Sequence)). The generated collection type for this field will only depend on the type of root
collection (in preceding example, “Set” is the root collection).

in Octopus UML file (root collection) generated type
Set java.util.Set
Bag, Sequence or Ordered Set java.util.List

The attribute defined field name is the name of attribute defined in model. (with “f_" as prefix)

3.2.1.2.Association defined field

Association defined field will be created according to particulars of the association.

» In case of no association class:

If the opposite side is not navigable, field will not be created.

If the opposite side is navigable and is a “many” side, a collection type association defined field will
be created. (The type of the element in this collection will be the object type of opposite side)

If the opposite side is navigable and is a “one” side, a non-collection type association defined field
will be created. (The type will be the object type of opposite side)

The role name of the opposite side will be set as association defined field name (with “f_” prefix). If
the role name is not defined for opposite side (in Octopus UML <noName> symbol is set), the class
name of opposite side will be treated as role name.

» In case of association class:

If there is an association class, then both association ends must be navigable. (This condition will be
checked in first step of Octopus code generation process). If the opposite side is “many” side, a
collection type association defined field will be created. (The type of the element in this collection
will be the association class type) If this side is “one” side and the opposite side is “one” side too, a
non collection type association defined field will be created. (The type will be the association class
type) The association class name will be set as association defined field name. (with “f_" prefix)

27

3.2.2. Generation of methods

3.2.2.1.Methods for attribute defined field

For each attribute defined field, Octopus will generate its accessor methods i.e. setter and getter.

Section 1 get_ ()
set__ (element_type)
(Here, “__” stands for attribute defined field name i.e. role name of opposite side; “element_type”
is field type)

If attribute defined field is a collection type, Octopus will generate additional methods for collection
manipulation.

Section 2 addTo__ (element_type)
addTo__(collection_type)
removeFrom__(element_type)
removeFrom__ (collection_type)
removeAllFrom__ ()

(Here, “element_type” is still field type; “collection_type” is either java.util.List or java.util.Set)

It should be noticed that in the original Octopus distribution no methods are generated for indexed
collection type, e.g. get__At(), addTo__At() etc.

3.2.2.2.Methods for association defined field (without association

class)

If the opposite side is navigable, the methods in “Section 1” (for association defined field) will be
generated.

If the opposite side is “many” side, the methods in “Section 2” will be added.

If this side is navigable too, i.e. association is bidirectional, following methods will be added:

Section 3 z_internalAddTo__ ()
z_internalRemoveFrom__()

(Here, “__is association defined field name)
For the explanation of the both “inner methods” the reader is referred to [Kleppe05].

28

3.2.2.3.Methods for attribute defined field (with association class)

Similarly, all methods in “Section 1” for the association defined field will be created, in addition,
two more methods (getter and setter for opposite side object) will be also created despite that there is
no relevant field declared. The only reason for this is that the developer should not be conscious of
the existence of association class. When he operates the association from one side, he does only
know the role name of the opposite side. Therefore, “get__() and set__(element_type)” (*__” stands
for role name of the opposite side) is a dedicated API for this purpose.

Section 1 get_ ()
set__(element_type)
get && ()
set_&& (element_type)

(“_” stands for role name of the opposite side; “_&& " stands for the name of association defined
field i.e. class name of association class.) In this case, role name of opposite side (*__") and
association defined field name (*_&&_") is not same.

If the opposite side is “many” side, all methods in “Section 2” will be still added. Notice that “__”
stands for role name of opposite side, not the name of association defined field.

Since an association with association class defined in Octopus UML must be bidirectional, “inner
methods” in “Section 3” still need to be added. But there is a small difference from preceding one:

Section 3 z_internalAddTo_&&_()
z_internalRemoveFrom_&&_()

(Here, “_&&_” stands for association defined field name i.e. association class hame.)

3.2.2.4. Summary of Methods generation in Octopus Code Pattern

If we combine the three previous Sections, then the generation process can be described in a
systematic way.

Section 1 Section 2 Section 3
get_ () addTo__(element) z_internalAddTo__()
set_ () addTo__(collection) z_internalRemoveFrom__()
get &&_() removeFrom__(element) z_internalAddTo_&&_()
set_ && () removeFrom__(collection) z_internalRemoveFrom_&& ()
removeAllFrom__()

For an attribute defined field:
(*_” stands for then name of attribute defined field)
Section 1 will be generated, if field is a collection type, Section2 will be added.

For an association defined field:

(*_” stands for role name of opposite side;”_&&_” stands for the name of reference field which
refers to association class)

29

If opposite side is navigable, Section 1 will be generated. In case of association class, “get && ()”
and “set && ()” will be added.

If opposite side is navigable and is “many” side, Section 2 will be generated.

If association is bidirectional, Section 3 is generated. In case of association class,
“z_internalAddTo_ ()" and “z_internalRemoveFrom__ ()’ will be replaced by
“z_internalAddTo_&& ()” and “z_internalRemoveFrom_&& ()”.

3.2.3. Generation of method body

3.2.3.1.Code fragment based analysis

In order to simplify the code analysis process, we partition the code body of each method into
several code fragments. Each code fragment is independent of other fragments and encapsulates a
snippet of logic. For example, for an addTo__ () code body :

public void addTobls (EE element)
¢ if [element == null] {
return:;]
)
EE I this.f sa.contains(element)) {
return; }
.}
[this.f aa.add{element] ;|
" if [element.getCuner (] '= null | ¢
element.get@wner(].z_internalRemDveFrDmﬂaielement]%
Lk
[element .z internalliddToCuner [(AL)this j;]
'

We can split the code body into five parts (code fragments):

check if parameter is null (check null parameter)

check if collection already contains this element (check duplication)

add element into collection (add)

clean the old relationship of element, if it has one (clean relationship from opposite side)
build a new relationship for element (build relationship from opposite side)

ok~ 0D

For each code fragment, we have given a fixed name, these named code fragment will appear
repeatedly in different methods. Under different situation, the combination of these fragments in a
method is also different. Moreover, a code fragment is an abstract of a snippet of logic, it could have
different implementations. For example, “check null parameter” code fragment may have following
forms:

if | element == null | { if | element == null | {
return; } return null;}

Actually they do the same thing. Therefore, we consider only the logic specific to the code.

30

3.2.3.2.Association sensitive methods

Under different association conditions, some generated methods will be constructed from different
combination of code fragments. We call these methods as “association sensitive methods”. These
methods are: “set__()” method in “Section 1", “addTo__(element)” and “removeFrom__(element)”
methods in “Secion 2”. (In case of association class, only “addTo__(element)” is sensitive for
different under different association conditions). In followed text, we will discuss the code fragment
detail for the three methods in case of without association class. Due to the complexity of code
pattern for association class case, the involved methods will be reviewed in next section solely.

To make things concrete, we suppose that there is an association between A class and B class. B side
(opposite side) has a role name “role_b” and A side has a role name *“role_a”. The association
sensitive methods in A class (this side) will be reviewed here.

> set__(element_type)

(Here, we assume that B is “one” side, i.e. “element_type” is class type of B. If B is “many” side, the
combination of code fragments will be the same, only the implementation of particular code
fragment might be different.)

1| i€ | this.role b !'= null | |
this.role b.z internalBRewmoveFrowRole ai (L)this |2}

thig.role b = element;

if [element '=s nall] {
glement.getRole al (L) this):}

1. clean relationship from opposite side (generated iff the association is bidirectional and this side
is “one” side)

2. set

3. build relationship from opposite side (generated iff the association is bidirectional)

The first code fragment “Clean relationship from opposite side” is used to guarantee the
“Agreement” principle from “ABACUS” rules (see “Associations are ‘Marriages’ in [Kleppe05]).
In our scenario, before a new association is built between A and B, A must clean the old relationship
to other B instance because A can only contain one relationship to B (A is “one” side). If it has one,
it should first notify its related B instance to destroy (clean) the link to it. Since the “clean” action is
actually performed by B and invoked by A, we use the term “from”.

The second code Fragment in “Set” builds the link from A to B. This behaviour also destroyed the
link from A to its old related B instance. Afterwards, last code fragment “build relationship from
opposite” will create a link from new instance B to A so that the bidirectional association is
completed. The following table shows the process:

(Instance 2 of B will be set in instance 1 of A)

31

Clean relationship Set Build relationship

iInstisee 1) Clistasce 1) [hnstesce 1)

[E] B (f]

i Fit

(st 1) (st 1]

Fi!

(hsteece 1]

(Inslmwe Zh (Inslmwe Zh (Inshmwo Z)

H H H

» addTo__ (element_type)
(Suppose that B side is “many” side, then “element_type” indicates B class type.)
1| if { element == null |} {return;!}
2| if | this.role b.contains (elewent) | {return;}
3| if [element.getRole a() '= null | |
element.getRole a().z_internalRewmoveFromRole bielemwent) ;}
4 | thisg.role b.add(elewment);
5| element.z internallddToRole ai [4)this j:
1. Check null parameter
2. Check duplication (be generated iff the opposite side is unique collection type)
3. Clean relationship from opposite side (generated iff the association is bidirectional and this side
is “one” side)
4. Add
5. Build relationship from opposite side (generated iff the association is bidirectional)

The following table shows the process:
(Instance 1 of B will be added to instance 2 of A)

Clean relationship Add Build relationship

A A A

(lnsience 1) ilnataece 1) [lnsteace 1)
B 1] H
(Instew:e 1) (st 1) (nstw:e 1)

{Instamce 2§

A
(Insiamce 2)

A A

i Instamce 23

4
4

B L}

{lnsnance 1) [Denanes 11

/\

(e}
(lnslanes 2

32

» removeFrom__(element_type)
(Suppose that B side is “many” side, then “element_type” indicates B class type.)

if [element == nmull] {return:}

if('this.role h.contains(element]) return:

elewent.z_internalRemowveFrowBole al (4)this j:

thig.role h.remove (element]:;

Check null parameter

Check existence

Clean relationship from opposite side (generated iff the association is bidirectional)
Remove

N N O N

The following table shows the process:
(Instance 1 of B will be removed from instance 1 of A)

Clean relationship Remove

H
{Enstimwe 1)

H
{Instew 1)

.Y A

t] [}

{lisianes 2h {lnstane: Ih

Methods for association class case
A given scenario for this section is: there is an association between Aand B, A_B is their association
class.

1. Relationship related methods in association class

In relationship class case, the association must be bidirectional, furthermore, the relationship
between A and A_B and the relationship between B and A_B should be constructed or destroyed at
the same time. In an association class, two methods perform this: constructor method and clean()
method.

» Constructor

1/3if [& == nudl ££ b == null | return;

2| &.z_internalliddTol Eithis):
b.z internaliddTol E(this);

3| this.role a = =;
this.role b = b;

Check null parameter
Build relationship from opposite side
3. Build relationship from this side

During the instantiation of the association class A_B, the both relationships to A and B is also
constructed.

33

» clean()
1 role a.z internalRemowveFromi Bithis):
role .z internalRemowveFromid Bithis):
2| role b = null;
role & = null:
1. Clean relationship from opposite side
2. Clean relationship from this side

2.Association sensitive methods in association end (e.g. in A class)

>

addTotRole_b(B par)

(Suppose that B side is “many” side.)

1

hoolean isPresent = false:;
Iterstor it = a B.iterator():
while [it.hasMNext (] && !'isPresent |1 1
L B elewm = (A B] it.next();
if [elem.getRole k(] == par]| {
isPresent = true;}}
if | isPresent | return:; I

L B azscls = new A_BithiSF par) :

a B.add({asscls):

>

Check the duplication (generated iff the other association end corresponds to a indexed
collection type)

Build relationship from opposite side

Build relationship from this side (this part is not necessary!)

removeFromRole_b(B par)

(This method is not association sensitive, because no code fragment is generated under conditions.
We put this method here to show that an unnecessary part of code is generated in standard Octopus
code pattern)

1

L B foundElem = null;
Tterator it = & B.iterator(]:
while [it.hasNexti() 1 {
L B elem = (A B} it.next():
if | elem.getRole k() == par | |
foundElem = elem;}}
if (foundElem ==null) return;

{ L B)foundElem) .cleant)

thig.f s E.remove [foundElem) ;

w NP W

Check existence
Build relationship from opposite side
Build relationship from this side (this part is not necessary!)

34

3.3. Cases where Octopus-generated code patterns are

inadequate for EJB3

3.3.1. Naming convention for field

All fields declared in octopus generated codes are “private”, moreover, no matter association
defined field or attribute defined field, field name will be added by “f_” prefix. This design follows
the concept of “information encapsulation”, which is one of the fundamental tenets of software
design (see Item 12 in [Bloch01]). But in our case, this design will bring trouble if developer use
EJB3QL query, i.e. QL query will fail when the developer uses identifiers as they appear in the
UML-model (e.g. field names without the “f_" prefix). Another possible trouble is, when EJB3
entity is “detached” (outside an entity manager instance) and used as backend Bean of JSF, the
disagreement between field name and property methods name (accessor methods name) will result
in failure.

3.3.2. Database Identity, object identity and object equality

The essential distinction for these three concepts is: (Section 3.4.1 [King05])

» Obiject identity—Obijects are identical if they occupy the same memory location in the
JVM. This can be checked by using the == operator.

» Object equality—Objects are equal if they have the same value, as defined by the
equals(Object 0) method. Classes that don’t explicitly override this method inherit the
implementation defined by java.lang.Object, which compares object identity.

> Database identity—Objects stored in a relational database are identical if they represent
the same row or, equivalently, share the same table and primary key value.

In an ORM environment, it frequently happens that two objects may have different Object identity
but same Database identity. Thus, each comparison of objects should be based on Object equality.
To achieve this equals() and hashCode() must be overridden.

In Octopus generated codes, there is a method “getldString()” used for building default identifier of

the object:

1. If object contains a String type field, value of the first String type field will be set as identifier

2. If there is no String type field, but integer type field, value of the first integer type field will be
set as identifier

3. If object does not contains any String type or integer type field, “no 1D found” will be set as
identifier.

This method is cannot be used when comparing objects because the generated identifier is not

guaranteed to be unique.

35

3.3.3. Generic

In our database mapping strategy for cases like “one to many” or “many to many”, the collection is
defined using generics to specify the element type, so that we do not need to use “targetEntity”
option element in association mapping annotation. But, the ASTs of code generated by Octopus
follow the metamodel of J2SE 1.4, with no provisions for “generic type”. It should be noticed that
“generic” gives only compiler level protection, it can be mixed with old non-generic codes (if we do
not offer a complete octopus extension for “generic” support). But, due to this type of mixture, a
potential JVM level exception could arise at runtime.

3.3.4. Enumerated type

A J2SE 1.5 enumerated type is inherently supported by JSR220 specification, i.e. without mapping
annotation it will be embedded into owner entity table directly. The Octopus generated enumeration
class from <enum> symbol is actually a normal class which implements the type safe enum pattern
(see Item 21 [Bloch01]) There will be two main problems by mapping this type of enumeration class
into database:

1. In the type safe enum pattern, each constant must be “public static final”, that will prevent all
constants (fields) being persisted in the database.

2. Since no public constructor is provided by this pattern, enumeration class can not be mapped as
entity.

Consequently, it is necessary to change the code generation to output Java 5 enumerated types.

3.3.5. Collection type attribute defined field

An attribute-defined field can be type with one of the OCL supported collection types,
in particular with a nested collection. That increases the complexity and difficulty for
database mapping and manipulation codes design.

The quickest solution to mapping collection type fields consists in serializing (or
annotating as @Lob i.e. Binary Large Object) the whole collection. However, in that
case the attribute cannot participate in WHERE clauses in an EJB QL expression, as
per the specification:

Note that state-fields that are mapped in serialized form or as lobs may not be portably used in
conditional expressions (The implementation is not expected to perform such query operations
involving such fields in memory rather than in the database.)([JSR220-Persistence] section 4.6)

36

3.4. Conclusion for Octopus code pattern analysis

3.4.1. Main problems and challenges

» Problem with association class
In previous chapter, for solving the removing problem by association class, we suggested to map
both foreign keys to association ends. After analyzing the Octopus code pattern, we found this
solution as underoptimal. The reason is, in association class constructor and clean() method, both
foreign keys values are handled, this behavior will be not approved if they are primary keys at same
time.
The application must not change the value of primary key. This includes not changing the value
of a mutable type that is primary key or element of a composite primary key. (section 2.1.4
[JSR220-Persistence])

» Problem of rewriting equals() and hashCode()

In order to perform comparisons based on Object equality, one or more than one field values should
be chosen for constructing a unique object identifier. Making decision is obviously troublesome in
our model driven case. One possible approach is to use “id” field, but it still has a problem: Before
an Entity being persistent, its primary key could be null or “0”, i.e. the value of “id” field is not
guaranteed to be unique all the time.

» Absence of support for various collection types
Our challenge is to give a mapping strategy for all OCL supported collection type (which could be
nested), along with codes for each manipulation.

3.4.2. Possibility of fragments based code generation

In fragments based code generation, codes will be assembled from beforehand stored code

fragments according to a rule table. Compares with Octopus code generation mechanism (template

based), this code generation approach has the following advantages:

1. Avoid redundant repetition in code generation and give an intuitive overview of the logic based
on rule table.

2. Transformation to other OO languages which have similar object relational mapping character
will be easy.

A practical example for code generation is presented in Appendix B.

37

3.5. Summary

In this chapter, we discussed the limitation of Octopus UML. Since all imported UML model should
be expressed in OctopusUML, these limitations will limit those UML models that can be processed
by our transformation to EJB3. By following an analysis based on “code fragments”, we have
reviewed the Octopus-generated code patterns, especially the code pattern for association
generation. The knowledge of Octopus code patterns will be the foundation for the future discussion
of the problems which are exposed in the next chapter.

38

Chapter 4. Discussion of Concrete Problems

In the previous chapter we exposed some problems. Among them, support for “Index association”
and “Collection type/non collection type attribute defined field” appears to be difficult problems in
our work. In this chapter, we will discuss them more closely. During the discussion, we will
evaluation a candidate solution.

4.1. Problem of Collection type attribute defined field

Let’s consider a Java field that corresponds to a collection typed attribute in a UML class. The
quickest way to ORM-map it consists in serializing it, by annotating it as @Lob i.e. as a Binary
Large Object, thus serializing all items in the whole collection. However, in that case the attribute
cannot participate in WHERE clauses in an EJB QL expression, as per the specification:
Note that state-fields that are mapped in serialized form or as lobs may not be portably used in
conditional expressions (The implementation is not expected to perform such query operations
involving such fields in memory rather than in the database.) (Section 4.6
[JSR220-Persistence])
From a model definition, an attribute is likely to be a collection of entity type. (Normally, this is not
a favourable model design, but we cannot avoid this possibility.) If the field is saved as Lob, the
query cannot be used over the relationship any more. Moreover, an entity type has its own table to
store its instances, if an already persisted entity instance is serialized into a Lob again, then an
inconsistent problem will occur.

For convenience, we prescribe the following naming convention:

» Element type of a collection: the type of element in a collection, it could be a collection type
again.

» Ultimate element type: if collection is not nested, element type is equal to ultimate element
type. If collection is nested, ultimate element type is the type of the element of the innermost
collection, e.g. the ultimate element type of the collection “Sequence(Bag(Set(String)))” is
“String”. An ultimate element type is never a collection type.

» Root collection type: if collection is nested, root collection is the outermost collection. E.g. in
“Sequence(Bag(Set(String)))”, “Sequence” is the root collection type.

» Leaf collection type: if collection is nested, leaf collection is the innermost collection. E.g.
“Sequence(Bag(Set(String)))”, “Set” is the leaf collection type.

» Nested-level: indicates the depth of a nested collection. E.g. in “Sequence(Bag(Set(String)))”
has nested-level 3. At the nested level 2, the collection type is “Set”.

39

4.1.1. In case of non-nested collection type

Element type of non-nested collection could be one of the following possibilities:

1. One of the OCL supported basic types, i.e. int, float, boolean and String

2. Instance of a classifier, i.e. a type defined through <class>, <associationclass> or <datatype>.
It could be an entity or an embeddable component.

3. Instance of an enumerated type defined by <enum> symbol.

4.1.1.1.Thinking in database mapping

Attribute defined field is not like association defined field from <associations> which contains all
the information around the defined association. From a non nested collection type attributes field,
we only know the association should be “one to many” and the type of the opposite side of this
association is the type of element in this collection. Thus, placing a @OneToMany annotation on the
field declaration to build a database schema for unidirectional “one to many” is all we can do.

In any association mapping, both association ends should be Entity and each owns a table schema in
database. But if the element is an Enumeration type or basic type which are supposed to be
embeddable component and will not have a database table. One direct solution to this problem is to
create an entity class to wrap the values of Enumeration or basic type instance. We call this wrapper
class as “item class” (IC). One the other hand, a class defined from <class>, <associationclass> or
<datatype> could be embeddable component or an entity. If the instance of this class is used as
element of the collection, this class must be mapped as an entity.

Now let us consider the collection type of the field. Suppose that the collection type is indexed i.e. a
sequence or an ordered set. Then the question should be where to save the index information of the
collection. The most straightforward answer is to add an index attribute in the entity class, for
example an additional field named “sequence”. From this approach an index column will be mapped
into database table. For an element whose type is basic, enumeration or embeddable component, we
can put this additional field in its IC, because it will not have a table to store it. But if the element
type is an entity, the additional field will change the model definition and from the view of a model
designer this change will not be acceptable. For example, a model designer may give such UML
definition:

40

Folass> L

<attributes:-

+coll @ Sequence (B ;

+colZ @ Bagi(B);

+coli @ Zet (B

+cold @ QrderedSet (String)
Fendclass’-

FKeolass> B

<attributes:-
+ name : String:
Fendclass>

Although there are three collection type around B, in the database there is only one table for B.
Designer has no responsibility to add a ,,sequence” field in class B definition just only for one field
declaration ,,coll : Sequence(B);“. From this consideration, the index information should be saved
out of table B. One possible solution to this problem is to generate an IC and put an ,,item” field in it.
The IC works no longer as a wrapper, but as a class which builds the relationship to table B.
Moreover, IC will contain index information for table B, if leaf collection type is indexed. In this
approach the “one to many” association between A and B from coll field declaration will be
actually split into two associations, i.e. “one to many” between Aand IC and “many to one” between
IC and B.

Here we create many to one between IC and B because coll field is a sequence i.e. B can be
duplicated in collection. If it is ordered set, then the association between IC and B is definitely “one
to one”. The difference is, in unidirectional “one to one” foreign key has a unique constraint, i.e. the
foreign key value in IC table cannot be duplicated. In other words, same instance of B cannot appear
twice in collection of IC.

Another thing should be noticed is that unidirectional “one to many” between A and IC will result a
join table to be created in database schema. This join table is totally unnecessary. In order to wipe
off join table from database, we can add a field ,,owner* which points back to A and let the “one to
many” be a bidirectional association. According to this mapping design for field coll, we have the
following database schema:

IC
A B
PK |id
PK |id | g— | K | id
FK2 | cosmer id
FK1 |item_id NATTE
sequence

Similarly, for col2 and col3 mapping, two IC s will be generated, for example IC2 and IC3. IC2 and
IC3 will not contain ,,sequence” field, because both leave collection is not indexed. As for col4, we
still use bidirectional “one to many” instead of unidirectional one to many to avoid unnecessary join
table. Then the database schema after mapping will be:

41

IC4

PK |id

PK [id |g——

item
FE1 | vwner
sequence

Here, “item” is defined as a String type field in I1C4 entity, its corresponding column ,,item*“ in IC4
table should be physical database type CHAR. If the element type of col4 collection is an
Enumeration, IC4 will contain an enumeration type ,,item“ and the corresponding column ,,item* in
table will be database physical type int. (by default ordinal of enumeration value will be saved.).

4.1.1.2.Thinking in codes pattern

So far we have discussed the mapping of a collection type attribute defined field in non nested
collection case. Now is the time to think about the operation codes for this mapping approach. One
thing is clear that the developer in business layer is not supposed to know the existence of IC and the
database schema. He might operate the collection field like a normal collection, for example adding
or removing an element. The problem is, all collection operations only react on collection instance
in memory. Therefore, an overriding of these collection operations is necessary for us. But how to
override them and where to put the override operation codes will be main obstacle to process. At
first, overriden operations of a collection type means a new class which will extend this collection
type and override necessary operations in its body. In our case, a collection type could be ArrayList
or HashSet. Second, this new class should not be mapped into database table. That is because this
class is supposed to only provide functionality extension. From these considerations, the solution is:
» One class will be generated for overriding corresponding operations.
» It should be mapped as embeddable component and extend ArrayL.ist or HashSet according to
the collection type of attribute defined field. We called this new class as ,,embeddable
collection class*(ECC).

In ECC we put a collection type field which builds the bidirectional “one to many” association
between ECC and IC. Because ECC is embeddable, the association mapping actually effects on A
table and IC table. Furthermore, the element type of this collection is IC and IC contains the index
information i.e. ,sequence” field. Thus, if the collection instance of this field can hold the same
order of IC table through column sequence, it will bring lots of convenience. To achieve this, we can
use @OrderBy annotation for this field. When a collection of IC records are retrieved from IC table,
@OrderBy sorts the collection and assure that the index number of each IC object in List will be the
same as its ,,sequence” value. Following is a mapping example:

[oneToMany (cascade=CascadeType . ALL, mappedBy="owher ™)
AorderBy ("sequence™)
private List<IC> myItews = new ArravList<ICx>(]:

One obvious problem of this approach is the concurrence problem. Generally, a concurrence will

42

occurs when two different ECC instance exit in memory and at same time both add operations are
invoked to add a new IC in List. Because in add operation ,,sequence* of IC will be assigned, then
the two new added IC record in IC table may have same value in ,,sequence” column. But in EJB3
environment, this type of concurrence appears under some given conditions. Normally, when a
entity manager repeatedly retrieve a record in one transaction, only one entity instance of this record
will be built in memory, meanwhile, its state in memory and its state in database will be
synchronized by its owner entity manager. But if this entity instance is out of an entity manager, for
example, it is transferred to presentation layer, and then its state in memory will not guaranteed to be
synchronous with its state in database. This instance becomes a so-called detached object and may
hold a state different from the database state. An entity manager can use ,,merge” operation to bring
the actual state of a detached object back to the database. In this case, a “sequence” concurrence will
occurs. In order to avoid ,,sequence* concurrence problem, developers of EJB3 system had best do
not let an entity instance become in detached status.

» Created methods in ECC
Now, let us observe the field “coll” in preceding example. Suppose that we want to add a “B”
instance in to “coll”. ECC1 is the embeddable component for “coll”, the adding action is actually
performed in it. Because the relationship between IC and ECC1 is a bidirectional, after the
relationship from ECC to IC is set, an inverse relationship from IC to ECC must be also set. To
achieve this, we just need to set “owner” field in IC class. But one problem is, ECC1 is an
embeddable class which shares the database identity (primary key) of class A (table A) and thus can
not be set in “owner”. To solve this problem, we must transfer the owner instance of ECCL1 to the IC
class. Consequently, three new methods will be created in ECC1:

B add(element_type, owner_class_type),

B insertAt(index,element_type, owner_class_type)

W setAt(index, element_type, owner_class_type).
The owner instance (A class) will be transferred as parameter. Following table shows a code
example for adding a new element in coll:

In ECC

public boolean add(B elewent, LL owner) |
if [elewment == null | {
return false:;

}

IC1 item = nmew IC1():
item.setlequence (myltem=.3ize())
item.setltemielement)
this.myltems.add(itemj;]

1 ™

itew.setldyner [owner) ;]
return true;

Because this add method is no longer an override method, the body of add operation in owner class
i.e. A class must be modified accordingly.

43

In A class

public void =addToColl (B element) |
this.f coll.add{element, this);

In add operation in ECC1, a new generated IC instance will handle the relationship between IC and
B. After the owner instance is set into this IC “owner” field, the relationship between ECC1 and IC
is completed.

Except the above motioned methods, there are two more methods should be created:

B getCollection()

W setCollection(collection_type)
The reason is straightforward. Suppose that, when getCol1() is invoked, the collection is supposed
to be retrieved from database instead from memory. Furthermore, getColl() should return B
collection not IC collection from ECC. Similary, setCol1 should actually set collection of IC in ECC
not B collection. Thus, we let getter and setter of coll in A class invoke get and set operations in
ECC which will handle the transformation between the collection of IC element and the collection
of B element.

As a result, following diagram shows all possible methods in ECC and Owner class of the attribute
defined field. Here, arrows indicate ,,invoke*. Some methods which need to be modified in owner
class i.e. A class are marked with “(changed)”.

Owner class of the field ECC
fehanged) gt () == getCollection]} ereared
fehmged) set_ () == sctColloction|collection_type.owner_class_type) fereted)

clear() (rverviced)

{ehamged) addTo__(element_type) === addizlement_type, owner_class_tvpe) (oreate

addTo_ (eollecton_tvpel

ol o yremoveFrom (element IVpe) = |'c|'|'||.|\'l.'ll.||}.il.‘1.'ﬂ firvereicdes)

L

removelrom_(collection_tyvpe)

removesl IFrom_ ()

ot Atindex) == petlindex) foverridedd)

L,

set__Atfindex, element_type) ===p sctAt{indexclement type.owner_class_type)foreated

add__At(index.element_type) ===b nsertAtiindexclement_typeowner_cliss_type)foreared)
= removelindex) foverrided)

removeFrom__Atfindex) ==

One problem of this approach is, due to new created methods in ECC class, we can not use its super
class or interface i.e. ArrayList/List or HashSet/Set to declare the field type in owner class, e.g.
»private List f_coll= new ECC()“ or ,private ArrayList f_coll= new ECC()*. The only doable
declaration will be:

private ECC £ coll = new ECCH):

44

4.1.1.3. Conclusion

For a collection type attribute defined field (non nested collection case), two additional classes will
be created i.e. ECC and IC. ECC will be annotated as an embeddable class and IC will be annotated
as an entity. A bidirectional “one to many” will be build between ECC and IC. If the element type is
an entity, we build a unidirectional “many to one” for Bag or Sequence case, a unidirectional “one to
one” for Set or Ordered Set. If the element type is not an entity, IC table will be the table to store the
element value.

For an indexed collection, an additional field “sequence” will be generated in IC class. Accordingly,
in ECC class following operation will be added:

» Override methods get(index) and remove(index)

» New method insertAt(index,element_type, owner_class_type)

» New method setAt(index, element_type, owner_class_type).

In owner class, besides that we change the field declared type to “ECC”, there are still some
methods need to be modified, they are:

» Accessor methods for the field

» addTo__(element_type)

» removeFrom__(elemnent_type)

A problem for this ECC,IC strategy is, when element type is an entity, IC will actually server like an
*association class” (it is not real association class, because of a unidirectional relationship on one
side). Then, we have the same problem as the one by association class, i.e. when we remove an
element from the collection field, its correlative IC record will not be removed from IC table. Do not
like association class, the solution “mapping both foreign keys as composite primary keys” make
sense here, because the foreign keys values will not be changed through our codes.

4.1.2. In case of nested collection type

For a nested collection type, two things will be concerned:
1. nested level of the nested collection
2. the collection type at each nested level

45

4.1.2.1. Thinking in database layer

At first let us take a look at this scenario:

<class> LA

<attributes:-

+ coll @ Bag(3equence (B)):

+ cold @ Orderedlet (Bag(Sequence (Bl1):
<endclass>-

Here field ,,col1*has a “one to many” association to collection object Sequence(B). If we treat IC as
one item in this Bag collection then IC has a “one to many” association to class B again. A possible
database schema will be like following diagram:

Ic2
IC1
A/ PK |id B
PK |id g——" % |1 — ——p{ PK |id
- FE1 | owner id
FE1 [owner id FRZ2 |[item_id
sequence

Here, IC1 contains only one foreign key to AA table and has a “one to many” relationship between
AA and IC2. Obviously, this part of mapping is for Bag(...). IC2 table maintains the information of
end element type. The sequence column in IC2 table stores the index information for Sequence. As
for IC2, IC1 serves as ,,owner class®. To achieve this mapping, we still need two ECCs for AA and
IC1 separately.

As we have seen, repeatedly using ECC,IC strategy can handle collection with arbitrary nested
level. For example, in order to map “col2” of preceding example, ECC,IC strategy will be repeated
for three times. The database schema will be:

IC1 IC3
Ic2
A4 PK | id PK | id -
i - s [.
= Pk | id —
PK |id |og ad id < Ly PK |id
FE1 |owner id FE1 | owner id FK2 |t-:|r|_|d_ e
SCUENCE FEY |owner_id
1 Frame 2 sequence
Frame |

Here, Frame2 corresponds to Bag(Sequence(B)) and Framel corresponds to OrderedSet(...).

46

4.1.2.2. Thinking in codes layer

In IC class, field “item” is created to wrap the ultimate element value, but for a nested collection,
except the last IC class, the “item” field will be embedded with correlative ECC.

It would be best if we do not change anything of the codes of ECC and IC. But unfortunately, when
we remove some thing from the collection type field, the old codes will trigger a problem.

In ECC class, remove operation is used to delete a record in database. But in a nested collection case,
remove operation will remove a collection object not a single “basic type”, entity, datatype or
enumeration type. Here remove a collection means remove each element in the collection iteratively.
This behaviour is totally different from ,,remove single element*.

To make things concrete, we observe the field “col2” in preceding example. Suppose that for this
field following classes are created:

» ECCland IC1 for ordered set

» ECC2and IC2 for bag

» ECC3and IC3 for sequence

The action of remove operation in ECC1 and ECC2 should be different from the remove action in
ECC3. If we put a remove operation in each IC, then the remove operation in ECC will invoke its
IC’s remove method and no matter removed object is single instance or a collection type the codes
in ECC will be the same. Now each 1C’s remove method will perform the actual remove action on
database.

Obviously, in IC1 and IC2, remove operation will delect collection and the remove action in IC3
will delete the relationship to a B record in database. Thus, by code generation we should
distinguish ,,inner IC* such as IC1, IC2 and ,,the end IC* such as IC3.

. setltemiitem type)
getCollection]) foremied) T P
getltemi)
setCollection{collection_type.owner_class_type) (creaied) metChamer)

o setOramer{owner cluss type)
clear() foverrided) _ L

addielement_type, owner_class_type) fovearad)

. remove{ object) jovervided) - P nemove]j

removeAl Fromitem?)
{oreaied when 1T iy imner)

ged{index) foverrided)

setAb{index element_tvpe.owner_class_ty

I e dwrr
insertAt{index element_typeowner £Tass typelcreared)
removekFromitem{collecton_type)

rermove] index) foversided) fevented whewn 1C iy immer)

F 3

47

Suppose that we remove an element from col2. First, remove() of ECC1 will be invoked, it will
invoke the IC1 remove() afterwards. Because IC1 is an ,,inner IC*, it will call removeAllFromitem()
and removeFromltem(collection_type) to remove a Bag collection.
RemoveFromltem(collection_type) will remove each element from the Bag in iterative manner and
each remove action calls remove() in ECC2. Again, ECC2 invokes remove() in next ,,inner IC* IC2.
The remove() in IC2 is responsible to remove each element in the Sequence collection. The remove
action for each element is actually taken by ECC3’s remove method. Then ECC3 invokes IC3
remove(), because the element in Sequence collection is B class type and the collection reaches the
end , thus,IC3 is ,,the end IC*. The whole remove action will stop at remove() in IC3.

In following table, we show the different between remove() in “inner IC” and remove() in “the end
IC”.

In ,,inner IC* In ,,the end IC*
public void remove () | public void remowve (] |
this.sequence=-1; this.sequence=-1;
this.owner= null:; this.owner= nuall;
removell l1FromItem() ; B
B

4.2. Problem of non collection type attribute defined field

When attribute defined field is not collection type, the field type cold be
» One of the four “basic type” i.e. float, int, boolean or String

» anenumerated type or

» aclass instance defined by <class> <associationclass> or <datatype>

The four OCL supported “basic type” can be directly mapped into a column. Therefore, here we will
only discuss the other two possibilities.

4.2.1. Field type is Enumeration type

Tiger style Enumeration is also supported by field type mapping in JSR220 specification. But codes
from octopus standard enumeration generation are not supported. That is already discussed in
previous chapter. Thus, we need transfer the old enum codes to a now one. Before beginning our
discussion, let us first take a look at following scenario:

48

kpackage> pack
olass>= aa
<attributes>-
+color:Color:
kendclass-
kenumeration> Color
<ralues
s5ilwver:
gold;
endenumeration-
rendpackage-

Here, Color is the Enum Class as a field which is used by Class aa. If Enum Class is written in Tiger
style, it will be simply embedded into aa Table in database without any annotation. But even so,
when we observe the table schema, we notice that there is no default value for column f_color,.
Unluckily, @Column annotation defined in JSR220 does not provide the possibility for a default
setup too.

| Fietd | Type [mu | Key | Defauit |
7 id bigint{2(] PRI
f_colar int11] YES []

In other hand, according to octopus code pattern, a default value of an enumeration should be
assigned for the field.

|private Color £ color = Color.lookup(d):;
The benefits from this code is, when aa class is initiated and persistent in database, the default value
of Enum Color will be also saved in table. From this point view, we need to create a lookup method
to adapt this approach. Then the possible Enum Class in Tiger style will be:

public enum Color
DEFAULT,
silrer,
gold:
static public Color lookupiint index) |
if (index == DEFAULT.ordinal ()]
return DEFAULT;
else if(index == silver.ordinali))
return silver:
else if(index == gold.ordinali))
return gold:
return DEFAULT:
h

Furthermore, a tiger style Enumeration class as an embedded class will not has its own table, i.e. the
comparison between two enumeration classes will never happen. Thus, there is no need to overwrite
hashCode() and equals() for it.

49

4.2.2. Field type is a single object instance

In previous chapter “Thinking in database mapping”, we have motioned a decision problem for a
single instance type attribute defined field. Concerning the performance, we should use
@Embeddable whenever possible. But, in some special cases, a class type must be an entity:

1) Class type is defined as an association end

2) Class type is ,,ultimate element type“ of an attribute defined collection type field

3) Class type contains attribute defined collection type field

4) Class type has an self association

5) Class type is super class of an entity and locate at the top level of the hierarchy
Here is the explanation for each situation listed above:
1. The first point is straightforward, if the class is not an entity, association mapping can not be
performed.
2. From the ECC, IC strategy discussion, we have realized that a class type (not an enum) should
have its own table in database and must not be wrapped by IC class, or, a database inconsistent
problem will occur.
3. Inthis case, as an “owner class”, class type must be an entity and own a table in database, or there
is no place to embed with ECC.
4. Severing as the both association ends, the class type must be an entity which has a table in
database.
5. As a super class at top level, it must provide a table for embedding its child class. This class type
can be abstract.

According to the listed situation, we can draw the following conclusion:

Suppose owner class A has an attribute defined field ,,f* which is a class type B. If B fulfils any one
of the 5 listed situations, field ,,f“ will be mapped through @OneToOne i.e. an unidirectional one to
one is build between A and B. If B does not encounter any situation in list, B will be mapped as
embeddable component.

4.3. Problem of indexed collection used in an association

Association defined field is something different from attribute defined field. The field is generate
according to association definition and the association information is more comprehensive, follow
these information database mapping will be straightforward with association mapping annotation.
Thus, our analytic point locates in codes layer only i.e. find out the way to change the code pattern
from Octopus to support indexed collection type association end. Because the octopus code pattern
is different for association class case and the case of association without association class, therefore,
we will discuss them separately.

50

4.3.1. Association end is an Indexed Collection (without

association class)

In <association> definition, collection type of an association end is specified through symbols
<ordered> and <notUnique>.

Without <ordered> without <notUnique> Set

With <ordered> without<notUnique> Ordered Set
With <notUnique> without<ordered> Bag

With both <ordered> and <notUnique> Sequence

It should be notice that, in Octopus UML, <ordered> must be putted before <notUnique>. If
applicable, <composite> and <aggregate> symbols must be placed at the last.

When an association is an indexed collection type i.e. sequence or ordered set, it must be decorated
with <ordered> at least in <association> definition.

4.3.1.1. Make Index persist

Java.util.Map as a collection interface is supported in JSSR220. We can easily think of using map key
to save the index. Now let us discuss this approach.

In example project RandL, we have following association:
+ LowvaltyProgram.program[1..¥] <—=> + Servicelevel.levels[1l..%] <ordered:;

Suppose we defined the role name levels in LoyaltyProgram as a Map.:

[oneToMany (cascade = CascadeType.ALL, mappedBy= "f program™)
private List<Serwvicelewvel> £ levels=new LrrayListi]:

MapHey (name="lewvels index™)
private Map<Integer,3ervicelevel:> £ lewvels:

@MapKey indicates which field in ServiceLevel is treated as the key for the Map. Here the key is
levels_index which should be created in ServicelLevel class.
public class Jervicelevel |
[TId(generate=GeneratorType. TDENTTITY)
public long id;
pPrivate Integer levels index:

Now, from above setup we will get following database schema for ServiceLevel table:

% id bigint[20] PRI auto_increment
levelz_index int{11) YES
f_rname varchar[255] TES

|_prograrm_id bigint[20] YES MLIL

We notice that if we do not use Map and just let levels_index as an additional persist field defined in
ServiceLevel class.The result database schema is the same as above. Then, the mapping codes will
be cleaner than which uses @MapKey:

51

[AOneToMany (cascade = CascadeType.ALL, mappedBy= "f program)
private List<Serwvicelevel> £ levels=new ArraylListi]:

As conclusion, we only need to create a new field named “index” in the class of an indexed
collection association end. In another side of association no additional mapping action need to be
performed.

4.3.1.2. Involved Operations

First, let us take a look at the following uml definition:

<associations>-
+ AAi.s rolel[0..*] -> + BE.b rolelfl..*]<ordered>;

According to the conclusion from above section, an ,,index” field will be added in BB class. For
each time by adding a new element in b_rolel collection in AA class, the value ,,index" should be
also persistent. Similarly, when one element is remove from b_rolel collection, each ,,index” value
of rest element in this collection must be also adjusted.

Thus, by handling index information of other side, three operations will be involved. They are set
operation, add operation and remove operation. Now, let us take a look the following diagram and
discuss for each section.

get_ () Section |
set_ ()

addTo_ (element_type) [chamged)
- e Section 2
addTo__{eollection_type)

rcmm'rt"rcm__l;rlv:mx:m_r_','n:::l fehanged)
removekrom_ {collection_type)

removeAllFrom_ ()

Section T
z internalAddTo {element type) jchargesd)

7_intermal RemoveFrom__(element_type) foha

get At(index) roreaned) Section £
set_At{index.element_type) (oroaied)
add Atindex element type) (created

removeFrom__ At(index) fereated)

In above diagram arrow indicates ,,invoke“and “__ “stands for association defined field.

Section 4:

In chapter “Thinking in code pattern” we have discovered that for each association field, Octopus
generates three sections of methods at most. Each section of methods will be generated under
special condition. Here, in the above diagram, we expanded it with a new section of methods i.e.
“Section 4”. It contains all methods for manipulation of indexed collection.

52

Condition for generation
Section 1 If association defined field dose exist
Section 2 If association defined field is collection type
Section 3 If association is bidirectional
Section 4 If association defined field is indexed collection type

Here, we give the concrete description for each method:

» get__At(index): return an element at specified position

> set__At(index,element type): replace an element at specified position with a new one
» add__At(index,element type): insert a new element at specified position

» removeFrom__At(index): remove an element from specified position

In following table we show the mechanism of code generation for these four methods.

In first column we listed all involved code fragments, and in the first row are the conditions for
generation. Here, “uni” indicates that the opposite is unique (in UML {unique}) association. By
contraries, “non-uni” means not. “one” indicates that this side has multiplicity “one” and “many”
means this side has multiplicity “many”. Moreover, “Y” indicates code will be generated, “N”
indicates code will not be generated)

Unidirectional Bidirectional
Uni. | no_uni Uni. No_uni
one | many | one | many
get_At(Check index bound Y Y Y Y Y Y
index) return Y Y Y Y Y Y
set At(Check null Parameter Y Y Y Y Y Y
index, Check index bound Y Y Y Y Y Y
element) Check Duplication Y N Y Y N N
Handle index information Y Y Y Y Y Y
Clean relationship from N N Y N Y N
opposite side
Set Y Y Y Y Y
Build relationship from Y
opposite side
addTo__ At(| Check null Parameter Y Y Y Y Y Y
index, Check index bound Y Y Y Y Y Y
element) Check Duplication Y N Y Y N N
Handle Index information Y Y Y Y Y Y
Clean relationship from N N Y N Y N
opposite side
Add Y Y Y Y Y Y
Build relationship from N N Y Y Y Y
opposite side
removeFrom | Check index bound Y Y Y Y Y Y
_At(Handle Index information Y Y Y Y Y Y

53

index) Clean relationship from N N Y Y Y Y
opposite side
Remove Y Y Y Y Y Y

Conclusion: all above listed methods should be created if association defined field is an indexed
collection type. The code body for these methods will be constructed from different code fragments
under different conditions.

Sectionl:
As an example let us first take look at the codes body of setB_role1() generated by standard octopus
code pattern.

public void setE rolel(List<BE> elements] |{
if | this.f b rolel != elements | |
Iterator it = this.f b rolel.iterator(];
while [it.hasMNexti(l] 1
BEE x = [(EB) it.nexXti):
¥.2_internalRemoveFroml rolel | (Li)this]
h
this.f b rolel = elements;
if { £ b rolel !'= nuoll) |
it = £ b rolel.iterator(]:;
while [it.hasNextil] 1
BEE x = [(EB)] it.nexXti):
¥.z_internalldddTol rolel([(ALjthis |:
h

In above codes, we see setB_rolel() invokes inner add methods to add each element in collection.
Because the parameter elements is a “List” type , its “iterator” will go over the elements in this
collection in proper sequence.
Returns an iterator over the elements in this collection. There are no guarantees concerning
the order in which the elements are returned (unless this collection is an instance of some class
that provides a guarantee).(java.util.Collection.iterator()[J2SE1.5])
Thus, if ,,z_internal AddToA_role1()* method can save the index information for each element, then
the collection will be persist in database also in correct order without any change on set__ (). We do
not need to worry the collection type of parameter could be non indexed collection. In fact when
b_rolel is an indexed collection type i.e. sequence or orderedSet. The generated collection type for
parameter must be a “List”.

Conclusion: no method in Section 1 will be changed.

Setction2:

In this section, main add and remove operation will be performed. Although there are two add
methods and three remove methods, the real work is actually done by addTo_(elememtType) and

removeFrom__(element_type).i.e. other methods in this section invoke the two methods.

Conclusion: addTo_(elememtType) and removeFrom__(element_type) need to be modified with
additional index handling behaviour.

54

Setion3:
In this section, there are only two methods ,,inner add“ and ,,inner remove*. Both methods need to
be modified to handle index information.

4.3.2. Indexed Collection in association with association class

In Octopus UML, an association (with association class) must be bidirectional. According to the
analysis result from chapter “Thinking in code pattern”, we have following table for code generation
in case of an association with association class.

Section 1 Section 2 Section 3
get_ () addTo__ (element) z_internalAddTo_&& ()
set_ () addTo__ (collection) z_internalRemoveFrom_&& ()
get && () removeFrom__(element)
set && () removeFrom__(collection)
removeAllFrom__()
Here, “__is the role name of opposite side, “_&& " is the association class name.

If opposite side of the association is an indexed collection type, we still need to add one section
methods to generation i.e. “Section 4” which has been discussed in last section.

4.3.2.1. Make index information persist

In no association class case, index can be saved through additional “index” field in association end
class. We can still follow this field approach, but the question is where to create it, i.e. in association
end or in association class.

Consider that we have followed uml definition:

rassociationclass> LA EBE
+ ARA.role a[0..*] <ordered:<notlUnigue-
=
+ EE.role hi[0..%]
tlendassociationclass>-

AAside is a sequence and BB side is a Set. From chapter “Thinking in code pattern” we realize that
the role name in this association will be declared as field in association class. In each association end
class, association class type will be a field type. In fact, octopus still generate getter and setter of role
name in one association end class despite that this role name is not declared in class. In above
example, BB class will contain getRole_a() and setRole_a() methods. But role_b dose not exist as a
field in AA class. The problem is the “index” field is supposed to be referenced by @OrderBy,
however BB class does not have such field with AA type. Therefore, the only place for the “index”
field is in association class AA_BB. Then, in BB class @OrderBy can be added on the field which is

55

association class type.

OneToMany (cascade=CascadeType . ALL, mappedEy="f role k")
@OrderBy("i_indele
private List<ll BE> £ abh BE = new ArraylList(/*LL#%/):

In above codes, “i_index1” field is declared in AA_BB class to hold the index information for role
name “role_a”. In case that both association ends are indexed collection type, two “index” fields
will be added in association class.

4.3.2.2. Involved operations

In association class there are only two association related operation. One is constructor of
association class which built the relationship on both side. Another is clean() which destroy the
relationship for the both side. These two methods all invoke the inner methods of each association
end. See below:

public AL BE(LA 5, BE b) {
if (a2 !'= mull ££ b !'= null | {
this.f role a = a;
8.2 internsallddTolli BE(this):
this.f role b = b;
b.z internallddTolld BE(this):

public void cleani()
f role a.z internalPemoveFromlli BE (this):
f role a = null;
f role b.z internalRemoveFromlli BE(this):
f role b = null;

b
From above codes we know that if “inner methods” of an association end are already modified to

handle index information, then we do no need to change the two methods in association class any
more.

All the same, we begin with the “Section diagram” and find out which methods should be changed
or created.

56

get_ () pel && () Sectionr {

set_ () set & ()

addTo_ (el fefange)

wdd To__{element_iype) Section ?
addTo_ {collection_type]

n:rn-;:w-:l-'rcrm__q_-:l ement_typel jefranged)
removebrom_ [eollection_type)

removeAllFrom_ ()

Section 3
-

z intemal AddTo_&& (element typel fof

ed |

Z_internal RemoveFrom_&8& (elemeni_typeliohamzed)

get_ At(index) (oreated) Nection 4
set At(index element type) foveated)

wdd Ad(index element type) forein!

removeFrom__ At(index) jrreared)

Sectionl:
In this section, we do not take care of get && () and set_&& (), because a developer will not be
aware of the existence of them. Here, we still observe the codes body of set_ () in BB class

public void setRole a(List par] |
Lizt xx = new ArraylList(this.f al EER):
Iterator it = xx.iterator():
while | it.hasNext() | {
Li BE elem = (AL BBE) it.nexti):
elem.cleani) ;
}

if [par '= null | |
it = par.iteratori():
while [it.hasNexti) | |
AR elew = [(AL] it.next()]:

this.addToRole afelem):

}

The set_ () will invoke addTo__(element_type). Thus if addTo__ (element_type) is changed to
handle index information then this method do not need to be changed.

Conclusion: no method in Section 1 will be changed.

Section2:

The two methods addTo__ (element_type) and removeFrom__(element_type) are still the core
methods to perform the add and remove action. Here, “changing” the both methods does not mean
to add ,,index handling* codes, but implies to be changed for supporting unique and non unique
collection type. (In standard Octopus code pattern, this is neglected) The reason why we do not need
to add ,,index handling” codes in these two methods is: When association between AA and BB is
build, anew AA_BB will be initialized. In constructor codes above we see, during initialization, the
inner add methods of both side are invoked. In the same way, when association is destroyed, clean()
method in AA_BB will be called, which will invoke inner remove method of both side. Therefore, if
the ,,index handling” codes is already added in the ,,inner methods* of indexed collection side.

57

There is no need to add it again in add and remove methods.

Section3:

In section3 we must notice that ,, && “indicates association defined field i.e. association class
name. In preceding example it is the field ,,aA BB, so the name for the inner methods are:
,»Z_interneralAddToAA _BB()“ and ,,z_internalRemoveFromAA_BB()“.Codes for “handling index
information” will be inserted into these two methods.

Section 4:

Similar to “association without association class” case, here, the four index collection related
methods will be created. But one thing should be noticed that in association class case, all operation
do not effect on the collection of association end but actually the collection of association class. This
make inner logic of the methods more complex, especially, in set__At().

Suppose that we have a AA instance which holds a collection of association class instance:

- Instance 3 e
- - = Instance 2 e ™ Aninstance of BB class
An imstance of AA class |r — :
N [nstance | &l “# Aninstance of BB class
- Instange () 4 # Aninstance of BB class

When a new instance of BB class is going to set in position “1”of the collection, we need two steps
to achieve it:

1. Destroy the old relationship between “instance 1” and “an instance of BB class”

2. And then build a new relationship to the new added instance of BB.

J An instance of BB class |

- Instance 3 - y
- il
- : 2 [nstance 2 e M Aninstance of BE class
An instance of AA class }- i -
i Instance 1 9 An instance of BB class
b Instance) B s An instance of BB class
f

In following table we show the mechanism of code generation for these four methods.

In first column we listed all involved code fragments, and in the first row are the conditions for
generation. Here, “uni” indicates that the opposite is unique (in UML {unique}) association. By
contraries, “non-uni” means not. “one” indicates that this side has multiplicity “one” and “many”
means this side has multiplicity “many”. Moreover, “Y” indicates code will be generated, “N”
indicates code will not be generated)

58

Unidirectional Bidirectional
Uni. | no_uni Uni. No_uni
one | many | one | many

get At(Check index bound Y Y Y Y Y Y
index) return Y Y Y Y Y Y
set_Af(Check null Parameter Y Y Y Y Y Y
index, Check index bound Y Y Y Y Y Y
element) Check Duplication Y N Y Y N N

Clean relationship from N N Y N Y N

opposite side

Set Y Y Y Y Y Y
addTo__ At(| Check null Parameter Y Y Y Y Y Y
index, Check index bound Y Y Y Y Y Y
element) Check Duplication Y N Y Y N N

Clean relationship from N N Y N Y N

opposite side

Add Y Y Y Y Y Y
removeFrom | Check index bound Y Y Y Y Y
_At(Remove Y Y Y Y Y Y
index)

4.4. Summary

Along with the analysis for “indexed collection type attribute defined field”, we educed ECC,IC
strategy as a possible solution. In this strategy, mapped database schema will be extended to handle
different type of collection. Moreover, we can use this strategy repeatedly for a nested collection
case. In the process of discussing "support of indexed collection in an association", we by analysing
the original code pattern, noticed that, some codes need to be modified, and also we settled the logic
constitution to support the indexed collection.

59

Chapter 5. Recipe for MDA driven EJB3
persistence artifacts

In chapter 3 and chapter 4, several potential problems were discussed under the categories of
Database Mapping and Code Pattern. In particular, two difficult problems (“Index association” and
“Collection type attribute defined field”) were analyzed in detail in Chapter 5. Building upon those
explanations, this chapter brings together in a concise manner all previous solutions and strategies.
Along with some considerations about Model, a generic recipe for the generation of MDA driven
EJB3 persistence artifacts is also offered in full here.

5.1. Extension of Octopus Java Model

The main purpose of extending the Octopus Java model (OJpackage Meta Model) is to make
Octopus capable of representing Java 5 annotations and enumerations. Since OJpackage itself is a
simplified Java model based on Java 1.4, the extension will focus only on the required functionality
and not in fully completing the Meta Model.

5.1.1. Extension for Annotation (OJAnnotation)

The possible Target types of Metadata Annotations for ORM mapping are TYPE, FIELD and
METHOD, as specified in JSR220. Consequently, at the metamodel level, an Annotation should
also relate to these Target types only. In the OJpackage Meta Model, the closest common super type
to TYPE, FIELD and METHOD is OJVisibleElement. Since each Target type can be decorated with
more than one Annotations type, the relationship between OJVisibleElement is “one to many”.
Moreover, our Annotation shouldn’t be applicable to subtypes of OJElement other than those for
TYPE, FIELD and METHOD.

The contents between parentheses of a mapping Annotation may vary in structure. These contents
may include several optional elements and even Annotations again. As a matter of convenience, we
declare the content to be simply of string type. It will be directly appended to the name of the
Annotation when serialized in code, e.g. “@”+annotation_name+”(“+content+”)”. Consequently, in
our new Model Element for Annotation a.k.a OJAnnotation there will be only two attributes, the

60

name of the Annotation and the content string.

Octopus is capable to determine the Type Path for “import” part. For Annotation, Octopus can easily
conclude the Type Path for each mapping Annotation through the Annotation name, e.g. the Type
Path for “@Entity” is “javax.persistence.Entity”. As a disadvantage, imports required because of
showing up in the “contents” of an annotation (an uninterpretable string) won’t be able to be derived
automatically with this design.

5.1.2. Extension for Enumeration (OJEnum)

Because all enumerated types are classes, its Model Element (OJEnum) can straightforwardly
extend OJClassifier. Although the Enumeration type is a generalization of Class, we still
recommend placing OJEnum at the same level as OJClass taking into account the code generation
mechanism in Octopus: the generation process for Interface, Class and Enum are performed
separately. In other words, Octopus uses a dedicated code creator in the shape of class EnumCreator
for generating the code for enumerated types.

The OJPackage Meta Model after extension is shown in the following figure:

[] |
CJElement
| | |]
OJAnnotation OJPackage QJPathName 0JSwitchCase
— T —T oJP .
u_¥|5|de:brn=r§'7.| dameter OJStxement
T]
. I I »
OJField OJOperation [%
. L\
CJClassifier CJSmple Statement OJBloci OJFStatement
OJConstructor OJTryStatement CJWhieState
ment
I ! QJSwitchStatement
OJClass OJinterface 0JTEnum

Extended OJPackage Meta Model

61

5.2. Qualifications for imported EJB3 persistence Model

Our recipe for EJB3 persistence artifacts does not aim at arbitrary UML Class Diagram as an EJB3
persistence Model. Some preconditions imposed on an imported Class Diagram must be met before
code generation because of the limited descriptive capabilities of OctopusUML. Additionally, some
limitations of the EJB3 Persistence standard as of JSR220 also stand in the way of directly mapping
some UML class diagram constructs. A best effort has been made at anticipating the restrictions on
the possible UML models for EJB3 Persistence, however more practical case studies would improve
our confidence on the completeness of such restrictions. The restrictions identified so far follow.

A UML Class Model must fulfill all the listed qualifications in order to be mapped to an EJB3
persistence Model:

should not contain interface or template definition

should not contain constraints in associations or in Polymorph.

Class can not be final

Enumeration can not be defined as nested Class

Primitive type must be one of string, int, float(real) or boolean type.

Each declared Class, Enum or Datatype cannot be used outside its owner package.
No UML Class should contain inner class.

Stereotype and attribute properties are not supported

Association qualifier is not supported (only Role name will be considered)

VYV V VY VYV VYV

5.3. Naming Algorithm for ,,Name collision* problem

Unless special provisions are made, name collisions might occur very often during code generation.
For example, if both association ends of an association class are {ordered} then two additional
“index” fields will be created in the association class. The name of both fields could collide with
each other or with an existent field in association class. The following algorithm (Naming
Algorithm) provides a way to generate unique name strings.

i=1:

name =,,Name*

Check if name already exist

If true, change name to ,,Name“+i (e.g. ,,Namel®) and i++, goto step 3)
if false, end.

VV V VY

At the beginning, an index “i” is initiated with value 1 and a variable “name” is evaluated by a string
“Name”. The value of “name” will be compared with other string names that could be field names or
class names etc. If comparison returns a positive result, variable “name” and index “i” will be
combined to make a new value for variable “name”. Afterwards, index will be increased. The check
step will be repeated until no more collision appears.

62

5.4. Strategy for Class Mapping

5.4.1. Recipe of Mapping Annotation

Situation 1: When class is defined by <class> or <datatype>
(Annotation in left column will be added when any of the conditions listed in right column is met.)

Annotation

Conditions

@Entity(access=AccessType.FIELD)

[1] If class is defined by <abstract><class>

[2] If class is not a sub class but is the super class
of other classes.

[3] Ifclass is defined as an association end

[4] If class has a self association

[5] If class contains attribute defined collection
type field

[6] If class is ,,end element type” of an attribute
defined collection type field

@Entity

[7]1 Ifclass is a sub class

@Embeddable

[8] If class does not meet any one of above 1-7
conditions and it is used as an inlined attribute
type(not collection) in another class

Situation 2: When class is defined by<Enum>

(No mapping annotation needs be added)

Annotation

Conditions

[9] Ifclass isenum

Situation 3: When class is defined by <associationclass>

(Association class must be an Entity)

Annotation

Conditions

@Entity(access=AccessType.FIELD)

[10] if class is association class

63

5.4.2. Recipe of generated Code patterns

Situation 1: When class is annotated with @Entity(access=AccessType.FIELD)

Put “implements Serializable” after class declaration

Leave out the Octopus-generated prefix “f_" on each field name in class

Add a long type field “id” for primary key in class

If “name collision” for field “id” occurs, apply the “Naming Algorithm”

Put Annotation @Id(generate=GeneratorType.IDENTITY) on the new field “id”.

If class is an association class, create a no-arg constructor in it.

If class is an association class, create setter methods for both reference fields

If another class with same name exist in other package, put Table(name="table-name*) after
@Entity(access=AccessType.FIELD) to give a specified name of mapped table. “Table-name”
is generated by “naming algorithm”.

VV V VYV YVY

Situation 2: When class is annotated with @Embeddable

» If two or more fields with a same name are declared in different embedded classes, each field
with the same name will be annotated with @Column(name="column-name”).
“Column-name” is generated by “Naming algorithm”.

Situation 3: When class is an enumerated Type

» Create an enum Class with “Public” visibility

» If there is no field defined with name “Default” (case insensitive), a new field named
,DEFAULT* will be created in enum Class as the first value of this enum.

» Create a static method named “lookup” with “Public” visibility in order to return a value of this
enum based on given ordinal.

5.5. Strategy for Association mapping (without association

class)

Scenario: When an Association exists between A and B, A and B may be equal (self association)

5.5.1. Recipe for Mapping Annotation

Mapping annotation will be placed above association defined field on the relevant association end.
The process of annotation assignment can be split into five steps. (All “Field” presented in table
means association defined field i.e. reference field)

64

Step 1: Determining owner side and inverse side of association
When association is bidirectional (elements in the first row are conditions for determining)

One to one

One to many

Many to one

Many to many

Owner side

Avrbitrary side

Many side

Many side

Avrbitrary side

When association is unidirectional (elements in the first row are conditions for determining)

One to one

One to many

Many to one

Many to many

Owner side

Unnavigable side

Unnavigable side

Unnavigable side

Unnavigable side

Step 2: Determining Mapping Annotations for association defined field
When association is bidirectional

(Elements in the first column are conditions for determining)
(Elements in the first row are annotation targets)

(,,xxx* stands for the name of association defined field in owner side)

Field in Owner side Field in Inverse side
One to one @OneToOne @OneToOne(mappedBy=xxx)
One to many/Many to one @ManyToOne @OneToMany(mappedBy=xxx)
Many to many @ManyToMany @ManyToMany(mappedBy=xxXx)

When association is unidirectional
(Elements in the first row are conditions for determining)
(Element in the first column is annotation target)

One to one

One to many

Many to one

Many to many

Field in owner side

@0OneToOne

@OneToMany @

ManyToOne @ManyToMany

Step 3: Determining Mapping Annotations for indexed association defined field
Irrespective of whether the association is unidirectional or bidirectional:
(Elements in the first row are conditions for determining)
(Element in the first column is annotation target)

The opposite side is indexed many

otherwise

Field in association end
(this side)

@OrderBy(xxx)

XXX stands for index field name of the opposite side.

Step 4: Determining ,,CascadeType* option element for association annotation
Irrespective of whether the association is unidirectional or bidirectional:

(Elements in the first row are conditions for determining)
(Element in the first column is option element owner (annotation))

When this side has multiplicity one and get
<composite> decorated

otherwise

Association Annotation for
the field in association end
(this side)

CascadeType.persist
CascadeType.remove

CascadeType.persist

65

Step5: Determining ,,optional* option element for association annotation
When association is bidirectional

(Elements in the first row are conditions for determining)

(Element in the first column is option element owner (annotation))

Lower cardinality of the opposite side >= 1 Otherwise
Association Annotation for optional=false -
the field in association end
(this side)

When association is unidirectional
(Elements in the first row are conditions for determining)
(Element in the first column is option element owner (annotation))

Lower cardinality of navigable side >=1 Otherwise

Association Annotation for option=false --
the field in unnavigable side

5.5.2. Recipe for Code Pattern

Since the original Octopus codes pattern for non-indexed association is already adapted to our
requirements, we only give the code pattern recipe for the indexed (in UML, {ordered}) association
case.

Suppose we have an association between A and B, B is navigable and its collection type is indexed.
The following modifications will be carried out on class B:

» Create an index field “index” on Class B

> If “name collision” for field “index” occurs, “naming algorithm” will be performed to generate
another unique field name.

» Create normal getter and setter methods for field “index”

The following modifications will be carried out on class A:
(*_” stands for the name of association defined field which refers to B)

Modify addTo__ (B element)

Modify removeFrom__()

Create get__ At(int index)

Create set__At(B element, int index)

Create addTo__ At(B element, int index)
Create removeFrom__ At(int index)

Keep on, if association is bidirectional

» Modify z_internalAddTo__ (B element)

» Modify z_internalRemoveFrom__ (Be element)

YV V V V V

66

Now let us take look at the modification detail for each method: (Suppose that “__ " is “Role_b”, the
name of index field for Class B is “i_index1”

addTo__ (B element)

1| if { element == null)return;
2| ifithis.role b.contains (element)] return:
3| if [element.getRole ai] != null | {
element.getFole al) .z internalBRemoveFromBole bielement) :}

4| this.role b.addielement):

5| element.i indexl = this.role b.=izeii-1;

6| element.z internallddToRole ai(i)this);

1. Check null parameter

2. Check duplication (generated iff the opposite side is unique (in UML {unique}) association)

3. Clean relationship from opposite side (generated iff the multiplicity of this side is one and
association is bidirectional)

4. Add

5. Handle Index information (be generated iff the opposite side is indexed collection type)

6. Build relationship from opposite side (be generated iff the association is bidirectional)

removeFrom__ (B element)

1| if [element == mull jreturn;

2 if(!this.role b.containsielement)) {return:}

3 Iterator ii =role b.sublist(index+1l,role b.size(]).iterator(]:
while [ii.hasNext(] | {B item = (B] ii.nexti]; item.i indexl--;}
beRemoved.i indexl=-1;

element.z internalBemoveFromRole ai (4)this);

role b.remove [element] ;

. Check null parameter

. Check existence

. Handle index information (be generated iff the opposite side is indexed collection type)
. Clean relationship from opposite side (be generated iff the association is bidirectional)
. Remove

g ~r W0 N PO

get__ At(int index)

1| if [index == role h.sizel)] || index < 0 | return null:

2 return role b.get(index):

1. Check index bound
2. Return

67

set__At(B element, int index)

removeFromBole bielement) ;)

if | element == mull)jreturn;
if [index >= role b.=ize(] | index < 0] return;
if [role b.contains(element] && role b.indexOf (elewent)] !'= index] |

4 element.i indexl = index;
getRole bhit(index).i indexl=-1;

5| i€ ¢ glement.getRole a() !'= null) |
glement.getRole af() .z internalRemoveFromBole h(element]) ;}

6| role B.set(index, element]:

7 element.=z internaliddToBRole al (i) thi=):

1. Check null parameter

2. Check index bound

3. Check duplication (be generated iff the opposite side is unique (in UML {unique}) association)
4. Handle index information (be generated iff the opposite side is indexed collection type)

5. Clean relationship from opposite side (be generated iff the multiplicity of this side is one and the
association is bidirectional)

6. Set

7. Build relationship from opposite side (be generated iff the association is bidirectional)

addTo__ At()(B element , int index)

1| 4if { element == null)return;
2 |1if [index »= role b.sgize(] | index < 0] return:
3| if | role h.contains (element] L& role b.indexOf (element] != index |

removeFromBole hielement) ;}

4 Iterator ii =role h.sublist({index,role h.size()].iterator(];
while [ii.hasMNextil] {

E item = [(B) ii.nexti):

item.i indexl++;}
element.i indexl = index:;

514if | glement.getRole a() != nuall | |
element.yetRole af) .z internalRemoveFromRole b ({element) ;}

role h.add(index,element] ;

Element.z_internalAddTDRDlE”aiiAJthis];

6

7

1. Check null parameter

2. Check index bound

3. Check duplication (be generated iff the opposite side is unique (in UML {unique}) association)
4. Handle index information (be generated iff the opposite side is indexed collection type)

5. Clean relationship from opposite side (be generated iff the multiplicity of this side is one and the
association is bidirectional)

6. Add

7. Build relationship from opposite side (be generated iff the association is bidirectional)

68

removeFrom__At(int index)

1| if { index »= role h.=zizei) | index < 0] return:

2 ifirole bh.get(index] !'= null){
Iterator ii =role b.sublList(index+l,role h.size(]) .iterator():
while [ii.hasNext(]] {E itew = (B] ii.next(); item.i indexl--:}

role b.get(index) .1 indexl=-1:}

3| if {role b.get (index] '= null){
role h.get(index) .z _internalBewoveFromRole ai (4)this) ;)

4 | role bh.remove (index) ;

1. Check index bound

2. Handle index information (be generated iff the opposite side is indexed collection type)
3. Clean relationship from opposite side (be generated iff the association is bidirectional)
4. Remove

z_internalAddTo__ (B element)

1| this.role bh.addielement):

2 element.i indexl = this.role h.=size(]-1;

1. Add
2. Handle index information (be generated iff the opposite side is indexed collection type)

z_internalRemoveFrom__()

1

int index = this.role b.indexOf(element) ;
Iterator ii =role h.zublList(index+l,role b.size(]].iteratori]:
while [ii.hasNext() 1 {

B item = (B)] ii.next(): item.i indexl--:}

element.i_index1=—1;

2 role b.remove | index);

1. Handle index information (be generated iff the opposite side is indexed collection type)
2. Remove

5.6. Strategy for Association Mapping (with association class)

Scenario: When A and B are two association ends, A_B is their association class.

5.6.1. Recipe for Mapping Annotation

Mapping annotations will be placed on association defined fields on each end and association class.

The process of annotation assignment can be split into five steps. (All “Field” present in table means

association defined field i.e. reference field)

69

Step 1: Determining owner side and inverse side

In case of ,,one to one* association, we create two bidirectional ,,one to one* between each
association end and the association class. In both associations the association class will be owner
side and both ends are inverse.

In case of ,,many to many* association, we create two bidirectional ,,one to many* between each
association end and the association class. (Both association ends are assigned as “one” side in new
associations.) The association class is still the owner and both ends are inverse.

In case of “one to many” association, we create two bidirectional associations:

(assume that A is “one” side and B is “many” side)

1. A “one to many” association between A and A B, A is assigned as “one” side in the new
association, and A_B is the owner.

2. A “one to one” association between B and A_B, A_B is owner.

Step 2: Determining mapping annotation for association defined field in each end
When association is ,,one to one“ or ,,many to many*
(Elements in the first column are conditions for determining)
(Elements in the first row are annotation targets)
XXX stands for the name of association defined field in association side)

Field in each associaion end Field in associaion class
One to one @OneToOne(mappedBy="xxx" @OneToOne
Many to many @O0OneToMany(mappedBy="xxx" @ManyToOne

When association is ,,one to many“/“many to one*
(Element in the first row is condition for determining)
(Elements in the first column are annotation targets)
XXX stands for the name of association defined field in association side)

One to Many or Many to One

Field in association end with “one” multiplicity @OneToMany(mappedBy="xxx")

Field in association end with “many” multiplicity @OneToOne(mappedBy="xxx")

(Element in the first column are conditions for determining)
(Elements in the first row is annotation target)

Field in association class

If “many side” is a Set or Ordered Set @OneToOne

If “many side” is a Bag or Sequence @ManyToOne

70

Step 3: Derterming mapping annotation for indexed association defiend field
(Elements in the first row are conditions for determining)

(Element in the first column is annotation target)

XXX stands for index field name in association class)

the opposite side is not indexed the opposite side is indexed
many many
Field in association end -- @OrderBy(xxx)

Step 4: Determining ,,CascadeType* option element for association annotation
Irrespective of whether the association is unidirectional or bidirectional:
(Elements in the first row are conditions for determining)

(Element in the first column is the option element owner (annotation))

When this side has multiplicity one and get otherwise
<composite> decorated
Association Annotation for the CascadeType.persist CascadeType.persist
field in association end (this CascadeType.remove
side)

Step 5: Determining ,,optional* option element for association annotation
(Elements in the first row are conditions for determining)
(Element in the first column is the option element owner (annotation))

Lower cardinality of opposite side >=1 Otherwise

Association Annotation for the optional=false -
field in association end

5.6.2. Recipe for Code Pattern

Like previous section about code pattern for association without association class, here only the
code pattern recipe for indexed (in UML {ordered}) association case will be reviewed.

Suppose we have an association between Aand B, A_B is the association class. The collection type
of B is indexed.

The following modifications will be carried out on class A_ B:

A\

Create a index field “index” on Class A_B

» If “name collision” for field “index” occurs, “naming algorithm” will be performed to generate
another unique field name.

» Create normal getter and setter methods for field “index”

71

The following modifications will be carried out on class A:

(*_” stands for the name of association defined field which refers to B)

(*_&& " stands for the name of association defined field which refers to A_B, this name is equal to
the class name of association class i.e. “A_B”)

Modify addTo__ (B element)

Modify removeFrom__ ()

Create get__ At(int index)

Create set__At(B element, int index)

Create addTo__ At(B element, int index)

Create removeFrom__ At(int index)

Modify z_internalAddTo_&& (B element)
Modify z_internalRemoveFrom_&& (Be element)

YVV V VYV YVYY

Now let us take look at the modification detail for each method: (Suppose that “__ " is “Role_b”, the
name of index field for Class B is “i_index1”

addTo__ (B element)

1| if { element == null)return;

2| hoolean isPresent = false;

Iterator it = a B.iterator(]:
while [it.hasNext()] & !isPresent |
L B elem = [A B)it.next(]:
if | elem.getRole () .equalsielement)] {isPresent = true;}}
if | 'isPresent | return:
3| if | element.geth Eil !'= null) {((4 Blelement.getld B)).clean():}

new L Eithis,element):

1. Check null parameter

2. Check duplication (be generated iff the opposite side is unique (in UML {unique}) association)
3. Clean relationship from opposite side (be generated iff the multiplicity of this side is one and the
association is bidirectional)

4. Add

removeFrom__ (B element)

1| if [element == mull return;

2| & B foundElem = null:
Iterator it = & B.iterator(]:
while [it.hasMNexti(l] |
L B elem = (A Byit.next(]:
if | elem.getRole b{).equals{element)) {foundElem = elem;}}
if [foundElem '= null | return;

3 (A B)foundElem) .cleani):

1. Check null parameter
2. Check existence
3. Remove

72

get__At(int index)

1| if [index == role h.sizel)] || index < 0 | return null:

2 return role b.get(index) :

1. Check index bound
2. Return

set__At(B element, int index)

if [element == null) return:

if | index >= role b.size(] | index < 0] return;

hoolean isFresent = false;

4 B where = null;Iterator it = & B.iterator():
while [it.hasMNext (] && !'isPresent 1 1
L B elewm = (A B] it.next();
if [elem.getRole k() .equalsielement)]
isPresent = true;where = elemwm:}}
if [isPresent & = B.indexOf (where) != index | {

removeFromRole bielement);}

if [element.getd B(] !'= null | {((i Bjelewent.geth E(]].clean();}

L B slot = & B.get(index]:
glot.getFole bi).z internalFemoveFromd Bislot):
glot.=setFole bielement)

elenment.z internaliddTol Ei(slot) !

1. Check null parameter

2. Check index bound

3. Check duplication (be generated iff the opposite side is unique (in UML {unique}) association)
4. Clean relationship from opposite side (be generated iff the multiplicity of this side is one and the
association is bidirectional)

5. Set

addTo__ At()(B element , int index)

1| if [elewent == mmll jreturn;

2| 1f [index »= role b.zsize() | index < 0] return;

3| boolean isPresent = fal=se;

L B where = mull;Iterator it = a B.iterator():
while [it.hasNext()] && !isPresent | {
L B elem = (A B} it.next():
if [elem.getRole bi] .equalsielement)) |
isPresent = true;where = elemwm:}}
if [isPresent & a B.indexOf (where] !'= index] {

removeFromRole bielement) ;}

4 | if | element.getd E{) != null)} {{{i Bjelement.geth B()).clean();}

73

5 L B azscls =new L Bithis,element):
a B.add(index,asscls):
Iterator ii = a B.sublist (index+l,5 B.size(]).iterator(]:
while [ii.hasNexti()] 1 {
A B item = (i B) ii.nexti):
item.1i indexl++:}
asscls.i indexl = index;

1. Check null parameter

2. Check index bound

3. Check duplication (be generated iff the opposite side is unique (in UML {unique}) association)
4. Clean relationship from opposite side (be generated iff the multiplicity of this side is one and the
association is bidirectional)

6. Add

removeFrom__At(int index)

1|if [index == role b.size(] | index < 0] return;

2 L B beRemoved = a B.get(index);
heRemoved.clean() ;

1. Check index bound
2. Remove

z_internalAddTo_&& (B element)

1 this.s B.add{element):

2| element.i indexl = this.a B.size()-1:

1. Add
2. Handle index information (be generated iff the opposite side is indexed collection type)

z_internalRemoveFrom_&& ()

1

int index = this.a B.indexOfielement):
Tterator ii =a B.sublistiindex+l,a B.size()].iteratori);
while [ii.hasNexti)) |
L B item = (L B) ii.nexti(];:
itemw.1i indexl--:}
element.i indexl=-1;

2 f role b.remove (index) ;

1. Handle index information (be generated iff the opposite side is indexed collection type)
2. Remove

74

5.7. Strategy for Attribute Mapping (Collection type)

Scenario: When class A has an attribute defined field named “attr” and its type is one of the four
OCL supported collection types.

5.7.1. Creation process in ECC, IC Strategy

In order to perform the strategy, some classes will be created. The creation process consists of three
steps:

Stepl: Creation of ECC, IC pair:

Situation 1: If “attr” is a non-nested collection:

» Create two classes named “ECC” and “IC” i.e. one pair of ECC and IC: (ECC, IC)

» If the name “ECC” or “IC” causes a “naming collision”, “Naming algorithm” is performed to
generate an unique name

» We mark the ECC with “Start ECC” and IC with “End IC”

Situation 2: If “attr” is a nested collection with nested level n :

(E.g. a 2-level nested: “Sequence(Bag(OrderedSet()))”)

» Create (n+1) pairs of ECC and IC: (ECC, IC)(ECCL, IC1)....(ECCn, ICn)

» The name of each ECC and IC is generated through “Naming algorithm”.

» We mark the ECC of first pair with “Start ECC” and the IC of last pair with “End IC”. The
other ECCs and ICs in pairs are all marked with “Inner ECC” or “Inner IC”

Each pair of ECC and IC corresponds to a collection type according to the collection definition. For
example, if there is a nested collection “Sequence(Bag(OrderedSet()))”, (ECC,IC) corresponds to
Sequence, (ECCL,IC1) for Bag and (ECC2,IC2) for OrderedSet.

Step2: Creation of fields in ECC and IC

Fields on ECC:
(“IC_name” stands for the name of IC in the same pair)
Name Visibility Type initialization Generation Condition
myltems private List<IC_class> new true
ArrayList<IC_class>()
Fields on IC:

(If “Start ECC” is located in the same pair, “Owner_class” stands for class A, if not, it stands for the
name of IC in the previous pair)

(If IC is not an “End IC”, “Item_class” stands for the name of the ECC in the next pair. If it is,
“Item_class” stands for the ultimate element type in the collection, i.e. OCL supported basic type,
enumerated type or annotated class type)

75

Name Visibility Type initialization Generation Condition

id public long none true

owner private Owner_class none true

item private Item_class new Item_class() true
sequence public int -1 if the next pair(relative to the

pair which this IC located)
corresponds to an indexed
collection type

Step3: Creation of methods in ECC and IC
(If collection type is “Set”, “collection_type” stands for “java.util.Set”, otherwise, “java.util.List”)

Methods will be created in ECC:

(IfECCisa*“Start ECC”, “Owner_class” stands for class A, if not, it stands for the name of IC in the
previous pair)

(“element_type” stands for the type of the field “myltem”)

» getCollection()

setCollection(collection_type coll,owner_class_type owner)
clear()

add(element_type elem,owner_class_type owner)
remove(object)

Keep on, if the pair of ECC corresponds to an indexed collection type
» get(int index)

» setAt(int index,element_type elem)

> insertAt(int index, element_type elm,owner_class_type owner)
» remove(int index)

Methods will be created in IC:

» getter setter methods for “owner” and “item”

> remove()

Keep on, if IC is an “Inner IC”

» removeFromltem(collection_type coll)

» removeAllFromltem()

vV V V V

5.7.2. Recipe for Annotation Mapping

The targets for the mapping annotations are: (No mapping annotation needed to put on field *“attr”)
» The correlative ECC and IC classes for field “attr”.
» fieldsinECCorIC

76

Annotation on ECC and IC:

ECC @Embeddable

IC @Entity(access=AccessType.FIELD)

Annotation on field in ECC:
(Elements in the first column are conditions)
(Element in the first row is the annotation taget)

myltem

If the pair in which this | @OneToMany(cascade=CascadeType.ALL,mappedBy="owner")
ECC located corresponds | @OrderBy("sequence")
to indexed collection

Otherwise @OneToMany(cascade=CascadeType.ALL,mappedBy="owner")

Annotation on fields in IC:

id @Ild(generate=GeneratorType.IDENTITY)
owner @ManyToOne(cascade=CascadeType.ALL)
sequence -

When IC is an “Inner IC” or IC is an “End IC” but ultimate element type is an OCL supported basic
type, enumerated type or a “@Embeddable” annotated class type:
No annotation assigned for “item” field.

When IC is an “End IC” and the ultimate element type is a “@Entity” annotated class type:
(Elements in the first column are conditions)
(Element in the first row is the annotation target)

item
The last ECC,IC pair @OneToOne
corresponds to a Set or
Ordered Set
Otherwise @ManyToOne

5.7.3. Recipe for Code Pattern

The following modifications will be carried out on class A:

» Change the type declaration of ,,attr* to its ,,Start ECC* Class type
» Modify the getter and setter methods of field ,,atr*

» Modify addTo__(element type)

» Modify removeFrom__(element type)

If “attr” field is an indexed collection type

» Create get__At(int index)

» Create set__At(element type, index)

» Create addTo__ At(element type, index)

» Create removeFrom__At(element type ,index)

(Here, ,,__*is ,,Attr*, “element type” is the type of element defined in collection type “attr”)

77

get_()

1| return attr.getCollection():;

1. Return

set_ (element_type element)

|1| return attr.getCollection()

addTo__(element_type element)

l| this.attr.add(element, this) ;

removeFrom__(element_type element)

1| attr.remove [element) ;

get__At(int index)

1| return attr.get (index) :

set__At(element_type element, int index)

|1| this.attr.setlht (index,element,this) ;

add__ At(element_type element, int index)

| 1| this.attr.insertht (index,element, this) ;

removeFrom__At(element_type element, int index)

|1 |this.attr.remnveﬂtiindex]:

The codes body for the methods on ECC which are listed in creation process step3:

getCollection()

1

ArraylLi=st resultzs = new ArrayListi):

Iterator it = myltem=.iterator():

while [it.hasNext() 1 {
results.add ([(ICl)it.next (1) .getltemil] 2}

return results;

setCollection(collection_ type coll, owner_class_ type owner)

1

if [getCollection().equalsi(coll)) return:
cleari():

Iterator ii = coll.iterator():

while [ii.hasNexti(] | {

add | (java.util.List) ii.next () ,owner) ;}

78

clear()

1 Iterator ii = mew ArravylList(nvItems).iterator():
whilk [ii.hasMNextil] |
IC1l item = (IC1l)ii.nexti():
myltems.remove (item) !
item.remowve (1)}

add(element_type element, owner_class_type owner)

1 if [elewment == null) return;

2| I1C1 item = new IC1{):
item.setltem(element) ;
this.myltems.add(item) ;

3| item.setiequence (myltems.size () -1 ;

4 | item.seLOWnEr [OWNer) ;

1. Check null parameter

2. Add

3. Handle index information (be generated iff this ECC,IC pair corresponds to an indexed
collection)

4. Build relationship from opposite side

get(int index)

1| return [(List) getCollection|() .get (index) ;

remove(object element)

1| if (element == null) {return false;}
2 .
IC2 item = new IC2();Iterator ii = mwyltems.iterator|():
hoolean out range= true;
while [ii.hasNexti(] & out_range | |
item = [(ICZ)ii.next():
if [item.getltem().equalsielement]]Jout range=false;
yif [out range | {return false::}
3 int index= wyltemwms.indexOf(item)
Iterator it = myltems.sublist (index+l, myltems.size()) .iterator()
while [it.hasNexti(] | |
IC1l elem = [(ICl)it.nexti():
elem.setiequence (elem. getiequence (1-11;}

4| this.myItems.remove (index): item.remove() :

5| return true:;

1. Check null parameter

2. Check existence

3. Handle index information (be generated iff this ECC,IC pair corresponds to an indexed
collection)

4. Remove

5. Return

79

setAt(int index, element_type element, owner_class_type owner)

1 if [element == null) return;

2| if | index < 0 | index »= myltems.sizel)) return:

3 IC1 item = nmew ICl():;item.setltemielemaent) !
itew.set3equence [index) ;myltems.set (index, item) ;
itew.setdyner (oWner) ;

1. Check null parameter
2. Check index bound
3. Set

insertAt(int index, element_type element, owner_class_type owner)

1 if [elewment == null) return;
2| 1if | index < 0 | index >= myltem=.=zize(]) return;
3| Iterator ii = wyltems.sublist (index, wmyltems.size (]) .iterator (] ;
while [ii.hasNexti(l] 1
IC1 item = [(IC1l) dii.nexti():

item.setiequence (item.getlequence () +1) ; }

IC1 item = new IC1l():item.setltewm(element) !
item.set3equence [index) ;

wyltems.add (index, item) ;

item.setdwner (oWher) ;

1. Check null parameter

2. Check index bound

3. Handle index information (be generated iff this ECC,IC pair corresponds to an indexed
collection)

4. Add

remove(int index)

1(4if [index < 0 | index »= myltems.sizel) | return;
2 Iterator it = myltems.3sublList (index+l,myltems.size()) .iteratar() ;
while [it.hasNext()]] {
IC1 elem = (ICl)it.next():
elem.setlaequence (elem. getiequence (1-1) 2}

3 IC1 item = myltems.get (index) :
myltems. remove [index) ;
item.remove (] ;

1. Check index bound

2. Handle index information (be generated iff this ECC,IC pair corresponds to an indexed
collection)

3. Remove

80

The codes body for the methods on 1C which are listed in creation process step3:
getOwner()

|1| return this.owner:

setOwner(Owner_class_type owner)

|1 |this.nwner= OWHEL !

getltem()

|1| return item.getCollection():

setltem()

1| item.setCollection (element, this)

remove()

1| this.owner= null;

2 | this.sequence=-1;

3 | removelllFromItemi) ;

1. Remove
2. Remove (be generated iff this ECC,IC pair corresponds to an indexed collection)
3. Remove (be generated iff this IC is an “Inner 1C”)

removeFromltem(element_type element)

l| item.remove (element) ;

removeAllFromlItem()

1

Iterator it = new HazshSet (getltemil).iteratar():
while [it.hasNexti(l] |

Object item = it.next():

if [item instanceof List |

removeFromItem| (List) item) 2}

5.8. Summary

In this chapter, based on the results of discussions from previous chapters, the particular solutions
and strategies to each potential problem especially the two main problems “Index association” and
“Collection type attribute defined field” were covered in great detail. At the same time, with the aim
of realizing these solutions, we also provided some integrated measures for improving Octopus.
Through a systematic implementation process, a generic recipe for the generation of MDA driven
EJB3 persistence artifacts is presented.

81

Chapter 6. Introduction to OctopusEE Beta

OctopusEE (Octopus Enterprise Edition) Beta is the Implementation of the MDA-driven generation
of EJB3 persistence artifacts based on the generic recipe in Chapter 5.

6.1. Requirements

EJB3 runs on Java 1.5 VM or above, thus the installation of Java 1.5 is an essential requirement.
Besides this, an Entity Manager needs to be set for providing the EJB3 persistence environment
(also referred to as “persistence engine” or “ORM engine”). We recommend using “Hibernate
Entity Manager” which is founded on “Hibernate Core” and “Hibernate Annotation”.

6.2. Setup in Eclipse

6.2.1. Configuration in Property page

In the “Properties” page of your “octopus project”, make sure that the “JDK Compiler compliance
level” is set to “5.0”

In order to let OctopusEE generate EJB3 artifacts, you need to turn the option for EJB3 generation
on. This switch can be found under “Properties”->“octopus code generation”->"JSR220”

Info
Builders General] User Interface] Storage] Visitors JSRZZ0
Jawa Build Path
F Jawa Code Skyle
F Jawa Compiler
Jawadoc Location
s Cckopus
W) i0ckopus Code Generation!

zeneration for EJBS codes:
v Generate 1SRZ20-Persistence (ORM Park)

82

6.2.2. Configuration of build path:

The following .jar files are needed in the build path of your “octopus project”:

o hibernate-entitymanager.jar from root directory of Hibernate Entity Manager package.

o ejb3-persistence.jar (the core library for EJB3 persistence) and

¢ hibernate-annotation.jar to be found in the lib directory of the Hibernate Entity Manager
installation

o hibernate3.jar from root directory of Hibernate Core package. Add the whole lib directory
in build path. We also need hibernate-tool.jar from Hibernate Tool package for generation
of DDL file. In order to get hibernate-tool.jar working, some additional jars are required,
you can take these information from “chapter 4 Ant tools” of the Hibernate Tool document.

6.3. Generated files

The original Octopus distribution will generate an “utilities” package in addition to the package
defined in the .uml file. OctopusEE will output a new “DDLGenerator.java” in “utilities” package.
This file is used for generating the database schema by means of DDL. It can be configured to let the
DDL be executed directly by the DBMS during code generation.

A log4j configuration file *“log4j.properties” is created under “src” directory. From default
configuration, log information will be displayed in console.

Furthermore, OctopusEE will generate two more packages. One is “META-INF” and the other is
“test”. The “META-INF” folder contains the XML configuration files for the project. They are
“hibernate.cfg.xml” which is used for DDL generation and “persistence.xml” which contains the
ORM mapping information to be used by the Entity Manager at runtime. In the “test” package, a
simple JUnit file is created.

6.4. Testing

6.4.1. Creating database schema

First, a database named “test” should exist in MySql beforehand. If you want to use another DBMS
(Oracle, Mssql etc.) or specify a different databsase name, you can set appropriate property value in
“hibernate.cfg.xml”. More information about hibernate configuration please consult the book
Hibernate in Action or the online documentation.

Run “DDLGenerator.java” as a standalone Java application. By default, the generated DDL will be

saved in file “schema.ddl”. You can configure the generation behavior through changing some
parameter in “DDLGenerator.java” methods.

83

schemaExport.sethelimiter (™2 ™)
ZetiutputFile (Tachema. ddl™)
.create (false, true) ;

The first parameter of the create() method is a switch for “console display”. If true, all generated
DDL will displayed on console. The second boolean parameter controls whether the DDL will be
executed on the DBMS (when set to “true”, all tables defined in DDL will be created in database.

6.4.2. Writing JUnit tests

You can put the test codes in test() methods in “test.java”. In this file, two entity manager instances
are created as local variable “em” and “em2”. You can handle the entities in different entity manager
instances (which in principle might correspond to two different DB connections), e.g. you can save
an entity in “em” and later retrieve it from “em2”.

The Entity Manager will trigger corresponding EJB3QL for each “object query”. If you want to
observe the background EJB3QL expression, simply change the “hibernate.show_sqgl” property in
“persistence.xml” to “true”.

|{prnpert? hamwme="hikhernate.show 3gl™ wvalus="trus"/=

6.5. Summary

In this chapter, we introduced OctopusEE Beta and explained how to use it. OctopusEE Beta
provides a way to check the correctness of our transformation recipe. It will be improved in the
future as improvements are made to those transformations.

84

Chapter 7. Conclusion

After discussion in chapters 2 through 4, a complete procedure for generation of EJB3 artifacts on
Octopus platform is given in chapter 5. But there are still two problems that the recipe does not
address: “potential problem by association class mapping” mentioned in section 2.7.1 and
“Problem of rewriting equals() and hashCode()” in section 3.4.1. In the recipe we still apply the
mapping strategy of section 2.5.2.2 for an association class mapping. In order to solve this problem,
we can map both foreign keys as a composite primary key; accordingly, the code pattern used in
Octopus in association class must be redesigned. (see section 3.4.1). For problem of “equals() and
hashCode()” a possible solution is based on an extension of Octopus UML so that model designer
can define a “business key” (section 4.1.6 [King05]) for an entity through constraint notations.

In future work, this recipe can be improved in the following ways:

1. ECC class can be written in a template so that the created classs amount can be reduced. It makes
sense by mapping a nested collection with a very high nested level.

2. Redesign the database mapping strategy for an association class in order to solve the problem
metioned in section 2.7.1.

3. Extend the descriptive capacity of Octopus UML so that the generic recipe can be expanded
accordingly.

As a suggestion, we encourage to use fragments based code generation instead of Octopus
inherent template-based generation. (see section 3.4.2) As an experiment, a code generation
process based on code fragments is shown in Appendix B.

For a complex application system based on EJB technology, the states of a component (persist
state, runtime state or client related state etc) in middleware must be managed along with the
specific business logic of the system. In a model based application, OCL is widely used to specify
runtime checks of these states so that a UML model for a component can be used in black—box
testing, providing a more abstract view of middleware in which developer can neglect the
complexity of distribution and concurrency. ([Wolff01]). Consequently, OCL invariants could be
used in the future to check the persistent state of entities so that the database integrity can be ensured.
To archieve this, in future work, we can transform OCL expression to static EJB QL expression i.e.
JSR220 “namedQuery” for entities. We can also extend the OCL invariants check as callback
methods of EJB so that application transaction can rollback once the integrity and consistency of the
underlying database is broken.

85

Actually, some efforts are already underway to apply OCL to business components, based on the
previous version of EJB (2.x), for example the usage of OCL in the ,,PleXX” framework described

in the Diplomarbeit [Mitrik04]. Because EJB3 persistence is a radical improvement, it is planned as
future work the transformation from OCL to EJB3QL.

86

Appendix A

Class Diagram of Project Royal and Loyal

LoyaltyProgram Customer
m— name : String
”“";T{- 5‘;"9 - title: : String
programs | @nroll(c : Customer) rams _+| isMale : Boolean
=1 gelServices(): Sel(Services) pmg | J dateO1Birth ; Date
; 0.. pa ricipants ;
program | 1 - /age: Integer
1..* |partners 1 age() : Integer
ProgramPartner : owner | 1
numberQfCustomers : Intager
name : String Membership
partner | 1 levels il 1 cards| 0..”
{ordered] |1.." JcurrentLevel car:_I CustomerCard
ServiceLevel valid : Boolean
_ name : String validFrom : Date
giwgmd o Tevel account 0..1 goodThru : Date
rvices | Y-. 5o LoyaltyAccount color : Color 5
Service or AT Dok : Ineger fprintedName : String
condition : Boolean Services number : Integer 1| card
pointsEarned : Integer earnii : Integer
pointsBurned : Integer bum{i :Intgw%
description : String isEmpty() : Boolean
sarviceMNr : Integer 1 P
calcPoints() : Integer
generatedBy | 1 transactions{ 0.."
Transaction
0.." ['points : Integer 0.
transachions| date - Date transactions
amount: Real
programi) ;
LoyaltyProgram
Burnin Earnin
—dapes] _Buming_] [garning]
Date <<enumeration>>
now : Date —— E Color
isBefore(l : Date) : Boolean i S sih'l"”
isAfter(t : Date) : Boolean gold
= (t : Dale) : Boolean

87

Appendix B

An example of fragments-based code generation

Methods for association defined field:

Section 1 Section 2 Section 3 Section 4
get_ () addTo__ (element) z_internalAddTo__() get__At()
set_ () addTo__(collection) z_internalRemoveFrom__() set__At()
get && () removeFrom__(element) z_internalAddTo_&& () addTo__At()

set_&& () removeFrom__(collection) | z_internalRemoveFrom_&& () removeFrom__At()
removeAllFrom__()

»_&& " indicats the name of field which refers to association class (String value equals to Type

name of association Class)

. reference field named by role name of the opposite side (String value equals to Role name of

opposite side)

Role name: the role name of an association end. The first letter must be uppercase.

Name of field: The first letter must be lowercase.

Note: In Section3, if association owns an association class,methods z_internalAddTo_&&_() and
z_internalRemoveFrom_&&_() will replace z_internalAddTo__ () and z_internalRemoveFrom__ ().

Generation Condition: When all the conditions in list are fullfilled, the method will be generated
Necessary informations for generation: the informations which can affect the code detail.
Generation for Name: the generated name of this method

Generation for body: Codes body generation consists of serval steps. They will be performed in
order.

88

B.1. Fragments based generation for Section 1

get_ ()

Generation Condition:
1. the opposite side is navigable

Necessary informations for generation:

[A]. Role name of opposite side

[B]. Name of reference field

[C]. Type name of reference field

[D]. if reference field is collection type

Generation for Name: public [C] get[A] ()i}

Generation for Body:

1

Fragment name

Generation condition

Codes snippet

Parameter check

[D] is true

Index=1

2.

Fragment name

Generation condition

Codes snippet

Return

[D] is true

Index=2, [1]=[B]

[D] is false

Index=1,[1]=[B]

set_ ()

Generation Condition:
1. the opposite side is navigable

Necessary informations for generation:

[A]. Role name of opposite side [H].
[B]. Name of reference field [
[C]. Type name of reference field [J].
[D]. Type name of the opposite side [K].
[E]. Role name of this side [L].

[F]. Type name of this side
[G]. If association is unidrectional

If multiplicity of this side is many

If multiplicity of the opposite side is many
If association has association class

Type name of assocation class

Name of the field which refers to association
class

Name: public wvoid set[4] ([C] element){}

Body:
1.

Fragment name

Generation Condition

Codes snipped

Duplication check

[G] is false & [J] is false

Index=2,[1]=[B]

89

2.

Fragment name Generation Condition

Codes snipped

Clean [G] is false & [H] is false & [I] is

relationship false & [J] is false

Index=2,[1]=[B].[2]=[E].[3]=[F]

from opposite | [G] is false & [H] is false & [I] is

side true & [J] is false

Index=1.[1]=[B],[2]=[D,[3]=[E],[4]=[F]

[J] is true & [I] is false

Index=6,[1]=[L],[2]=[K]

[J] is true & [I] is true

Index=7,[1]=[L],[2]=[K]

3
Fragment name Generation Condition Codes snipped
Set [J] is false Index=1,[1]=[B]
[J] is true & [I] is false Index=2,[1]=[B],[2]=][K]
[J] is true & [I] is true Index=3,[1]=[D],[2]=[A]
4.
Fragment name Generation Condition Codes snipped
Build [J] is false & [G] is flase & [I] is | Index=1,[1]=[E],[2]=[F]
relationship false
from opposite | [J is false & [G] is flase & [I] is | Index=2,[1]=[D].[2]=[E].[3]=[F]
site true
set && ()

Generation Condition:
1. association with association class
Necessary informations for generation:

[B] Type name of association class

[A] Name of the field which refers to association class

Name: public wvoid =et[E] ([E] element]){}

Body:

1.

Fragment name Generation condition Codes snippet
Set true Index=1,[1]=[A]
get && ()

Generation Condition:
Association with association class
Necessary informations for generation:

[B]Type name of association class

[A]Name of the field which refers to association class

Name: Public [E] oet[B]{}

Body:

1.

Fragment name Generation condition Codes snippet
Return ture Index=1,[1]=[A]

B.2. Fragment based generation for Section2

addTo__(element)

Generation Condition:
1. the opposite side is navigable and 2. the opposite side is many

Necessary informations for generation:

[Al
[B].
[C].
[D].
(E].
[F].

Role name of opposite side
Name of reference field

Type name of reference field
Type name of the opposite side
Role name of this side

Type name of this side

[H]. If multiplicity of this side is many

[1]. If multiplicity of the opposite side is many
[J]. If opposite side is indexed collection

[K]. If opposite side is unique collection

[L]. If association has association class

[M]. Type name of assocation class

[G]. If association is unidrectional

class

[N]. Name of the field which refers to association

[O]. Index field name of opposite side

Generation for Body:
1.

Fragment name

Generation condition

Codes snippet

Parameter null check

[G] is false

Index=1

2.

Fragment name

Generation condition

Codes snippet

Dupplication check

[K] is true & [L] is false

Index=3, [1]=[B]

[K] is true & [L] is true

index=4,[1]=[B],[2]=[D],[3]=[A]

3
Fragment name Generation condition Codes snippet
Clean relationship | [G] is false & [H] is false & [L] is | Index=3, [1]=[B],[2]=[E]

from opposite side

false

[G] is false & [H] is false & [L] is
true

Index=4,[1]=[M]

4,

Fragment name Generation condition Codes snippet

Add [L] is false Index=1, [1]=[B]
[L] is true Index=2,[1]=[M]

5

Fragment name

Generation condition

Codes snippet

Index handling

[L] is false & [J] is true

Index=1, [1]=[0].[2]=[B]

6.

Fragment name

Generation condition

Codes snippet

Build relationship from opposite

side

[G] is false & [L] is false

Index=3, [1]=[E].[2]=[F]

91

addTo__ (collection)
Generation Condition:

1. The opposite side is navigable and 2. the opposite side is many
Necessary informations for generation:

[A]. Role name of opposite side
[B]. Type name of the opposite side
[C]. Type name of parameter

Generation for Name: public woid sddTof[i] ([C] newElems){}

Generation for Body:

1.
Fragment name Generation condition Codes snippet
Add true Index=3, [1]=[B].[2]=[Al,

removeFrom__ (element)
Generation Condition:

1. the opposite side is navigable and 2. the opposite side is many
Necessary informations for generation:

[A]. Role name of opposite side [H]. If multiplicity of this side is many
[B]. Name of reference field [1]. If multiplicity of the opposite side is many
[C]. Type name of reference field [J]. If opposite side is indexed collection
[D]. Type name of the opposite side [K]. If opposite side is unique collection
[E]. Role name of this side [L]. Ifassociation has association class
[F]. Type name of this side [M]. Type name of assocation class
[G]. If association is unidrectional [N]. Name of the field which refers to association
class
[O]. Index field name of opposite side

Generation for Name: public woid removeFrom[A] ([D] element){}

Generation for Body:

1.
Fragment name Generation condition Codes snippet
Parameter null check [G] is false Index=2
2.
Fragment name Generation condition Codes snippet
Existence check [G] is false & [L] is false Index=1,[1]=[B]
[G] is false & [L] is true Index=2,[1]=[N].[2]=[M].[3]=[E]
3
Fragment name Generation condition Codes snippet
Index handling [L] is false & [J] is true Index=2, [1]=[B].[2]=[D].[3]=[O]
4.
Fragment name Generation condition Codes snippet
Removement [L] is false Index=1, [1]=][B]
[L] is true index=4,[1]=[M],[2]=[N]

92

5

Fragment name

Generation condition

Codes snippet

Clean relationship

[G] is false & [L] is false

Index=5, [1]=[E].[2]=[F]

from opposite side

[G] is false & [L] is true

Index=4,[1]=[M]

removeFrom__(collection)
Generation Condition:

1. the opposite side is navigable and 2. the opposite side is many
Necessary informations for generation:

[A]. Role name of opposite side
[B]. Type name of the opposite side

[C]. Type name of pa

rameter

Generation for Name: public woid rewmoveFrom[A] ([C] oldElems){}

Generation for Body:
1.

Fragment name

Generation condition

Codes snippet

Removement

true

Index=3, [1]=[B].[2]=[A],

removeAllFrom__()
Generation Condition:

1. the opposite side is navigable and 2. the opposite side is many
Necessary informations for generation:

[A]. Role name of opposite side

Generation for Name: public void remcvelllFrom[A] (){}

Generation for Body:
1.

Fragment name

Generation condition

Codes snippet

Removement

true

Index=4, [1]=[A]

93

B.3. Fragments based generation for Section 3

z_internalAddTo__ ()
Generation Condition:

1. association is bidirectional 2. association without associaion class

Necessary informations for generation:

[A]. Role name of opposite side
[B]. Name of reference field

[C]. Type name of reference field
[D]. Type name of the opposite side
[E]. Role name of this side

[F]. Type name of this side

[G]. If association is unidrectional

[H].
[1].
[J].
[K].
[L]

[M].

IN].

[0].

If multiplicity of this side is many

If multiplicity of the opposite side is many
If opposite side is indexed collection

If opposite side is unique collection

If association has association class

Type name of assocation class

Name of the field which refers to association
class

Index field name of opposite side

Generation for Name: public woid =z internsldddTolA] ([D] element) {}

Generation for Body:

1.

Fragment name Generation condition Codes snippet

Set [1] is false Index=1,[1]=[B]

2.

Fragment name Generation condition Codes snippet

Add [1] is true Index=1, [1]=[B]

3.

Fragment name Generation condition Codes snippet

Index handling [1] is true & [J] is true Index=1, [1]=[O],[2]=[B]

z_internalRemoveFrom__ ()
Generation Condition:

1. association is bidirectional and 2. association without association class

Necessary informations for generation:

[A]. Role name of opposite side
[B]. Name of reference field

[C]. Type name of reference field
[D]. Type name of the opposite side
[E]. Role name of this side

[F]. Type name of this side

[G]. If association is unidrectional

[H].
[1].
[J].
[K].
[L]

[M].

IN].

[O].

If multiplicity of this side is many

If multiplicity of the opposite side is many
If opposite side is indexed collection

If opposite side is unique collection

If association has association class

Type name of assocation class

Name of the field which refers to association
class

Index field name of opposite side

94

Generation for Name: public void =z internalBemoveFrom[L] ([D] element)

Generation for Body:

th

1.
Fragment name Generation condition Codes snippet
Index handling [1]is true & [J] is true & [H] is | Index=2,

ture [11=[B].[2]=[D].[3]=[C]
2.
Fragment name Generation condition Codes snippet
Removment [H] is false Index=5, [1]=[B]

[H] is true Index=1,[1]=[B]

z_internalAddTo_&& ()
Generation Condition:

1. association is bidirectional and 2. association with association class
Necessary informations for generation:

[A]. Type name of assocation class

[B]. Index field name of opposite side
[C]. Opposite side is many

[D]. Opposite side is indexed collection
[E]. Index field name of opposite side

Generation for Name: public woid g internalAddTolh] ([4] element) {}

Generation for Body:

1.

Fragment name Generation condition Codes snippet

Set [C] is false Index=1,[1]=[B]

2.

Fragment name Generation condition Codes snippet

Add [C] is true Index=1, [1]=[B]

3.

Fragment name Generation condition Codes snippet

Index handling [C] is true & [D] is true Index=1, [1]=[E],[2]=[B]

z_internalRemoveFrom_&& ()
Generation Condition:

1. Association is bidirectional and 2. association with association class
Necessary informations for generation:

[A]. Type name of assocation class

[E]. Index field name of opposite side

[B]. Index field name of opposite side [F]. This side is many

[C]. Opposite side is many

[G]. Name of reference field

[D]. Opposite side is indexed collection [H]. Type name of opposite side

95

Generation for Name: public void = internalBRemowveFrom[4] ([L] element])

Generation for Body:

1.

(1

Fragment name

Generation condition

Codes snippet

Index handling

[C] is true & [D] is true & [F]
is true

Index=2,

[1]=[G].[2]=[H].[3]=[E]

2.
Fragment name Generation condition Codes snippet
Removment [C]is false & [F] is false Index=5, [1]=[B]

I([C] is false & [F] is false)

Index=1,[1]=[B]

96

B.4. Code fragments

Snippet for ,,return* (index, [1])

1 Return_Single_Object return [1]:

2 Return_Collection_Object | return Collections. unmodifiableSet[[1])1:

3 Return Single Obj. In | return [1].get (index):
collection based on index

Snippet for “parmeter null check” (index,[1])

1 Check_Null_return_null | if | element == null | {return null;:

2 Check_null_return if [element == null |} {return;}

3 null check based on | if [[1].get(index)== null] {return;}
collection index

Snippet for “existence check” (index,[1],[2],[3])
1 Check_existence_return_null | if {!this,[1].contains(element)] return;
2 in case of association class [2] foundElem = null;
Iterator it = [1].iterator(]:
while [it.hasNext(] | §
[2] elem = [[Z2]] it.next(]:
if | glem.gerc[3] (1] == element | |
foundElem = elem:}}
if [(foundElem== null)] return;

Snippet for “dupplication check” (indec,[1])

1 Duppl. Check return null | if (this,[1]==element) return null:
2 Duppl. Check return if (this.[1]==element] return;
3. Duppl. ~ Check for | if | this,[1].contains (element) J {
collection return;:
4 Duppl. Check for | hoolean isPresent = false;
aSSOCIatlon Class Iterator it i [1] .iteratDrl::l:
while [it.hasMNext(] &£& !isPresent | {
[2] elem = [[2]) it.next(];
if { glem.get[3l () == element) |
isPresent = true;:}

if (isPresent) return;

Snippet for “index bound check” (index,[1])

1 bound check return null if { index = [1].size() || index < O) {
return null;:}

2 bound check return if | index »= [1].size() || index < 0) {
return;

97

Snippet for ,,Add*

(index,[1],[2])

1 Add this, [1]].add (e lement) ;
2 Add for association class | [1] asscls = new [1] (this,par);
3 code body for | Iterator it = newElems.iterator():
addTo__(collection) while ([{it.hasNext(}] 1 4
— Chiject item = it.next():

if { item instanceof [1] |

addTo[2] (([1])item) }}

4 add with index

[1] .add(index,element]) ;

Snippet for “Index handling” (index,[1])

1 | evaluate element,[1] = this,[2].=zize(]-1;
last index
of
collection
2 | adjusting int index = this,[1].index0fielement) :
for Iterator ii =[1].sublistiindex+1,[1].5ize(]] .iterator (]
while [ii.hasNexti) | {
removment [2] item = ([2]) ii.next();
item,[3]--:}
element, [3]=-1;
3 édjus’[Iterator ii =[1] .sublistiindex,[1] .5ize()].iterator()
index for | white | ii.hasMext{)) §
addtoAt [2] item = ([2]) ii.nexti):
item, [3]++;1
element,. [3] = index:
4 | replace element, [1] = index:
get[2] (index) , [1]=-1;
5 | only know if ([1] .get (index) != null){
index Iterator ii =[1] .sublist(index+1,[1].size()].iterator(];
while [ii.hasNext(] | {[2] itew = [[2]) ii.nextc(]); itew.[3]--:}
[1] .getiindex) . [3]=-1:}

Sninppet for ,,Set* (index,[1],[2])

1 assignment this,[1] = element;
2 Assignment for | 3¢ { element '= nui1 i ¢
association class in case this,[1] = new [2] (this, element);
of ,,to One“ } else {th}s/\.ﬁ[l] = null;}
3 Assignment for if { element '= null) {
association class in case it = element.iterstor():
of ,,to many* while [it.hasNexti()]] {
[1] elem = [[1])] it.next(]:
this.addTo[2] (elem))}
4 Assignment for indexed | [1] .set [index,element] ;
collection

98

Sninppet for* Removement”

(index,[1],[2])

1 remove from collection this, [1] .remove (element) ;
2 in case of association | {([1])foundElem).clean():
class this,. [2] .remove (foundE lem) ;
3 codes bOdy for Iterator it = oldElems.iterator():;
removeFrom__() while | {it.hasNext(]]] {
Object item = it.next():
if { item instanceof [1]) {
this.removeFrom[2)] ¢ ([1])item) ;}}
4 codes body for | removeFrom[1] (get[1].01);

removeFromAll()

remove in inner remover

this.[1] = null:

remove according index

[1] . remowe (index) ;

Sninppet for “build relationship from opposite side” (index,[1],[2],[3])

1 | Assignment for opposite side | if | element !'= null j |
which is ,,one“ element.set[1] ([([2] this)}
2 Ass?lgn.mentforopposne side | ;¢ [element '= null) {
which is ,,many* it = element.iterataor():
while [it.hasNext(] | {
[1] x = [[1]] it.nexti):
X.z2_internaldddTo[2] { ([3])thi=s }:}}
3 Assignement for an existent | element. £_internallddTo[1] | Mthis 1

opposite end

Snippet for “Clean relationhship from opposite side”

(index, [1],[2],[3],[4])

1 | Clean the Iterator it = this,[1].iterator(];
exsitent while | it,hasNext() 1 {
association of [2].x. = ([2]) it.nexti]:
this side ¥.Z internalRemnvef‘rnm[S] [([4]1thi=s !}
2 |in case of | if | this,[1] '= null | |
_toOne“ thig,[1] .2_internalBRewmoveFrom[Z] [[[3]this |}
3 | Clean the | if [element.get[1] () '= null j ¢
exsitent element.get[1] () .2 internalBRemoveFrom[Z] (element) :}
association of
opposite end
4 |in case of | if [elewent.get[1] () '= null) {
association class (f[1])element.get[1] (1) .clean)}
5 | clean existent | element.& internalBemoveFrom[1] { ([Z2])this):
opposite end
6 | Clean both | if I'= nuall)

associations in

case of ,,to One*

[this,[1]
(([2])this.[1]).clean();}

99

Clean the
assocation
between each

end

List x® = mew ArraylList(this,[1]):

Iterator it = xX.iterator():;

while [it.hasNext(] | §
[2] elem = [[2]) it.next(]:;
elem.clean()}

only know the

index

if[1] .getiindex] '= null){
[1] .get(index) .z_internalRemoveFrowRole a(([2])

this)

100

Appendix C

Generated configuration files in OctopusEE

Log4j.properties

log4j -rootCategory=INFO, Al

log4j -appender.Al=org.apache.log4j .ConsoleAppender

log4j -appender.Al. layout=org.apache.log4j .PatternLayout

log4j -appender.Al. layout.ConversionPattern=%d{MM-dd@HH:mm:ss} %-5p
(13F-%L) %3x - %m%n

IMETA-INF/hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE hibernate-configuration PUBLIC
""-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory name="context''>
<property name="hibernate.connection.driver_class'>
com.mysgl . jdbc.Driver
</property>
<property name="hibernate.dialect">
org.hibernate._dialect_MySQLDialect
</property>
<property name=""hibernate.connection.url'>
Jjdbc:mysql://localhost:3306/test
</property>
<mapping class =".. ""/>

</session-factory>
</hibernate-configuration>

101

IMETA-INF/persistence.xml

<?xml version="1.0" encoding="UTF-8"7>
<entity-manager>
<name>context</name>
<class>.</class>
<properties>
<property name="‘hibernate.connection.url"
value=""jdbc:mysql://localhost:3306/test"/>

<property name="hibernate.dialect”
value="org.hibernate._dialect_MySQLDialect"/>

<property name="hibernate.connection.driver_class"
value="com.mysql . jdbc.Driver"/>

<property name=""hibernate.connection.password"
value="""/>

<property name=""hibernate.connection.username"
value=""Xinhua"/>

<property name="hibernate.show_sql" value="false"/>
</properties>
</entity-manager>

/utilities/DDLGenerator.java

public class DDLGenerator |
static public void mwain(3tring[] args) |
AnnotationConfiguration cfg = [(AnnotationConfiguration)

new AnnotationConfigurationi)

.configure (new File("sro/METL-INF/hikhernate.cfog.xml™)]
GchemaExport schemaExport = new SchemaExport (cfg)
schemaExport.setlelimiter (™ ™)

SetoutputFile ("schema. ddl™)
.create(true, true) ;

102

References

[Annotations] Hibernate Annotations Reference Guide Version 3.1 Beta 8
URL: http://www.hibernate.org/hib_docs/annotations/reference/en/html

[Entitymanager] Hibernate EntityManager User Guide Version 3.1 Beta 6
URL.: http://jcp.org/en/jsr/detail?id=220

[Dev] Octopus developer document version 2.0.0
URL: http://www.klasse.nl/octopus/octopus-developer-pack.zip

[JSR220-API1] JSR-220 Enterprise JavaBeans version 3.0 Simplified APl Proposed Final Draft
URL.: http://jcp.org/en/jsr/detail?id=220

[JSR220-Contracts] JSR-220 Enterprise JavaBeans 3.0 Core Contracts and Requirement Proposed
Final Draft: URL.: http://jcp.org/en/jsr/detail?id=220

[JSR220-Persistence] JSR-220 Enterprise JavaBeans version 3.0 Persistence APl Proposed Final
Draft: URL.: http://jcp.org/en/jsr/detail?id=220

[JSR220-Site] JSR220 Specification Site:
URL: http://jcp.org/en/jsr/detail?id=220

[J2SE1.5] J2SE 1.5 API online document
URL: http://java.sun.com/j2se/1.5.0/docs/api/

[Kleppe05] Jos Warmer, Anneke Kleppe; Wed yourself to UML with the power of Association; June
2005. URL: http://www.devx.com/enterprise/Article/28528

[Middleware03] The Middleware Company; Model Driven Development for J2EE Utilizing a
Model Driven Architecture (MDA) Approach, Productivity Analysis; June 2003;
URL: http://www.omg.org/mda/mda_filessMDA_Comparison-TMC_final.pdf

[Octopus] Octopus Official Site:
URL: http://www.klasse.nl/octopus/index.html

[UMLO5] UML 2.0 Specification : Superstructure; April, 2005
URL.: http://www.omg.org/cgi-bin/doc?formal/05-07-04

[Wolffo1] Achim D. Brucker, Burkhart Wolff; Testing Distributed Component Based Systems
Using UML/OCL; July 2001
URL.: http://www.brucker.ch/bibliography/download/2001/info2001.pdf

103

[Bates06] Kathy Sierra, Bert Bates; Sun Certified Programmer for Java 5; McGraw-Hill; 2006

[Bloch01] Joshua Bloch, Effective java programming language guide, Addison Wesley; June 2001

[Johnson03] Rod Johnson; Expert One-on-One J2EE Design and Development; Wrow Press; 2003

[Johnson04] Rod Johnson, Juergen Hoeller; Expert One-on-One J2EE Development without EJB;
Wiley Publishing, Inc.; 2004;

[King05] Christian Bauer, Gavin King; Hibernate in Action; Manning; 2005

[Kleppe03]Jos Warmer, Anneke Kleppe; The Object Constraint Language Second Edition;Addison
Wesley; August 2003

[Malks03] Deepak Alur, John Crupi, Dan Malks; Core J2EE Pattern: Best Practices and Design
Strategies, Second Edition; Prentice Hall PTR; June 10, 2003

[McLaughlin04] David Flanagan, Brett McLaughlin; Java 1.5 Tiger: A Developer's Notebook;
O’Reilly; June 2004.

[Mitrik04] Dieter A Mitrik; Evaluierung und Implementierung der Object Constraint Language zur
Priifung von Geschaftsregeln im Rahmen des Business Object Frameworks pleXX; Januar 2004.

[Pitman05] Dan Pilone, Neil Pitman; UML 2.0 in a nutshell; O’Railly; June 2005

[Tate04] Justin Gehtland, Bruce A, Tate; Better Faster Lighter Java; O’Reilly; Junne 2004

104

